JP2000090745A - Transparent conductive membrane - Google Patents

Transparent conductive membrane

Info

Publication number
JP2000090745A
JP2000090745A JP10258586A JP25858698A JP2000090745A JP 2000090745 A JP2000090745 A JP 2000090745A JP 10258586 A JP10258586 A JP 10258586A JP 25858698 A JP25858698 A JP 25858698A JP 2000090745 A JP2000090745 A JP 2000090745A
Authority
JP
Japan
Prior art keywords
solid solution
thin film
transparent conductive
sno
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10258586A
Other languages
Japanese (ja)
Other versions
JP3824289B2 (en
Inventor
Masahiro Orita
政寛 折田
Hiromichi Ota
裕道 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP25858698A priority Critical patent/JP3824289B2/en
Publication of JP2000090745A publication Critical patent/JP2000090745A/en
Application granted granted Critical
Publication of JP3824289B2 publication Critical patent/JP3824289B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Non-Insulated Conductors (AREA)
  • Manufacturing Of Electric Cables (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Physical Vapour Deposition (AREA)
  • Conductive Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a transparent conductive membrane which shows an excellent conductivity and can transmit light whose wave length is shorter than 400 nm, and a material which can form the membrane, and moreover an electrode constructed of the transparent conductive membrane. SOLUTION: This transparent conductive membrane and an electrode composed of the membrane, shown by a formula of In2-xYxO3+αwt.%SnO2 Or In2-xYXO3+wt.%Sb2O5, where x is a real number in a range of 0.9-1.6 and αis a real number in a range of O-15, contain at least one of In2O3, Y2O3, SnO2 or Sb2O5, In2O3-Y2O3 solid solution, Y2O3-SnO2 solid solution or Y2O3-Sb2O5 solid solution, and In2O3-Y2O3-Sb2O5 solid solution to provide a composition as shown by the formula.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、透明導電性薄膜、
この薄膜からなる電極、及びこの薄膜形成用ターゲット
として用いられる透明導電性材料用組成物に関する。
TECHNICAL FIELD The present invention relates to a transparent conductive thin film,
The present invention relates to an electrode comprising the thin film and a composition for a transparent conductive material used as a target for forming the thin film.

【0002】光源の発達と共に、紫外光を使用した技術
が社会的に広がってきている。例えば半導体プロセスに
おけるキーテクノロジーであるフォトリソグラフに於い
ては、i線(波長365nm)、KrFレーザー光(波長298nm)、Ar
Fレーザー光(波長196nm)などの紫外光を用いて微細なパ
ターニングが行われている。また例えば医療の分野に於
いては血液やDNAなどの生体試料の分析を紫外蛍光分析
方等により行うことがすすめられている。さらに例えば
宇宙技術の分野に於いては、宇宙空間に多い紫外光を利
用すると太陽電池の発電効率を高めることができる。
[0002] With the development of light sources, technology using ultraviolet light has been widely spread in society. For example, in photolithography, a key technology in semiconductor processes, i-line (wavelength 365 nm), KrF laser light (wavelength 298 nm), Ar
Fine patterning is performed using ultraviolet light such as F laser light (wavelength 196 nm). In the medical field, for example, it is recommended to analyze biological samples such as blood and DNA by ultraviolet fluorescence analysis. Further, for example, in the field of space technology, the power generation efficiency of a solar cell can be increased by using ultraviolet light which is often present in outer space.

【0003】本発明の透明導電性薄膜は、透明電極材料
および電極として、例えばi線(波長365nm)等の紫外光に
よるフォトリソグラフプロセスにおける帯電防止膜等に
用いることができる。また例えば、生体試料等の紫外蛍
光分析等における試料基板の帯電防止膜や試料セルの電
界印加用透明電極等として用いることができる。また例
えば、紫外光太陽電池用の透明電極として用いることが
できる。
The transparent conductive thin film of the present invention can be used as a transparent electrode material and an electrode, for example, as an antistatic film in a photolithographic process using ultraviolet light such as i-ray (wavelength 365 nm). Further, for example, it can be used as an antistatic film on a sample substrate or a transparent electrode for applying an electric field to a sample cell in ultraviolet fluorescence analysis of a biological sample or the like. Further, for example, it can be used as a transparent electrode for an ultraviolet solar cell.

【0004】[0004]

【従来の技術】透明電極材料にはITO(Indium Tin O
xide)、ATO(Antimony doped TinOxide)、AZO(Al
uminum doped Zinc Oxide)などがあり、フラットパネル
ディスプレイには主にITOが、太陽電池には主にAT
Oが用いられている。
2. Description of the Related Art Indium tin oxide (ITO) is used as a transparent electrode material.
xide), ATO (Antimony doped TinOxide), AZO (Al
uminum doped Zinc Oxide), ITO is mainly used for flat panel displays, and AT is mainly used for solar cells.
O is used.

【0005】これらの透明電極は電気伝導率が高く、可
視域における透明性が高い。このため、フラットパネル
ディスプレイが発する色を妨げることなく放射すること
ができ、大半のエネルギーが含まれている可視域太陽光
を太陽電池内に効率よく取り込むことができる。
[0005] These transparent electrodes have high electric conductivity and high transparency in the visible region. For this reason, it is possible to radiate the color emitted from the flat panel display without disturbing the light, and it is possible to efficiently take in the visible-range sunlight containing most of the energy into the solar cell.

【0006】[0006]

【発明が解決しようとする課題】従来の透明電極材料
は、光吸収端波長が400nm付近にある。このため400 nm
より波長の長い光、即ち可視光を効率よく透過させるこ
とができるが、400 nmより波長の短い光、即ち紫外光を
透過させることが殆どできなかった。最近の研究では、
Ga2O3が紫外域透明電極材料となりうることが示されて
いるが、実用の域に達していない(N.Ueda et al., App
l.Phys.Lett. 70(26)3561,1997及びN.Ueda etal., App
l.Phys.Lett. 71(7)933,1997)。この研究では水素雰囲
気下でGa2O3単結晶を形成しており、帯電防止や透明電
極として用いる際に必要な膜の形状では電気伝導性が確
認されていないからである。その他には、紫外域で透明
な透明電極材料は報告されていない。そこで本発明の目
的は、良好な導電性を示し、400 nmより短波長の光を透
過させることができる透明導電性薄膜と、このような薄
膜を形成するための材料、さらには前記透明導電性薄膜
からなる電極を提供することにある。
The conventional transparent electrode material has a light absorption edge wavelength near 400 nm. 400 nm for this
Light with a longer wavelength, ie, visible light, can be transmitted efficiently, but light with a wavelength shorter than 400 nm, ie, ultraviolet light, could hardly be transmitted. In a recent study,
Although it has been shown that Ga 2 O 3 can be a transparent electrode material in the ultraviolet region, it has not reached practical use (N. Ueda et al., App.
l.Phys.Lett. 70 (26) 3561,1997 and N.Ueda et al., App
l.Phys. Lett. 71 (7) 933,1997). In this study, a Ga 2 O 3 single crystal was formed in a hydrogen atmosphere, and electrical conductivity was not confirmed in the shape of a film required for antistatic or as a transparent electrode. In addition, no transparent electrode material transparent in the ultraviolet region has been reported. Accordingly, an object of the present invention is to provide a transparent conductive thin film that exhibits good conductivity and can transmit light having a wavelength shorter than 400 nm, a material for forming such a thin film, and a transparent conductive thin film. An object of the present invention is to provide an electrode made of a thin film.

【0007】[0007]

【課題を解決するための手段】本発明は、一般式In2-xY
xO3+αwt%SnO(但し、xは0.9〜1.6の範囲内の
実数であり、αは0〜15の範囲内の実数である)で表
される透明導電性薄膜及び一般式In2-xYxO3+αwt%
Sb(但し、xは0.9〜1.6の範囲の実数であり、α
は0〜15の範囲の実数である)で表される透明導電性
薄膜、並びにこれらの薄膜からなる電極に関する。さら
に本発明は、In、Y、SnO、In
−Y固溶体、Y-SnO固溶体及び
In-Y-SnO固溶体の少なくとも1つ
を、一般式In2-xYxO3+αwt%SnO(但し、xは0.9
〜1.6の範囲内の実数であり、αは0〜15の範囲内の
実数である)で示される組成となるように含む透明導電
性材料用組成物、及びIn、Y、Sb
、In−Y固溶体、Y-Sb
固溶体及びIn-Y-Sb固溶体の
少なくとも1つを、一般式In2-xYxO3+αwt%Sb
(但し、xは0.9〜1.6の範囲内の実数であり、αは0
〜15の範囲内の実数である)で示される組成となるよ
うに含む透明導電性材料用組成物に関する。
SUMMARY OF THE INVENTION The present invention provides a compound of the general formula In 2-x Y
x O 3 + α wt% SnO 2 (where x is a real number in the range of 0.9 to 1.6, and α is a real number in the range of 0 to 15) and a general formula In 2− x Y x O 3 + αwt%
Sb 2 O 5 (where x is a real number in the range of 0.9 to 1.6, α
Is a real number in the range of 0 to 15), and an electrode comprising these thin films. Furthermore, the present invention relates to In 2 O 3 , Y 2 O 3 , SnO 2 , In 2
At least one of an O 3 —Y 2 O 3 solid solution, a Y 2 O 3 —SnO 2 solid solution and an In 2 O 3 —Y 2 O 3 —SnO 2 solid solution is represented by the general formula In 2-x Y x O 3 + α wt% SnO. 2 (where x is 0.9
Is a real number in a range of from 1.6 to 1.6, and α is a real number in a range of from 0 to 15), and a composition for a transparent conductive material including a composition represented by the following formula: In 2 O 3 , Y 2 O 3 , Sb 2 O
5, In 2 O 3 -Y 2 O 3 solid solution, Y 2 O 3 -Sb 2 O
5 and at least one of the In 2 O 3 —Y 2 O 3 —Sb 2 O 5 solid solution is represented by the general formula In 2-x Y x O 3 + α wt% Sb 2
O 5 (where x is a real number in the range of 0.9 to 1.6 and α is 0
(A real number in the range of ~ 15).

【0008】[0008]

【発明の実施の形態】次に本発明の透明導電性薄膜につ
いて説明する。本発明の透明導電性薄膜は、一般式In
2-xYxO3+αwt%SnOまたはIn2-xYxO3+αwt%
Sbで表される。xの値は薄膜に必要な光透過特
性と電気伝導率とを勘案して選択され、0.9〜1.6の範囲
内の実数である。吸収端波長はxの値が大きくなるにし
たがって短波長側にシフトし、青色領域から紫外領域の
透明性が増大する。一方、電気伝導率はxの値が大きく
なるにしたがって低くなる傾向を示す。xの値が0.9未満
の場合には、青色領域から紫外領域の透明性は従来の透
明電極材料に比べて差異がない。また、xが1.6よりも大
きい場合には、電気伝導率が低くなり、導電性材料とし
て用いることができない。好ましいxは、0.9〜1.2の範
囲である。
Next, the transparent conductive thin film of the present invention will be described. The transparent conductive thin film of the present invention has the general formula In
2-x Y x O 3 + α wt% SnO 2 or In 2-x Y x O 3 + α wt%
It is represented by Sb 2 O 5 . The value of x is selected in consideration of the light transmission characteristics and electric conductivity required for the thin film, and is a real number in the range of 0.9 to 1.6. The absorption edge wavelength shifts to the shorter wavelength side as the value of x increases, and the transparency from the blue region to the ultraviolet region increases. On the other hand, the electric conductivity tends to decrease as the value of x increases. When the value of x is less than 0.9, the transparency from the blue region to the ultraviolet region is not different from the conventional transparent electrode material. On the other hand, when x is larger than 1.6, the electric conductivity is low and cannot be used as a conductive material. Preferred x ranges from 0.9 to 1.2.

【0009】さらに本発明の薄膜は、ドーパントイオン
として、SnまたはSbを含有する。従来から、SnはIn2O3
にドーパントとして添加されて用いられてきた。In2O3
にドーパントとしてSnを添加したものは、いわゆるITO
である。ITOでは、添加したSnはIn2O3格子中のInのサイ
トに固溶して、Sn4+の形で存在し、Sn4+イオン一つあた
りキャリア電子を一つ生成するといわれている。ただ
し、ITOがアモルファス相である場合には、Sn4+イオン
はSnO2クラスターの形で存在し、キャリア生成には寄与
しないという。本発明の透明導電性薄膜においても、薄
膜が結晶相である場合、SnはIn2O3格子中のInのサイト
に固溶して、Sn4+の形で存在し、キャリア生成には寄与
するものと考えられる。しかし、薄膜がアモルファス相
である場合には、そのような効果は期待できないと考え
られる。
Further, the thin film of the present invention contains Sn or Sb as a dopant ion. Conventionally, Sn is In 2 O 3
Has been used as a dopant. In 2 O 3
The addition of Sn as a dopant to the so-called ITO
It is. In ITO, it is said that the added Sn forms a solid solution at the In site in the In 2 O 3 lattice, exists in the form of Sn 4+ , and generates one carrier electron per Sn 4+ ion. However, when ITO is in the amorphous phase, Sn 4+ ions exist in the form of SnO 2 clusters and do not contribute to carrier generation. Also in the transparent conductive thin film of the present invention, if the thin film is a crystalline phase, Sn is a solid solution to the In site of In 2 O 3 lattice, in the form of Sn 4+, contribute to carrier generation It is thought to be. However, when the thin film is in an amorphous phase, such an effect cannot be expected.

【0010】本発明の薄膜では、ドーパントイオンであ
るSnまたはSbをSnOまたはSbとして、α
wt%(αは0〜15の範囲内の実数である)を含有する。
SnOの含有量が15wt%を超えると、SnOが偏
析しやすく、電気伝導率が低下する。αwt%の好ましい
範囲は、3〜12である。SnOの含有量が3wt%
以上になると、ドーピングの効果が顕著になり、キャリ
ア密度が高くなって、高い電気伝導率が得られる。ま
た、SnOの含有量が12wt%以下であれば、ドー
パントイオンによるキャリアの散乱は起こりにくく、移
動度の低下や伝導率の低下も起こりにくく、高い電気伝
導率が得られる。αwt%のより好ましい範囲は、5〜1
0の範囲であり、この範囲であれば、充分なキャリア密
度が得られ、かつ移動度も低くなりすぎず、充分な伝導
率が得られる。ドーパントイオンがSbである場合も、
αwt%については上記Snの場合と同様である。
In the thin film of the present invention, Sn or Sb as a dopant ion is converted to SnO 2 or Sb 2 O 5 and α
wt% (α is a real number in the range of 0 to 15).
If the content of SnO 2 exceeds 15 wt%, SnO 2 tends to segregate, and the electrical conductivity decreases. The preferred range of αwt% is 3 to 12. SnO 2 content is 3wt%
Above, the effect of doping becomes remarkable, the carrier density increases, and high electric conductivity can be obtained. When the content of SnO 2 is 12 wt% or less, scattering of carriers by the dopant ions hardly occurs, mobility and conductivity are hardly reduced, and high electric conductivity is obtained. A more preferable range of αwt% is 5 to 1
In this range, a sufficient carrier density can be obtained, the mobility does not become too low, and a sufficient conductivity can be obtained. When the dopant ion is Sb,
αwt% is the same as in the case of Sn.

【0011】本発明の薄膜の電気伝導性は、材料内に存
在する酸素欠陥から供給されるキャリア電子及びドーパ
ントであるSnイオンまたはSbイオンによって発現す
る。
The electrical conductivity of the thin film of the present invention is developed by carrier electrons supplied from oxygen defects existing in the material and Sn ions or Sb ions as dopants.

【0012】本発明の透明導電性酸化物薄膜は、結晶相
でも良く、アモルファス相でも良く、その用途に応じて
適宜決定できる。結晶相とした場合にはアモルファス相
とした場合に比べて、電気伝導率が向上し、透明性が向
上する傾向を持つ一方、酸溶液などによるエッチング性
が低下する傾向を持つ。本発明の透明導電性薄膜は、紫
外透明性を有し、透明電極、帯電防止フィルム、赤外反
射フィルム等として用いることができる。
The transparent conductive oxide thin film of the present invention may have a crystalline phase or an amorphous phase, and can be appropriately determined according to the use. When the crystalline phase is used, the electric conductivity tends to be improved and the transparency tends to be improved as compared with the case where the amorphous phase is used. On the other hand, the etching property by an acid solution or the like tends to be reduced. The transparent conductive thin film of the present invention has ultraviolet transparency and can be used as a transparent electrode, an antistatic film, an infrared reflective film, and the like.

【0013】本発明の透明導電性薄膜は、通常の成膜
法、例えばスパッタリング法、レーザーアブレーション
法、蒸着法、CVD法、スプレーパイロリシス法等を用い
て作製することができる。例えばスパッタリング法を用
いる場合、後述する発明の透明導電性材料用組成物の焼
結体をターゲットとして用い、ArとO2の混合気体を真空
容器中に導入し、rf電界をかけてプラズマを発生させ、
プラズマによってターゲットを叩き、叩き出される物質
を基板面上に堆積させればよい。ArとO2の混合比率、rf
電流、基板温度、基板=ターゲット間距離等を調整する
ことにより、本発明の透明導電性薄膜の結晶性、透明性
や電気伝導率を最適なものとすることができる。また、
ターゲットに金属In、YおよびSnの合金を用いて、基板
面上でO2と反応させ、本発明の透明導電性薄膜を形成す
ることもできる。金属ターゲットを用いる利点の一つ
は、ターゲット中の不純物濃度を非常に小さくできる点
にある。
The transparent conductive thin film of the present invention can be prepared by a usual film forming method, for example, a sputtering method, a laser ablation method, a vapor deposition method, a CVD method, a spray pyrolysis method and the like. For example, when using a sputtering method, a sintered body of the composition for a transparent conductive material of the invention described below is used as a target, a mixed gas of Ar and O 2 is introduced into a vacuum vessel, and a plasma is generated by applying an rf electric field. Let
The target may be hit with the plasma, and the hit substance may be deposited on the substrate surface. Ar / O 2 mixing ratio, rf
The crystallinity, transparency, and electrical conductivity of the transparent conductive thin film of the present invention can be optimized by adjusting the current, the substrate temperature, the distance between the substrate and the target, and the like. Also,
Using a metal alloy of In, Y, and Sn as a target, the transparent conductive thin film of the present invention can be formed by reacting with O 2 on the substrate surface. One of the advantages of using a metal target is that the impurity concentration in the target can be extremely reduced.

【0014】また例えば、レーザーアブレーション法を
用いる場合には、後述の本発明の透明導電性材料用組成
物の焼結体をターゲットとして用い、O2ガスを真空容器
中に導入し、レーザー光をターゲット表面に照射し、照
射によって放出される物質を基板面上に堆積させればよ
い。O2ガス圧、レーザー光出力、基板温度、基板=ター
ゲット間距離等を調整することにより、本発明の透明導
電性薄膜の結晶性、透明性や電気伝導率を最適なものと
することができる。特に、パルスレーザーを用い、位置
パルスごとに基板上に堆積する物質の量を調整すると、
一原子層ごとに結晶を成長させることができる。成長の
様子は、例えばRHEEDを用いることにより、in situにモ
ニターすることができる。この場合、単結晶性の高い膜
の形成が可能になる。
For example, when the laser ablation method is used, a sintered body of the composition for a transparent conductive material of the present invention described later is used as a target, O 2 gas is introduced into a vacuum vessel, and laser light is applied. The target surface may be irradiated, and a substance emitted by the irradiation may be deposited on the substrate surface. By adjusting the O 2 gas pressure, laser light output, substrate temperature, substrate-target distance, etc., the crystallinity, transparency and electric conductivity of the transparent conductive thin film of the present invention can be optimized. . In particular, when using a pulse laser to adjust the amount of material deposited on the substrate for each position pulse,
Crystals can be grown for each atomic layer. The state of growth can be monitored in situ by using, for example, RHEED. In this case, a film having high single crystallinity can be formed.

【0015】次に本発明の透明導電性材料用組成物につ
いて説明する。本発明の透明導電性材料用組成物は、I
、Y、SnO、In −Y
固溶体、Y-SnO固溶体及びIn-Y
-SnO固溶体の少なくとも1つを、一般式In2-x
YxO3+αwt%SnOで示される組成となるように含
む。この組成物は、例えば、In、Y及び
SnOの混合系、In−Y固溶体とSn
との混合系、In 、Y、SnO、I
−Y固溶体、Y-SnO 固溶体
及びIn-Y-SnO固溶体の混合系等で
あることができる。
Next, the composition for a transparent conductive material of the present invention will be described.
Will be described. The composition for a transparent conductive material of the present invention comprises I
n2O3, Y2O3, SnO2, In 2O3-Y2O3
Solid solution, Y2O3-SnO2Solid solution and In2O3-Y2
O3-SnO2At least one of the solid solutions is represented by the general formula In2-x
YxOThree+ Αwt% SnO2So that the composition shown by
No. This composition is, for example, In2O3, Y2O3as well as
SnO2Mixed system of In2O3-Y2O3Solid solution and Sn
O2Mixed system with In 2O3, Y2O3, SnO2, I
n2O3-Y2O3Solid solution, Y2O3-SnO 2Solid solution
And In2O3-Y2O3-SnO2In a mixed solution of solid solution, etc.
There can be.

【0016】また、本発明のもう一つの透明導電性材料
用組成物は、In、Y、Sb、In
−Y固溶体、Y-Sb固溶体
及びIn-Y-Sb固溶体の少なくと
も1つを、一般式In2-xYxO3+αwt%Sbで示
される組成となるように含む。この組成物は、例えば、
In、Y及びSbの混合系、In
−Y固溶体とSbとの混合系、In
、Y、Sb、In−Y
溶体、Y-Sb固溶体及びIn-Y
-Sb 固溶体の混合系等であることができ
る。
Further, another transparent conductive material of the present invention
Composition for In2O3, Y2O3, Sb2O5, In
2O3-Y2O3Solid solution, Y2O3-Sb2O5Solid solution
And In2O3-Y2O3-Sb2O5At least a solid solution
One is also represented by the general formula In2-xYxOThree+ Αwt% Sb2O5Indicated by
It is included so that it may become the composition to be performed. This composition, for example,
In2O3, Y2O3And Sb2O5Mixed system of In2
O3-Y2O3Solid solution and Sb2O5Mixed system with In2
O3, Y2O3, Sb2O5, In2O3-Y 2O3Solid
Solution, Y2O3-Sb2O5Solid solution and In2O3-Y2
O3-Sb2O 5It can be a solid solution mixed system, etc.
You.

【0017】さらに上記組成物は、粉体でも良く、焼結
体でも良い。粉体は、例えば上記組成を有する固溶体結
晶の粉体でもよく、上記組成になるように混合されたIn
2O3粉とY2O3粉とSnO粉(またはSb粉)の
混合粉でも良く、また固溶体結晶の粉体とIn2O3粉及び/
又はY2O3粉及び/又はSnO粉(またはSb
粉)との混合粉でも良い。これらの粉体は焼結体ター
ゲットや熔射用融体、強酸溶液等の原料として用いるこ
とができる。さらに、焼結体は、例えば上記組成を有す
る固溶体結晶相を有してもよく、上記組成になるように
混合されたIn2O3相とY2O3相の混合相でも良く、また固
溶体結晶相とIn2O3相及びY2O3相との混合相でも良く、
アモルファス相でも良い。
Further, the composition may be a powder or a sintered body. The powder may be, for example, a powder of a solid solution crystal having the above composition, and In mixed mixed to have the above composition.
A mixed powder of 2 O 3 powder, Y 2 O 3 powder and SnO 2 powder (or Sb 2 O 5 powder) may be used, or a solid solution crystal powder and In 2 O 3 powder and / or
Or Y 2 O 3 powder and / or SnO 2 powder (or Sb 2 O
5 ). These powders can be used as raw materials for a sintered body target, a melt for thermal spraying, a strong acid solution, and the like. Further, the sintered body may have, for example, a solid solution crystal phase having the above composition, a mixed phase of an In 2 O 3 phase and a Y 2 O 3 phase mixed to have the above composition, or a solid solution It may be a mixed phase of a crystal phase and an In 2 O 3 phase and a Y 2 O 3 phase,
An amorphous phase may be used.

【0018】上記一般式において、xは0.9〜1.6の範囲
内の実数であり、好ましくは、0.9〜1.2の範囲である。
また、上記一般式において、αwt%は0〜15の範囲内
の実数である。尚、本発明の組成物がY-SnO
固溶体及びIn-Y -SnO固溶体の少
なくとも一方を含む場合、上記SnO含有量は、これ
ら固溶体に含まれるSnOと、SnOとの合計量で
ある。また、本発明の組成物がY-Sb
溶体及びIn-Y-Sb固溶体の少な
くとも一方を含む場合、上記Sb含有量は、これ
ら固溶体に含まれるSbと、Sbとの合計
量である。αwt%の好ましい範囲は、3〜12であり、
より好ましい範囲は5〜10の範囲である。上記範囲のx及
びαwt%を有する材料をターゲットとして用いること
で、前述の本発明の薄膜を形成することができる。
In the above general formula, x is in the range of 0.9 to 1.6
And preferably in the range of 0.9 to 1.2.
In the above general formula, αwt% is in the range of 0 to 15.
Is a real number. Incidentally, the composition of the present invention is represented by Y2O3-SnO
2Solid solution and In2O3-Y2O 3-SnO2Low solid solution
If at least one is included, the SnO2The content is
Contained in solid solution2And SnO2And the total amount
is there. In addition, the composition of the present invention is represented by Y2O3-Sb2O5Solid
Solution and In2O3-Y2O3-Sb2O5Low solid solution
If at least one is included, the above Sb2O5The content is
Sb contained in solid solution2O5And Sb2O5Sum with
Quantity. The preferred range of αwt% is 3 to 12,
A more preferred range is from 5 to 10. X and x
Using as a target a material with a
Thus, the above-described thin film of the present invention can be formed.

【0019】上記組成物は、例えばスパッタリング法や
レーザーアブレーション法用のターゲットとして用いる
ことができ、このターゲットを用いて、適当な基体上に
本発明の透明導電性薄膜を形成することができる。ター
ゲットは、例えば本発明の組成物の粉末を用い、通常の
固相法セラミックプロセスにより形成すればよい。すな
わち、例えば本発明の組成物の粉末を、適当な径を持つ
シリンダー型の金型に充填し、押し棒を挿入して一軸加
圧して成形し、さらに静水圧プレス機中で加圧して緻密
化し、1000℃以上の温度で大気中焼成し、得られた焼結
体の表面を研磨して清浄面を露出させれば良い。また、
本発明の組成物の粉末を適当な媒質に分散させてスラリ
ーを作り、スリップキャスティングして成形し、乾燥さ
せて緻密な成形体とし、1000度以上の温度で大気中焼成
し、得られた焼結体の表面を研磨して清浄面を露出させ
るなどしても良い。通常、スパッタリング法やレーザー
アブレーション法のターゲットは緻密であることが好ま
しいので、緻密化できるプロセスを選択すればよい。
The above composition can be used, for example, as a target for a sputtering method or a laser ablation method, and the transparent conductive thin film of the present invention can be formed on an appropriate substrate using this target. The target may be formed, for example, by using a powder of the composition of the present invention and performing an ordinary solid-phase ceramic process. That is, for example, the powder of the composition of the present invention is filled into a cylinder mold having an appropriate diameter, a push rod is inserted into the mold, and the mixture is pressed uniaxially to form a compact. The sintered body may be fired in the air at a temperature of 1000 ° C. or higher, and the surface of the obtained sintered body may be polished to expose a clean surface. Also,
The powder of the composition of the present invention is dispersed in an appropriate medium to form a slurry, formed by slip casting, molded, dried to obtain a dense molded body, and fired in the air at a temperature of 1000 ° C. or more, and the obtained fired The surface of the union may be polished to expose a clean surface. In general, it is preferable that a target of a sputtering method or a laser ablation method be dense, so that a process capable of densification may be selected.

【0020】[0020]

【実施例】以下、実施例により、本発明を説明する。 実施例1 In2O3粉末(純度99.99%、フルウチ化学(株)製)
およびY2O3粉末(純度99.99%、フルウチ化学(株)製)を
モル比で5:5となるように秤量し、さらにこの混合粉末
に対してSnO2(純度99.99%、フルウチ化学(株)製)を5
wt%となるように秤量して加え、500mlの容量を有する
ポリイミド製ポットに直径2mmのYSZ製ビーズ200gおよび
80mlのエタノールとともに入れ、フリッチュ社製遊星ボ
ールミルを用いて200 cpsで60分撹拌したのち、オーブ
ン中110℃でエタノールを蒸発させ、ビーズを分離、ア
ルミナ製るつぼに入れ、電気炉中1000℃で5時間仮焼
し、再び遊星ボールミル中で解砕、さらに乾燥させて粉
体とした。この粉体の結晶構造を粉末X線回折法により
調べたところ、In2O3-Y2O3固溶体、In2O3相、Y2O3相お
よびSnO2相からなる混合相であることが分かった。さら
にこの粉体の化学組成を誘導結合プラズマ(ICP)法によ
り分析したところ、秤量した組成とほぼ一致しており、
本発明の透明導電性材料用組成物の粉末が生成できたこ
とを確認した。
The present invention will be described below with reference to examples. Example 1 In 2 O 3 powder (purity 99.99%, manufactured by Furuuchi Chemical Co., Ltd.)
And Y 2 O 3 powder (purity 99.99%, manufactured by Furuuchi Chemical Co., Ltd.) were weighed at a molar ratio of 5: 5, and SnO 2 (purity 99.99%, Furuuchi Chemical Co., Ltd.) was added to the mixed powder. 5)
weighed so as to be wt%, 200 g of YSZ beads 2 mm in diameter in a polyimide pot having a capacity of 500 ml and
After mixing with 80 ml of ethanol and stirring at 200 cps for 60 minutes using a Fritsch planetary ball mill, the ethanol was evaporated at 110 ° C in an oven, the beads were separated, placed in an alumina crucible, and placed in an electric furnace at 1000 ° C for 5 minutes. The mixture was calcined for a time, crushed again in a planetary ball mill, and further dried to obtain a powder. When the crystal structure of this powder was examined by powder X-ray diffraction, it was confirmed that the powder was a mixed phase composed of an In 2 O 3 -Y 2 O 3 solid solution, an In 2 O 3 phase, a Y 2 O 3 phase and a SnO 2 phase. I understood. Furthermore, when the chemical composition of this powder was analyzed by the inductively coupled plasma (ICP) method, it almost matched the weighed composition.
It was confirmed that powder of the composition for a transparent conductive material of the present invention could be produced.

【0021】実施例2 実施例1で調製した粉末2 gを直径20mmφのステンレス製
金型に充填し、押し棒を挿入して、一軸プレス機により
100 kg/cm2の圧力をかけて成形した。次にこの成形体
をビニール袋中に入れ、真空パック装置によりビニール
袋中の空気を抜くとともに封入し、神戸製鋼所製静水圧
プレス機により2000 kg/cm2の圧力をかけて緻密化し
た。さらに電気炉により1500℃で20時間大気中焼成して
焼結体を得、#400のダイヤモンド研磨盤上で研磨して清
浄面を持つターゲットとした。このターゲットの結晶構
造を粉末X線回折法により調べたところ、In2O3-Y2O3-Sn
O2固溶相に若干量のSnO2相が共存した混合相であること
が明かとなった。さらにこの焼結体の化学組成をICP法
により分析したところ、秤量した組成に比べてIn2O3
分が5%だけ減少していたが、本発明の透明導電性材料用
組成物からなるターゲットが形成できたことを確認し
た。
Example 2 2 g of the powder prepared in Example 1 was filled in a stainless steel mold having a diameter of 20 mmφ, a push rod was inserted, and a uniaxial pressing machine was used.
Molding was performed under a pressure of 100 kg / cm 2 . Next, the molded body was placed in a plastic bag, the air in the plastic bag was evacuated and sealed by a vacuum packing device, and the compact was densified by applying a pressure of 2000 kg / cm 2 by a hydrostatic press made by Kobe Steel. The sintered body was fired in an air at 1500 ° C. for 20 hours in an electric furnace to obtain a sintered body. The sintered body was polished on a # 400 diamond polishing machine to obtain a target having a clean surface. Examination of the crystal structure of this target by powder X-ray diffraction revealed that In 2 O 3 -Y 2 O 3 -Sn
It became clear that the mixed phase was a mixture of the O 2 solid solution phase and a small amount of the SnO 2 phase. Furthermore, when the chemical composition of this sintered body was analyzed by the ICP method, the In 2 O 3 component was reduced by 5% compared to the weighed composition, but the target composed of the composition for a transparent conductive material of the present invention was used. It was confirmed that was formed.

【0022】実施例3 実施例2で調製したターゲットを、日本真空技術(株)
製のレーザーアブレーション装置に設置した。次に、ラ
ムダ・フィジクス社製KrFエキシマーレーザー装置から8
0mJのレーザー光を5 Hzの周波数で放射させ、レーザー
アブレーション装置内のターゲットに照射し、対向する
ガラス基板上に薄膜を堆積させた。堆積時間は30分、基
板温度は400℃、酸素圧1 Paであった。得られた薄膜の
結晶性を薄膜X線回折法により調べたところ、In2O3-Y2O
3-SnO2のほぼ単相を有することが明かとなった。さらに
この薄膜の化学組成をICP法により分析したところ、In:
Y= 5:5(x=0.5)であり、In2O3-Y2O3に対するSnO2の含有
率(α)は 4 wt%であることが明かとなり、本発明の透明
導電性薄膜が得られたことを確認した。薄膜の膜厚を触
診式段差計タリステップにより測定し、220 nmと求め
た。自作のホール測定器を用いて測定した電気伝導率は
40 S/cm、日立製作所製分光高度計により測定した光吸
収端波長は330 nmで、波長 400 nmにおける光透過率は8
3%であった。すなわち、この薄膜は可視域から330 nmの
紫外線領域までが透明な電気伝導性薄膜であった。
Example 3 The target prepared in Example 2 was replaced with Nippon Vacuum Engineering Co., Ltd.
Laser ablation device. Next, a KrF excimer laser device manufactured by Lambda Physics
A laser beam of 0 mJ was emitted at a frequency of 5 Hz, and was irradiated on a target in a laser ablation apparatus, thereby depositing a thin film on the opposite glass substrate. The deposition time was 30 minutes, the substrate temperature was 400 ° C., and the oxygen pressure was 1 Pa. When the crystallinity of the obtained thin film was examined by a thin film X-ray diffraction method, In 2 O 3 -Y 2 O
It was found to have an almost single phase of 3 -SnO 2 . Furthermore, when the chemical composition of this thin film was analyzed by ICP method, In:
Y = 5: 5 (x = 0.5), it is clear that the content (α) of SnO 2 with respect to In 2 O 3 -Y 2 O 3 is 4 wt%, the transparent conductive thin film of the present invention It was confirmed that it was obtained. The thickness of the thin film was measured by a tactile step-type tally step and was found to be 220 nm. The electrical conductivity measured using a self-made Hall measuring instrument is
The light absorption edge wavelength measured at 40 S / cm by a Hitachi spectroscopic altimeter was 330 nm, and the light transmittance at a wavelength of 400 nm was 8
3%. That is, this thin film was an electrically conductive thin film that was transparent from the visible region to the ultraviolet region of 330 nm.

【0023】実施例4 In2O3粉末(純度99.99%、フルウチ化学(株)製)
およびY2O3粉末(純度99.99%、フルウチ化学(株)製)の
モル比を4:6または3:7となるように秤量したことを除
き、実施例1と同様に粉末を調製し、さらにこの粉末を
用いて実施例2と同様にターゲットを形成し、さらに、
このターゲットを用いて薄膜を形成した。得られた薄膜
の光吸収端波長及び電気伝導率を実施例3と同様の方法
で測定した。結果を実施例3の結果と共に表1に示す。
Example 4 In 2 O 3 powder (purity 99.99%, manufactured by Furuuchi Chemical Co., Ltd.)
And Y 2 O 3 powder (purity 99.99%, manufactured by Furuuchi Chemical Co., Ltd.) was prepared in the same manner as in Example 1, except that the molar ratio was 4: 6 or 3: 7. Furthermore, a target was formed in the same manner as in Example 2 using this powder, and further,
A thin film was formed using this target. The light absorption edge wavelength and electric conductivity of the obtained thin film were measured in the same manner as in Example 3. The results are shown in Table 1 together with the results of Example 3.

【0024】[0024]

【表1】 [Table 1]

【0025】実施例5 実施例2で調製したターゲット(In:Y=5:5)を日本真空技
術(株)製のレーザーアブレーション装置に設置した。
次に、ラムダ・フィジクス社製KrFエキシマーレーザー
装置から80mJのレーザー光を5 Hzの周波数で放射させ、
レーザーアブレーション装置内のターゲットに照射し、
対向するガラス基板上に薄膜を堆積させた。堆積時間は
30分、基板温度は室温、酸素圧1 Paであった。得られた
薄膜の結晶性を薄膜X線回折法により調べたが、ガラス
基板のハローピーク以外に結晶性のピークは観察されな
かった。そこで同じ成膜条件で、Al金属基板上に成膜
し、マイクロトームを用いて厚さ方向に切断し、薄片と
して、透過電子顕微鏡により膜断面の構造を調べた。結
晶性を示す回折電子線は得られず、アモルファスの膜が
形成されていることが分かった。次に、島津製作所製EP
MA C-1(面分解能0.5μm)を用いて膜内の組成分布を測
り、In、Y及びSnがそれぞれ均一に分布する膜であるこ
とが明らかになった。さらにこの薄膜の化学組成をICP
法により分析したところ、In:Y = 5:5(x=0.5)であり、I
n2O3-Y2O3に対するSnO2の含有率(α)は5 wt%であること
が明かとなり、本発明の透明導電性薄膜が得られたこと
を確認した。薄膜の膜厚を触診式段差計タリステップに
より測定し、250 nmと求めた。自作のホール測定器を用
いて測定した電気伝導率は 15 S/cm、日立製作所製分光
光度計により測定した光吸収端波長は320 nmで、波長 4
00 nmにおける光透過率は80%であった。すなわち、この
薄膜は可視域から320 nmの紫外線領域までが透明な電気
伝導性薄膜であった。
Example 5 The target (In: Y = 5: 5) prepared in Example 2 was set in a laser ablation device manufactured by Japan Vacuum Engineering Co., Ltd.
Next, a laser beam of 80 mJ was emitted from a lambda physics KrF excimer laser device at a frequency of 5 Hz,
Irradiate the target in the laser ablation device,
Thin films were deposited on opposing glass substrates. The deposition time is
The substrate temperature was room temperature and the oxygen pressure was 1 Pa for 30 minutes. When the crystallinity of the obtained thin film was examined by a thin film X-ray diffraction method, no crystalline peak was observed other than the halo peak of the glass substrate. Then, under the same film forming conditions, a film was formed on an Al metal substrate, cut in the thickness direction using a microtome, and the structure of the film cross section was examined by a transmission electron microscope as a thin piece. No diffraction electron beam showing crystallinity was obtained, indicating that an amorphous film was formed. Next, an EP made by Shimadzu Corporation
The composition distribution in the film was measured using MA C-1 (area resolution: 0.5 μm), and it was found that the film had In, Y, and Sn distributed uniformly. Furthermore, the chemical composition of this thin film was determined by ICP
Analysis, In: Y = 5: 5 (x = 0.5) and I:
The content (α) of SnO 2 with respect to n 2 O 3 -Y 2 O 3 was found to be 5 wt%, confirming that the transparent conductive thin film of the present invention was obtained. The thickness of the thin film was measured with a palpable step-meter Taristep and found to be 250 nm. The electrical conductivity measured using a self-made Hall measuring instrument was 15 S / cm, the light absorption edge wavelength measured using a Hitachi spectrophotometer was 320 nm, and the wavelength was 4 nm.
The light transmittance at 00 nm was 80%. That is, this thin film was an electrically conductive thin film that was transparent from the visible region to the ultraviolet region of 320 nm.

【0026】実施例6 In2O3粉末(純度99.99%、フルウチ化学(株)製)
およびY2O3粉末(純度99.99%、フルウチ化学(株)製)を
モル比で5:5となるように秤量し、さらにこの混合粉末
に対してSb2O5(純度99.99%、フルウチ化学(株)製)を5
wt%となるように秤量して加え、500mlの容量を有す
るポリイミド製ポットに直径2mmのYSZ製ビーズ200gおよ
び80mlのエタノールとともに入れ、フリッチュ社製遊星
ボールミルを用いて200 cpsで60分撹拌したのち、オー
ブン中110℃でエタノールを蒸発させ、ビーズを分離、
アルミナ製るつぼに入れ、電気炉中1000℃で5時間仮焼
し、再び遊星ボールミル中で解砕、さらに乾燥させて粉
体とした。この粉体の結晶構造を粉末X線回折法により
調べたところ、In2O3-Y2O3固溶体、In2O3相、Y2O3相お
よびSb2O5相からなる混合相であることが分かった。さ
らにこの粉体の化学組成を誘導結合プラズマ(ICP)法に
より分析したところ、秤量した組成とほぼ一致してお
り、本発明の透明導電性材料用組成物の粉末が生成でき
たことを確認した。
Example 6 In 2 O 3 powder (purity 99.99%, manufactured by Furuuchi Chemical Co., Ltd.)
And Y 2 O 3 powder (purity 99.99%, manufactured by Furuuchi Chemical Co., Ltd.) were weighed at a molar ratio of 5: 5, and Sb 2 O 5 (purity 99.99%, Furuuchi Chemical 5)
wt%, and added to a polyimide pot having a capacity of 500 ml together with 200 g of YSZ beads having a diameter of 2 mm and 80 ml of ethanol, and stirred at 200 cps for 60 minutes using a Fritsch planetary ball mill. Evaporate the ethanol in an oven at 110 ° C to separate the beads,
It was placed in an alumina crucible, calcined in an electric furnace at 1000 ° C. for 5 hours, crushed again in a planetary ball mill, and further dried to obtain a powder. When the crystal structure of this powder was examined by powder X-ray diffraction method, it was found that a mixed phase composed of an In 2 O 3 -Y 2 O 3 solid solution, an In 2 O 3 phase, a Y 2 O 3 phase and a Sb 2 O 5 phase was obtained. I found it. Furthermore, when the chemical composition of this powder was analyzed by inductively coupled plasma (ICP) method, it was found that the composition was almost the same as the weighed composition, and it was confirmed that the powder of the composition for a transparent conductive material of the present invention could be produced. .

【0027】実施例7 実施例6で調製した粉末2 gを直径20mmφのステンレス製
金型に充填し、押し棒を挿入して、一軸プレス機により
100 kg/cm2の圧力をかけて成形した。次にこの成形体
をビニール袋中に入れ、真空パック装置によりビニール
袋中の空気を抜くとともに封入し、神戸製鋼所製静水圧
プレス機により2000 kg/cm2の圧力をかけて緻密化し
た。さらに電気炉により1500℃で20時間大気中焼成して
焼結体を得、#400のダイヤモンド研磨盤上で研磨して清
浄面を持つターゲットとした。このターゲットの結晶構
造を粉末X線回折法により調べたところ、In2O3-Y2O3- S
b2O5固溶相に若干量のSb2O5相が共存した混合相である
ことが明かとなった。さらにこの焼結体の化学組成をIC
P法により分析したところ、秤量した組成に比べてIn2O3
成分が5%だけ減少していたが、本発明の透明導電性材料
用組成物からなるターゲットが形成できたことを確認し
た。
Example 7 2 g of the powder prepared in Example 6 was filled into a stainless steel mold having a diameter of 20 mmφ, a push rod was inserted, and a uniaxial press was used.
Molding was performed under a pressure of 100 kg / cm 2 . Next, the molded body was placed in a plastic bag, the air in the plastic bag was evacuated and sealed with a vacuum packing device, and the compact was densified by applying a pressure of 2000 kg / cm 2 with a hydrostatic press made by Kobe Steel. The sintered body was fired in an air at 1500 ° C. for 20 hours in an electric furnace to obtain a sintered body. The sintered body was polished on a # 400 diamond polishing machine to obtain a target having a clean surface. Examination of the crystal structure of this target by powder X-ray diffraction revealed that In 2 O 3 -Y 2 O 3 -S
It b 2 O 5 solid solution phase in a slight amount of Sb 2 O 5 phase is a mixed phase coexist revealed. Furthermore, the chemical composition of this sintered body is
When analyzed by the P method, the In 2 O 3
Although the components were reduced by 5%, it was confirmed that a target comprising the composition for a transparent conductive material of the present invention could be formed.

【0028】実施例8 実施例7で調製したターゲットを、日本真空技術(株)
製のレーザーアブレーション装置に設置した。次に、ラ
ムダ・フィジクス社製KrFエキシマーレーザー装置から8
0mJのレーザー光を5 Hzの周波数で放射させ、レーザー
アブレーション装置内のターゲットに照射し、対向する
ガラス基板上に薄膜を堆積させた。堆積時間は30分、基
板温度は400℃、酸素圧1 Paであった。得られた薄膜の
結晶性を薄膜X線回折法により調べたところ、In2O3-Y2O
3- Sb2O5のほぼ単相(c-希土型結晶構造)を有することが
明かとなった。さらにこの薄膜の化学組成をICP法によ
り分析したところ、In:Y = 5:5(x=0.5)であり、In2O3-Y
2O3に対するSb2O5の含有率(α)は 5 wt%であることが明
かとなり、本発明の透明導電性薄膜が得られたことを確
認した。薄膜の膜厚を触診式段差計タリステップにより
測定し、210 nmと求めた。自作のホール測定器を用いて
測定した電気伝導率は 32 S/cm、日立製作所製分光高度
計により測定した光吸収端波長は330 nmで、波長 400 n
mにおける光透過率は81%であった。すなわち、この薄膜
は可視域から320 nmの紫外線領域までが透明な電気伝導
性薄膜であった。
Example 8 The target prepared in Example 7 was used in combination with Japan Vacuum Engineering Co., Ltd.
Laser ablation device. Next, a KrF excimer laser device manufactured by Lambda Physics
A laser beam of 0 mJ was emitted at a frequency of 5 Hz, and was irradiated on a target in a laser ablation apparatus, thereby depositing a thin film on the opposite glass substrate. The deposition time was 30 minutes, the substrate temperature was 400 ° C., and the oxygen pressure was 1 Pa. When the crystallinity of the obtained thin film was examined by a thin film X-ray diffraction method, In 2 O 3 -Y 2 O
It was revealed that 3 -Sb 2 O 5 had almost a single phase (c-rare earth type crystal structure). Further, when the chemical composition of this thin film was analyzed by ICP method, In: Y = 5: 5 (x = 0.5), and In 2 O 3 -Y
The content (α) of Sb 2 O 5 with respect to 2 O 3 was found to be 5 wt%, confirming that the transparent conductive thin film of the present invention was obtained. The thickness of the thin film was measured with a palpable step-meter Taristep and found to be 210 nm. The electric conductivity measured using a self-made Hall measuring instrument was 32 S / cm, the light absorption edge wavelength measured using a Hitachi spectroscopic altimeter was 330 nm, and the wavelength was 400 n.
The light transmittance at m was 81%. That is, this thin film was an electrically conductive thin film that was transparent from the visible region to the ultraviolet region of 320 nm.

【0029】[0029]

【発明の効果】本発明により、可視域から紫外域に及ぶ
広い範囲で透明性を有する、特に、400 nmより短波長の
光を透過させることができ、かつ良好な導電性を示す透
明導電性薄膜を提供することができる。さらに本発明に
よれば、このような薄膜を形成するための材料、特にタ
ーゲットも提供することができる。
Industrial Applicability According to the present invention, a transparent conductive material having transparency over a wide range from the visible region to the ultraviolet region, in particular, capable of transmitting light having a wavelength shorter than 400 nm and exhibiting good conductivity. A thin film can be provided. Further, according to the present invention, a material for forming such a thin film, particularly, a target can be provided.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C23C 14/34 H01B 1/08 5G323 H01B 1/08 13/00 503B 13/00 503 C04B 35/00 Z Fターム(参考) 4G030 AA12 AA34 AA39 AA42 BA02 BA15 CA01 4G048 AA03 AB02 AC04 AE05 4K029 AA09 BA50 BB07 BB10 BC09 CA01 DB05 DB20 EA01 5G301 CA02 CA22 CA23 CA26 CA30 CD03 CD10 5G307 FA01 FB01 FC09 FC10 5G323 BA02 BB04 BB05 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C23C 14/34 H01B 1/08 5G323 H01B 1/08 13/00 503B 13/00 503 C04B 35/00 ZF Terms (Reference) 4G030 AA12 AA34 AA39 AA42 BA02 BA15 CA01 4G048 AA03 AB02 AC04 AE05 4K029 AA09 BA50 BB07 BB10 BC09 CA01 DB05 DB20 EA01 5G301 CA02 CA22 CA23 CA26 CA30 CD03 CD10 5G307 FA01 FB01 FC09 FC10 5BB 323

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 一般式In2-xYxO3+αwt%SnO(但
し、xは0.9〜1.6の範囲内の実数であり、αは0〜15
の範囲内の実数である)で表される透明導電性薄膜。
1. The general formula In 2-x Y x O 3 + α wt% SnO 2 (where x is a real number in the range of 0.9 to 1.6, and α is 0 to 15)
Is a real number in the range of).
【請求項2】 一般式In2-xYxO3+αwt%Sb
(但し、xは0.9〜1.6の範囲の実数であり、αは0〜1
5の範囲の実数である)で表される透明導電性薄膜。
2. The formula In 2-x Y x O 3 + α wt% Sb 2 O
5 (where x is a real number in the range of 0.9 to 1.6, α is 0 to 1)
5 is a real number in the range of 5).
【請求項3】 結晶質または非晶質である請求項1また
は2に記載の薄膜。
3. The thin film according to claim 1, which is crystalline or amorphous.
【請求項4】 請求項1〜3のいずれか1項に記載の薄
膜からなる電極。
4. An electrode comprising the thin film according to claim 1.
【請求項5】 In、Y、SnO、In
−Y固溶体、Y-SnO固溶体及
びIn-Y-SnO固溶体の少なくとも1
つを、一般式In2-xYxO3+αwt%SnO(但し、xは
0.9〜1.6の範囲内の実数であり、αは0〜15の範囲内
の実数である)で示される組成となるように含む透明導
電性材料用組成物。
5. In 2 O 3 , Y 2 O 3 , SnO 2 , In
At least one of 2 O 3 —Y 2 O 3 solid solution, Y 2 O 3 —SnO 2 solid solution and In 2 O 3 —Y 2 O 3 —SnO 2 solid solution
One of the general formulas In 2-x Y x O 3 + α wt% SnO 2 (where x is
Is a real number in the range of 0.9 to 1.6, and α is a real number in the range of 0 to 15).
【請求項6】 In、Y、Sb、I
−Y固溶体、Y-Sb固溶
体及びIn-Y-Sb固溶体の少なく
とも1つを、一般式In2-xYxO3+αwt%Sb(但
し、xは0.9〜1.6の範囲内の実数であり、αは0〜15
の範囲内の実数である)で示される組成となるように含
む透明導電性材料用組成物。
6. In 2 O 3 , Y 2 O 3 , Sb 2 O 5 , I
At least one of the n 2 O 3 —Y 2 O 3 solid solution, the Y 2 O 3 —Sb 2 O 5 solid solution and the In 2 O 3 —Y 2 O 3 —Sb 2 O 5 solid solution is represented by the general formula In 2-x Y x O 3 + α wt% Sb 2 O 5 (where x is a real number in the range of 0.9 to 1.6, α is 0 to 15)
Which is a real number within the range of).
【請求項7】 焼結体であって、薄膜形成用ターゲット
として用いられる請求項5または6に記載の組成物。
7. The composition according to claim 5, which is a sintered body and is used as a thin film forming target.
JP25858698A 1998-09-11 1998-09-11 Transparent conductive thin film Expired - Fee Related JP3824289B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25858698A JP3824289B2 (en) 1998-09-11 1998-09-11 Transparent conductive thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25858698A JP3824289B2 (en) 1998-09-11 1998-09-11 Transparent conductive thin film

Publications (2)

Publication Number Publication Date
JP2000090745A true JP2000090745A (en) 2000-03-31
JP3824289B2 JP3824289B2 (en) 2006-09-20

Family

ID=17322324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25858698A Expired - Fee Related JP3824289B2 (en) 1998-09-11 1998-09-11 Transparent conductive thin film

Country Status (1)

Country Link
JP (1) JP3824289B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6897560B2 (en) 2000-07-10 2005-05-24 Japan Science & Technology Corporation Ultraviolet-transparent conductive film and process for producing the same
WO2005083150A1 (en) 2004-02-27 2005-09-09 Nippon Mining & Metals Co., Ltd. Sputtering target, optical information recording medium and process for producing the same
KR100859517B1 (en) * 2002-06-10 2008-09-22 삼성전자주식회사 Amorphous transparent conductive film and method for preparing the same
WO2009044892A1 (en) * 2007-10-03 2009-04-09 Mitsui Mining & Smelting Co., Ltd. Indium oxide-based transparent electroconductive film and process for producing the indium oxide-based transparent electroconductive film
WO2009085224A3 (en) * 2007-12-20 2009-09-17 Cima Nanotech Israel Ltd. Photovoltaic device having transparent electrode formed with nanoparticles

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6897560B2 (en) 2000-07-10 2005-05-24 Japan Science & Technology Corporation Ultraviolet-transparent conductive film and process for producing the same
KR100859517B1 (en) * 2002-06-10 2008-09-22 삼성전자주식회사 Amorphous transparent conductive film and method for preparing the same
WO2005083150A1 (en) 2004-02-27 2005-09-09 Nippon Mining & Metals Co., Ltd. Sputtering target, optical information recording medium and process for producing the same
WO2009044892A1 (en) * 2007-10-03 2009-04-09 Mitsui Mining & Smelting Co., Ltd. Indium oxide-based transparent electroconductive film and process for producing the indium oxide-based transparent electroconductive film
WO2009085224A3 (en) * 2007-12-20 2009-09-17 Cima Nanotech Israel Ltd. Photovoltaic device having transparent electrode formed with nanoparticles
US8633474B2 (en) 2007-12-20 2014-01-21 Cima Nanotech Israel Ltd. Photovoltaic device having transparent electrode formed with nanoparticles

Also Published As

Publication number Publication date
JP3824289B2 (en) 2006-09-20

Similar Documents

Publication Publication Date Title
US7754185B2 (en) Method of making MoO2 powders, products made from MoO2 powders, deposition of MoO2 thin films, and methods of using such materials
US8858844B2 (en) In—Ga—Zn—O type sputtering target
JP4397511B2 (en) Low resistance ITO thin film and manufacturing method thereof
EP1734150B1 (en) Oxide sintered body, oxide transparent conductive film and manufacturing method thereof
EP1306858A1 (en) Ultraviolet-transparent conductive film and process for producing the same
JP2000026119A (en) Article having transparent electrically conductive oxide thin film and its manufacture
KR101880783B1 (en) Oxide Sintered Body and Tablets Obtained by Processing Same
JPS62122011A (en) Transparent conducting film and manufacture of the same
KR20120051656A (en) Oxide sinter, method for producing same, target and transparent conductive film
EP1939319A1 (en) Semiconductor thin film and process for producing the same
Xing et al. Structural and electrical characteristics of high quality (100) orientated-Zn3N2 thin films grown by radio-frequency magnetron sputtering
EP1648828A2 (en) METHOD OF MAKING HIGH-PURITY (>99%) MOO2 POWDERS, PRODUCTS MADE FROM MOO2 POWDERS, DEPOSITION OF MOO2 THIN FILMS, AND METHODS OF USING SUCH MATERIAS
Zhang et al. Structural, electrical and optical properties of indium tin oxide thin films prepared by RF sputtering using different density ceramic targets
KR20080113054A (en) Transparent conductive film and method for production thereof
WO2008084865A1 (en) Material for transparent conductive film
JP2011184715A (en) Zinc oxide based transparent conductive film forming material, method for producing the same, target using the same, and method for forming zinc oxide based transparent conductive film
JPH1045496A (en) Electrically conductive oxide thin film, article having the same and manufacture of article
JP3945887B2 (en) Article having conductive oxide thin film and method for producing the same
Peng et al. Characteristics of ZnO: In thin films prepared by RF magnetron sputtering
JP2007246318A (en) Oxide sintered compact, method for manufacturing the same, method for manufacturing oxide transparent conductive film, and oxide transparent conductive film
Yuan et al. Synthesis by laser ablation and characterization of pure germanium-carbon alloy thin films
JP2000090745A (en) Transparent conductive membrane
JP2007277039A (en) Oxide sintered compact and method for producing oxide transparent electroconductive film using the same
JP4237861B2 (en) Highly monocrystalline zinc oxide thin film and manufacturing method
JP5035857B2 (en) Low resistance ITO thin film and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041005

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060330

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060621

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060626

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090707

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100707

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110707

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110707

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120707

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120707

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130707

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees