JP2001121641A - Transparent conductive laminate - Google Patents
Transparent conductive laminateInfo
- Publication number
- JP2001121641A JP2001121641A JP30526199A JP30526199A JP2001121641A JP 2001121641 A JP2001121641 A JP 2001121641A JP 30526199 A JP30526199 A JP 30526199A JP 30526199 A JP30526199 A JP 30526199A JP 2001121641 A JP2001121641 A JP 2001121641A
- Authority
- JP
- Japan
- Prior art keywords
- transparent conductive
- film
- conductive film
- concentration
- atomic concentration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Laminated Bodies (AREA)
- Non-Insulated Conductors (AREA)
- Manufacturing Of Electric Cables (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は亜鉛を少量含む抵抗
値の低減された透明導電積層体に関し、さらに詳しくは
高分子基板の上に成膜直後から比抵抗の低減され、且つ
熱処理により更なる低抵抗化が可能な透明導電膜を設け
てなる透明導電積層体に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a transparent conductive laminate containing a small amount of zinc and having a reduced resistance value. The present invention relates to a transparent conductive laminate provided with a transparent conductive film capable of lowering resistance.
【0002】[0002]
【従来の技術】各種表示素子或いは薄膜太陽電池の電極
部には、可視光線透過率が高く、低抵抗な電気特性を有
する透明導電膜が欠かせない。また、近年の携帯移動端
末の急激な小型化・軽量化に伴って、透明電極基板に
も、さらなる軽量な部材が要求されている。そのため、
基板材料としては、ガラスに比べてより軽量な透明高分
子基板材料にIn−Sn−Oを主成分とする膜(以下I
TO膜と記す)を積層した透明導電性フィルムが使用さ
れつつある。2. Description of the Related Art A transparent conductive film having a high visible light transmittance and low electrical properties is indispensable for an electrode portion of various display elements or thin film solar cells. In addition, with the rapid miniaturization and weight reduction of portable mobile terminals in recent years, further lightweight members are required for transparent electrode substrates. for that reason,
As a substrate material, a film containing In-Sn-O as a main component (hereinafter referred to as I) is used for a transparent polymer substrate material which is lighter than glass.
A transparent conductive film having a laminated structure (to be referred to as a TO film) is being used.
【0003】一方、透明導電材料の新しい展開として、
特開平6−318406号公報や特開平7−23521
9号公報にあるようなIn−Zn−Oを主成分とする膜
(以下IZO膜と記す)が提案されている。IZO膜は
ITO膜と異なり、結晶化させることが困難であるため
に、比較的温度が高くなる必要がある用途への展開がな
されている。On the other hand, as a new development of transparent conductive materials,
JP-A-6-318406 and JP-A-7-23521
No. 9 proposes a film containing In-Zn-O as a main component (hereinafter referred to as an IZO film). The IZO film, unlike the ITO film, is difficult to be crystallized, and therefore has been developed for applications requiring a relatively high temperature.
【0004】高分子基板は耐熱性に乏しく、ガラスに用
いられているような200℃を超えるような高温プロセ
スは適応できない。そのため、成膜直後から抵抗値の低
減されたITO膜は非常に作り難い。[0004] A polymer substrate has poor heat resistance and cannot be applied to a high-temperature process exceeding 200 ° C as used for glass. Therefore, it is very difficult to form an ITO film having a reduced resistance immediately after film formation.
【0005】一般にDCマグネトロンスパッタリングに
おいて形成されるITO膜の構造及び電気特性は、その
成膜温度に強く依存すると言われており、構造について
言及すると基板温度を室温に保って行った成膜では、結
晶質部と非晶質部が混合した状態、或は非晶質状態の膜
が形成される。そして、電気特性は低温で形成した膜は
成膜直後には抵抗値が著しく低減することはなく、一般
に5〜7×10-4Ω・cmの比抵抗を示す。一方、IZ
O膜は成膜直後から構造は非晶質であり、抵抗値も比較
的低い。しかし、比抵抗が成膜直後に膜に例えば熱のよ
うな何らかの刺激を与えても変化せず、さらなる低抵抗
膜を形成する上では物足らない。In general, it is said that the structure and electrical characteristics of an ITO film formed by DC magnetron sputtering strongly depend on the film formation temperature. In terms of the structure, in film formation performed while keeping the substrate temperature at room temperature, A film in a state where the crystalline part and the amorphous part are mixed or in an amorphous state is formed. The electrical characteristics of the film formed at a low temperature do not decrease remarkably immediately after the film formation, and generally show a specific resistance of 5 to 7 × 10 −4 Ω · cm. On the other hand, IZ
The O film has an amorphous structure immediately after its formation, and has a relatively low resistance value. However, the specific resistance does not change even if a certain stimulus such as heat is applied to the film immediately after the film formation, which is not sufficient for forming a further low-resistance film.
【0006】そのため、様々な材料が選定されて、かか
る今日においても飽くなき探求が続けられている。For this reason, various materials have been selected, and even today, there is an insatiable search.
【0007】[0007]
【発明が解決しようとする課題】高分子基板上への透明
導電膜の形成においては、高分子基板の軟化点温度が一
般に200℃に満たないため、かかる温度以上に加熱す
ることができず、ガラス上への透明導電膜の形成時のよ
うに200〜400℃のような高い基板温度条件を使用
することができない。また、高分子基板の曲げに対する
剛性はガラス基板に比して小さいことより、高分子基板
上にはせいぜい3000Å程度しか透明導電膜を形成す
ることができない。これ以上に透明導電膜の膜厚を厚く
するように形成すると、高分子基板が透明導電膜の応力
のために、そり(カール)を起こしてしまったり、或い
は透明導電膜に微細な傷が入ってしまうことがある。こ
のようなことから、膜厚は最大で3000Å程度に抑制
することが必要である。即ち、高分子基板上では膜厚の
増加により抵抗値を下げるには限界が有り、比抵抗を低
減させることが高分子基板上で低抵抗な透明導電膜を実
現する本質的な要求である。In the formation of a transparent conductive film on a polymer substrate, since the softening point temperature of the polymer substrate is generally lower than 200 ° C., the polymer substrate cannot be heated to such a temperature or higher. As in the case of forming a transparent conductive film on glass, a high substrate temperature condition such as 200 to 400 ° C. cannot be used. Further, since the rigidity of the polymer substrate against bending is smaller than that of the glass substrate, a transparent conductive film can be formed on the polymer substrate only up to about 3000 °. If the thickness of the transparent conductive film is made thicker than this, the polymer substrate may be warped (curled) due to the stress of the transparent conductive film, or fine scratches may occur in the transparent conductive film. Sometimes. For this reason, it is necessary to suppress the film thickness to about 3000 ° at the maximum. That is, there is a limit to reducing the resistance value due to the increase in the film thickness on the polymer substrate, and reducing the specific resistance is an essential requirement to realize a low-resistance transparent conductive film on the polymer substrate.
【0008】また、ITOを用いて透明導電膜を形成し
ようとする場合、200℃を超えるような高温プロセス
であれば、成膜直後から抵抗の低減された膜を形成する
ことができるものの、高分子基板を用いる場合には、成
膜直後のITO膜の比抵抗がガラス対比若干高いことは
否めない。In the case where a transparent conductive film is to be formed using ITO, a high-temperature process exceeding 200 ° C. can form a film having a reduced resistance immediately after the film formation. When a molecular substrate is used, it cannot be denied that the specific resistance of the ITO film immediately after film formation is slightly higher than that of glass.
【0009】従って本発明は、高分子基板上に、成膜直
後から抵抗値が低減された透明導電膜を形成し、さらに
かかる膜に熱等の刺激を与えることでより抵抗値を低減
できる透明導電積層体並びにその製造方法を提供するこ
とにある。Accordingly, the present invention provides a transparent conductive film having a reduced resistance value immediately after film formation on a polymer substrate, and further applying a stimulus such as heat to the transparent film to reduce the resistance value. An object of the present invention is to provide a conductive laminate and a method for manufacturing the same.
【0010】[0010]
【課題を解決するための手段】発明者らは、基板温度が
室温程度が温度で形成された透明導電膜について、その
組成に関して鋭意検討した結果、In−Sn−Zn−O
系材料のSn濃度とZn濃度を適切に制御することで、
形成された透明導電膜の抵抗値が成膜直後に低減でき、
さらに適切な、例えば熱のような刺激を与えることによ
り抵抗値を低減できることを見出した。これは以下のよ
うな手段に基づくものである。Means for Solving the Problems The inventors of the present invention have conducted intensive studies on the composition of a transparent conductive film formed at a substrate temperature of about room temperature, and found that the composition is In-Sn-Zn-O.
By appropriately controlling the Sn concentration and Zn concentration of the system material,
The resistance value of the formed transparent conductive film can be reduced immediately after film formation,
It has further been found that the resistance can be reduced by giving a suitable stimulus, for example heat. This is based on the following means.
【0011】Sn濃度とZn濃度を適切に制御したIn
−Sn−Zn−Oを薄膜形成すると、成膜直後には非晶
質の構造を示す。そして、低温プロセスで形成したZn
を持たないIn−Sn−O膜では、成膜直後の比抵抗が
やや高くなる。しかし、熱処理により著しく抵抗値が低
減できる。一方、Snを持たないIn−Zn−O膜で
は、成膜直後の比抵抗はある程度低減できる。本発明者
らは、これらの特性を相互に具現化するために酸化イン
ジウムに酸化亜鉛と酸化錫を適切な量添加すると、非晶
質の状態においても、成膜直後の比抵抗を低減できるこ
とを見出した。この膜に熱のような刺激を与えると、構
造が非晶質から結晶質に転化する。この結晶化に伴いS
nが格子点に入り込み、キャリアが発生し比抵抗が低減
する。一方、Znは格子点に入ることによって、Inに
酸素空孔を与え難くなり、Znの効果による抵抗値の低
減はやや阻害される。そのため、単組成のITO膜に比
較すると、熱処理後の抵抗値の低減はやや劣るものの、
成膜直後からの抵抗値の低減は実現でき、熱処理後にも
低い抵抗値の透明導電膜を得ることができる。その意味
で、透明導電膜の機能はIn2O3とZnOとSnO2の
複合物によって高まっていると考えることができる。In which the Sn concentration and the Zn concentration are appropriately controlled,
When a thin film of -Sn-Zn-O is formed, an amorphous structure is shown immediately after the film is formed. Then, the Zn formed by the low temperature process
In an In—Sn—O film having no, the specific resistance immediately after film formation is slightly higher. However, the heat treatment can significantly reduce the resistance value. On the other hand, in the case of an In—Zn—O film having no Sn, the specific resistance immediately after film formation can be reduced to some extent. The present inventors have found that by adding appropriate amounts of zinc oxide and tin oxide to indium oxide in order to realize these characteristics mutually, it is possible to reduce the specific resistance immediately after film formation even in an amorphous state. I found it. When a stimulus such as heat is applied to the film, the structure changes from amorphous to crystalline. With this crystallization, S
n enters a lattice point, carriers are generated, and the specific resistance is reduced. On the other hand, when Zn enters the lattice points, it becomes difficult to provide oxygen vacancies to In, and the decrease in resistance value due to the effect of Zn is slightly hindered. Therefore, although the reduction in resistance after heat treatment is slightly inferior to that of a single-composition ITO film,
A reduction in resistance immediately after film formation can be realized, and a transparent conductive film having a low resistance can be obtained even after heat treatment. In that sense, it can be considered that the function of the transparent conductive film is enhanced by the composite of In 2 O 3 , ZnO, and SnO 2 .
【0012】即ち本発明は、好ましくはIn−Sn−Z
n−Oを主成分とする焼結ターゲットを用いて、DCマ
グネトロンスパッタ法にて高分子基板上に透明導電膜が
形成された透明導電積層体であって、InとSnの合計
原子濃度に対するSn原子濃度が0.01〜0.1の範
囲に入り、且つInとZnの合計原子濃度に対するZn
の原子濃度が0.01〜0.1の範囲に入り、且つSn
とZnの原子濃度の合計に対するZnの原子濃度の比が
0より大きく0.3未満であることを特徴とする透明導
電性積層体である。そして、当該膜の成膜直後における
比抵抗は3.5×10-4〜5.0×10-4Ω・cmであ
り、さらに、高分子基板の軟化点温度以下の温度にて、
10分以上300分以下の時間にて当該膜を熱処理する
ことにより、当該膜の比抵抗を2.0×10-4〜3.5
×10-4Ω・cmに転化できることを特徴としている。
このとき透明導電膜の膜厚は100〜2800Åであ
り、基体高分子基板の厚さは0.01〜0.4mmであ
ることを特徴としている。That is, the present invention preferably comprises In-Sn-Z
A transparent conductive laminate in which a transparent conductive film is formed on a polymer substrate by a DC magnetron sputtering method using a sintering target containing n-O as a main component, wherein Sn is based on the total atomic concentration of In and Sn. The atomic concentration falls within the range of 0.01 to 0.1, and Zn relative to the total atomic concentration of In and Zn
Is in the range of 0.01 to 0.1, and Sn
And a ratio of the atomic concentration of Zn to the total atomic concentration of Zn and Zn is greater than 0 and less than 0.3. The specific resistance immediately after the formation of the film is 3.5 × 10 −4 to 5.0 × 10 −4 Ω · cm, and at a temperature equal to or lower than the softening point temperature of the polymer substrate,
The specific resistance of the film is set to 2.0 × 10 −4 to 3.5 by heat-treating the film for 10 minutes to 300 minutes.
It is characterized in that it can be converted to × 10 −4 Ω · cm.
At this time, the transparent conductive film has a thickness of 100 to 2800 °, and the base polymer substrate has a thickness of 0.01 to 0.4 mm.
【0013】[0013]
【発明の実施の形態】次に、本発明の実施の形態につい
て順次説明していく。本発明の透明導電積層体は、高分
子基板上に透明導電膜が形成されてなる。Next, embodiments of the present invention will be sequentially described. The transparent conductive laminate of the present invention is obtained by forming a transparent conductive film on a polymer substrate.
【0014】本発明における透明導電膜は、酸化インジ
ウムを主体とし、酸化錫と酸化亜鉛が添加されたものか
らなり、InとSnの原子濃度の和に対するSnの原子
濃度の比が0.01〜0.1の範囲にあり、InとZn
の原子濃度の和に対するZnの原子濃度の比が0.01
〜0.1の範囲にあり、SnとZnの原子濃度の和に対
するZnの原子濃度の比が、0より大きく0.30未満
の範囲に入るものであり、0.10〜0.25の範囲に
入ることが望ましい。SnとZnの原子濃度の和に対す
るZnの濃度が0.01より低い場合には、成膜直後の
比抵抗があまり低減しない。一方、0.3よりSnとZ
nの原子濃度の和に対するZnの濃度が低い場合には、
成膜直後の比抵抗は低減するものの、熱処理後には比抵
抗が増大してしまう。The transparent conductive film according to the present invention comprises indium oxide as a main component, tin oxide and zinc oxide added, and the ratio of the atomic concentration of Sn to the sum of the atomic concentrations of In and Sn is 0.01 to 0.01. 0.1 and In and Zn
The ratio of the atomic concentration of Zn to the sum of the atomic concentrations of
And the ratio of the atomic concentration of Zn to the sum of the atomic concentrations of Sn and Zn falls within the range of more than 0 and less than 0.30, and the range of 0.10 to 0.25. It is desirable to enter. If the Zn concentration relative to the sum of the atomic concentrations of Sn and Zn is lower than 0.01, the specific resistance immediately after the film formation does not decrease so much. On the other hand, from 0.3, Sn and Z
When the concentration of Zn with respect to the sum of the atomic concentrations of n is low,
Although the specific resistance immediately after the film formation is reduced, the specific resistance increases after the heat treatment.
【0015】本発明に使用される高分子基板は、ポリエ
ステル系高分子、ポリオレフィン系高分子、ポリエチレ
ンテレフタレート、ポリエチレン2,6ナフタレート等
のポリエステル、ポリカーボネイト、ポリエーテルスル
ホン、ポリアリレート等の単一成分の高分子、或いは光
学的機能または熱力学的機能を付与するために、これら
の高分子に第二、第三成分を共重合した、共重合高分子
を用いることができる。特に、光学用途にはビスフェノ
ール成分を有する透明性が良好なポリカーボネイトが好
適である。かかるビスフェノール成分としては、例え
ば、2,2−ビス(4−ヒドロキシフェニル)プロパン
(ビスフェノールA)、1,1−ビス(4−ヒドロキシ
フェニル)シクロヘキサン(ビスフェノールZ)、1,
1−ビス(4−ヒドロキシフェニル)−3,3,5−ト
リメチルシクロヘキサン、9,9−ビス(4−ヒドロキ
シフェニル)フルオレン、9,9−ビス(3−メチル−
4−ヒドロキシフェニル)フルオレンを挙げることがで
きる。これらは2種類以上組み合わせてもよい。すなわ
ちかかるポリカーボネイトは共重合ポリカーボネイトで
もブレンドでもよい。さらに、新規機能を発現させるた
めに複数の高分子体をブレンドした高分子を用いること
もできる。さらには、多層の共押出し高分子フィルムを
用いることもできる。The polymer substrate used in the present invention comprises a single component such as a polyester polymer, a polyolefin polymer, a polyester such as polyethylene terephthalate or polyethylene 2,6-naphthalate, a polycarbonate, a polyether sulfone, or a polyarylate. In order to provide a polymer or an optical function or a thermodynamic function, a polymer obtained by copolymerizing a second or third component with these polymers can be used. In particular, polycarbonates having a bisphenol component and good transparency are suitable for optical applications. Examples of such bisphenol components include 2,2-bis (4-hydroxyphenyl) propane (bisphenol A), 1,1-bis (4-hydroxyphenyl) cyclohexane (bisphenol Z),
1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane, 9,9-bis (4-hydroxyphenyl) fluorene, 9,9-bis (3-methyl-
4-hydroxyphenyl) fluorene. These may be used in combination of two or more. That is, such a polycarbonate may be a copolymerized polycarbonate or a blend. Further, a polymer obtained by blending a plurality of polymer materials to exhibit a new function can also be used. Further, a multi-layer coextruded polymer film can be used.
【0016】また、高分子基板の膜厚は、0.01〜
0.4mmのものを使用することができるが、0.1〜
0.2mm程度が液晶等の光学用途としては視認性の観
点より望ましい。The thickness of the polymer substrate is from 0.01 to
0.4 mm can be used, but 0.1 to
About 0.2 mm is desirable from the viewpoint of visibility for optical applications such as liquid crystal.
【0017】さらに高分子基板は光学等方性が優れるも
のが好ましく、リターデーデョンが20nm以下、好ま
しくは10nm以下のものが好適である。Further, the polymer substrate preferably has excellent optical isotropy, and preferably has a retardation of 20 nm or less, preferably 10 nm or less.
【0018】高分子基板は、形成される透明導電膜との
密着性の向上、高分子基板の耐久性の向上或いは、高分
子基板のガスバリア能を向上させるために、高分子基板
の片面或いは両面に、少なくとも一層以上からなるコー
ティング層を有していても構わない。このコーティング
層は、無機物または有機物またはそれらの複合材料から
なり、その膜厚は好ましくは0.01〜20μmであ
る。より望ましくは、10mm程度に抑制されることが
望ましい。コーティング層の形成にはコーターを用いた
塗布法や、スプレー法、スピンコート法、インラインコ
ート法等が用いられることが多いが、この限りではな
い。また、スパッタ法、蒸着法といった、Physic
al Vapor Deposition(以下PV
D)、Chemical Vapor Depositi
on(以下CVD)の手法が用いられても構わない。コ
ーティング層としては、アクリル系樹脂、ウレタン系樹
脂、UV硬化系樹脂、エポキシ系樹脂等の樹脂成分やこ
れらとアルミナ、シリカ、マイカ等の無機粒子の混合物
が使われても良い。或いは、高分子基板を二層以上の共
押し出しによりコーティング層の機能を持たせても構わ
ない。PVD、CVDの手法では、酸化マグネシウム、
酸化アルミニウム、酸化珪素、酸化カルシウム、酸化バ
リウム、酸化錫、酸化インジウム、酸化タンタル、酸化
チタン、酸化亜鉛等の酸化物や、窒化珪素、窒化チタ
ン、窒化タンタル等の窒化物、並びに、弗化マグネシウ
ム、弗化カルシウム等の弗化物を単独或は混合物として
形成して用いることができる。このようなコーティング
層を有する高分子基板は、光学特性としてレターデーシ
ョンが低く、尚且つ透過率が高いことが望ましい。The polymer substrate is provided on one or both sides of the polymer substrate in order to improve the adhesion to the formed transparent conductive film, the durability of the polymer substrate, or the gas barrier capability of the polymer substrate. May have at least one coating layer. This coating layer is made of an inorganic or organic substance or a composite material thereof, and preferably has a thickness of 0.01 to 20 μm. More desirably, it is desirable to be suppressed to about 10 mm. For forming the coating layer, an application method using a coater, a spray method, a spin coating method, an in-line coating method, and the like are often used, but are not limited thereto. Physic, such as sputtering and vapor deposition,
al Vapor Deposition (hereinafter referred to as PV
D), Chemical Vapor Depositi
On (hereinafter referred to as CVD) may be used. As the coating layer, a resin component such as an acrylic resin, a urethane resin, a UV curable resin, or an epoxy resin, or a mixture of these with inorganic particles such as alumina, silica, and mica may be used. Alternatively, a polymer substrate may be provided with the function of a coating layer by co-extrusion of two or more layers. In the PVD and CVD methods, magnesium oxide,
Oxides such as aluminum oxide, silicon oxide, calcium oxide, barium oxide, tin oxide, indium oxide, tantalum oxide, titanium oxide, and zinc oxide; nitrides such as silicon nitride, titanium nitride, and tantalum nitride; and magnesium fluoride And fluorides such as calcium fluoride can be used alone or as a mixture. It is desirable that the polymer substrate having such a coating layer has a low retardation and a high transmittance as optical characteristics.
【0019】本発明における、透明導電膜の形成手法
は、DCマグネトロンスパッタリング法、RFマグネト
ロンスパッタリング法、イオンプレーティング法、真空
蒸着法、パルスレーザーデポジション法、これらを複合
した形成法等を用いることができるが、大面積に対して
均一な膜厚の透明導電膜を形成するという工業生産製に
着目し、DCマグネトロンスパッタリング法が望まし
い。In the present invention, the transparent conductive film is formed by a DC magnetron sputtering method, an RF magnetron sputtering method, an ion plating method, a vacuum deposition method, a pulse laser deposition method, or a combination of these methods. However, a DC magnetron sputtering method is desirable in view of industrial production in which a transparent conductive film having a uniform thickness is formed on a large area.
【0020】スパッタリングに用いるターゲットはIn
−Sn−Zn−Oを主成分とする焼結ターゲットを用い
ることが望ましいが、In−Sn−Znを主成分とする
合金ターゲットを用いても構わない。The target used for sputtering is In.
Although it is desirable to use a sintered target mainly containing -Sn-Zn-O, an alloy target mainly containing In-Sn-Zn may be used.
【0021】本発明では、スパッタリング法により上記
透明導電膜を製膜する場合は、該透明導電膜を製膜する
真空槽中の圧力を一旦1.3×10-4Pa以下とし、次
いで不活性ガス及び酸素を導入する製造方法にて形成す
ることができる。透明導電膜を製膜する真空槽中の圧力
は一旦1.3×10-4Pa以下にすることが、真空槽中
に残留し、且つ透明導電膜の特性に影響を与えることが
懸念される分子種の影響を低減できるので望ましい。よ
り望ましくは、4×10-5Pa以下、さらに望ましくは
2×10-5Pa以下である。In the present invention, when the transparent conductive film is formed by a sputtering method, the pressure in the vacuum chamber for forming the transparent conductive film is once reduced to 1.3 × 10 −4 Pa or less, and then inert. It can be formed by a manufacturing method in which gas and oxygen are introduced. It is feared that once the pressure in the vacuum chamber for forming the transparent conductive film is 1.3 × 10 −4 Pa or less, the pressure remains in the vacuum chamber and affects the characteristics of the transparent conductive film. This is desirable because the influence of molecular species can be reduced. More preferably, the pressure is 4 × 10 −5 Pa or less, further preferably 2 × 10 −5 Pa or less.
【0022】次いで導入される不活性ガスとしては、H
e、Ne、Ar、Kr、Xeを用いることができ、原子
量の大きな不活性ガスほど形成される膜へのダメージが
少なく比抵抗が低減されると言われているが、コスト面
から考えてArが望ましい。この不活性ガスには膜中に
取り込まれる酸素濃度を調整するために、分圧に換算し
て1×10-4〜1.3×10-2Pa台の酸素を添加して
も構わない。さらに、酸素の他にO3、N2、N2O、N
H3等を用いることができる。The inert gas introduced next is H
It is said that e, Ne, Ar, Kr, and Xe can be used, and it is said that an inert gas having a larger atomic weight causes less damage to a film to be formed and lowers specific resistance. Is desirable. In order to adjust the concentration of oxygen taken into the film, oxygen in the order of 1 × 10 −4 to 1.3 × 10 −2 Pa in terms of partial pressure may be added to the inert gas. Further, in addition to oxygen, O 3 , N 2 , N 2 O, N
H 3 or the like can be used.
【0023】また、本発明では、透明導電膜を製膜する
真空槽中の水の分圧を1.3×10 -4Pa以下とし、次
いで不活性ガス及び酸素を導入する製造方法にて形成す
ることができる。水の分圧は、より望ましくは、4×1
0-5Pa以下、さらに望ましくは2×10-5Pa以下に
水分圧を制御する。In the present invention, a transparent conductive film is formed.
The partial pressure of water in the vacuum chamber is 1.3 × 10 -FourPa or less, then
Formed by a production method that introduces inert gas and oxygen.
Can be The water partial pressure is more desirably 4 × 1
0-FivePa or less, more preferably 2 × 10-FiveBelow Pa
Control the water pressure.
【0024】本発明における水分圧を決定するときに
は、差動排気型のインプロセスモニターを用いても良
い。またはダイナミックレンジが広く、0.1Pa程度
の圧力下においても計測が可能な四重極質量分析計を用
いても良い。また、一般的に、1×10-5Pa程度の真
空度においては、その圧力を形成しているのは水であ
る。よって、真空計によって計測された値をそのまま水
分圧と考えても構わない。When determining the water pressure in the present invention, a differential exhaust type in-process monitor may be used. Alternatively, a quadrupole mass spectrometer that has a wide dynamic range and can measure even under a pressure of about 0.1 Pa may be used. In general, at a degree of vacuum of about 1 × 10 −5 Pa, water forms the pressure. Therefore, the value measured by the vacuum gauge may be considered as the water pressure as it is.
【0025】本発明においては、高分子基板を用いるた
め、基板温度を当該高分子基板の軟化点温度より上昇さ
せることはできない。よって、透明導電膜を形成するた
めには、高分子基板の温度は室温程度から軟化点温度以
下とする必要がある。代表的な高分子基板であるポリエ
チレンテレフタレートの場合、特別な処理を行わないと
きは軟化点温度が80℃程度であるため、基板温度を8
0℃以下の温度に保ったまま導電層を形成することが望
ましい。より望ましくは室温にて導電層を形成すること
が望ましい。In the present invention, since a polymer substrate is used, the substrate temperature cannot be raised above the softening point temperature of the polymer substrate. Therefore, in order to form a transparent conductive film, the temperature of the polymer substrate needs to be from about room temperature to a softening point temperature or lower. In the case of polyethylene terephthalate, which is a typical polymer substrate, the softening point temperature is about 80 ° C. when no special treatment is performed.
It is desirable to form the conductive layer while maintaining the temperature at 0 ° C. or lower. More desirably, the conductive layer is formed at room temperature.
【0026】本発明により形成される透明導電膜は、成
膜直後に比抵抗は3.5×10-4〜5.0×10-4Ω・
cmの比抵抗を示す。The transparent conductive film formed according to the present invention has a specific resistance of 3.5 × 10 -4 to 5.0 × 10 -4 Ω.
Shows the specific resistance in cm.
【0027】かかる膜を高分子基板の軟化点温度を超え
ない温度にて熱処理を行うと、成膜直後に比較して抵抗
値を低減できる。熱処理時間は、工業生成を鑑みると短
時間に実施されることが望ましく10分以上300分以
下の時間である。より望ましくは、10〜240分の範
囲であり、さらに望ましくは10〜120分である。熱
処理時間が10分未満の場合は、透明導電積層体への加
熱が不十分となってしまう。また、300分より長時間
の熱処理は、高分子の温度に対する安定性を確実に保証
できる時間であり、例えば、熱的に安定な高分子基板を
使うのであれば1000分のように、長くても構わな
い。しかし、実工程を考慮すると300分程度以内が望
ましい。熱処理を実施することにより、当該膜の比抵抗
は2.0×10-4〜3.5×10-4Ω・cmに転化でき
る。また、熱処理に替わる刺激を透明導電膜に与えるこ
とにより同様の効果がある。例えば、パルスレーザーを
照射したり、電子線を照射することにより熱処理と同様
の効果が得られる。しかし、設備投資を考慮すると熱処
理が最も効率的であると考えられる。熱処理を実施する
雰囲気は大気中でも真空雰囲気下でも構わない。また、
不活性ガス雰囲気下における熱処理でも構わない。しか
し、大気中で実施することが効率的であり好ましい。When such a film is subjected to a heat treatment at a temperature not exceeding the softening point temperature of the polymer substrate, the resistance value can be reduced as compared with immediately after the film formation. The heat treatment time is desirably performed in a short time in view of industrial production, and is 10 minutes or more and 300 minutes or less. More preferably, it is in the range of 10 to 240 minutes, and still more preferably, it is 10 to 120 minutes. If the heat treatment time is less than 10 minutes, the heating of the transparent conductive laminate becomes insufficient. Further, the heat treatment for longer than 300 minutes is a time for which the stability of the polymer with respect to the temperature can be reliably ensured. For example, if a thermally stable polymer substrate is used, it may be as long as 1000 minutes. No problem. However, considering the actual process, it is desirable that the time be within about 300 minutes. By performing the heat treatment, the specific resistance of the film can be converted to 2.0 × 10 −4 to 3.5 × 10 −4 Ω · cm. The same effect can be obtained by giving a stimulus instead of the heat treatment to the transparent conductive film. For example, the same effect as the heat treatment can be obtained by irradiating a pulse laser or irradiating an electron beam. However, considering the capital investment, heat treatment is considered to be the most efficient. The atmosphere in which the heat treatment is performed may be either air or vacuum. Also,
Heat treatment in an inert gas atmosphere may be used. However, it is efficient and preferred to carry out in air.
【0028】透明導電膜の膜厚は、用途によって決定さ
れる。しかし、可撓性が悪化するため、3000Å以上
の透明導電膜を有することは望ましくない。また、10
0Å以下の膜厚では、透明導電膜としての機能が著しく
悪化するため、100Å以下の膜厚は望ましくない。よ
って、本発明の透明導電膜の膜厚は用途に応じて100
〜2800Åとすることが望ましい。The thickness of the transparent conductive film depends on the application. However, since the flexibility is deteriorated, it is not desirable to have a transparent conductive film of 3000 ° or more. Also, 10
When the thickness is 0 ° or less, the function as a transparent conductive film is significantly deteriorated. Therefore, the thickness of the transparent conductive film of the present invention is 100
It is desirably set to ~ 2800 °.
【0029】本発明における透明導電膜の表面抵抗は三
菱化学製のLoresta MPMCP−T350を用
いて測定した。透明導電膜の膜厚は、ガラス上へ成膜し
た当該膜の段差をSloan社製のDektakを用い
て測定し、スパッタレートを求めこれから逆算した。The surface resistance of the transparent conductive film in the present invention was measured using Loresta MPMCP-T350 manufactured by Mitsubishi Chemical Corporation. The film thickness of the transparent conductive film was obtained by measuring the level difference of the film formed on glass using Dektak manufactured by Sloan Corporation, calculating the sputter rate, and calculating the reverse.
【0030】本発明では、抵抗値のみならず、透明導電
膜の他の基本的な物理量の一つである全光線透過率及び
当該膜の構造に関する知見を与えるX線回折についても
併せて検討をおこなっている。全光線透過率はNIPP
ON DENSHOKU社製300Aを用いて、高分子
基板と透明導電膜を分離すること無く測定した。X線回
折は理学電機社製RU−300を集中法の光学配置にて
測定した。In the present invention, not only the resistance value but also the total light transmittance, which is one of the other basic physical quantities of the transparent conductive film, and the X-ray diffraction which gives knowledge on the structure of the film are examined. I am doing it. Total light transmittance is NIPP
The measurement was carried out without separating the polymer substrate and the transparent conductive film using 300A manufactured by ON DENSHOKU. The X-ray diffraction was measured by using RU-300 manufactured by Rigaku Denki Co., Ltd. in an optical arrangement by a concentrated method.
【0031】構造的な特徴は、成膜直後において非晶質
と結晶質が混在した結果をもたらしているが、10〜3
00分の熱処理を高分子基板の軟化点温度より、低い温
度にて実施すると、結晶質な膜に転化することができ
る。The structural feature is that the result is a mixture of amorphous and crystalline immediately after film formation.
When the heat treatment for 00 minutes is performed at a temperature lower than the softening point temperature of the polymer substrate, the film can be converted into a crystalline film.
【0032】なお、本発明の透明導電性積層体における
全光線透過率は良好で、上記成膜方法による製膜直後に
は70〜88%の範囲であるが、かかる膜をついで高分
子基板のガラス転移温度を超えない温度にて10〜30
0分の熱処理を実施すると、全光線透過率はより高ま
り、80〜89%に転化せしめることができる。The total light transmittance of the transparent conductive laminate of the present invention is good and is in the range of 70 to 88% immediately after film formation by the above-mentioned film forming method. 10-30 at a temperature not exceeding the glass transition temperature
When the heat treatment is performed for 0 minutes, the total light transmittance is further increased and can be converted to 80 to 89%.
【0033】[0033]
【実施例】以下に実施例を示すが、本発明はこれらに制
限されるものではない。The present invention is not limited to the following examples.
【0034】[実施例1]真空槽の背圧を1.3×10
-5Paとし、反応ガスとして酸素を導入し、さらに不活
性ガスとしてArを導入し全圧を0.4Paとした。四
重極質量分析計にて測定した、不活性ガスを導入する前
の水分圧は、真空槽の背圧とほぼ等しかった。酸素分圧
は2.7×10-3Paであった。Example 1 The back pressure of the vacuum chamber was set to 1.3 × 10
-5 Pa, oxygen was introduced as a reaction gas, and Ar was introduced as an inert gas, and the total pressure was set to 0.4 Pa. The water pressure before the introduction of the inert gas, measured by a quadrupole mass spectrometer, was almost equal to the back pressure of the vacuum chamber. The oxygen partial pressure was 2.7 × 10 −3 Pa.
【0035】In−Sn−Zn−Oからなる焼結ターゲ
ットに1W/cm2の電力密度でDCマグネトロンスパ
ッタリング法により、基板温度20℃のポリカーボネイ
ト基板上へ、130nmの膜厚の透明導電膜を形成し
た。InとZnの合計原子濃度に対するZnの原子濃度
の比は0.022であり、InとSnの合計原子濃度に
対するSnの原子濃度の比は0.092であった。Sn
とZnの原子濃度の合計に対するZnの原子濃度の比は
0.19であった。A 130 nm thick transparent conductive film is formed on a polycarbonate substrate at a substrate temperature of 20 ° C. by a DC magnetron sputtering method at a power density of 1 W / cm 2 on a sintered target made of In—Sn—Zn—O. did. The ratio of the atomic concentration of Zn to the total atomic concentration of In and Zn was 0.022, and the ratio of the atomic concentration of Sn to the total atomic concentration of In and Sn was 0.092. Sn
The ratio of the atomic concentration of Zn to the total of the atomic concentrations of Zn and Zn was 0.19.
【0036】当該膜の成膜直後の比抵抗を、四端子抵抗
計にて測定したところ5.0×10 -4Ω・cmであっ
た。全光線透過率は81%であった。The specific resistance immediately after the formation of the film is determined by a four-terminal resistance.
5.0 × 10 -FourΩ · cm
Was. The total light transmittance was 81%.
【0037】当該膜をポリカーボネイトの軟化点温度未
満の温度である130℃で30分間熱処理を行い比抵抗
を四端子抵抗計にて測定したところ2.3×10-4Ω・
cmであった。全光線透過率は87%であった。熱処理
時間を240分間としたときも比抵抗・全光線透過率は
同じであった。The film was subjected to a heat treatment at 130 ° C., which is a temperature lower than the softening point temperature of polycarbonate, for 30 minutes, and the specific resistance was measured by a four-terminal resistance meter to be 2.3 × 10 −4 Ω ·
cm. The total light transmittance was 87%. When the heat treatment time was 240 minutes, the specific resistance and the total light transmittance were the same.
【0038】本発明の実施例・比較例のうち、Sn原子
濃度のIn原子濃度とSn原子濃度の和に対する比率、
Zn原子濃度のIn原子濃度とZn原子濃度の和に対
する比率、Zn原子濃度のSn原子濃度とZn原子濃度
の和に対する比率を下記表1にまとめた。また、熱処理
前後の比抵抗、全光線透過率も表1に示した。In Examples and Comparative Examples of the present invention, the ratio of Sn atom concentration to the sum of In atom concentration and Sn atom concentration,
Table 1 shows the ratio of the Zn atom concentration to the sum of the In atom concentration and the Zn atom concentration, and the ratio of the Zn atom concentration to the sum of the Sn atom concentration and the Zn atom concentration. Table 1 also shows the specific resistance and total light transmittance before and after the heat treatment.
【0039】[実施例2]真空槽の背圧を実施例1と同
じとし、反応ガスとして酸素を導入し、さらに不活性ガ
スとしてArを導入し全圧を0.4Paとした。四重極
質量分析計にて測定した不活性ガスを導入する前の水分
圧は、真空槽の背圧とほぼ等しかった。酸素分圧は3.
5×10-3Paであった。Example 2 The back pressure of the vacuum chamber was the same as in Example 1, oxygen was introduced as a reaction gas, and Ar was introduced as an inert gas to make the total pressure 0.4 Pa. The water pressure before the introduction of the inert gas measured by the quadrupole mass spectrometer was almost equal to the back pressure of the vacuum chamber. The oxygen partial pressure is 3.
It was 5 × 10 −3 Pa.
【0040】In−Sn−Zn−Oからなる焼結ターゲ
ットに1W/cm2の電力密度でDCマグネトロンスパ
ッタリング法により、基板温度20℃のポリカーボネイ
ト基板上へ、130nmの膜厚の透明導電膜を形成し
た。InとZnの合計原子濃度に対するZnの原子濃度
の比は0.018であり、InとSnの合計原子濃度に
対するSnの原子濃度の比は0.099であった。Sn
とZnの原子濃度の合計に対するZnの原子濃度の比は
0.14であった。A 130 nm thick transparent conductive film was formed on a polycarbonate substrate at a substrate temperature of 20 ° C. by a DC magnetron sputtering method at a power density of 1 W / cm 2 on a sintered target made of In—Sn—Zn—O. did. The ratio of the atomic concentration of Zn to the total atomic concentration of In and Zn was 0.018, and the ratio of the atomic concentration of Sn to the total atomic concentration of In and Sn was 0.099. Sn
The ratio of the atomic concentration of Zn to the total of the atomic concentrations of Zn and Zn was 0.14.
【0041】当該膜の成膜直後の比抵抗を、四端子抵抗
計にて測定したところ4.3×10 -4Ω・cmであっ
た。全光線透過率は80%であった。The specific resistance immediately after the formation of the film is defined as a four-terminal resistance.
4.3 × 10 -FourΩ · cm
Was. The total light transmittance was 80%.
【0042】当該膜をポリカーボネイトの軟化点温度未
満の温度である130℃で30分間熱処理を行い比抵抗
を四端子抵抗計にて測定したところ2.5×10-4Ω・
cmであった。全光線透過率は85%であった。熱処理
時間を240分間としたときも比抵抗・全光線透過率は
同じであった。The film was subjected to a heat treatment at 130 ° C., which is a temperature lower than the softening point temperature of polycarbonate, for 30 minutes, and the specific resistance was measured with a four-terminal resistance meter to be 2.5 × 10 −4 Ω ·
cm. The total light transmittance was 85%. When the heat treatment time was 240 minutes, the specific resistance and the total light transmittance were the same.
【0043】[実施例3]真空槽の背圧を実施例1と同
じとし、反応ガスとして酸素を導入し、さらに不活性ガ
スとしてArを導入し全圧を0.4Paとした。四重極
質量分析計にて測定した不活性ガスを導入する前の水分
圧は、真空槽の背圧とほぼ等しかった。酸素分圧は2.
7×10-3Paであった。Example 3 The back pressure of the vacuum chamber was the same as in Example 1, oxygen was introduced as a reaction gas, and Ar was introduced as an inert gas to make the total pressure 0.4 Pa. The water pressure before the introduction of the inert gas measured by the quadrupole mass spectrometer was almost equal to the back pressure of the vacuum chamber. The oxygen partial pressure is 2.
It was 7 × 10 −3 Pa.
【0044】In−Sn−Zn−Oからなる焼結ターゲ
ットに1W/cm2の電力密度でDCマグネトロンスパ
ッタリング法により、基板温度20℃の両面に3mmの
有機コート層を形成したポリカーボネイト基板上へ、1
30nmの膜厚の透明導電膜を形成した。InとZnの
合計原子濃度に対するZnの原子濃度の比は0.022
であり、InとSnの合計原子濃度に対するSnの原子
濃度の比は0.092であった。SnとZnの原子濃度
の合計に対するZnの原子濃度の比は0.19であっ
た。On a sintered target composed of In-Sn-Zn-O, at a power density of 1 W / cm 2 , a DC magnetron sputtering method was applied to a polycarbonate substrate having a 3 mm organic coating layer formed on both sides at a substrate temperature of 20 ° C. 1
A transparent conductive film having a thickness of 30 nm was formed. The ratio of the atomic concentration of Zn to the total atomic concentration of In and Zn is 0.022.
And the ratio of the atomic concentration of Sn to the total atomic concentration of In and Sn was 0.092. The ratio of the atomic concentration of Zn to the total of the atomic concentrations of Sn and Zn was 0.19.
【0045】当該膜の成膜直後の比抵抗を、四端子抵抗
計にて測定したところ4.9×10 -4Ω・cmであっ
た。全光線透過率は84%であった。The specific resistance immediately after the formation of the film was determined as a four-terminal resistance.
4.9 × 10 -FourΩ · cm
Was. The total light transmittance was 84%.
【0046】当該膜をポリカーボネイトの軟化点温度未
満の温度である130℃で30分間熱処理を行い比抵抗
を四端子抵抗計にて測定したところ2.4×10-4Ω・
cmであった。全光線透過率は87%であった。熱処理
時間を240分間としたときも比抵抗・全光線透過率は
同じであった。The film was subjected to a heat treatment at 130 ° C., which is lower than the softening point temperature of polycarbonate, for 30 minutes, and the specific resistance was measured by a four-terminal resistance meter to be 2.4 × 10 −4 Ω ·.
cm. The total light transmittance was 87%. When the heat treatment time was 240 minutes, the specific resistance and the total light transmittance were the same.
【0047】[比較例1]真空槽の背圧を実施例1と同
じとし、反応ガスとして酸素を導入し、さらに不活性ガ
スとしてArを導入し全圧を0.4Paとした。四重極
質量分析計にて測定した、反応ガス並びに不活性ガスを
導入する前の水分圧は、真空槽の背圧とほぼ等しかっ
た。酸素分圧は2.7×10-3Paであった。Comparative Example 1 The back pressure of the vacuum chamber was the same as in Example 1, oxygen was introduced as a reaction gas, and Ar was introduced as an inert gas to make the total pressure 0.4 Pa. The water pressure measured with a quadrupole mass spectrometer before the introduction of the reaction gas and the inert gas was almost equal to the back pressure of the vacuum chamber. The oxygen partial pressure was 2.7 × 10 −3 Pa.
【0048】In−Sn−Zn−Oからなる焼結ターゲ
ットに1W/cm2の電力密度でDCマグネトロンスパ
ッタリング法により、基板温度20℃のポリカーボネイ
ト基板上へ、130nmの膜厚の透明導電膜を形成し
た。InとZnの合計原子濃度に対するZnの原子濃度
の比は0.042であり、InとSnの合計原子濃度に
対するSnの原子濃度の比は0.073であった。Sn
とZnの原子濃度の合計に対するZnの原子濃度の比は
0.37であった。A transparent conductive film having a thickness of 130 nm was formed on a polycarbonate substrate at a substrate temperature of 20 ° C. by a DC magnetron sputtering method at a power density of 1 W / cm 2 on a sintered target made of In—Sn—Zn—O. did. The ratio of the atomic concentration of Zn to the total atomic concentration of In and Zn was 0.042, and the ratio of the atomic concentration of Sn to the total atomic concentration of In and Sn was 0.073. Sn
The ratio of the atomic concentration of Zn to the sum of the atomic concentrations of Zn and Zn was 0.37.
【0049】当該膜の成膜直後の比抵抗を、四端子抵抗
計にて測定したところ3.4×10 -4Ω・cmであっ
た。全光線透過率は84%であった。The specific resistance immediately after the formation of the film is defined as a four-terminal resistance.
3.4 × 10 -FourΩ · cm
Was. The total light transmittance was 84%.
【0050】当該膜をポリカーボネイトの軟化点温度未
満の温度である130℃で30分間熱処理を行い比抵抗
を四端子抵抗計にて測定したところ5.1×10-4Ω・
cmであった。全光線透過率は86%であった。熱処理
時間を240分間としたときも比抵抗・全光線透過率は
同じであった。The film was subjected to a heat treatment at 130 ° C., which is lower than the softening point temperature of polycarbonate, for 30 minutes, and the specific resistance was measured with a four-terminal resistance meter to find that it was 5.1 × 10 −4 Ω ·.
cm. The total light transmittance was 86%. When the heat treatment time was 240 minutes, the specific resistance and the total light transmittance were the same.
【0051】成膜直後の比抵抗はやや改善されている
が、熱処理に伴い比抵抗が増加してしまい、低比抵抗膜
とは言い難い状態となっている。Although the specific resistance immediately after the film formation is slightly improved, the specific resistance increases with the heat treatment, and it is hard to say that the film is a low specific resistance film.
【0052】[比較例2]真空槽の背圧を実施例1と同
じとし、反応ガスとして酸素を導入し、さらに不活性ガ
スとしてArを導入し全圧を0.4Paとした。四重極
質量分析計にて測定した、反応ガス並びに不活性ガスを
導入する前の水分圧は、真空槽の背圧とほぼ等しかっ
た。酸素分圧は3.3×10-3Paであった。Comparative Example 2 The back pressure of the vacuum chamber was the same as in Example 1, oxygen was introduced as a reaction gas, and Ar was introduced as an inert gas to make the total pressure 0.4 Pa. The water pressure measured with a quadrupole mass spectrometer before the introduction of the reaction gas and the inert gas was almost equal to the back pressure of the vacuum chamber. The oxygen partial pressure was 3.3 × 10 −3 Pa.
【0053】In−Sn−Zn−Oからなる焼結ターゲ
ットに1W/cm2の電力密度でDCマグネトロンスパ
ッタリング法により、基板温度20℃のポリカーボネイ
ト基板上へ、130nmの膜厚の透明導電膜を形成し
た。酸化亜鉛は添加しなかった。InとSnの合計原子
濃度に対するSnの原子濃度の比は0.093であっ
た。A 130 nm-thick transparent conductive film was formed on a polycarbonate substrate at a substrate temperature of 20 ° C. by a DC magnetron sputtering method at a power density of 1 W / cm 2 on a sintered target made of In—Sn—Zn—O. did. No zinc oxide was added. The ratio of the atomic concentration of Sn to the total atomic concentration of In and Sn was 0.093.
【0054】当該膜の成膜直後の比抵抗を、四端子抵抗
計にて測定したところ5.6×10 -4Ω・cmであっ
た。全光線透過率は80%であった。The specific resistance immediately after the formation of the film is defined as a four-terminal resistance.
5.6 × 10 -FourΩ · cm
Was. The total light transmittance was 80%.
【0055】当該膜をポリカーボネイトの軟化点温度未
満の温度である130℃で30分間熱処理を行い比抵抗
を四端子抵抗計にて測定したところ2.0×10-4Ω・
cmであった。全光線透過率は86%であった。熱処理
時間を240分間としたときも比抵抗・全光線透過率は
同じであった。The film was subjected to a heat treatment at 130 ° C., which is lower than the softening point temperature of polycarbonate, for 30 minutes, and the specific resistance was measured with a four-terminal resistance meter to be 2.0 × 10 −4 Ω ·
cm. The total light transmittance was 86%. When the heat treatment time was 240 minutes, the specific resistance and the total light transmittance were the same.
【0056】熱処理に伴う比抵抗の低減は著しいが、成
膜直後の比抵抗が高いものとなっている。Although the specific resistance is significantly reduced by the heat treatment, the specific resistance immediately after film formation is high.
【0057】[0057]
【表1】 [Table 1]
【0058】[0058]
【発明の効果】以上説明したように、本発明によれば、
高分子基板上に低温プロセスにて形成した透明導電積層
体において、成膜直後から抵抗値が低く、熱処理後にさ
らに抵抗値の低い透明導電積層体を与えることができ
る。As described above, according to the present invention,
In a transparent conductive laminate formed on a polymer substrate by a low-temperature process, a transparent conductive laminate having a low resistance immediately after film formation and having a lower resistance after heat treatment can be provided.
フロントページの続き Fターム(参考) 4F100 AA40B AB18B AB21B AB40B AK01A AK45 AR00B BA02 GB90 JA20A JA20B JG01B JG04B JM02B JN01B YY00B 5G307 FA02 FB01 FC10 5G323 BA01 BA02 BB05 BC03 Continued on the front page F term (reference) 4F100 AA40B AB18B AB21B AB40B AK01A AK45 AR00B BA02 GB90 JA20A JA20B JG01B JG04B JM02B JN01B YY00B 5G307 FA02 FB01 FC10 5G323 BA01 BA02 BB05 BC03
Claims (4)
(Sn)、亜鉛(Zn)及び酸素原子(O)を主成分と
する透明導電膜が形成されてなる透明導電積層体であっ
て、InとSnの合計原子濃度に対するSn原子濃度が
0.01〜0.1の範囲であり、InとZnの合計原子
濃度に対するZnの原子濃度が0.01〜0.1の範囲
であり、かつSnとZnの原子濃度の合計に対するZn
の原子濃度の比が0より大きく0.30未満の範囲であ
ることを特徴とする透明導電積層体。1. A transparent conductive laminate comprising a transparent conductive film mainly composed of indium (In), tin (Sn), zinc (Zn) and oxygen atoms (O) formed on a polymer substrate. , The atomic concentration of Sn with respect to the total atomic concentration of In and Sn is in the range of 0.01 to 0.1, the atomic concentration of Zn with respect to the total atomic concentration of In and Zn is in the range of 0.01 to 0.1, And Zn with respect to the total atomic concentration of Sn and Zn
Wherein the ratio of the atomic concentration of the transparent conductive laminate is greater than 0 and less than 0.30.
3.5×10-4Ω・cmであることを特徴とする請求項
1に記載の透明導電積層体。2. The transparent conductive film has a specific resistance of 2.0 × 10 −4 or less .
The transparent conductive laminate according to claim 1, wherein the transparent conductive laminate has a thickness of 3.5 × 10 −4 Ω · cm.
であることを特徴とする請求項1〜2のいずれかに記載
の透明導電積層体。3. The transparent conductive film has a thickness of 100 to 2800 °.
The transparent conductive laminate according to claim 1, wherein:
mであることを特徴とする請求項1〜3のいずれかに記
載の透明導電積層体。4. The polymer substrate has a thickness of 0.01 to 0.4 m.
m. The transparent conductive laminate according to claim 1, wherein m is m.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30526199A JP4287001B2 (en) | 1999-10-27 | 1999-10-27 | Transparent conductive laminate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30526199A JP4287001B2 (en) | 1999-10-27 | 1999-10-27 | Transparent conductive laminate |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001121641A true JP2001121641A (en) | 2001-05-08 |
JP4287001B2 JP4287001B2 (en) | 2009-07-01 |
Family
ID=17942980
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP30526199A Expired - Fee Related JP4287001B2 (en) | 1999-10-27 | 1999-10-27 | Transparent conductive laminate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4287001B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006318803A (en) * | 2005-05-13 | 2006-11-24 | Sony Corp | Transparent electrode film and manufacturing method of the same |
JP2013020846A (en) * | 2011-07-12 | 2013-01-31 | Idemitsu Kosan Co Ltd | Transparent conductive film |
US8779419B2 (en) | 2007-03-23 | 2014-07-15 | Idemitsu Kosan Co., Ltd. | Semiconductor device, polycrystalline semiconductor thin film, process for producing polycrystalline semiconductor thin film, field effect transistor, and process for producing field effect transistor |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1502139A4 (en) | 2002-03-15 | 2005-06-29 | Pd Ld Inc | Fiber optic devices having volume bragg grating elements |
WO2005013439A2 (en) | 2003-07-03 | 2005-02-10 | Pd-Ld, Inc. | Use of volume bragg gratings for the conditioning of laser emission characteristics |
US7391703B2 (en) | 2003-09-26 | 2008-06-24 | Pd-Ld, Inc. | Methods for manufacturing volume Bragg grating elements |
WO2006083998A2 (en) | 2005-02-03 | 2006-08-10 | Pd-Ld, Inc. | High-power, phased-locked, laser arrays |
US8455157B1 (en) | 2007-04-26 | 2013-06-04 | Pd-Ld, Inc. | Methods for improving performance of holographic glasses |
JP5205240B2 (en) | 2008-05-15 | 2013-06-05 | 浜松ホトニクス株式会社 | Spectroscopic module manufacturing method and spectroscopic module |
JP5205241B2 (en) | 2008-05-15 | 2013-06-05 | 浜松ホトニクス株式会社 | Spectroscopic module |
JP2009300418A (en) | 2008-05-15 | 2009-12-24 | Hamamatsu Photonics Kk | Spectroscopic module |
JP5415060B2 (en) | 2008-05-15 | 2014-02-12 | 浜松ホトニクス株式会社 | Spectroscopic module |
-
1999
- 1999-10-27 JP JP30526199A patent/JP4287001B2/en not_active Expired - Fee Related
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006318803A (en) * | 2005-05-13 | 2006-11-24 | Sony Corp | Transparent electrode film and manufacturing method of the same |
US8779419B2 (en) | 2007-03-23 | 2014-07-15 | Idemitsu Kosan Co., Ltd. | Semiconductor device, polycrystalline semiconductor thin film, process for producing polycrystalline semiconductor thin film, field effect transistor, and process for producing field effect transistor |
JP2013020846A (en) * | 2011-07-12 | 2013-01-31 | Idemitsu Kosan Co Ltd | Transparent conductive film |
Also Published As
Publication number | Publication date |
---|---|
JP4287001B2 (en) | 2009-07-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4759143B2 (en) | Transparent conductive laminate, method for producing the same, and display element using the same | |
EP2166132A2 (en) | Transparent conductive film and method for production thereof | |
CN111511814B (en) | Organic-inorganic hybrid film | |
WO2014115770A1 (en) | Transparent electroconductive substrate and method for producing same | |
JPS62122011A (en) | Transparent conducting film and manufacture of the same | |
JP4287001B2 (en) | Transparent conductive laminate | |
JP5580972B2 (en) | Sputtering composite target | |
JPWO2004065656A1 (en) | ITO thin film, film forming method thereof, transparent conductive film, and touch panel | |
KR20050021882A (en) | Process for producing transparent conductive laminate | |
JP2000144379A (en) | Production of transparent electrically conductive layered product | |
JP2009295545A (en) | Transparent conductive film and method for manufacturing the same | |
KR101884643B1 (en) | Zinc-doped tine oxide based transparent conducting oxide, multilayered transparent conducting film using the same and method for preparing the same | |
JP5196001B2 (en) | Transparent conductive film and method for producing the same | |
JP5134382B2 (en) | Sputtering composite target | |
JP2000108244A (en) | Transparent conductive film, its manufacture, and base having transparent conductive film | |
JP4567127B2 (en) | Transparent conductive laminate | |
JPH09226046A (en) | Transparent conductive layered body and its manufacture | |
JP2001135167A (en) | Transparent conductive laminate and its production | |
KR20140011854A (en) | Multilayer transparent eletrode comprising mgzno alloy and method for preparing the same | |
JP4515676B2 (en) | Transparent conductive laminate | |
JPH09234816A (en) | Transparent conductive laminate | |
JP2000243160A (en) | Manufacture of transparent conductive layered body | |
KR102252112B1 (en) | A transparent conducting oxide thin film based on silver metal alloy composition and method for manufacturing the same | |
JP2001001441A (en) | Transparent electrically conductive laminate and manufacture thereof | |
JP7478721B2 (en) | Method for manufacturing a substrate with a transparent electrode |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060803 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20081113 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20081202 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090303 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090326 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120403 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |