TW200810114A - Self aligned gate JFET structure and method - Google Patents

Self aligned gate JFET structure and method Download PDF

Info

Publication number
TW200810114A
TW200810114A TW096119509A TW96119509A TW200810114A TW 200810114 A TW200810114 A TW 200810114A TW 096119509 A TW096119509 A TW 096119509A TW 96119509 A TW96119509 A TW 96119509A TW 200810114 A TW200810114 A TW 200810114A
Authority
TW
Taiwan
Prior art keywords
region
source
layer
gate
electrode region
Prior art date
Application number
TW096119509A
Other languages
English (en)
Inventor
Ashok Kumar Kapoor
Original Assignee
Dsm Solutions Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dsm Solutions Inc filed Critical Dsm Solutions Inc
Publication of TW200810114A publication Critical patent/TW200810114A/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier
    • H01L29/808Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier with a PN junction gate, e.g. PN homojunction gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1066Gate region of field-effect devices with PN junction gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41775Source or drain electrodes for field effect devices characterised by the proximity or the relative position of the source or drain electrode and the gate electrode, e.g. the source or drain electrode separated from the gate electrode by side-walls or spreading around or above the gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66893Unipolar field-effect transistors with a PN junction gate, i.e. JFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66893Unipolar field-effect transistors with a PN junction gate, i.e. JFET
    • H01L29/66901Unipolar field-effect transistors with a PN junction gate, i.e. JFET with a PN homojunction gate

Description

200810114 九、發明說明: 【發明所屬之技術領域】 發明領域 本發明有關於一種襄置結構及用於以非常微 作爾電晶體的方法,其㈣克服在建财微小線= CMOS電路中的若干製程問題。 '' 【先前技術】 發明背景
由於線寬已穩定地向下縮減成次微米範圍 10覓為45奈米或者0.45微米,其中,微米為1〇6米而—太、、,、、 等於1〇埃),在CMOS、NM0S和PM0S電路上的所“=相 縮減,包括閘極氧化物的厚度。由於線寬縮減,電壓必= 降低俾可縣擊f (puneh tlmmgh)。這誠線以示較小的 閘極長度,其需要閘極氧化物的厚度亦必須被縮減俾可允 15許在處於較低電麈之M〇s裝置中之電流流動的適當控制。 縮減的閘極氧化物厚度導致每單位面積增加的閘極電容, 其必須被改變。由於較小的幾何結構意味著增加的電路密 又、、、口果疋運作该晶片所需之電力上的整體增加。此外, 、、稍減的閘極氣化物厚度致使漏電,其增加在Cmqs電路與所 20有其他MOS電路中的電力消耗。不會引致漏電之間極氧化 •物厚度的極限是為大約3〇奈米,其是在1〇 NM之最小線寬 之較久遂的技術中使用而45奈米線寬(〇·45微米)是目前技 術的狀態。 在一個微米線寬,一個平方公分積體電路的電力消耗 5 200810114 為5瓦特。隨著線寬縮減到45奈米,相同尺寸晶片的電力消 耗上升到1〇〇〇瓦特。這會損毁未被適當地冷卻的積體電路 而且像是膝上型電腦、細胞電話等等般的可攜帶型裝置是 無法接受的。這電力消耗使設計過程複雜化,因為它需要 5 使不在工作之電晶體進入休眠以致於它們不浪費電力的電 路。
習知接面場效電晶體第一次出現是在1950年代。從那 時以來,它們業已被報導在很多的文章中,像是Simon Sze 的”Physics of Semiconductor Devices” 和 Andy Grove 10 的”Physics and Technology of Semiconductor Devices”般。接 面場效電晶體是以元素以及化合物半導體方式被報導。很 多具有接面場效電晶體的電路已被報導,如下面所示: 1) 在IEEE Transactions Electron Devices,Vol· 35, No· 11,10 1988,ρρ· 1924-1933 中之 Nanver and Goudena 15 的,’Design Considerations for Integrated High-Frequency P-Channel JFET’s”。 2) 在IEEE Transactions Electron Devices,Vol· ED-27, No. 11,1980,pp. 21152123 中之 Ozawa 的 ’’Electrical Properties of a Triode Like Silicon Vertical Channel JFET”。 20 3)在IEEE Journal of Solid State Circuits,Vol. SC-10,
No· 6,December 1975,pp. 509-515 中之 H. Takanagi 和 G.Kano 的 ’’Complementary JFET Negative-Resistance 15 Devices” o 4)在IEEE Journal of Solid State Circuits,Vol· SC· 16, 6 200810114
No. 6,December 1978 中之 A· Hamade和 J· Albarran 的”A JFET/Bipolar Eight.Channel Analog Multiplexer”。 5)在 20IEE Transaction on Electron Devices,Vol. ED-27,No· 6,June 1980 中之 K· Lehovec 和 R. Zuleeg 5 的’’Analysis of GaAs FET’s for Integrated Logic”。此外,日 期為1985年8月4日之一個名稱為’’Complimentary GaAs Logic”之R· Zuleeg的報告是在此中被引用作為習知技術。 一種習知η-通道JFET的典型結構是被顯示在第1圖 中。該JFET是形成在一個η-型基體810中。它是被包含在一 10個Ρ-井區域815中。該JFET的本體是被顯示為820,其是為 一個含有源極832、通道838、和汲極834區域的η-型擴散區 域。該閘極區域836是為ρ-型,藉著擴散到該基體内來被形 成。通到該源極、汲極、和閘極區域的接點分別為841,842, 和840。該JFET的關鍵尺寸是為閘極長度855。它是由最小 15接觸孔尺寸850,加上保證該閘極區域包圍該閘極接點所需 之部份相同的必要設計規則來被決定。該閘極長度855明顯 地比850大。該習知JFET之結構的這個特徵限制了這些裝置 的性能’因為通道長度是實質上比最小特徵尺寸大。此外, 分別到達汲極和源極區域832和834之該閘極區域836之垂 20直侧壁861和862的電容亦是相當大。該閘極-汲極側壁電容 形成對於熟知此項技術之人仕而言是為眾所周知的密勒 (Miller)電容,而且顯著地限制了該裝置在高頻的性能。 為了以JEFT替代CMOS俾可解決在45NM及較小之線 覓柃的電力消耗問題’必須具有一個與可比較幾何結構之 200810114 MOS電晶體比較起來有非常小之閘極電容,以及有非常小 之寄生電容的通常|_陋。同時亦希望的是相對於該通 道具有一個自我校準閘極在如此的JFET裝置中。因此,為 了達成這些目標,是希望能夠在沒有使用光罩下藉由在氧 5化間隙壁中蚀刻-個自我校準孔洞來製作該問極電極。 對於習知CMOS隨著線寬縮減而起之增加電力消耗之 問題的其中-種解決方案是為通常關閉接面場效電晶體或 者JFET。-種習知通常開啟JFET看起來是與在以圖中所 示的結構相似。 10 一種通常關閉JFET結構是被顯示在第2圖中。這圖示是 為一個N-通道JFET的橫截面圖,該N_通道JFET的摻雜水平 和尺寸是被設計以致於它是在增強模式下運作。該jfet在 該基體中具有四個電極區域和在該基體表面上之對應的接 點。在該基體中的電極區域是為:源極31 (由一個在多晶矽 15接點72下面的擴散區域與一個把該擴散區域連接至該通道 區域50的植入區域構成);閘極70 ;汲極4〇 (由一個在多晶 矽接點74下面的擴散區域與一個把該擴散區域連接至該通 道區域50的植入區域構成)及具有歐姆接點區域砧的^井 11。接到源極、汲極、閘極和P-井區域的接點典型地是由 20多晶矽製成而且疋·基體接點71、源極接點72、閘極接點 75和汲極接點74。該JFET是形成於在第2圖中之矽基體j5 的-個區域中。該JFET是藉著典型地為淺溝渠隔離(於此後 稱為STI)%乳化物的纟巴緣區域21來與周圍的半導體隔離。 在源極與、/及極之間的通道被顯示為5〇。就N-通道jfet而 8 200810114 言,該源極和汲極區域31和40是為N+區域(高度摻雜有 施體雜質,像磷、砷或者銻般)。該1>井11是被摻雜有p型受 體,像是硼或者銦般。接到P井的接點是由多晶矽接點71 形成,該多晶矽接點71是被重度p型摻雜而且,藉著在形成 5閘極之驅入製程(drive_in Process)期間的擴散,形成一個歐 姆接點和一個由於如圖所示之場氧化物區域21之結構而作 用如P井接點的P+區域68。該等場氧化物區域必須不在該p 井的深度下面延伸至基體接面87俾可不截斷一個在該通道 區域50下面從該歐姆接點68_p井部份u的傳導路徑。該 10通逼是為一個被輕度N型摻雜的狹窄區域5〇。該閘極是為一 個藉著像掺雜物從上面之重度P+摻雜多晶石夕乃之擴散或者 離子植人般之方絲形成在前型通道中之非錢(典型地 為10奈米,於此後稱為_的P型區域。電晶體之從表面到 閘極70和通道50之在*同深度的摻雜輪廓(柳㈣㈣卿 15是被顯示在第3圖中。形成閘極區域70的驅入製程以及形成 通道區域50的植入皆是重要的,因為這些區域的深度以及 它們的摻雜必須被控制以致於以相對於源極來說在間極和 井上之零伏特外部偏壓來形成之該閑極-通道接面和該通 道-P井接面的空乏區域碰觸俾可引致夾擊(pinch 〇ff)。曲線 20 81是為-個典型的問極摻雜輪廓而點85典型地距離該基體 表面僅大約Π)丽所以該閘極是非常淺。這條件是為對本 發明要解決之問題之解決方案的一個重要部份。曲線82 83 和84分別表示通道5〇、P井11和基體區域15的摻雜輪廓。該 開極-通道接面的深度是位於點85處。該通道_p井接面的深 9 200810114 度是位於點86處而且是典型地自基體的表面向下僅4〇 NM。該井-基體接面的深度被顯示在87。每個接面在該接 面的任一侧具有一個空乏區域,縱使該接面具有零偏壓跨 .越它。 如較早所述,設計一個通常關閉或者增強模式JFET的 關鍵是為設計該裝置以致於包圍該閘極_通道接面85的空 乏區域是足夠大來向下延伸到包圍該通道-井接面86之空 乏區域的邊界(或者,在第5C和15圖之實施例的情況中為通 道-基體接面86)。當閘極偏壓是為零伏特時這夾擊電流流 1〇動,藉此造成一個增強模式裝置。在每個接面周圍的空乏 區域在零偏壓具有一個固定寬度。該空乏區域在一個?:^接 面上面#下面擴展多返是端視在該接面上面和下面之半導 體的相對摻雜濃度而定。在接面85和86之任一側之區域的 捧雜濃度及該閘極和通道區域的尺寸是被協調_致因此爽 15 擊發生。
第4圖是為顯示在一個習知通常開啟JFET中之閘極-通 道接面85周圍之蚊區域之邊界叫91之問極和通道區域 的炸開圖。在該通道-井接面86周圍的空乏區域是由上邊界 92和下邊界94標示。在該通道區域5()巾的邊界_乎是與 在通道-P井接面86周圍之空乏區域的上邊界%一致,但是 因為它㈣m鱗發生,而且電流在中性區域中 流動。當閘極、通道和魏域⑽雜減接面深度是如此 以致於產生在第4圖中所+ 所不的沒情況時,該裝置是被稱為通 常開啟或者空乏核式裝署, ^ 罝 口為It由夾擊,即,空乏區域 200810114
邊界91符合該空乏區域邊界%的情況,它用一些閘極偏壓 來關閉從源極到汲極的電流流動。相反地,閘極、通道和 井區域的摻雜以及接面深度能夠被控制俾可在相當小的正 或者零閘極偏壓下產生夾擊,而如此的裝置是被稱為通常 5關閉或者增強模式裝置。更特別地,在一個JFET中,通道 區域的摻雜對閘極區域的摻雜和閘極_通道接面85對通道 井接面的相對深度以及在接面86下面之半導體的摻雜能夠 全部被控制以致於邊界91在零閘極偏壓或者小於一伏特的 閘極偏壓下碰觸邊界92。這引致夾擊,因此非常小的電流 1〇經由通道50從源極31流到汲極4〇。當一個正偏壓被施加在 该閘極-通道接面俾可縮減該空乏區域的寬度時,該裝置脫 離夾擊俾可允許在源極與汲極之間的傳導。 第2圖的ΠΈΤ需要兩個獨立的光罩來摻雜該單一多晶 15 石夕層因此在該源極和沒極之上的部份能夠被換雜讲而在 該閘極和P井接點之上的部份能馳摻雜p+。由於特徵尺寸 越來越小,由不同光罩層所產生之特徵的校準變得更困難 ^(cMp ^ estate)^ 轉。想要的是,藉著實行—個雙重傳導半導體層沉積來
縮減裝置面積俾可縮減具有-個自我校準閘極接點之JFET 的面積’於此後’錢重傳導半導體層沉積是被稱為,,雙重 多晶列—Μ#製程,即使形成源極與汲極接點的第-專導層不必疋夕Βθ吩而可以是金屬。雙重多晶發雙極性裝 置疋小所周知因此有很多針對如何完成雙重多晶砍結構 、識…、而就申明人所知,無雙重多晶石夕JFET整合製 11 200810114 程存在。 加工之製程中所需之;:電容贿、減少在多晶石夕 之形成的方法是必須的。&導致自我校準閘極接點 5 【明内】 發明概要 本發明的方法導劲
被構筚而& ^ h …、有自我校準閘極接點的JFET
破構朵而成。廷是藉由從一夕曰 和一的第—層可以不是多 1Q體來被達成’該第二…層是二= 的_和_接點_之形成來形成 开L孔曝露在該贈之源極與沒極區域之間之 主動區域的-個部份。這形式的結構消除了把間極光罩斑 15
源極和汲極光罩對準的微影問題。在源極和沒極接點頂I 之間隙壁絕緣體上的氮化物層作用如研磨播止器。一個覆 蓋該場氧化物的氮化物層防止會使該裝置不運作的過度餘 刻0 圖式簡單說明 第1圖是為一個JFET的橫截面圖。 弟2圖疋為一個JFET之一個實施例的橫截面圖。 第3圖是為如同在第2圖中所示之那個一樣之jFEt以及 本發明之JFET的一個典型摻雜輪廓(N通道被顯示,摻雜極 性對於P通道JFET而言是被顛倒的)。 第4圖是為第2圖之JFET和本發明之jFET之通道和間 12 200810114 極區=的拉近圖,顯示空乏區域是如何延伸來產生夾擊。 第5A圖疋為本發明之較佳實施例之完成之肿τ的範 例平面圖。 第5B圖是為該完成之赃^另一平面圖。 5…第5C圖是為本發明之較佳實施例之完成之廳丁之沿 者第5A圖巾之剖面線Α·Α’的剖視圖(井接點未㈣示,因為 熟知此項技術的人仕了解到它總是在那裡而且是被顯示在 第5D圖中)。 第5D圖是為本發明之較佳實施例之完成之JFET之沿 10著在弟5A圖中之線A-A’之包括該井的剖視圖。 第6圖是為在-個於界定該主動區域之後之預備步驟 之JFET的橫截面圖。 第7圖是為在一個於第一多晶矽沉積之後之中間階段 之裝置的橫截面圖。 15 第8圖是為在一個介電層144被沉積於該第一傳導層 136之上之後之結構的橫截面圖。 第9圖是為在光罩處理一個光阻層146俾曝露該主動區 域140之要形成有通道區域之部份之後,及在蝕刻該介電層 144和多晶矽之後之結構的橫截面圖。 20 第10圖是為在植入摻雜物,典型地為砷,俾形成通 道區域122之後之結構的橫截面圖。 第11圖是為在通道植入之前在薄氧化物層形成於多晶 石夕源極和沒極接點之側壁上之製程之另一個實施例中之通 道植入階段的橫截面圖。 13 200810114 第12圖是為具有一個在該氧化物層144下面於源極和 汲極接點上之薄氮化物層163和分別在源極和汲極接點之 上之另一個氮化物層164和162,以及覆蓋整個晶圓之介電 層160之另一個實施例的橫截面圖。 、 5 第13圖顯示在形成一個氮化物層165和另一個介電層 、 (二氧化矽)160於整個結構之上之後該結構之較佳實施例 的橫截面圖。 第14圖是為一個顯示形成在源極接點1〇2和汲極接點 • H)0之邊緣周圍之間隙壁128之輪廓(虛線)的平面圖。 10 第15圖顯示在從第12圖之結構開始之第二介電層160 之蝕刻之後該結構的橫截面圖,氮化物層162和164是僅形 成在該源極和没極接點上。 第16圖是為在從第13圖之結構開始之第二介電層160 之蝕刻之後該結構的橫截面圖,氮化物層是形成在整個晶 15 圓之上於該第二氧化物層下面。 第17圖顯示在從第15圖之結構開始之一個典型地為多 ^ 晶矽之第二傳導層190之形成之後該結構的橫截面圖,氮化 物是僅在該源極和汲極接點上。 第18圖是為在從第16圖之結構開始之第二傳導層被沉 20 積之後在該製程之實施例中之結構的橫截面圖,氮化物在 源極和汲極接點的形成之後沉積在整個結構之上。 第19圖是為在從第18圖之實施例開始磨掉第二傳導層 190之過多之多晶矽俾可使它平坦化以致於與氮化物層162 和164齊平之後該結構的橫截面圖,一個氮化物層覆蓋該場 14 200810114 氧化物。 第20圖疋為在從第17圖之實施例開始磨掉第二傳導層 190之過多之多晶石夕俾可使它平坦化以致於與氮化物層162 和164齊平之後雜構的橫截面圖,_個氮化物層僅覆蓋該 5 源極和汲極接點。 第21圖顯示兩個隔離互補式自我校準jfet之不同的井 結構,這些井中之一者是為一個三重井結構。 第2 2圖是為於在另一個蠢晶層通道實施例中第一多晶 石夕蝕刻之後該結構的橫截面圖。 1〇 帛23圖是為在間隙壁128之形成之後在另一個磊晶層 通道實施例中之結構的橫截面圖。 第24圖是為在源極和沒極區域、蠢晶層2〇以及在該源 極和汲極區域與該磊晶層之間之歐姆接點之形成之後在另 一個磊晶層通道實施例中之結構的橫截面圖。 15 第25圖是為在閘極接點106於磊晶層之上之形成之後 在另一個磊晶層通道實施例中之最後結構的橫截面圖。 【實施方式3 較佳實施例之詳細說明 第5A圖是為本發明之一個實施例之完成之JFET的平 20面圖。源極接點最好是由第一多晶矽製成,然而,它亦 可以由一些耐熱金屬或者矽化物或者多晶矽、矽化物與耐 熱金屬的組合物製成。汲極接點102也一樣。在申請專利範 圍中被稱為介電間隙壁結構的絕緣間隙壁丨28,典型地為二 氧化矽,把汲極和源極接點與一個由,,第二”多晶矽製成的 15 200810114
自我-校準’接賴6隔開(第二多晶⑦意味料管什麼經 摻雜的半導私者賴姻來形成刻極接點而且源極和 a介電間隙壁結構128亦可以由數個介電材料層構成,像 5是二氧化矽和氮化矽(Si3N〇般,而且該名詞在申請專利範 圍中應是被如此證釋。方塊108表示在該基體中的主動區 域,其是由-個由絕緣材料形成的場區域電氣隔離,該絕 緣材料典型地為淺溝渠隔離二氧化石夕。在申請專利範圍中 的忒名詞”場區域’’意思為任何形成在基體中俾可界定一個 10主動區域的絕緣層而且可不必是二氧化石夕。淺溝渠隔離是 較好的,因為妹LOCOS容㈣成㈣細小的主動區域。 該閘極接點106和任何的井接點(如果被使用的話)是由 弟一多晶碎層形成。 第5B圖是為該JFET的另一個範例佈局圖。源極、汲極 15和閘極接點以及主動區域是以與在第从圖中相同的標號標 不〇 第5C圖是為本發明之較佳實施例之完成之JFET之沿 著通過該主動區域之第5A圖中之剖面線A_A,的剖視圖。該 井接點未被顯示,因為熟知此項技術的人仕了解它總是在 20那裡面且疋被顯示在第5D圖中。場氧化物區域110包圍及界 定P井主動區域108且把該P井與相鄰之被整合至N型矽基 體112内的結構電氣地隔離。在一些實施例中,該基體可以 是為一個具有一個單晶半導體層形成於其上的絕緣基體。 «亥半體層然後可以被適當地摻雜。於此後,除非特別陳 16 200810114 述,提到基體應該了解是指任一變體。場氧化物11〇是由熟 知此項技術之人仕所知之像是淺溝渠隔離的製程形成。p 井108是橫向地延伸而如在第5D圖中所示場氧化物形成1>井 109的第二隔離區域,其一直延伸到該表面而且具有導電接 5點結構111形成在其之上。一個典型的井接點結構是被顯示 在第2圖中,接點71是為後閘極接點而且就一個^^通道裝置 而言是由P+摻雜多晶矽形成。第5D圖的裝置顯示源極 '汲 極和閘極接點,它們全部是由多晶矽製成而且是覆蓋有一 個由一個氮化物層162覆蓋的氧化物層144。 10 源極和汲極接點1〇2和100最好是P+摻雜第一多晶矽, 但是它們亦可以是就N通道裝置而言被植入N型雜質或者 就P通道裝置而言被植入P型雜質的耐熱金屬或者梦化物。 在申請專利範圍以及這描述從頭到尾,當一個植入步驟被 提及時,應要了解的是,在植入之時或者在稍後更均稱地 I5分佈該等植入離子遍及被植入的材料之時是包括一個回火 步驟。在申請專利範圍中,如同由熟知此項技術之人仕所 了解的名詞-樣,該片語”到—個高濃度水平,,應該被了解 為表示P+或者N+水平(端視p通道抑或是1^通道裝置被建構 而定)一典型地為1E18到1E21雜質濃度水平。 20 $些植入摻雜物雜質是在一個高溫驅入步驟中被驅入 該P井108的底層半導體内俾可形成N+換雜源極和沒極區 域108和120。在植入和高溫驅入步驟之後所使用的回火步 驟可以是獨立的步驟或者被組合成—個步驟。—細型通道 區域122已事先藉著植人來被形成。-個P+閘極區域124是 17 200810114 措由把雜質從形成在通道區域之上的Ρ+摻雜第二夕曰 點_入該等通道區域122來形成有_個;接二晶:: 影線的區域⑶是為絕緣材料,像是二氧化石夕般 一個把該自我-校準間極接點觸與該源極和沒極接謂 和100隔絕的介電間隙壁結構 把它形成在_了_細祕狀咖和 閘極接點自我·校準。該閉極接點是自我_ Φ 10 15 20 極、汲極和閉極接點僅需要一個光罩。該源 刻該典型地為多一傳導層的位二 沒極接個開孔是留在該會形成閘極接點的主動^ =二風化間隙壁然後是在該將在下面作說明的製程中形 _在源極與—,之主動 =::r =然後是由多晶—多晶刪二 :;Γ;"^ 要-個光罩,該_接點是自我_校準,因从用於 極接點孔的光罩是必要的。如果如此的光罩已被 必須與先前所使用的光罩校準俾可: =點而誤對準錯誤會發生,需要使用針對誤對準錯誤 ^規料界,其增加電晶體的尺寸且使得它 犄增加晶片面積。 u 在杜佳實施例中,一個氮化物層是形成在該絕緣材 ::上:面上俾作用為一個研磨擋止器,其用於防止—個 從-個第二多晶石夕層移去過多之多晶石夕的研磨步驟一直研 18 200810114 2 緣㈣並且損壞該雜和祕赫。第5C和犯圖之 ET的新結構是在於源極和汲極接點逝和卿是首先藉著 Γ個在絕緣體間隙壁128之形成之前的第-傳導層《來 被建構’在該絕緣體間隙壁128的形成之後是為一個為多晶 5石夕之第二傳導層的沉積。最終得到的結果是為一個自我-校 準閘極,而且較少的光罩被使用。在一些實施例中,一個 氮化物層是在第二傳導層的沉積之前形成在該絕緣體間隙 壁上。在其他實施例中,一個氮化物層是形成在該場氧化 物(典型地為STI)的上表面上俾可在魏化㈣壁層被姓刻 10時防止過度鍅刻。 結構的製程 請參閱第6圖所示,其是為JFET於在界定主動區域之後 之預備步驟的橫截面圖。該製程典型地以被摻雜到ι〇歐姆_ 公分電阻率的<1〇〇>Ν-摻雜矽半導體基體開始,雖然在其他 15實施例中其他的電阻率和半導體類型以及晶體配向是可接 受的。場區域110是藉由形成絕緣材料於該基體中俾可界定 一個會形成有JFET結構的主動區域130 (其是與p井1〇8相 符)來被形成。在該較佳實施例中,場區域11〇是藉著形成 一個二氧化矽區域的淺溝渠隔離氧化來被形成,在一個45 20 寬裝置中它是為大約1〇〇〇埃到一個微米厚。淺溝渠隔 離比LOCOS更理想’因為角132和134是較尖銳而且比由 LOCOS所產生之鳥嘴結構更微細的裝置結構能夠被完成。 因為鳥嘴結構典型地具有超過光罩之邊緣0β1微米延伸至 主動區域的氧化物,一個界定一個0.2微米寬之主動區域的 19 200810114 光罩將無法在一個LOCOS場氧化製程中可靠地形成一個主 動區域,因此微細裝置無法被完成。於此中所述的製程是 用於形成一個獨立裝置。如果一個具有相當接近之P通道和 N通道裝置的反相器要被形成的話,那麼該等裝置彼此必須 5 被電氣地隔離。在如此的情況中,植入是被完成俾可在一 個會形成有N通道裝置的主動區域中形成一個p-井而在另 一個要形成有P通道裝置的主動區域中形成一個N-井。每個
P-井或者N-井在基體的表面具有一個接點因此井-基體接 面能夠被逆向偏壓俾可消除從該N通道裝置之主動區域到 10該P通道裝置之主動區域的傳導,反之亦然。第21圖顯示兩 個把互補式自我-校準JFET隔離之不同的井結構。n通道 15 20 JFET 200是建構在一個具有表面接點2〇4的p井202内。P通 運JFET 206是建構在一個具有表面接點21〇的1^井2〇8内。表 面接點204和210可以被使用來分別逆向偏壓該等後閘極 214和212俾可把該兩個裝置隔離。一個三重井結構216是被 顯示。在這結構中,一個自我-校準閘極,N通道JFET 218 疋建構在P井220中的第一主動區域(由STI區域221和223所 界定)内,該P井220被包圍在一個形成於基體224中的^^井 222内。該P-井具有-個表面接點226。一個自我校準問極, P通道JFET 228是建構在-個_23〇内,該財23〇亦被包 圍在N-井222内。在申請專利範圍中,該片語,,一個自我省 準閘極,N通道蕭”意思為於此中所界定之較佳和其他實 施例JFET結構巾之任-者在增強模式或者空乏模式中是被 摻雜為N通道。同樣地,該片語”_個自我·校準閘極,故 20 200810114 道JFET”意思為於此中所界定之較佳和其他實施例JFET結 構中之任一者在增強模式或者空乏模式中是被掺雜為P通 道0 第7圖是為在”第一多晶矽”沉積之後之中間階段之裝 5 置的橫截面圖。像是耐熱金屬或者石夕化物般的其他導體可 以被使用作為該第一傳導材料層136,然而,在該較佳實施 例中,第一傳導材料層136是為一個最好是從2〇奈米到〇.5 微米厚的多晶矽層。在申請專利範圍中的名詞第一傳導材 料應被理解為表示這個第一多晶石夕層以及财熱或者石夕化 10物。這個第一多晶矽層,在摻雜之後,是為形成源極和汲 極接點的傳導材料。這個第一多晶矽層的摻雜最好是藉著 離子植入來完成,然而,其他用於摻雜層136的技術亦可以 被使用,像是電漿沉浸摻離、熱擴散以及類似的製程般。 在申请專利範圍中,摻雜這個第一傳導材料層的步驟應該 15被理解為涵蓋使得該第一傳導材料層更具傳導性的任何方 式,如果它在被沉積或者第一次形成時不是高度傳導性的 話。端視該裝置是否被構築而定所使用的特定摻雜物材料 是為N通道裝置或者P通道裝置。繪劃的製程是針對N通道 裝置,因此N型雜質被植入,如由箭頭138所表示。典型地, 20數次植入被完成,一次在較低能量而一次在較高能量俾可 獲得在該多晶矽中兩個不同深度的摻雜峰值,導致在多曰 矽中摻雜物分佈之較大的均稱性的結果。例如,如果該第 一多晶矽層是為50 NM厚的話,一次植入會設定其之能量 從表面140向上具有大約20 NM之濃度的峰值而另一次會 21 200810114 設定其之能量從表面142向下具有大約1〇NM的峰值。在該 較佳實施例中,於該製程中在這時無回火步驟被執行俾可 重新分佈在該多晶矽中的植入雜質。在另一個實施例中, 低溫回火是在這個步驟被執行。在申請專利範圍中,沉積 5該第一傳導層及摻雜它的步驟應被理解為包括在任何時候 的一個回火步驟而且這個回火步驟能夠與一個高溫驅入步 驟結合在一起俾可形成該閘極以及可能該源極和汲極區 域,如果經摻雜的多晶矽是被使用於該第一傳導層的話。 形成源極、汲極區域的步驟應被理解的是包括一個自第一 10多晶矽層之源極和汲極接點驅趕雜質的高溫擴散。如果源 極和汲極接點是由耐熱金屬或者矽化物來形成在多晶矽上 的話,源極和汲極區域是藉著在源極和汲極接點之形成之 丽或者之後的植入以及一個回火步驟來被形成。在另一個 實施例中,一個光罩步驟會被使用來界定源極和汲極植入 15 的區域。 第8圖是為在第一介電層144被沉積在該第一傳導層 136上之後该結構的橫截面圖。這個介電層可以是二氧 化矽或者氮化物,低κ二氧化矽或者其他電介質。介電層144 亦可以包含數個以上所述之各式各樣的介電材料層。這介 2〇電層的典型厚度是從1〇丽到5〇〇麗。這個層功用如把源 極和汲極接點之頂部與第二多晶石夕隔離且在形成源極和沒 極接點時在沒有與像是金屬線般之任何重疊傳導結構之干 涉下允許彈性的一個間隙壁和一個絕緣體。在另一個實施 例中,介電層144由一個氧化物層與一個形成在其之上的薄 22 200810114 氮化物層162構成俾可作用如—個研磨擋止器。這個薄氮化 物層162是以虛線表示。在下面所述之形成獨立之源極和沒 極接點的姓刻之後,該氣化物層是分別被標示為在源極和 汲極接點上的層164和162。該氮化物層162和164亦覆蓋在 5主動區域外部之場氧化物區域上的多晶石夕層136。為了防止 該場氧化物稍後在一個形成介電間隙壁結構於源極和汲極 接點周SUX及曝露-個開孔於主動區域的㈣步驟期間在 主動區域之外被劃上凹痕,這是必須的。在缺少氮化物層 下形成這些間隙壁的蝕刻將會在第14圖中的區域2〇〇向下 1〇蝕刻該場氧化物到該基體之表面下面的一個水平。這會產 生在閘極多晶矽與井之間的短路。因此當該閘極被偏壓 時,該P井亦非意慾地被偏壓,所以當在第15圖中的介電間 隙壁結構128被形成時,必須以某些方法防止該場氧化物被 钱刻。 15 第9圖是為在顯影一個光阻層146俾曝露第一多晶矽 100與對應之介電層必須由電漿蝕刻或者適當之製程移去 之區域之遮罩俾曝露要形成有通道區域之區域14〇之後該 結構的橫截面圖。光刻法和蝕刻步驟亦界定源極和汲極接 點102和100的尺寸和形狀。在遮罩之後,一個钕刻步驟然 20後把在通道區域140和場區域上之被曝露氧化物或者其他 絕緣體144以及該第一傳導層136的部份移去。在另一個實 施例中,光阻是從晶圓移去而該晶圓是經歷熱循環俾可使 摻雜物擴散通過接近矽之表面的傳導層1〇2和1〇〇,以及換 雜矽俾可分別形成源極和汲極接點118和120。該通道區域 23 200810114 122然後是藉著一個或者多個就N通道裝置而言摻雜通道區 域N型或者就p通道裝置而言掺雜p型的植入來被形成。藉 者該井偏壓,一個供N通道裝置用之選擇之第二p+植入是
5被執行俾可形成在第10圖中之通道122下面的p+區域156以 致於獲得:極電流的較大控制。在該(等)植入之 後,邊光阻層146是從晶圓移除。然後,一個熱驅入烘烤被 兀成俾可允許在上面之源極和汲極接點中的摻雜物雜質擴 政到忒基體來形成源極區域118和汲極區域120。這個ρ+井 1〇植入能夠在通道植入之前或者之後被執行,而且典型地是 〇硼或者BF2在從大約i KEV到2〇〇 KEV之能量水平的一個或 者多個植入中被植入俾可沉積大多數的?型雜質在該接面 154下面。在申請專利範圍中,該名詞,,預定摻雜水平和接 面冰度是想要表示達成希望之增強模式或者空乏模式 b JFET衣置之適當的摻雜雜質濃度和接面深度。如果一個增 15強模式裝置是想要的話,閘極區域的p+濃度(或者在p通道 JFET之情財_+)和通道與井區域之雜質的濃度是被控 制到-個足夠高的水平而該閘極·通道接面和通道-井接面 的接面深度是被控制俾可強迫該等空乏區域合併,藉此引 >〇 構的話,這些相同的因素是被控制俾可達成在稍高、想要 之位準之閘極偏壓下的夾擊。 以一多晶梦層136是在第7圖中的植入中被高度摻雜 ;匕可以用於源極和汲極接點並且_適足的雜質進 入主動區域來形成源極和祕區域。該摻雜物濃度在第一 24 200810114 多晶矽層136是被建立為在1018到1021/cm3的範圍内。在驅入 之後,於源極和汲極區域118和12〇中的摻雜物濃度亦是為 10到1021/cm3。該驅入步驟的時間與溫度是被控制俾可建 構從基體之上表面14〇向下1 NM至150 NM之源極_井接面 - 5 和汲極-井接面152的接面深度。 ^ 第10圖是為在利用砷或者一些其他N型傳導性增強雜 質植入在主動區域中之通道區域122之後,以及在熱驅入之 彳㈣結構的橫截面W。在練佳實施例巾,兩次或者多次 通道植入是在從1〇11到1〇M/cm3的劑量和從5〇〇 到刈 H) KEV的植入能量下被執行。該等植入能量是被控制俾可建 構在表面刚下面5舰到觀之通道·井接面154的接面 深度二在該較佳實施例中,如果要被建構的裝置是為增強 ^裝置翁,植人的能量和劑量必馳協調以致於接面 154的深度是如此以致於雜質的最終濃度使得在接面⑼之 15上之空乏區域(圖中未示)的部份在跨過該接面的正偏壓 φ 了’與在-自要在稍後形成之閘極·通道接面下面延伸之空 乏區域(圖中未示)的部份相遇,俾可達成在正閘極偏壓下的 夾擊。 第11圖疋為2私之另一個實施例在通道植入階段的橫 20截面圖,其中,薄氧化物層而和99是在通道植入之前形成 在多晶石夕源極和沒極接點的側壁上。這是被實行俾可防止 在多晶石夕源極和汲極接點中的摻雜物在驅入第一傳導層期 間加熱除去氣體及沉積在主動區域的表面上。在通道植入 之後或者在熱驅入期間,該薄二氧化石夕層是在迅速執回火 25 200810114 ==用-個短高氧週期來被熱形成,俾可藉著熱擴 政使付雜質從源極和閘極接點進人下方主祕域來形成源 極和汲極區域。 第12圖顯^在形成—個第二介電層160在源極和汲極 接上之後名結構之實施例的橫截面圖,氮化物層164和 162是分別位於源極和没極接點1()2和刚上的氧化物層⑷ 上。一個介電層160是沉積在該晶圓上。這個介電層包含- 個低h ’丨貝或者氮化物層。這個介電層是各向同性地沉積 在整個晶圓上。 1〇 # 13圖是為在晶圓之加工期間該較佳實施例的橫截面 圖’顯示-個被各向同性地沉積在整個晶圓上的薄氮化物 層164。在另一個實施例中,這個層164包含一個非常薄的 氧化物層和一個在它上面的薄氮化物層。這個堆疊結構會 被稱為薄氣化物層164。該氮化物層的厚度是介於10 nm與 15 200 nm之間。一個像是二氧化石夕般的絕緣材料層160是在氮 化物/儿積之後〉儿積在該晶圓上。一個低也絕緣材料亦能夠 被沉積代替該氧化物層。該層176的厚度端視開孔14〇的特 徵尺寸而定來改變。該層m的最小厚度是根據它必須維持 在兩個沉積在這個層上之多晶矽層之間的完整絕緣的考量 20 來被決定。 在覆蓋主動區域之第13圖中之區域166中的氮化物,其 之輪廓182是顯示在第14圖中,是在第二多晶石夕的沉積之前 被运擇地自主動區域移去。這是被實行以致於摻雜物雜質 能夠從閘極接點擴散到下方基體俾可形成在第5(:圖中的閘 26 200810114 極區域和形成一個低電阻接點到該井。 第15圖顯示在從第12圖之結構開始之第二介電層16〇 的蝕刻之後該結構的橫截面圖,氮化物層162和164是僅形 成在源極和汲極接點上。在這個實施例中,第二介電層16〇 5疋為形成在整個晶圓上的氮化物或者低k二氧化矽俾可避 免在間隙壁的形成期間蝕刻該場氧化物。一個各向異性蝕 刻把在源極和汲極接點102和1〇〇上之第二介電層的水平部 份移除、及把在主動區域上之第二介電層的水平部份移除 俾可使通道區域22和基體的表面被曝露、以及在沒有蝕刻 !〇該場氧化物下把在場氧化物上之第二介電層的水平部份移 去。該各向異性敍刻留下覆蓋源極和汲極接點之側壁的介 電間隙壁部份i28俾可將它們與接著要被沉積的閘極多晶 矽隔離。 這些氮化物層162和164的用途為作用如一個當介電間 15隙壁層_被_來形·隙壁時賴在源極和沒極接點 中之每-者上之絕緣層144不被_掉的糊擋止器。該第 -介電層144必須停留在源極和祕接點上俾可防止這些 接點的頂面在介電_壁層⑽的_時被曝露。如在料 源極和汲極接點的頂面在這姓刻期間被曝露的話,在第二 20多晶石夕層被沉積於該結構上時會導致短路的結果。如果介 電層144是為氮化物的話,則不需要氮化物層162和164。如 果介電層144是為氧化物的話’就算不是如在第_中所示 之覆蓋源極和汲極接點之所有表面(頂面和側壁)的氮化 層,也必須有至少-個氮化物層164和162。在這特定實施 27 200810114 例中,第二介電層160,在申請專利範圍中被稱為第二介電 層,最好是氮化物。這是因為在這個實施例中,無獨立氮 化物層保護場氧化物,所以層160必須是氮化物俾可防止該 %氧化物當它被蝕刻來形成介電間隙壁結構時與層一 5起被钱刻。如果第二介電層16〇是由標準的氧化物曰製成的 話,當它被蝕刻俾可形成在第冗和51)圖中的間隙壁128 時’會導致在第5A圖中之介電間隙壁結構128外部之場氧化 ,之=度_的結果。當閘極是在晶圓加工期間藉由沉積 第二多晶矽來被形成時,這會使得在閘極與井之間的短 1〇路。低1<:氧化物的蝕刻是優先的而且在場氧化物停止,因此 低k氧化物在某些實施例中可能被用於第二介電層。在 申請專利範财該名詞第二介電層應被_為涵蓋所有這 些可能性。在該較佳實施例中一個相當厚的介電層144亦是 必須的俾可提供在第一傳導層源極和汲極接點1〇2和1〇〇與 15第二傳導層,即,第二多晶石夕(在構築中的這階段尚未被顯 示)之間的更大程度分隔。 第16圖是為在從第13圖之結構開始蝕刻該第二絕緣層 M0之後該結構的橫截面圖,該氮化物層是形成在整個晶圓 上。在源極和汲極接點之周緣的介電間隙壁128是藉由各向 2〇異性地蝕刻該第二氧化物層俾把所有水平部份移除來被形 成該餃刻把该第二氧化物層的水平部份移去向下到達在 '原極和及極接點1〇2和iQ〇上的氮化物層Μ)和164及向下到 達覆盍場氧化物和主動區域的氮化物層。一個氮化物蝕刻 二後被執行俾可把在主動區域上的氮化物移除且曝露該等 28 200810114 通道區域和該基體的表面。 請回到較佳實施例種類的考量,第14圖是為一個顯示 形成在源極接點102和汲極接點1〇〇之周緣四周之介電間隙 壁結構128之輪廓的平面圖。這些間隙壁128是藉由蝕刻該 一 5第二氧化物層160來被形成。由於形成於在區域168和170中 • 之基體之表面上的氮化物層165覆蓋該STI場氧化物,該氮 化物層165在該第二氧化物層160的蝕刻期間保護該STI免 受任何蝕刻和因之而起的刻凹痕。STI到一個在其餘之基體 ® 之表面下面之水平的蝕刻會使該閘極多晶矽直接與該井短 10路,藉此使得該裝置不運作或者嚴重地限制其之性能。第 13和14圖的實施例或者任何有一個保護該淺溝渠隔離之氮 化物層的實施例是比在第二氧化物蝕刻期間對該STI無保 護的實施例為佳。 第17圖顯示在從第15圖之結構開始之一個典型地為多 15晶矽之第二傳導層19〇之形成之後該結構的橫截面圖,其 中,氮化物是僅在源極和汲極接點上。該第二多晶矽層19〇 • 典型地為10 NM到500 NM厚。它是藉著低壓化學蒸氣沉積 法或者對於熟知此項技術之人仕而言是眾所周知之其他適 當的製程來被形成。該閘極接點會從這個傳導層19〇形成, 20因此對於N通道裝置而言它必須是為P+傳導材料或者對於 P通道裝置而言它必須是為N+傳導材料。因此,第二夕曰 7曰白 矽層190在沉積之後需要被摻雜或者沉積材料當被沉積時 必須已被摻雜或者隨著它被沉積而被掺雜。在該較隹實施 例中,該第二多晶矽是藉著在一次或者多次植入中的離子 29 200810114 植入來被摻雜。就N通道裝置而言,植人摻雜物典型地為以 1 X 1014到1 x 1016/cm2之濃度在J kev^J5〇kev能量水平 下G、型地數次在不同能量水平的植人)被植人的聰。一個 低溫回火步驟是在該(等)植入之後被執行俾可平均地分佈 X專植入離子。典型的回火步驟是在到⑽〇度c下執行 秒到6個小時。這回火步驟能夠在第二多晶石夕層190的進一 步加工之前被實行俾可形成閘極接點。一個高溫驅入步驟 此夠在這時被執行俾可把雜f從第三多晶韻⑽驅入至 在下面的主動區域俾可形成在第5C圖中的閘極區域124。或 1〇者,該第二多晶矽可以如下所述被進一步處理俾可把過多 的多晶石夕移除來形成閘極接點,而然後高溫驅人步驟會被 執行。 第18圖是為在從第16圖之結構開始之第二傳導層被沉 積之後之後在製程之實施例中之結構的橫截面圖,其中, 15氮化物在源極和汲極接點的形成之後已被沉積在整個結構 上。配合第17圖之先前所述之第二多晶矽層19〇之沉積和摻 雜的所有特徵是相同地應用在這裡。 第19圖是為在從第18圖之實施例(氮化物層覆蓋該STI) 開始之層190之過多之多晶矽之使它平坦化俾可與介電層 20 I62和164之頂面齊平俾可留下閘極接點106之研磨之後該 完成結構的橫截面圖。如果高溫驅入步驟未被執行的話, 匕疋在這時被執行俾把雜質從閘極接點驅入到下方主動區 域通道區域122來形成閘極區域124。 第20圖是為在從第17圖之一個氮化物層僅覆蓋源極和 30 200810114 沒極接點之實施例開始之層190之過多之多晶碎之使它平 坦化俾可與介電層162和164之頂面齊平俾可留下閘極接點 106之研磨之後該結構的橫截面圖。 就弟5C圖的較高性能完成實施例而言,在不是在主動 5區域上之源極和汲極接點之外部邊緣周圍之由第二多晶石夕 形成的多晶矽附加間隙壁192和194能夠藉由選擇遮罩和蝕 刻來被钱刻掉俾可把它們移除。 在另一個實施例中,一個矽化物層能夠形成在閘極、 源極和汲極接點上俾可降低其之電阻。該實施例是由在第 1〇 19圖中的虛線200,2〇2和2〇4表示而且是可應用於所有實施 例。 一個第一替代實施例包含藉著一個半導體層的磊晶長 成來形成一個通道區域於該基體上。這個替代實施例是由 第22至25圖表示,該等圖式表示該結構在該替代製程之不 15 同階段的狀態。這個替代製程實施例是在第一多晶矽蝕刻
步驟之後及在間隙壁被形成之後開始而且該驅入步驟已發 生。該替代製程是如下。該較佳實施例之每個步驟之所有 與這替代實施例-樣的替代實施例是為這替代實施例的個 別類型。 1) 在基體中界定主動區域而且完成一個輕度 型(就η通道裝置而言)俾可產生如在第6圖中所示的結 構。 2) 沉積該第一多晶矽層並且植入成Ν型(或者是ρ型,若 疋貝仃一個ρ通道裝置的話)及形成一個第一介電層於其之 31 200810114 頂面上(第7和8圖)。 3) 姓刻該第一多晶矽層俾可形成源極和汲極接點以 及形成介電層在每個接點上。該結果是剩下如在第22圖中 所示。在申請專利範圍中,該步驟,,形成一個第一介電層於 ‘ 5該第一多晶矽層上”表示所有CVD氧化物獨自的變形、在頂 一 面上之CVD氧化物和在側壁上的熱氧化物、CVD氧化物和 氮化物、氮化物獨自或者任何其他於此中所揭露或對於熟 知此項技術之人仕而言是顯而易知的介電結構以及表示在 源極和汲極接點獨自的頂面上或者以至少覆蓋在某些實施 10例中而不在其他實施例中在主動區域外部之STI區域氮化 物覆盍源極和汲極接點的頂面和側壁。因此形成第一介電 層的某些步驟會在第一多晶矽層蝕刻之前被實行,接著為 稍後的額外步驟俾可形成介電層於側壁上。 4) 在或者在沒有熱氧化物或者氮化物或者兩者在介 電間隙壁下面下形成介電間隙壁結構128 (第23圖)。第η、 _ 12、13、14、15和16圖全部界定用於形成這些間隙壁128的 替代實施例,它們全部是可應用於這替代磊晶層通道類型 製程。覆蓋頂面的任意氮化物層162和164和覆蓋源極和汲 極接點之側壁的氮化物層165在第23圖中是由虛線表示。在 20申請專利範圍中,該片語,,形成介電間隙壁結構,,表示形成 在說明書中所教導之介電層的任何組合作為間隙壁,包括 長在该等由一個被各向異性餘刻之CVD氧化物層所覆蓋之 侧壁上的熱氧化物和覆蓋該等由一個被各向異性钱刻俾可 移去其之水平成份之CVD氧化物層所覆蓋之侧壁的氮化 32 200810114 物0 5)執仃熱驅入俾可把在源極和汲極接點的N+傳導性 、強雜貝驅入读基體來形成源極和汲極區域118和120以及 &向地通過基體的上半導體層來人侵到在第關中之間隙 5壁129和131内部,因此雜質是在基體的表面,同時在間隙 壁和在將切·極接點之孔洞 中的内部間隙壁下面(第 24 圖)。 土 n之要形成通道的地方下面實行一個選擇性 P+井植人而然後藉由I成單晶半導體133的蠢晶層(於此後 10稱為蠢晶層)來長成-個通道區域於該基體上 。在一個實施 例中,*一個讓 _> 乐一秒-鍺層135是藉一個長在層135上的純矽層 133來長成這是較佳的類型,因為晶格錯配使該矽層ι33 拉張而使它具有高遷移率。在另一個實施例中,半導體層 133疋為個在外延石夕-鍺-碳合金單晶層上的外延石夕層。在 is另-個實施例中,半導體層133是為一個在外延石夕鲁碳合 金單s曰層上的拉張層外延矽層。該層133作用如一個通道區 域而且就N通道裝置而言是被掺雜^^+。它能夠在被沉積的 原處被摻雜或者稍後藉著離子植入來被摻雜。在基體之表 面的雜質129和131與磊晶層133一起形成歐姆接點俾可作 20用如源極和汲極區域(第24圖)。半導體層之磊晶長成的製程 條件是眾所周知而且實現在雙極性電晶體已很久。層135和 133是被適當地摻雜俾可藉著離子植入來形成具有n型摻雜 物的通道,最好是砷。 7)沉積一個第二多晶矽層在該磊晶層上俾可充填該 33 200810114 =、把它摻雜成適當的傳導類型⑽通道裝置而言為P+) ^把它研磨_在源極Μ極接點上之氮化物層i62和i64 =面=形成閘極接_6(第25圖)。第:多晶石夕層的換 藉著‘貝至其内的擴散或者藉著雜質的離子植入來 冑型地數個在不同能量水平的植人是被使用俾可 達成良好的雜質分佈。 10 15 20 8)執行來自間極多料的熱驅人俾可在減晶層中 曰。區或在—個替代實施例中,閘極區域能夠藉由 ==中的沉積之前或者之後藉由植入該閘極區 …7 ;在料介電_壁結構之間之主動區域上俾 :::閘極接點。為了較佳的雜質分佈,數個在不同能量 水千的植人會被使用1致在正偏壓下之夾擊之相同 、.木度和摻雜濃度是於此中作說明應用到該替代製程 〜’如果1增強模式裝置是要被建構的話。 個空乏模式裝置Β西山7 該間極-通道接^ 基體上㈣晶層建構的語, 一 σ 和4通道-井接面的接面深度以及閘極、通 d井區域轉雜濃度是被控制俾可達成空乏 , 即,在某私㈣極驗下的絲。 在該第二夕 —夕晶矽是藉由遮罩與蝕刻來被界定之後,一 個介電層是沉社+ 積在該晶圓上而且接觸孔是被蝕刻在該介電 層中。最後,么H g 隻屬疋被沉積和蝕刻來形成電氣連線。 月業已配合於此中所揭露的較佳和替代實施 例=作,述,對於熟知此項技術的人仕而言會察覺到的是 在/又有離開本發明的範圍下變化和改雜夠被達成。所有 34 200810114 如此的變化是傾向於被包括在本發明之申請專利範圍的範 圍之内。 C圖式簡單說明2 第1圖是為一個JFET的橫截面圖。 5 第2圖是為一個JFET之一個實施例的橫截面圖。 第3圖是為如同在第2圖中所示之那個一樣之jpg丁以及 本發明之JFET的一個典型摻雜輪廓(N通道被顯示,摻雜極 性對於P通道JFET而言是被顛倒的)。 第4圖是為第2圖之JFET和本發明之JFET之通道和閘 1〇極區域的拉近圖,顯示空乏區域是如何延伸來產生夾擊。 第5A圖是為本發明之較佳實施例之完成之JFET的範 例平面圖。 第5B圖是為該完成之jFET的另一平面圖。 第5C圖是為本發明之較佳實施例之完成之JFET之沿 15著第5A圖中之剖面線Α·Α,的剖視圖(井接點未被顯示,因為 热知此項技術的人仕了解到它總是在那裡而且是被顯示在 第5D圖中)。 第5D圖是為本發明之較佳實施例之完成之JFET之沿 著在第5A圖中之線A_A,之包括該井的剖視圖。 2〇 帛6®是為在—個於界定該主純域之後之預備步驟 之JFET的橫截面圖。 第7圖是為在一個於第一多晶矽沉積之後之中間階段 之裝置的橫截面圖。 第8圖是為在一個介電層144被沉積於該第一傳導層 35 200810114 136之上之後之結構的橫截面圖。 第9圖是為在光罩處理一個光阻層146俾曝露該主動區 域140之要形成有通道區域之部份之後,及在蝕刻該介電層 144和多晶發之後之結構的橫截面圖。 5 第1〇圖是為在植入N型摻雜物,典型地為坤,俾形成通 道區域122之後之結構的橫截面圖。 第11圖是為在通道植入之前在薄氧化物層形成於多晶 碎源極和沒極接點之側壁上之製程之另一個實施例中之通 道植入階段的橫截面圖。 10 第12圖是為具有一個在該氧化物層144下面於源極和 沒極接點上之薄氮化物層163和分別在源極和汲極接點之 上之另一個氮化物層164和162,以及覆蓋整個晶圓之介電 層160之另一個實施例的橫截面圖。 弟13圖顯示在形成一個氮化物層165和另一個介電層 15 (二氧化碎)160於整個結構之上之後該結構之較佳實施例 的橫截面圖。 第14圖是為一個顯示形成在源極接點1〇2和及極接點 100之邊緣周圍之間隙壁128之輪廓(虛線)的平面圖。 弟15圖顯示在從第12圖之結構開始之第二介電層1⑼ 20之蝕刻之後該結構的橫截面圖,氮化物層162和164是僅形 成在該源極和沒極接點上。 第16圖是為在從第13圖之結構開始之第二介電層 之姓刻之後該結構的橫截面圖,氮化物層是形成在整個晶 圓之上於該第二氧化物層下面。 36 200810114 第17圖顯示在從第15圖之結構開始之一個典型地為多 晶矽之第二傳導層190之形成之後該結構的橫截面圖,氮化 物是僅在該源極和汲極接點上。 第18圖是為在從第16圖之結構開始之第二傳導層被沉 5積之後在該製程之實施例中之結構的橫截面圖,氮化物在 源極和沒極接點的形成之後沉積在整個結構之上。 第19圖是為在從第18圖之實施例開始磨掉第二傳導層 190之過多之多晶石夕俾可使它平坦化以致於與氮化物層μ) 和164齊平之後該結構的橫截面圖,一個氮化物層覆蓋該場 1〇 氧化物。 第20圖是為在從第π圖之實施例開始磨掉第二傳導層 190之過多之多晶矽俾可使它平坦化以致於與氮化物層162 和164齊平之後該結構的橫截面圖,一個氮化物層僅覆蓋該 源極和汲極接點。 15 第21圖顯示兩個隔離互補式自我校準JFET之不同的井 結構,這些井中之一者是為一個三重井結構。 弟22圖疋為於在另一個蠢晶層通道實施例中第一多晶 石夕鍅刻之後該結構的橫截面圖。 第2 3圖是為在間隙壁12 8之形成之後在另一個磊晶層 20 通道實施例中之結構的橫截面圖。 第24圖是為在源極和没極區域、磊晶層2〇以及在該源 極和汲極區域與該磊晶層之間之歐姆接點之形成之後在另 一個磊晶層通道實施例中之結構的橫截面圖。 第25圖是為在閘極接點1〇6於磊晶層之上之形成之後 37 200810114 在另一個磊晶層通道實施例中之最後結構的橫截面圖。 【主要元件符號說明】
810 基體 68 區欠姆接點區域 815 p-井區域 71 基體接點 820 JFET 74 没極接點 832 源極區域 75 閘極接點 834 没極區域 15 基體 836 閘極區域 21 絕緣區域 838 通道區域 87 P井-基體接面 840 接點 81 曲線 841 接點 82 曲線 842 接點 83 曲線 850 最小接觸孔尺寸 84 曲線 855 閘極長度 85 閘極-通道接面 861 側壁 86 通道-井接面 862 側壁 90 邊界 31 源極 91 邊界 72 接點 92 邊界 50 通道區域 94 邊界 70 閘極 100 源極接點 40 沒極 102 没極接點 11 P-井 128 絕緣間隙壁 38 200810114
108 主動區域 220 P井 106 閘極接點 222 N井 110 場氧化物區域 224 基體 112 石夕基體 226 表面接點 109 P井 228 P 通itJFKT 111 電氣傳導接點結構 138 箭嘴 144 氧化物層 140 表面 162 氮化物層 230 N井 130 主動區域 136 第一傳導材料層 200 N通道JFET 164 氮化物層 202 p井 146 光阻層 204 表面接點 122 通道區域 206 P 通 ifJFET 118 源極接點 208 N井 120 没極接點 210 表面接點 156 P+區域 212 後閘極 154 接面 214 後閘極 150 接面 216 三重井結構 152 接面 218 N通道JFET 101 薄氧化物層 221 STI區域 99 薄氧化物層 223 STI區域 160 第二介電層 39 200810114
104 接點 190 176 層 192 166 區域 194 124 閘極區域 133 168 區域 135 170 區域 165 氮化物層 第二多晶石夕層 間隙壁 間隙壁 單晶半導體 第一矽-鍺層
40

Claims (1)

  1. 200810114 一 5 十、申請專利範圍: 1.一種用於形成接面場效電晶體之自我校準閘極結構的方 法,該方法包含: 形成一個第一傳導層於一個半導體基體上; 沉積一個第一介電層於該第一傳導層之上; 形成一個光罩在該第一傳導層的第一和第二區域之 上,其中,該第一區域界定一個源極電極區域而該第二區 • 域界定一個 >及極電極區域, 蝕刻該介電層和該第一傳導層俾可曝露該半導體基 10 體的一個部份; 把該光罩移去; 形成一個第二介電層於至少該半導體基體、該源極 電極區域、以及該 >及極電極區域之上, 蝕刻該第二介電層俾可曝露該半導體基體的一個部 15 • 份,其中,該第二介電層延伸俾可覆蓋該源極電極區域和 該汲極電極區域的側壁;及 形成一個第二傳導層俾可界定一個在該源極電極區 域與該汲極電極區域之間的閘極電極區域,該閘極電極區 域是與該源極電極區域和該沒極電極區域隔離。 20 2. 如申請專利範圍第1項所述之方法,其中,覆蓋該源極電 極區域和該汲極電極區域之側壁的第二介電層使該閘極 電極區域與該半導體基體的主動區域排成一列。 3. 如申請專利範圍第2項所述之方法,其中,該主動區域包 含一個通道區域和一個閘極區域。 41 200810114 • 5 4.如申請專利範圍第1項所述之方法,其中,該第一傳導層 包含多晶石夕、耐熱金屬、或者石夕化物中之一者。 5·如申請專利範圍第1項所述之方法,更包含在形成該光罩 之前沉積一個氮化層於該第一介電層之上。 6.如申請專利範圍第1項所述之方法,更包含: 把第一傳導類型的摻雜物從該源極電極區域擴散到 該半導體基體俾可形成一個源極區域;及 • 把該第一傳導類型的摻雜物從該汲極電極區域擴散 到該半導體基體俾可形成一個沒極區域。 10 7·如申請專利範圍第1項所述之方法,更包含植入第一傳導 類型的摻雜物俾可形成一個通道區域。 8.如申請專利範圍第1項所述之方法,更包含把第二傳導類 型的摻雜物從該汲極電極區域擴散到該半導體基體俾可 形成一個閘極區域。 15 9.如申請專利範圍第1項所述之方法,更包含蝕刻該第二介 • 電層的部份以致於該閘極電極區域的一個表面相對於該 源極電極區域和該汲極電極區域來說是平坦的。 10.如申請專利範圍第1項所述之方法,其中,該第二導電 層包含多晶石夕、财熱金屬、或石夕化物中之一者。 20 11. 如申請專利範圍第1項所述之方法,其中,該第一傳導層 包含η-型傳導性而該第二傳導層包含P-型傳導性。 12. 如申請專利範圍第1項所述之方法,其中,該第一傳導 層包含Ρ-型傳導性而該第二傳導層包含η-型傳導性。 13. —種接面場效電晶體,包含: 42 200810114 形成在一個半導體基體中的一個第一傳導類型的源 極區域; 形成在該半導體基體中的一個第一傳導類型的汲極 區域; 5 形成在該半導體基體中之一個在該源極區域與該汲 極區域之間之第一傳導類型的通道區域; 形成在該半導體基體中且與該通道區域相鄰之一個 第二傳導類型的閘極區域; 一個與該源極區域歐姆接觸且具有至少一個側壁是 10 由一個介電層所覆蓋的源極電極區域; 一個與該汲極區域歐姆接觸且具有至少一個側壁是 由一個介電層所覆蓋的汲極電極區域;及 一個形成在該源極電極區域與該汲極電極區域之間 且是藉著該介電層來與該源極電極區域和該汲極電極區 15 域隔離的閘極電極區域。 14. 如申請專利範圍第13項所述之接面場效電晶體,其中, 覆盖該源極電極區域和該 >及極電極區域的介電層使該問 極電極區域與該半導體基體的一個主動區域排成一列。 15. 如申請專利範圍第14項所述之接面場效電晶體,其中, 20 該主動區域包含該通道區域和該閘極區域。 16. 如申請專利範圍第13項所述之接面場效電晶體,其中, 該源極電極區域包含多晶矽、耐熱金屬、或矽化物中之 一者。 17. 如申請專利範圍第13項所述之接面場效電晶體,其中, 43 200810114 該汲極電極區域包含多晶矽、耐熱金屬、或矽化物中之 一者。 18. 如申請專利範圍第13項所述之接面場效電晶體,其中, 該閘極電極區域包含多晶矽、耐熱金屬、或矽化物中之 5 —者。 19. 如申請專利範圍第13項所述之接面場效電晶體,其中, 該第一傳導類型包含η-型傳導性而該第二傳導類型包含 ρ-型傳導性。 20. 如申請專利範圍第13項所述之接面場效電晶體,其中, 10 該第一傳導類型包含ρ-型傳導性而該第二傳導類型包含 η-型傳導性。
    44
TW096119509A 2006-06-09 2007-05-31 Self aligned gate JFET structure and method TW200810114A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/450,112 US7560755B2 (en) 2006-06-09 2006-06-09 Self aligned gate JFET structure and method

Publications (1)

Publication Number Publication Date
TW200810114A true TW200810114A (en) 2008-02-16

Family

ID=38821001

Family Applications (1)

Application Number Title Priority Date Filing Date
TW096119509A TW200810114A (en) 2006-06-09 2007-05-31 Self aligned gate JFET structure and method

Country Status (8)

Country Link
US (2) US7560755B2 (zh)
EP (1) EP2038937A4 (zh)
JP (1) JP2009540579A (zh)
KR (1) KR20090023476A (zh)
CN (1) CN101467265A (zh)
CA (1) CA2647600A1 (zh)
TW (1) TW200810114A (zh)
WO (1) WO2007146734A2 (zh)

Families Citing this family (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8957511B2 (en) 2005-08-22 2015-02-17 Madhukar B. Vora Apparatus and methods for high-density chip connectivity
US7745301B2 (en) 2005-08-22 2010-06-29 Terapede, Llc Methods and apparatus for high-density chip connectivity
US7592841B2 (en) * 2006-05-11 2009-09-22 Dsm Solutions, Inc. Circuit configurations having four terminal JFET devices
KR100809597B1 (ko) * 2006-04-06 2008-03-04 삼성전자주식회사 미세 패턴 형성 방법 및 이를 이용한 반도체 메모리 장치의형성 방법
US7560755B2 (en) * 2006-06-09 2009-07-14 Dsm Solutions, Inc. Self aligned gate JFET structure and method
US7557393B2 (en) * 2006-08-10 2009-07-07 Dsm Solutions, Inc. JFET with built in back gate in either SOI or bulk silicon
US7764137B2 (en) * 2006-09-28 2010-07-27 Suvolta, Inc. Circuit and method for generating electrical solutions with junction field effect transistors
JP2008108793A (ja) * 2006-10-23 2008-05-08 Sanyo Electric Co Ltd 接合型fetおよびその製造方法
US7525163B2 (en) * 2006-10-31 2009-04-28 Dsm Solutions, Inc. Semiconductor device, design method and structure
US20080128762A1 (en) * 2006-10-31 2008-06-05 Vora Madhukar B Junction isolated poly-silicon gate JFET
US20080099796A1 (en) * 2006-11-01 2008-05-01 Vora Madhukar B Device with patterned semiconductor electrode structure and method of manufacture
US20080265936A1 (en) * 2007-04-27 2008-10-30 Dsm Solutions, Inc. Integrated circuit switching device, structure and method of manufacture
US7525138B2 (en) * 2007-05-03 2009-04-28 Dsm Solutions, Inc. JFET device with improved off-state leakage current and method of fabrication
WO2008137724A1 (en) * 2007-05-03 2008-11-13 Dsm Solutions, Inc. Strained channel p-type jfet and fabrication method thereof
US7629812B2 (en) * 2007-08-03 2009-12-08 Dsm Solutions, Inc. Switching circuits and methods for programmable logic devices
US8035139B2 (en) * 2007-09-02 2011-10-11 Suvolta, Inc. Dynamic random access memory having junction field effect transistor cell access device
US7977714B2 (en) * 2007-10-19 2011-07-12 International Business Machines Corporation Wrapped gate junction field effect transistor
US7582922B2 (en) * 2007-11-26 2009-09-01 Infineon Technologies Austria Ag Semiconductor device
US20090168508A1 (en) * 2007-12-31 2009-07-02 Dsm Solutions, Inc. Static random access memory having cells with junction field effect and bipolar junction transistors
US20090206375A1 (en) * 2008-02-19 2009-08-20 Saha Samar K Reduced Leakage Current Field-Effect Transistor Having Asymmetric Doping And Fabrication Method Therefor
US20090224291A1 (en) * 2008-03-04 2009-09-10 Dsm Solutions, Inc. Method for self aligned sharp and shallow doping depth profiles
US7710148B2 (en) * 2008-06-02 2010-05-04 Suvolta, Inc. Programmable switch circuit and method, method of manufacture, and devices and systems including the same
US20100019289A1 (en) * 2008-07-25 2010-01-28 Dsm Solutions, Inc. Junction Field Effect Transistor Using Silicide Connection Regions and Method of Fabrication
US7943971B1 (en) 2008-12-17 2011-05-17 Suvolta, Inc. Junction field effect transistor (JFET) structure having top-to-bottom gate tie and method of manufacture
US8188482B2 (en) * 2008-12-22 2012-05-29 Infineon Technologies Austria Ag SiC semiconductor device with self-aligned contacts, integrated circuit and manufacturing method
US20100171154A1 (en) * 2009-01-08 2010-07-08 Samar Kanti Saha Silicon-On-Insulator Junction Field-Effect Transistor Having A Fully Depleted Body and Fabrication Method Therefor
US8264058B2 (en) * 2009-02-13 2012-09-11 University Of South Carolina MOS-driver compatible JFET structure with enhanced gate source characteristics
WO2012051133A2 (en) * 2010-10-12 2012-04-19 Io Semiconductor, Inc. Vertical semiconductor device with thinned substrate
US9159825B2 (en) 2010-10-12 2015-10-13 Silanna Semiconductor U.S.A., Inc. Double-sided vertical semiconductor device with thinned substrate
KR101196316B1 (ko) * 2011-01-14 2012-11-01 주식회사 동부하이텍 접합형 전계 효과 트랜지스터 및 제조방법
FR2976675B1 (fr) * 2011-06-16 2013-07-12 Nanotec Solution Circuit integre de mesure capacitive a pont flottant.
US8927357B2 (en) * 2011-11-11 2015-01-06 International Business Machines Corporation Junction field-effect transistor with raised source and drain regions formed by selective epitaxy
CN103187308B (zh) * 2011-12-29 2015-06-03 中芯国际集成电路制造(上海)有限公司 结型场效应管及其形成方法
CN103187309B (zh) * 2011-12-31 2016-08-17 中芯国际集成电路制造(北京)有限公司 结型场效应晶体管及其制造方法
CN103187310B (zh) * 2011-12-31 2017-03-15 中芯国际集成电路制造(北京)有限公司 一种互补结型场效应晶体管c‑JFET器件及其后栅极的制造方法
US8946787B2 (en) * 2012-10-06 2015-02-03 Infineon Technologies Austria Ag Reduced charge transistor
RU2513644C1 (ru) * 2012-12-10 2014-04-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Рязанский государственный радиотехнический университет" Полупроводниковый прибор с отрицательным сопротивлением (варианты)
US9478507B2 (en) 2013-03-27 2016-10-25 Qualcomm Incorporated Integrated circuit assembly with faraday cage
US9466536B2 (en) 2013-03-27 2016-10-11 Qualcomm Incorporated Semiconductor-on-insulator integrated circuit with back side gate
US8748245B1 (en) 2013-03-27 2014-06-10 Io Semiconductor, Inc. Semiconductor-on-insulator integrated circuit with interconnect below the insulator
US20140315358A1 (en) * 2013-04-19 2014-10-23 Richtek Technology Corporation Manufacturing method of junction field effect transistor
US9449978B2 (en) * 2014-01-06 2016-09-20 Micron Technology, Inc. Semiconductor devices including a recessed access device and methods of forming same
US9552993B2 (en) * 2014-02-27 2017-01-24 Semiconductor Components Industries, Llc Semiconductor device and manufacturing method thereof
US20180175209A1 (en) * 2016-12-20 2018-06-21 Globalfoundries Inc. Semiconductor structure including one or more nonvolatile memory cells and method for the formation thereof
US10043826B1 (en) * 2017-07-26 2018-08-07 Qualcomm Incorporated Fully depleted silicon on insulator integration
US10381349B2 (en) 2017-08-29 2019-08-13 International Business Machines Corporation Stacked complementary junction FETs for analog electronic circuits
US10593760B2 (en) 2018-08-02 2020-03-17 Semiconductor Components Industries, Llc Method for forming trench semiconductor device having Schottky barrier structure
CN110957218B (zh) * 2018-09-26 2023-09-26 无锡华润微电子有限公司 半导体元器件的制造方法及半导体元器件
US11011602B2 (en) * 2018-11-20 2021-05-18 Qualcomm Incorporated Circuits employing adjacent low-k dummy gate to a field-effect transistor (FET) to reduce FET source/drain parasitic capacitance, and related fabrication methods
JP7128136B2 (ja) * 2019-03-08 2022-08-30 株式会社東芝 接合型電界効果トランジスタ
US11869983B2 (en) 2020-03-12 2024-01-09 International Business Machines Corporation Low voltage/power junction FET with all-around junction gate
US11545585B2 (en) * 2020-08-21 2023-01-03 Monolithic Power Systems, Inc. Single sided channel mesa power junction field effect transistor
US11600737B2 (en) * 2021-03-16 2023-03-07 Taiwan Semiconductor Manufacturing Company, Ltd. Germanium-based sensor with junction-gate field effect transistor and method of fabricating thereof
US11855237B2 (en) * 2021-03-16 2023-12-26 Taiwan Semiconductor Manufacturing Company, Ltd Germanium-based sensor with junction-gate field effect transistor and method of fabricating thereof
CN113410135B (zh) * 2021-06-15 2023-06-30 西安微电子技术研究所 一种抗辐照结型场效应晶体管的制作方法
WO2023159589A1 (zh) * 2022-02-28 2023-08-31 华为技术有限公司 芯片及其制备方法、射频功率放大器和终端

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3719535A (en) * 1970-12-21 1973-03-06 Motorola Inc Hyperfine geometry devices and method for their fabrication
JPS59220968A (ja) * 1983-05-31 1984-12-12 Fujitsu Ltd 半導体装置の製造方法
US4912053A (en) * 1988-02-01 1990-03-27 Harris Corporation Ion implanted JFET with self-aligned source and drain
US5122851A (en) 1989-04-03 1992-06-16 Grumman Aerospace Corporation Trench JFET integrated circuit elements
JP2822500B2 (ja) * 1989-10-27 1998-11-11 ソニー株式会社 半導体集積回路の製造方法
EP0605634A1 (en) * 1991-09-27 1994-07-13 Harris Corporation Complementary bipolar transistors having high early voltage, high frequency performance and high breakdown voltage characteristics and method of making same
US5639688A (en) * 1993-05-21 1997-06-17 Harris Corporation Method of making integrated circuit structure with narrow line widths
US5824575A (en) 1994-08-22 1998-10-20 Matsushita Electric Industrial Co., Ltd. Semiconductor device and method of manufacturing the same
EP0948818B1 (en) 1996-07-19 2009-01-07 SILICONIX Incorporated High density trench dmos transistor with trench bottom implant
US5702987A (en) 1996-08-26 1997-12-30 Chartered Semiconductor Manufacturing Pte Ltd Method of manufacture of self-aligned JFET
JP3709668B2 (ja) 1997-09-02 2005-10-26 ソニー株式会社 半導体装置とその製造方法
US5856225A (en) 1997-11-24 1999-01-05 Chartered Semiconductor Manufacturing Ltd Creation of a self-aligned, ion implanted channel region, after source and drain formation
US7560755B2 (en) * 2006-06-09 2009-07-14 Dsm Solutions, Inc. Self aligned gate JFET structure and method

Also Published As

Publication number Publication date
US7560755B2 (en) 2009-07-14
EP2038937A4 (en) 2010-04-28
WO2007146734A3 (en) 2008-02-21
JP2009540579A (ja) 2009-11-19
EP2038937A2 (en) 2009-03-25
US7687335B2 (en) 2010-03-30
US20070284628A1 (en) 2007-12-13
KR20090023476A (ko) 2009-03-04
CN101467265A (zh) 2009-06-24
WO2007146734A2 (en) 2007-12-21
CA2647600A1 (en) 2007-12-21
US20090017585A1 (en) 2009-01-15

Similar Documents

Publication Publication Date Title
TW200810114A (en) Self aligned gate JFET structure and method
TWI333695B (en) Integrated circuit using complementary junction field effect transistor and mos transistor in silicon and silicon alloys
CN101467261B (zh) 用于小线宽和下降的线宽的jfet的可扩展工艺和结构
US7633101B2 (en) Oxide isolated metal silicon-gate JFET
US6465842B2 (en) MIS semiconductor device and method of fabricating the same
KR100905210B1 (ko) Cmos 수직 대체 게이트(vrg) 트랜지스터
US6372559B1 (en) Method for self-aligned vertical double-gate MOSFET
TWI320954B (en) Semiconductor component and method of manufacture
TWI257649B (en) Semiconductor device and manufacturing method of the same
US20080001183A1 (en) Silicon-on-insulator (SOI) junction field effect transistor and method of manufacture
TW200908325A (en) Semiconductor device and method for manufacturing semiconductor device
TW200414547A (en) Semiconductor device
TW200818494A (en) JFET with built in back gate in either SOI or bulk silicon
US5960291A (en) Asymmetric channel transistor and method for making same
TW200901464A (en) Method for applying a stress layer to a semiconductor device and device formed therefrom
US6300657B1 (en) Self-aligned dynamic threshold CMOS device
TW201807820A (zh) 包含偽閘極結構之積體電路及其形成方法
JP2007005575A (ja) 半導体装置およびその製造方法
TW546836B (en) Semiconductor device and a method of manufacturing the same
US6858505B2 (en) Methods of forming transistor structures including separate anti-punchthrough layers
US7943971B1 (en) Junction field effect transistor (JFET) structure having top-to-bottom gate tie and method of manufacture
TW200901465A (en) Semiconductor device having strain-inducing substrate and fabrication methods thereof