TW200741960A - Seed layers, cap layers, and thin films and methods of making thereof - Google Patents
Seed layers, cap layers, and thin films and methods of making thereofInfo
- Publication number
- TW200741960A TW200741960A TW095117186A TW95117186A TW200741960A TW 200741960 A TW200741960 A TW 200741960A TW 095117186 A TW095117186 A TW 095117186A TW 95117186 A TW95117186 A TW 95117186A TW 200741960 A TW200741960 A TW 200741960A
- Authority
- TW
- Taiwan
- Prior art keywords
- layers
- making
- methods
- layer
- thin films
- Prior art date
Links
- 239000010409 thin film Substances 0.000 title 1
- 239000003124 biologic agent Substances 0.000 abstract 2
- 230000004888 barrier function Effects 0.000 abstract 1
- 230000008021 deposition Effects 0.000 abstract 1
- 239000002184 metal Substances 0.000 abstract 1
- 239000002105 nanoparticle Substances 0.000 abstract 1
- 239000007787 solid Substances 0.000 abstract 1
- 239000000758 substrate Substances 0.000 abstract 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/1601—Process or apparatus
- C23C18/1603—Process or apparatus coating on selected surface areas
- C23C18/1607—Process or apparatus coating on selected surface areas by direct patterning
- C23C18/1608—Process or apparatus coating on selected surface areas by direct patterning from pretreatment step, i.e. selective pre-treatment
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/18—Pretreatment of the material to be coated
- C23C18/1803—Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces
- C23C18/1824—Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces by chemical pretreatment
- C23C18/1837—Multistep pretreatment
- C23C18/1844—Multistep pretreatment with use of organic or inorganic compounds other than metals, first
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/48—Coating with alloys
- C23C18/50—Coating with alloys with alloys based on iron, cobalt or nickel
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/28—Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
- H01L21/283—Deposition of conductive or insulating materials for electrodes conducting electric current
- H01L21/288—Deposition of conductive or insulating materials for electrodes conducting electric current from a liquid, e.g. electrolytic deposition
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76801—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
- H01L21/76802—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics
- H01L21/76814—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics post-treatment or after-treatment, e.g. cleaning or removal of oxides on underlying conductors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76838—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
- H01L21/76841—Barrier, adhesion or liner layers
- H01L21/76843—Barrier, adhesion or liner layers formed in openings in a dielectric
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76838—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
- H01L21/76841—Barrier, adhesion or liner layers
- H01L21/76843—Barrier, adhesion or liner layers formed in openings in a dielectric
- H01L21/76849—Barrier, adhesion or liner layers formed in openings in a dielectric the layer being positioned on top of the main fill metal
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76838—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
- H01L21/76841—Barrier, adhesion or liner layers
- H01L21/7685—Barrier, adhesion or liner layers the layer covering a conductive structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76838—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
- H01L21/76841—Barrier, adhesion or liner layers
- H01L21/76853—Barrier, adhesion or liner layers characterized by particular after-treatment steps
- H01L21/76861—Post-treatment or after-treatment not introducing additional chemical elements into the layer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76838—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
- H01L21/76841—Barrier, adhesion or liner layers
- H01L21/76853—Barrier, adhesion or liner layers characterized by particular after-treatment steps
- H01L21/76861—Post-treatment or after-treatment not introducing additional chemical elements into the layer
- H01L21/76864—Thermal treatment
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76838—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
- H01L21/76841—Barrier, adhesion or liner layers
- H01L21/76867—Barrier, adhesion or liner layers characterized by methods of formation other than PVD, CVD or deposition from a liquids
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76838—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
- H01L21/76841—Barrier, adhesion or liner layers
- H01L21/76868—Forming or treating discontinuous thin films, e.g. repair, enhancement or reinforcement of discontinuous thin films
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76838—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
- H01L21/76841—Barrier, adhesion or liner layers
- H01L21/76871—Layers specifically deposited to enhance or enable the nucleation of further layers, i.e. seed layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76838—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
- H01L21/76841—Barrier, adhesion or liner layers
- H01L21/76871—Layers specifically deposited to enhance or enable the nucleation of further layers, i.e. seed layers
- H01L21/76874—Layers specifically deposited to enhance or enable the nucleation of further layers, i.e. seed layers for electroless plating
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76838—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
- H01L21/76877—Filling of holes, grooves or trenches, e.g. vias, with conductive material
- H01L21/76879—Filling of holes, grooves or trenches, e.g. vias, with conductive material by selective deposition of conductive material in the vias, e.g. selective C.V.D. on semiconductor material, plating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Computer Hardware Design (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing & Machinery (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Metallurgy (AREA)
- General Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Peptides Or Proteins (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
- Chemically Coating (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US68049105P | 2005-05-13 | 2005-05-13 | |
US75201905P | 2005-12-21 | 2005-12-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
TW200741960A true TW200741960A (en) | 2007-11-01 |
Family
ID=38904823
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW095117186A TW200741960A (en) | 2005-05-13 | 2006-05-15 | Seed layers, cap layers, and thin films and methods of making thereof |
Country Status (3)
Country | Link |
---|---|
US (2) | US7695981B2 (zh) |
TW (1) | TW200741960A (zh) |
WO (1) | WO2008013516A2 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104651811A (zh) * | 2013-10-30 | 2015-05-27 | 罗门哈斯电子材料有限公司 | 用于化学镀的催化剂溶液 |
TWI821416B (zh) * | 2018-09-27 | 2023-11-11 | 台灣積體電路製造股份有限公司 | 半導體裝置的形成方法 |
Families Citing this family (50)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004099467A1 (de) * | 2003-05-09 | 2004-11-18 | Basf Aktiengesellschaft | Zusammensetzungen zur stromlosen abscheidung ternärer materialien für die halbleiterindustrie |
US7902639B2 (en) * | 2005-05-13 | 2011-03-08 | Siluria Technologies, Inc. | Printable electric circuits, electronic components and method of forming the same |
US7695981B2 (en) * | 2005-05-13 | 2010-04-13 | Siluria Technologies, Inc. | Seed layers, cap layers, and thin films and methods of making thereof |
US8232621B2 (en) * | 2006-07-28 | 2012-07-31 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device |
US8278216B1 (en) | 2006-08-18 | 2012-10-02 | Novellus Systems, Inc. | Selective capping of copper |
JP2010507263A (ja) * | 2006-10-17 | 2010-03-04 | エントン インコーポレイテッド | 超小型電子デバイスの製造におけるフィチャーを埋め込むための銅堆積 |
JP2008198703A (ja) * | 2007-02-09 | 2008-08-28 | Nec Electronics Corp | 半導体装置の製造方法 |
CN101611130B (zh) * | 2007-02-14 | 2011-05-18 | 安万托特性材料股份有限公司 | 用于去除蚀刻残余物以过氧化物活化的金属氧酸盐为基础的制剂 |
US20080236619A1 (en) * | 2007-04-02 | 2008-10-02 | Enthone Inc. | Cobalt capping surface preparation in microelectronics manufacture |
KR100841170B1 (ko) * | 2007-04-26 | 2008-06-24 | 삼성전자주식회사 | 저저항 금속 배선 형성방법, 금속 배선 구조 및 이를이용하는 표시장치 |
WO2008157612A1 (en) * | 2007-06-21 | 2008-12-24 | Enthone Inc. | Codeposition of copper nanoparticles in through silicon via filling |
US8039379B1 (en) | 2007-07-02 | 2011-10-18 | Novellus Systems, Inc. | Nanoparticle cap layer |
US7994640B1 (en) * | 2007-07-02 | 2011-08-09 | Novellus Systems, Inc. | Nanoparticle cap layer |
US20090127711A1 (en) * | 2007-11-15 | 2009-05-21 | International Business Machines Corporation | Interconnect structure and method of making same |
KR100916649B1 (ko) * | 2007-11-26 | 2009-09-08 | 삼성전기주식회사 | 인쇄회로기판의 제조방법 |
US8420537B2 (en) * | 2008-05-28 | 2013-04-16 | International Business Machines Corporation | Stress locking layer for reliable metallization |
US8382970B2 (en) * | 2008-08-05 | 2013-02-26 | Xerox Corporation | Metallization process for making fuser members |
FR2935713B1 (fr) * | 2008-09-08 | 2010-12-10 | Alchimer | Procede de reparation de couches barrieres a la diffusion du cuivre sur substrat solide semi-conducteur ; kit de reparation pour la mise en oeuvre de ce procede |
US8237191B2 (en) * | 2009-08-11 | 2012-08-07 | International Business Machines Corporation | Heterojunction bipolar transistors and methods of manufacture |
US20110045171A1 (en) * | 2009-08-19 | 2011-02-24 | International Business Machines Corporation | Multi-Step Method to Selectively Deposit Ruthenium Layers of Arbitrary Thickness on Copper |
US20110059148A1 (en) * | 2009-09-07 | 2011-03-10 | National Chiao Tung University | Flexible Drug Delivery Chip, its Fabrication Method and Uses Thereof |
US10494720B2 (en) | 2011-02-28 | 2019-12-03 | Nthdegree Technologies Worldwide Inc | Metallic nanofiber ink, substantially transparent conductor, and fabrication method |
CN103430241B (zh) | 2011-02-28 | 2017-08-04 | 无限科技全球公司 | 金属纳米纤维油墨、实质上透明的导体、及其制造方法 |
KR101182155B1 (ko) | 2011-05-20 | 2012-09-12 | 인천대학교 산학협력단 | 반도체 장치 및 금속박막 형성방법 |
US8564132B2 (en) | 2011-08-17 | 2013-10-22 | International Business Machines Corporation | Tungsten metallization: structure and fabrication of same |
JP6360276B2 (ja) * | 2012-03-08 | 2018-07-18 | 東京エレクトロン株式会社 | 半導体装置、半導体装置の製造方法、半導体製造装置 |
US8517769B1 (en) * | 2012-03-16 | 2013-08-27 | Globalfoundries Inc. | Methods of forming copper-based conductive structures on an integrated circuit device |
US8673766B2 (en) | 2012-05-21 | 2014-03-18 | Globalfoundries Inc. | Methods of forming copper-based conductive structures by forming a copper-based seed layer having an as-deposited thickness profile and thereafter performing an etching process and electroless copper deposition |
CN103579254B (zh) * | 2012-08-09 | 2019-04-26 | 香港城市大学 | 金属纳米粒子单层 |
US9293571B2 (en) * | 2012-08-09 | 2016-03-22 | City University Of Hong Kong | Metal nanoparticle monolayer |
US20140072706A1 (en) * | 2012-09-11 | 2014-03-13 | Ernest Long | Direct Electroless Palladium Plating on Copper |
US9059255B2 (en) * | 2013-03-01 | 2015-06-16 | Globalfoundries Inc. | Methods of forming non-continuous conductive layers for conductive structures on an integrated circuit product |
US9406614B2 (en) * | 2013-03-08 | 2016-08-02 | Taiwan Semiconductor Manufacturing Company, Ltd. | Material and process for copper barrier layer |
FR3009210B1 (fr) * | 2013-07-30 | 2017-01-13 | Commissariat Energie Atomique | Procede de realisation d'un revetement metallique sur une surface |
US9847289B2 (en) * | 2014-05-30 | 2017-12-19 | Applied Materials, Inc. | Protective via cap for improved interconnect performance |
US9263327B2 (en) * | 2014-06-20 | 2016-02-16 | Globalfoundries Inc. | Minimizing void formation in semiconductor vias and trenches |
US9899234B2 (en) | 2014-06-30 | 2018-02-20 | Lam Research Corporation | Liner and barrier applications for subtractive metal integration |
US9865673B2 (en) | 2015-03-24 | 2018-01-09 | International Business Machines Corporation | High resistivity soft magnetic material for miniaturized power converter |
US9960240B2 (en) | 2015-10-21 | 2018-05-01 | International Business Machines Corporation | Low resistance contact structures for trench structures |
US10304773B2 (en) | 2015-10-21 | 2019-05-28 | International Business Machines Corporation | Low resistance contact structures including a copper fill for trench structures |
US9955590B2 (en) * | 2015-10-21 | 2018-04-24 | Advanced Semiconductor Engineering, Inc. | Redistribution layer structure, semiconductor substrate structure, semiconductor package structure, chip structure, and method of manufacturing the same |
US11198639B2 (en) * | 2016-06-13 | 2021-12-14 | Corning Incorporated | Multicolored photosensitive glass-based parts and methods of manufacture |
US10867843B2 (en) * | 2016-12-05 | 2020-12-15 | Taiwan Semiconductor Manufacturing Co., Ltd. | Method and system for fabrication semiconductor device |
US10692830B2 (en) * | 2017-10-05 | 2020-06-23 | Texas Instruments Incorporated | Multilayers of nickel alloys as diffusion barrier layers |
WO2020033632A2 (en) * | 2018-08-08 | 2020-02-13 | Kuprion Inc. | Electronic assemblies employing copper in multiple locations |
WO2020085137A1 (ja) * | 2018-10-22 | 2020-04-30 | Dic株式会社 | 積層体、及び、積層体の製造方法 |
WO2021060037A1 (ja) * | 2019-09-25 | 2021-04-01 | 東京エレクトロン株式会社 | 基板液処理方法及び基板液処理装置 |
US20230024544A1 (en) * | 2021-07-20 | 2023-01-26 | Changxin Memory Technologies, Inc. | Semiconductor structure, method of forming semiconductor structure, and memory |
CN114113242B (zh) * | 2021-12-07 | 2024-10-29 | 中国科学院苏州纳米技术与纳米仿生研究所 | 多孔三维微柱阵列材料、其制备方法及应用 |
CN117512716B (zh) * | 2024-01-04 | 2024-03-22 | 江苏苏大特种化学试剂有限公司 | 一种绿色可持续型无氰镀金镀液的制备及其电镀方法 |
Family Cites Families (61)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU5560790A (en) | 1989-04-24 | 1990-11-16 | Duke University | Inhibitors of agonist-specific desensitization |
US6017696A (en) * | 1993-11-01 | 2000-01-25 | Nanogen, Inc. | Methods for electronic stringency control for molecular biological analysis and diagnostics |
US5891513A (en) * | 1996-01-16 | 1999-04-06 | Cornell Research Foundation | Electroless CU deposition on a barrier layer by CU contact displacement for ULSI applications |
US6361944B1 (en) | 1996-07-29 | 2002-03-26 | Nanosphere, Inc. | Nanoparticles having oligonucleotides attached thereto and uses therefor |
US5830805A (en) | 1996-11-18 | 1998-11-03 | Cornell Research Foundation | Electroless deposition equipment or apparatus and method of performing electroless deposition |
US5695810A (en) | 1996-11-20 | 1997-12-09 | Cornell Research Foundation, Inc. | Use of cobalt tungsten phosphide as a barrier material for copper metallization |
US6207392B1 (en) * | 1997-11-25 | 2001-03-27 | The Regents Of The University Of California | Semiconductor nanocrystal probes for biological applications and process for making and using such probes |
US6461675B2 (en) * | 1998-07-10 | 2002-10-08 | Cvc Products, Inc. | Method for forming a copper film on a substrate |
US6277740B1 (en) | 1998-08-14 | 2001-08-21 | Avery N. Goldstein | Integrated circuit trenched features and method of producing same |
US6780765B2 (en) | 1998-08-14 | 2004-08-24 | Avery N. Goldstein | Integrated circuit trenched features and method of producing same |
DE19855421C2 (de) * | 1998-11-02 | 2001-09-20 | Alcove Surfaces Gmbh | Implantat |
US6235540B1 (en) | 1999-03-30 | 2001-05-22 | Coulter International Corp. | Semiconductor nanoparticles for analysis of blood cell populations and methods of making same |
US6323128B1 (en) * | 1999-05-26 | 2001-11-27 | International Business Machines Corporation | Method for forming Co-W-P-Au films |
US6174812B1 (en) * | 1999-06-08 | 2001-01-16 | United Microelectronics Corp. | Copper damascene technology for ultra large scale integration circuits |
JP4751496B2 (ja) | 1999-10-21 | 2011-08-17 | 株式会社アルバック | (Cu−C)シード層の形成法 |
JP2001355074A (ja) * | 2000-04-10 | 2001-12-25 | Sony Corp | 無電解メッキ処理方法およびその装置 |
US6413792B1 (en) * | 2000-04-24 | 2002-07-02 | Eagle Research Development, Llc | Ultra-fast nucleic acid sequencing device and a method for making and using the same |
WO2002001647A1 (en) * | 2000-06-23 | 2002-01-03 | The United States Of America, As Represented By The Secretary Of The Navy | Microelectronic device and method for label-free detection and quantification of biological and chemical molecules |
US6498091B1 (en) | 2000-11-01 | 2002-12-24 | Applied Materials, Inc. | Method of using a barrier sputter reactor to remove an underlying barrier layer |
DE10113550A1 (de) * | 2001-03-20 | 2002-10-02 | Infineon Technologies Ag | Verfahren zum Erfassen von makromolekularen Biopolymeren mittels einer Elektrodenanordnung |
US20030148380A1 (en) * | 2001-06-05 | 2003-08-07 | Belcher Angela M. | Molecular recognition of materials |
US20050164515A9 (en) * | 2001-06-05 | 2005-07-28 | Belcher Angela M. | Biological control of nanoparticle nucleation, shape and crystal phase |
US20030113714A1 (en) | 2001-09-28 | 2003-06-19 | Belcher Angela M. | Biological control of nanoparticles |
US20030073104A1 (en) * | 2001-10-02 | 2003-04-17 | Belcher Angela M. | Nanoscaling ordering of hybrid materials using genetically engineered mesoscale virus |
US6747472B2 (en) * | 2002-01-18 | 2004-06-08 | International Business Machines Corporation | Temporary device attach structure for test and burn in of microjoint interconnects and method for fabricating the same |
US6805904B2 (en) * | 2002-02-20 | 2004-10-19 | International Business Machines Corporation | Process of forming a multilayer nanoparticle-containing thin film self-assembly |
US6821324B2 (en) | 2002-06-19 | 2004-11-23 | Ramot At Tel-Aviv University Ltd. | Cobalt tungsten phosphorus electroless deposition process and materials |
US7442756B2 (en) * | 2002-06-20 | 2008-10-28 | Infineon Technologies Ag | Polymer for sealing porous materials during chip production |
JP2006517186A (ja) * | 2002-09-04 | 2006-07-20 | ボード オブ リージェンツ ユニバーシティ オブ テキサス システム | 二機能性の生体材料の組成物、方法、および使用 |
US20050064508A1 (en) * | 2003-09-22 | 2005-03-24 | Semzyme | Peptide mediated synthesis of metallic and magnetic materials |
US20040171139A1 (en) * | 2002-09-24 | 2004-09-02 | Belcher Angela M. | Fabricated biofilm storage device |
US6897151B2 (en) | 2002-11-08 | 2005-05-24 | Wayne State University | Methods of filling a feature on a substrate with copper nanocrystals |
US6887297B2 (en) * | 2002-11-08 | 2005-05-03 | Wayne State University | Copper nanocrystals and methods of producing same |
US20040108217A1 (en) * | 2002-12-05 | 2004-06-10 | Dubin Valery M. | Methods for forming copper interconnect structures by co-plating of noble metals and structures formed thereby |
US6797312B2 (en) * | 2003-01-21 | 2004-09-28 | Mattson Technology, Inc. | Electroless plating solution and process |
FR2851258B1 (fr) * | 2003-02-17 | 2007-03-30 | Commissariat Energie Atomique | Procede de revetement d'une surface, fabrication d'interconnexion en microelectronique utilisant ce procede, et circuits integres |
US6902605B2 (en) * | 2003-03-06 | 2005-06-07 | Blue29, Llc | Activation-free electroless solution for deposition of cobalt and method for deposition of cobalt capping/passivation layer on copper |
US20050164371A1 (en) * | 2003-03-28 | 2005-07-28 | Fujitsu Limited | Cavity electrode structure, and sensor and protein detection device using the same |
US7238610B2 (en) * | 2003-03-31 | 2007-07-03 | Intel Corporation | Method and apparatus for selective deposition |
US6887776B2 (en) | 2003-04-11 | 2005-05-03 | Applied Materials, Inc. | Methods to form metal lines using selective electrochemical deposition |
US20040207093A1 (en) * | 2003-04-17 | 2004-10-21 | Sey-Shing Sun | Method of fabricating an alloy cap layer over CU wires to improve electromigration performance of CU interconnects |
US6927113B1 (en) * | 2003-05-23 | 2005-08-09 | Advanced Micro Devices | Semiconductor component and method of manufacture |
TWI221667B (en) | 2003-05-29 | 2004-10-01 | Advanced Semiconductor Eng | Substrate and process for fabricating the same |
US7332321B2 (en) * | 2003-10-15 | 2008-02-19 | Board Of Regents, The University Of Texas System | Viral fibers |
KR20060109904A (ko) * | 2003-10-15 | 2006-10-23 | 보드 오브 리전츠, 더 유니버시티 오브 텍사스 시스템 | 전자 공학적, 광학적, 자기적, 반도체 및 생물 공학적용도의 지지체로서의 다기능성 생체 재료 |
WO2005038084A2 (en) | 2003-10-17 | 2005-04-28 | Applied Materials, Inc. | Selective self-initiating electroless capping of copper with cobalt-containing alloys |
US7005752B2 (en) * | 2003-10-20 | 2006-02-28 | Texas Instruments Incorporated | Direct bumping on integrated circuit contacts enabled by metal-to-insulator adhesion |
US7923109B2 (en) | 2004-01-05 | 2011-04-12 | Board Of Regents, The University Of Texas System | Inorganic nanowires |
US7358113B2 (en) * | 2004-01-28 | 2008-04-15 | Zettacore, Inc. | Processing systems and methods for molecular memory |
CA2554209A1 (en) * | 2004-02-05 | 2005-10-27 | Massachusetts Institute Of Technology | Cell display libraries |
US20050245059A1 (en) * | 2004-04-30 | 2005-11-03 | Yuan Yuan | Method for making an interconnect pad |
US7015150B2 (en) * | 2004-05-26 | 2006-03-21 | International Business Machines Corporation | Exposed pore sealing post patterning |
JP2006093357A (ja) | 2004-09-22 | 2006-04-06 | Ebara Corp | 半導体装置及びその製造方法、並びに処理液 |
JP2006091660A (ja) * | 2004-09-27 | 2006-04-06 | Fuji Photo Film Co Ltd | 機器およびカメラ |
US7332193B2 (en) | 2004-10-18 | 2008-02-19 | Enthone, Inc. | Cobalt and nickel electroless plating in microelectronic devices |
US7303989B2 (en) * | 2004-11-22 | 2007-12-04 | Intel Corporation | Using zeolites to improve the mechanical strength of low-k interlayer dielectrics |
US7217648B2 (en) * | 2004-12-22 | 2007-05-15 | Taiwan Semiconductor Manufacturing Company, Ltd. | Post-ESL porogen burn-out for copper ELK integration |
US7695981B2 (en) * | 2005-05-13 | 2010-04-13 | Siluria Technologies, Inc. | Seed layers, cap layers, and thin films and methods of making thereof |
US20060280860A1 (en) | 2005-06-09 | 2006-12-14 | Enthone Inc. | Cobalt electroless plating in microelectronic devices |
US7410899B2 (en) | 2005-09-20 | 2008-08-12 | Enthone, Inc. | Defectivity and process control of electroless deposition in microelectronics applications |
US20080254205A1 (en) | 2007-04-13 | 2008-10-16 | Enthone Inc. | Self-initiated alkaline metal ion free electroless deposition composition for thin co-based and ni-based alloys |
-
2006
- 2006-05-15 US US11/433,824 patent/US7695981B2/en not_active Expired - Fee Related
- 2006-05-15 US US11/433,825 patent/US7655081B2/en not_active Expired - Fee Related
- 2006-05-15 TW TW095117186A patent/TW200741960A/zh unknown
- 2006-05-15 WO PCT/US2006/018805 patent/WO2008013516A2/en active Application Filing
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104651811A (zh) * | 2013-10-30 | 2015-05-27 | 罗门哈斯电子材料有限公司 | 用于化学镀的催化剂溶液 |
CN110230045A (zh) * | 2013-10-30 | 2019-09-13 | 罗门哈斯电子材料有限公司 | 用于化学镀的催化剂溶液 |
TWI821416B (zh) * | 2018-09-27 | 2023-11-11 | 台灣積體電路製造股份有限公司 | 半導體裝置的形成方法 |
Also Published As
Publication number | Publication date |
---|---|
US20060254503A1 (en) | 2006-11-16 |
US20060254504A1 (en) | 2006-11-16 |
WO2008013516A3 (en) | 2008-03-20 |
US7695981B2 (en) | 2010-04-13 |
US7655081B2 (en) | 2010-02-02 |
WO2008013516A2 (en) | 2008-01-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW200741960A (en) | Seed layers, cap layers, and thin films and methods of making thereof | |
WO2007060640A3 (en) | Method of forming a self aligned copper capping layer | |
SG131011A1 (en) | Silicon based substrate with hafnium containing barrier layer | |
WO2011015265A3 (en) | Electronic devices comprising multi cyclic hydrocarbons | |
WO2009019147A3 (en) | Deposition from ionic liquids | |
WO2010138811A3 (en) | Method of providing a flexible semiconductor device at high temperatures and flexible semiconductor device thereof | |
DE602007000428D1 (de) | Siliciumhaltige, folienbildende Zusammensetzung, siliciumhaltige Folie, siliciumhaltiges, folientragendes Substrat und Strukturierungsverfahren | |
EP1693484A3 (en) | Plating Method | |
TW200705017A (en) | Wire structure, method for fabricating wire, thin film transistor substrate, and method for fabricating the thin film transistor substrate | |
WO2009076322A3 (en) | Methods and devices for processing a precursor layer in a group via environment | |
WO2009154903A3 (en) | Methods for processing substrates having an antimicrobial coating | |
EP2171534A4 (en) | PROTECTIVE COATINGS FOR ORGANIC ELECTRONIC DEVICES ARISING FROM DEPOSITS OF ATOMIC LAYERS AND PROCESSES FOR DEPOSITING MOLECULAR LAYERS | |
WO2008107194A3 (de) | Verfahren zur präzisionsbearbeitung von substraten und dessen verwendung | |
WO2007082153A3 (en) | Self-healing coating system | |
WO2009002660A3 (en) | Multi-functional silsesquioxanes for novel coating applications | |
HK1117270A1 (en) | Substrate and method of fabricating the same, and semiconductor device and method of fabricating the same | |
TW200739972A (en) | Light-emitting device and method for manufacturing the same | |
WO2007147020A3 (en) | Cobalt precursors useful for forming cobalt-containing films on substrates | |
EP1930966A3 (en) | Barrier layer, composite article comprising the same, electroactive device, and method | |
WO2009142869A3 (en) | Methods of forming structures supported by semiconductor substrates | |
WO2008072187A3 (en) | Method for improving the bonding properties of microstructured substrates, and devices prepared with this method | |
TWI370160B (en) | Conductive polymer coating composition, method of preparing coating film using the conductive polymer coating composition, and coating film prepared using the method | |
WO2006079628A3 (de) | Verfahren zum aufbringen von dicarbonsäure-olefin-copolymere enthaltenden, integrierten vorbehandlungsschichten auf metallische oberflächen | |
WO2008055007A3 (en) | Methods of fabricating a barrier layer with varying composition for copper metallization | |
SG178896A1 (en) | Solution and method for activating the oxidized surface of a semiconductor substrate |