TW200741978A - Stressor integration and method thereof - Google Patents

Stressor integration and method thereof

Info

Publication number
TW200741978A
TW200741978A TW096109790A TW96109790A TW200741978A TW 200741978 A TW200741978 A TW 200741978A TW 096109790 A TW096109790 A TW 096109790A TW 96109790 A TW96109790 A TW 96109790A TW 200741978 A TW200741978 A TW 200741978A
Authority
TW
Taiwan
Prior art keywords
stressor
integration
formed over
layer
substrate
Prior art date
Application number
TW096109790A
Other languages
English (en)
Inventor
Paul A Grudowski
Darren V Goedeke
John J Hackenberg
Original Assignee
Freescale Semiconductor Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Freescale Semiconductor Inc filed Critical Freescale Semiconductor Inc
Publication of TW200741978A publication Critical patent/TW200741978A/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823807Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the channel structures, e.g. channel implants, halo or pocket implants, or channel materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823864Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the gate sidewall spacers, e.g. double spacers, particular spacer material or shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/665Unipolar field-effect transistors with an insulated gate, i.e. MISFET using self aligned silicidation, i.e. salicide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7842Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate
    • H01L29/7843Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate the means being an applied insulating layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Drying Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Weting (AREA)
  • Element Separation (AREA)
  • Non-Volatile Memory (AREA)
  • Semiconductor Memories (AREA)
  • Thin Film Transistor (AREA)
TW096109790A 2006-04-21 2007-03-21 Stressor integration and method thereof TW200741978A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/408,347 US7528029B2 (en) 2006-04-21 2006-04-21 Stressor integration and method thereof

Publications (1)

Publication Number Publication Date
TW200741978A true TW200741978A (en) 2007-11-01

Family

ID=38619976

Family Applications (1)

Application Number Title Priority Date Filing Date
TW096109790A TW200741978A (en) 2006-04-21 2007-03-21 Stressor integration and method thereof

Country Status (7)

Country Link
US (1) US7528029B2 (zh)
EP (1) EP2013903A4 (zh)
JP (1) JP5296672B2 (zh)
KR (1) KR20090008249A (zh)
CN (1) CN101427364A (zh)
TW (1) TW200741978A (zh)
WO (1) WO2007124209A2 (zh)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005046978B4 (de) * 2005-09-30 2007-10-04 Advanced Micro Devices, Inc., Sunnyvale Technik zum Erzeugen einer unterschiedlichen mechanischen Verformung durch Bilden eines Kontaktätzstoppschichtstapels mit unterschiedlich modifizierter innerer Verspannung
KR100703986B1 (ko) * 2006-05-22 2007-04-09 삼성전자주식회사 동작 특성과 플리커 노이즈 특성이 향상된 아날로그트랜지스터를 구비하는 반도체 소자 및 그 제조 방법
US7935587B2 (en) * 2006-06-09 2011-05-03 Taiwan Semiconductor Manufacturing Company, Ltd. Advanced forming method and structure of local mechanical strained transistor
DE102006046374B4 (de) * 2006-09-29 2010-11-11 Advanced Micro Devices, Inc., Sunnyvale Verfahren zum Reduzieren der Lackvergiftung während des Strukturierens von Siliziumnitridschichten in einem Halbleiterbauelement
US8247850B2 (en) * 2007-01-04 2012-08-21 Freescale Semiconductor, Inc. Dual interlayer dielectric stressor integration with a sacrificial underlayer film stack
US7645651B2 (en) * 2007-12-06 2010-01-12 Freescale Semiconductor, Inc. LDMOS with channel stress
DE102007063272B4 (de) * 2007-12-31 2012-08-30 Globalfoundries Inc. Dielektrisches Zwischenschichtmaterial in einem Halbleiterbauelement mit verspannten Schichten mit einem Zwischenpuffermaterial
JP5347283B2 (ja) * 2008-03-05 2013-11-20 ソニー株式会社 固体撮像装置およびその製造方法
DE102008021555B4 (de) * 2008-04-30 2010-07-22 Advanced Micro Devices, Inc., Sunnyvale Verfahren mit einer Abscheidung verspannungsinduzierender Schichten über mehreren ersten und mehreren zweiten Transistoren
US8003454B2 (en) * 2008-05-22 2011-08-23 Freescale Semiconductor, Inc. CMOS process with optimized PMOS and NMOS transistor devices
US20090289280A1 (en) * 2008-05-22 2009-11-26 Da Zhang Method for Making Transistors and the Device Thereof
US8871587B2 (en) * 2008-07-21 2014-10-28 Texas Instruments Incorporated Complementary stress memorization technique layer method
JP5264834B2 (ja) 2010-06-29 2013-08-14 東京エレクトロン株式会社 エッチング方法及び装置、半導体装置の製造方法
CN102376646B (zh) * 2010-08-24 2014-03-19 中芯国际集成电路制造(上海)有限公司 改善双应力氮化物表面形态的方法
CN108231766B (zh) * 2016-12-14 2020-11-27 中芯国际集成电路制造(上海)有限公司 一种半导体器件及其制造方法
EP3572549A1 (fr) 2018-05-24 2019-11-27 Richemont International S.A. Article de joaillerie

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5418279A (en) * 1977-07-11 1979-02-10 Nec Corp Pattern formation method
WO2002043151A1 (en) * 2000-11-22 2002-05-30 Hitachi, Ltd Semiconductor device and method for fabricating the same
JP2003086708A (ja) 2000-12-08 2003-03-20 Hitachi Ltd 半導体装置及びその製造方法
US6410938B1 (en) 2001-04-03 2002-06-25 Advanced Micro Devices, Inc. Semiconductor-on-insulator device with nitrided buried oxide and method of fabricating
JP4173672B2 (ja) * 2002-03-19 2008-10-29 株式会社ルネサステクノロジ 半導体装置及びその製造方法
US6696334B1 (en) * 2002-09-30 2004-02-24 Advanced Micro Devices, Inc. Method for formation of a differential offset spacer
JP2004153127A (ja) * 2002-10-31 2004-05-27 Matsushita Electric Ind Co Ltd 半導体装置の製造方法
US7015089B2 (en) * 2002-11-07 2006-03-21 Taiwan Semiconductor Manufacturing Co., Ltd. Method to improve etching of resist protective oxide (RPO) to prevent photo-resist peeling
US7015082B2 (en) 2003-11-06 2006-03-21 International Business Machines Corporation High mobility CMOS circuits
JP4700295B2 (ja) * 2004-06-08 2011-06-15 富士通セミコンダクター株式会社 半導体装置とその製造方法
JP4794838B2 (ja) * 2004-09-07 2011-10-19 富士通セミコンダクター株式会社 半導体装置およびその製造方法
US7244644B2 (en) * 2005-07-21 2007-07-17 International Business Machines Corporation Undercut and residual spacer prevention for dual stressed layers

Also Published As

Publication number Publication date
WO2007124209A2 (en) 2007-11-01
CN101427364A (zh) 2009-05-06
WO2007124209A3 (en) 2008-09-04
US7528029B2 (en) 2009-05-05
KR20090008249A (ko) 2009-01-21
EP2013903A2 (en) 2009-01-14
EP2013903A4 (en) 2009-12-16
US20070249113A1 (en) 2007-10-25
JP5296672B2 (ja) 2013-09-25
JP2009534849A (ja) 2009-09-24

Similar Documents

Publication Publication Date Title
TW200741978A (en) Stressor integration and method thereof
TW200731415A (en) Methods for forming a semiconductor device
TW200715566A (en) Display device and method of manufacturing the same
TWI371782B (en) Nitride crystal, nitride crystal substrate, epilayer-containing nitride crystal substrate, semiconductor device and method of manufacturing the same
TW200620664A (en) Semicomductor device and method for manufacturing the same
WO2008051503A3 (en) Light-emitter-based devices with lattice-mismatched semiconductor structures
TW200644224A (en) Semiconductor device and method for manufacturing the same
SG139657A1 (en) Structure and method to implement dual stressor layers with improved silicide control
TW200633022A (en) Method of manufacturing an epitaxial semiconductor substrate and method of manufacturing a semiconductor device
GB2453492A (en) Organic el device and manufacturing method thereof
TW200623210A (en) Recess gate and method for fabricating semiconductor device with the same
HK1117270A1 (en) Substrate and method of fabricating the same, and semiconductor device and method of fabricating the same
WO2008127643A3 (en) Strain enhanced semiconductor devices and methods for their fabrication
GB2457411A (en) Stress enhanced transistor and methods for its fabrication
SG126899A1 (en) Light-emitting device, method for making the same,and nitride semiconductor substrate
WO2007092867A3 (en) Semiconductor device fabricated using a raised layer to silicide the gate
TW200742070A (en) Method for forming a semiconductor device having a fin and structure thereof
TW200729516A (en) Semiconductor device and method for fabricating the same
TW200715563A (en) Semiconductor device and method for manufacturing the same
EP1970946A4 (en) AlxGayIn1-x-yN CRYSTALLINE SUBSTRATE, SEMICONDUCTOR DEVICE AND METHOD FOR MANUFACTURING THE SAME
TW200746456A (en) Nitride-based semiconductor device and production method thereof
TW200644221A (en) Method of forming an integrated power device and structure
TW200620653A (en) Method of forming a raised source/drain and a semiconductor device employing the same
GB0724499D0 (en) Organic semiconductor film forming method, organic semiconductor film and organic thin film transistor
SG147439A1 (en) Semiconductor device with doped transistor