TW200533191A - Method and circuit for performing correlated double sub-sampling (CDSS) of pixels in an active pixel sensor (APS) array - Google Patents

Method and circuit for performing correlated double sub-sampling (CDSS) of pixels in an active pixel sensor (APS) array Download PDF

Info

Publication number
TW200533191A
TW200533191A TW094107090A TW94107090A TW200533191A TW 200533191 A TW200533191 A TW 200533191A TW 094107090 A TW094107090 A TW 094107090A TW 94107090 A TW94107090 A TW 94107090A TW 200533191 A TW200533191 A TW 200533191A
Authority
TW
Taiwan
Prior art keywords
average
reset
voltage
analog
item
Prior art date
Application number
TW094107090A
Other languages
Chinese (zh)
Other versions
TWI256840B (en
Inventor
Su-Hun Lim
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020040017675A external-priority patent/KR100994993B1/en
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Publication of TW200533191A publication Critical patent/TW200533191A/en
Application granted granted Critical
Publication of TWI256840B publication Critical patent/TWI256840B/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/40Extracting pixel data from image sensors by controlling scanning circuits, e.g. by modifying the number of pixels sampled or to be sampled
    • H04N25/46Extracting pixel data from image sensors by controlling scanning circuits, e.g. by modifying the number of pixels sampled or to be sampled by combining or binning pixels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/40Extracting pixel data from image sensors by controlling scanning circuits, e.g. by modifying the number of pixels sampled or to be sampled
    • H04N25/44Extracting pixel data from image sensors by controlling scanning circuits, e.g. by modifying the number of pixels sampled or to be sampled by partially reading an SSIS array
    • H04N25/447Extracting pixel data from image sensors by controlling scanning circuits, e.g. by modifying the number of pixels sampled or to be sampled by partially reading an SSIS array by preserving the colour pattern with or without loss of information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/78Readout circuits for addressed sensors, e.g. output amplifiers or A/D converters

Abstract

A method and circuit for performing Correlated Double Sub-Sampling (CDSS) of pixels in an active pixel sensor (APS) array. Each pixel outputs a reset voltage and then an image signal voltage. The method and the apparatus subsamples a plurality (L2) of pixels by: storing L2 analog reset charges output from the L2 pixels into a first set of (N2) storage capacitors, and combining the (L2) reset charges; storing L2 analog image signal charges output from the L2 pixels into a second set of (N2) storage capacitors, and combining the (L2) image charges; and then obtaining a differential voltage (VS-VR) by subtracting (in the analog-domain) the voltage (VR) represented by the combined (L2) reset charges from the voltage (VS) represented by the combined (L2) image signal charges. When L equals one, the circuit performs conventional Correlated Double Sampling CDS upon the one pixel. When L is greater than one, the circuit performs Correlated Double Sub-Sampling (CDSS) of the L2 pixels. Dynamic selection of a subsampling ratio B (where B equals 1:L2 and L ranges from 1 up to N) is supported. Averaging units used to combine the reset and image signal charges, and analog-to-digital converters (ADCs) for converting the differential voltage to a digital pixel data, may be commonly biased by the same variable bias voltage.

Description

200533191 16323pif.doc 九、發明說明: 【發明所屬之技術領域】 本發明是有關於一種影像感測器(IMAGE SENSOR), 且特別是有關於一種能執行主動晝素感測器(APS)陣列的 NxM晝素區域(PIXEL REGION)中的動態選擇的晝素數量 的相關雙重次取樣(次取樣(SUB-SAMPLING)然後相關雙 重取樣(CORRELATED DOUBLE SAMPLING)) (CDS)的方 法以及電路。 【先前技術】 自1980年代中期以來,電荷耦合裝置(CHARGE COUPLED DEVICE) (CCD)已成為最普遍的影像擷取裝置 (IMAGE PICKUP DEVICE)(影像感測器)。由於半導體工 業(SEMICONDUCTOR INDUSTRY)的支援,電荷耗合裝置 C C D的各項能力快速進步,造就了現代體積小而性能高的 照相機(CAMERA)。然而,電荷耦合裝置CCD事實上已是 主要的影像擷取裝置,亦是數位照相機的核心,電荷耦合 裝置CCD感測器的不方便之處,在於其消耗相當多的能 源並且無法持續高速操作。鑒於此一情況,於是發展出能 提供數倍百萬晝素(MEGAPIXELs)高解析度的大型互補金 氧半導體影像感測器(CMOS IMAGE SENSOR)(CIS)。除了 旎兩密度配置非常大量的晝素以及高速掃瞄資料之外,此 互補金氧半導體影像感測器(CIS)消耗的200533191 16323pif.doc IX. Description of the invention: [Technical field to which the invention belongs] The present invention relates to an image sensor (IMAGE SENSOR), and in particular to a device capable of performing an active daylight sensor (APS) array. Method and circuit for correlated double subsampling (SUB-SAMPLING) and then correlated double sampling (CORRELATED DOUBLE SAMPLING) (CDS) of dynamically selected number of daylight in the NxM daylight region (PIXEL REGION). [Previous Technology] Since the mid-1980s, CHARGE COUPLED DEVICE (CCD) has become the most common image pickup device (image sensor). With the support of SEMICONDUCTOR INDUSTRY, the capabilities of the charge-dissipating device C C D have been rapidly improved, resulting in a modern compact camera with high performance (CAMERA). However, the charge-coupled device CCD is actually the main image capture device and the core of digital cameras. The inconvenience of the charge-coupled device CCD sensor is that it consumes considerable energy and cannot continuously operate at high speeds. In view of this situation, a large complementary metal-oxide-semiconductor image sensor (CIS) (CIS) capable of providing high resolution of several million MEGAPIXELs has been developed. In addition to 旎 two-density configuration with a very large amount of daylight and high-speed scanning data, this complementary metal-oxide-semiconductor image sensor (CIS) consumes

CCD 一),這是比現今使用的標準電荷耦合裝置cCD更為顯注 200533191 16323pif.doc 的好處。另外一項好處是互補金氧半導體影像感測器(C^) 降低了製造成本:即使是相當大尺寸的互補金氧半導體影 像感測為(CIS) ’也可以以相當低的成本提供。互補金氧半 導體影像感測器(CIS)可以使用與金氧半導體場效電晶體 (MOSFET)或是互補金氧半導體電晶體(CM〇s TRANSISTOR)相同的製程來製造,或是製造於相同的晶片 上,使得訊號處理電路(SIGNAL PROCESSING CIRCUIT) 可構成於相同的晶片上,因而減少内部的連線。再者,互 補金氧半導體影像感測器(CIS)因可安置盆週邊雪跋 (PERIPHERAL CIRCUIT)^B,^(〇N.CHIP; 方便地降低尺寸。所以,互補金氧半導體影像感測器(CIS)CCD a), which is more significant than the standard charge-coupled device cCD used today. Note the advantages of 200533191 16323pif.doc. Another benefit is that the complementary metal-oxide-semiconductor image sensor (C ^) reduces manufacturing costs: even a relatively large-sized complementary metal-oxide-semiconductor image sensor (CIS) can be provided at a relatively low cost. Complementary metal-oxide-semiconductor image sensors (CIS) can be manufactured using the same process as the metal-oxide-semiconductor field-effect transistor (MOSFET) or complementary metal-oxide-semiconductor transistor (CM0S TRANSISTOR), or manufactured on the same On the chip, the signal processing circuit (SIGNAL PROCESSING CIRCUIT) can be formed on the same chip, thereby reducing internal wiring. In addition, the complementary metal-oxide-semiconductor image sensor (CIS) can be easily reduced in size because it can be installed in the peripheral CIRCUIT ^ B, ^ (〇N.CHIP; therefore, the complementary metal-oxide-semiconductor image sensor) (CIS)

在未來的數位影像系統(DIGITAL IMAGING SYSTEM)的 廣泛應用中’成為主要的影像感測裝置(〗MAGE SENSING DEVICE)(電荷耦合裝置CCD固態 (SOLID-STATE)影像擷取裝置的替代品)是可以期待的。 電荷耦合裝置CCD與互補金氧半導體CM〇s感測器 鲁之間的影像資料掃目苗(IMAGE DATA-SCANNING)方法有 一很大的差異。舉例以三百萬晝素解析度來說,電荷耦合 裝置CCD以如同一人接著一人傳遞桶子的方式,連續地 掃目苗此三百萬個(類比(ANALOG))電荷;並且通常只在掃 目苗到最後的畫素元素(PIXEL ELEMENT)之後才會產生放 大(將電荷轉變成電子訊號)。另一方面,提供一種每一晝 素均含一放大器(AMPLIFIER)(這裡,放大器指的是一電晶 體或是其他將電荷轉換成電子訊號的轉換器)的主動畫素 8 2005職 感測器(APS)陣列(請參考圖1之主動晝素感測器(八?§)陣 列),例如互補金氧半導體CMOS感測器。因此,其可執 行以每一晝素為基礎的訊號放大,減少轉換之操作,並因 而以最少的能源消耗作更快速的資料掃瞄。 相關雙重取檨(CDS、 互補金氧半導體影像感測器的電荷至電壓 (CHARGE-ΤΟ-VOLTAGE)轉換器、(CONVERTER)基本上是 一具有單一(或多階段(MULTISTAGE))電壓隨動器It is possible to 'become the main image sensing device (〗 MAGE SENSING DEVICE) (alternative to the charge-coupled device CCD solid-state (SOLID-STATE) image capture device) in the widespread application of future digital imaging systems. expected. There is a big difference in the image data scanning method between the charge coupled device CCD and the complementary metal oxide semiconductor CMOS sensor Lu. For example, with a resolution of 3 million daylight, the CCD of the charge-coupled device scans the three million (ANALOG) charges continuously in the same way that the same person transfers the bucket one by one; and usually only scans Mumiao will not produce amplification until the last pixel element (converts the charge into an electronic signal). On the other hand, to provide a main animation element that contains an amplifier (AMPLIFIER) for each day element (here, an amplifier refers to a transistor or other converter that converts charge into an electronic signal). (APS) array (refer to the active daylight sensor (eight? §) array of FIG. 1), such as a complementary metal-oxide-semiconductor CMOS sensor. Therefore, it can perform signal amplification on a day-to-day basis, reduce conversion operations, and thus perform faster data scanning with minimal energy consumption. The related double fetch (CDS, charge-to-voltage (CHARGE-TO-VOLTAGE) converter of complementary metal-oxide semiconductor image sensor), (CONVERTER) is basically a single (or multi-stage (MULTISTAGE)) voltage follower

_ (VOLTAGE FOLLOWER)(放大電晶體(AMPLIFYING TRANSISTOR))的電容器(CAPACITOR),以及將此電容器 電壓預設(PRESET)(“重設,,(“RESET,,))成為一‘‘已知,,起始 準位(INITTIAL LEVEL)的開關(SWITCH)。在最簡單的視頻 系統(VIDEO SYSTEM)中,此開關於讀取每一畫素之初是 閉路的,而這將重設電容器電壓以及輸出準位。於傳送此 晝素電荷封包(PIXEL CHARGE PACKET)給電容器之後, 電容器電壓改變了並且其輸出訊號代表畫素值。諸如開關 • 之類的元件(component),由於其有限的殘餘電感 (RESIDUAL CONDUCTIVITY),能將此電容器預先充電至 一未知值,因而這將加入一錯誤給輸出訊號。幸運的是有 一方法可以補償此一預先充電之不確定性:相關雙重取樣 (CDS)。此方法中,每一晝素的輸出訊號都會被取樣兩次: 在剛剛將電容器預先充電之後以及加入畫素電荷封包之 後。此二值之間的差(difference)會將開關所引起的雜 訊成份(NOISE COMPNENT)(電荷)除去。 9 200533191 16323pif.doc 相關雙重取樣,或CDS,是一種用來改善積體影像感 測器(INTEGRATING IMAGE SENSOR)的信號雜訊比 (SIGNAL TO NOISE RATTI0)(S/N)的方法。藉由自實際光 感應訊號(LIGHT-INDUCED SIGNAL)減去晝素的 “暗 ”(“DARK”)、或“參考,,(“REFERENCE”)、或“重 設”(“RESET”)等之輸出(電荷)準位,可有效的將靜態固定 圖型雜訊(STATIC FIXED PATTERN NOISE)(FPN)以及幾 種型式的時序雜訊(TEMPORAL NOISE)自感測器(APS陣 •列)的輸出除去。 圖2繪示為傳統相關雙重取樣(CDS)電路(例如:形成 於圖1之相關雙重取樣(CDS)以及主動晝素感測器(APS)方 塊内)的方塊圖,其被修改成約為四已儲存的主動晝素感測 為(APS)陣列一 4x4晝素區域中相同顏色畫素的相關雙重 取樣(CDS)所取樣的畫素值的平均。容納欲由相關雙重取 樣(CDS)所取樣然後一起被平均的四畫素的此二行,是由 一行驅動器(ROW DRIVER)(如圖1所示)所選擇。 # 在一光學感測器(OPTICAL SENSOR)(主動晝素感測_ (VOLTAGE FOLLOWER) (AMPLIFYING TRANSISTOR) capacitor (CAPACITOR), and this capacitor voltage preset (PRESET) ("Reset, (" RESET ,,)) into a "known, , SWITCH of the initial level (INITTIAL LEVEL). In the simplest video system (VIDEO SYSTEM), this switch is closed at the beginning of reading each pixel, which will reset the capacitor voltage and output level. After transmitting this PIXEL CHARGE PACKET to the capacitor, the voltage of the capacitor changes and its output signal represents the pixel value. Components such as switches •, due to their limited residual inductance (RESIDUAL CONDUCTIVITY), can pre-charge this capacitor to an unknown value, which will add an error to the output signal. Fortunately, there is a way to compensate for this precharging uncertainty: correlated double sampling (CDS). In this method, the output signal of each day element is sampled twice: immediately after the capacitor is pre-charged and after the pixel charge packet is added. The difference between these two values will remove the noise component (charge) caused by the switching. 9 200533191 16323pif.doc Correlated Double Sampling, or CDS, is a method used to improve the signal-to-noise ratio (SIGNAL TO NOISE RATTI0) (S / N) of an integrated image sensor (INTEGRATING IMAGE SENSOR). By subtracting the "dark" ("DARK"), or "reference" ("REFERENCE"), or "reset" ("RESET") from the actual light-induced signal Output (charge) level, which can effectively output static fixed pattern noise (STATN FIXED PATTERN NOISE) (FPN) and several types of timing noise (TEMPORAL NOISE) self-sensor (APS array • array) Figure 2 shows a block diagram of a conventional correlated double sampling (CDS) circuit (eg, formed in the block of the correlated double sampling (CDS) and active day sensor (APS) of Figure 1) block, which is modified to about The average of pixel values sampled by four double active samples (CDS) of the same color pixels in the 4 A4 array (APS) array of four stored active day sensors. The two rows of four pixels that are sampled and then averaged together are selected by a row of drivers (shown in Figure 1). # In an optical sensor (OPTICAL SENSOR) (active day sensor)

器(APS))陣列中,光電荷(ph〇TOCHARGE)通常是由一光 二極體(PHOTODIODE)(PD)收集,並可儲存於位於每一晝 素元素(PIXEL ELEMENT)内的電容(CAPACITANCE)C 上。自電容上讀取光電荷當作該電容的電壓(V=Q/C)。用 相關雙重取樣(CDS)程序,比較此訊號電壓(SIGNAL VOLT AGE) Vs二Qs/C以及當電容C所有的電荷已被引到一 固定電位(FIXED POTENTIAL)時所獲得的(如前述 10 2005獨1 的)“暗”、“空’’(“empty”)、“參考”、或“重設”準位電壓 (LEVEL VOLTAGE)Vr=Qr/C。則可獲得每一畫素的最終輸 出電壓V=Vs-Vr二(Qs-Qr)/C。可以利用作在同一晶片上像 主動畫素感測器(APS)陣列一樣的電路“在晶片上,,(“〇N CHIP”)執行相關雙重取樣(CDS)程序,或用“在晶片外相關 雙重取樣(CDS)”(“OFF-CHIP CDS”)方法來執行相關雙重 取樣(CDS)程序。相關雙重取樣(CDS)程序中,欲被相關雙 重取樣所取樣的晝素的每一列通常需要一記憶體(例如一 _ 電荷-儲存電容器(CHARGE-STORAGE CAPACITOR))以 及一減法器(SUBTRACTOR)。 在圖2的電路中,提供四電容器(50a、51a、50b、5lb〇 用來儲存來自四畫素的四個值,並且提供開關 (SWITCH)2、21a與21b執行此四已儲存電荷的“影像平均 程序”(“IMAGE AVERAGING PROCESSING”)。每一電容 器50a、51a、50b、51b都用來儲存電荷(QS-Qr),用來輸 出代表一畫素的類比影像資料(ANALOG IMAGE DATA) 修 最終輸出電壓(FINAL OUTPUT VOLTAGE) V(V二Vs-Vr)。開關21a與21b每一個都用來合併二已儲存 的晝素值(連續自相同行的不同列的晝素所獲得)並將其一 起以除法除(平均)。例如:當開關21a閉路,並且同尺寸 的每一電容器50a與51a儲存被取樣的晝素值(自列1)時, 在二電容器上的電荷將合併、等化、並且被相等地分配(以 除法除)於此二電容器50a與51a之間。於是,來自同列不 同行的被取樣的這些畫素值因而都將被平均。開關2被用 20053,^31 器(50a、51a、50b、與51b)之電荷會合併、等化,並且會 被相等的分配於(以除法除)此四電容器中。如此一來,自 來將取樣自二不同列(例如:列“i,,與列“3”)的晝素值(或是 取樣的晝素值的平均)合併並且一起以除法除;平均^例 如:當開關2、21a與21b都閉路,並且當相同尺寸之5〇&、 51a、50b、與51b等四電容器儲存有被取樣的畫素一起被 平均的值(自列“1”與列“3”中之晝素)時,儲存於所有四電容(APS) array, the photocharge (ph〇TOCHARGE) is usually collected by a photodiode (PD), and can be stored in the capacitor (CAPACITANCE) located in each element (PIXEL ELEMENT) C on. Read the photo charge from the capacitor as the voltage of the capacitor (V = Q / C). Use the Correlated Double Sampling (CDS) program to compare the signal voltage (SIGNAL VOLT AGE), Vs, Qs / C, and when all the charge of the capacitor C has been led to a fixed potential (FIXED POTENTIAL) (as mentioned in the above 10 2005 Unique 1) "Dark", "Empty" ("empty"), "Reference", or "Reset" level voltage (LEVEL VOLTAGE) Vr = Qr / C. The final output of each pixel can be obtained Voltage V = Vs-Vr (Qs-Qr) / C. Can be used on the same chip as the main animation element sensor (APS) array circuit "on the chip, (" 〇N CHIP ") implementation Correlated Double Sampling (CDS) procedures, or the "Off-CHIP CDS" ("OFF-CHIP CDS") method, is used to perform Correlated Double Sampling (CDS) procedures. In the Correlated Double Sampling (CDS) procedure, each column of the day element to be sampled by the correlated double sampling usually requires a memory (such as a CHARGE-STORAGE CAPACITOR) and a subtractor (SUBTRACTOR). In the circuit of FIG. 2, four capacitors (50a, 51a, 50b, 5lb) are provided to store four values from four pixels, and switches (SWITCH) 2, 21a, and 21b are provided to perform the four stored charges " "IMAGE AVERAGING PROCESSING". Each capacitor 50a, 51a, 50b, 51b is used to store the charge (QS-Qr), which is used to output an analog image data (ANALOG IMAGE DATA) which represents a pixel. The final output voltage (FINAL OUTPUT VOLTAGE) V (V2 Vs-Vr). Switches 21a and 21b are each used to combine the two stored daylight values (obtained continuously from daylight elements in different columns of the same row) and Divide them together (average). For example: When switch 21a is closed and each capacitor 50a and 51a of the same size stores the sampled day value (from column 1), the charges on the two capacitors will be combined, etc. And are equally distributed (divided by division) between the two capacitors 50a and 51a. Therefore, the sampled pixel values from different rows in the same column will therefore be averaged. Switch 2 is used 20053, ^ 31 (50a, 51a, 50b, and 51b) Equal, and will be equally divided (divided by) into the four capacitors. In this way, the sample will be sampled from two different columns (for example: column "i," and column "3") (Or the average of the day value of the samples) combined and divided together by division; average ^ For example: when switches 2, 21a and 21b are closed, and when the same size of 50 &, 51a, 50b, and 51b, etc. Capacitors store the averaged values of the sampled pixels (days in column "1" and column "3") in all four capacitors

二不同行以及二不同列的四晝素(相同顏色的)所取樣的晝 素值因而被平均。如果開關2閉路時,開關21a與21b都 開路的洁’則圖2的電路將只會一起平均儲存於電容器5〇a 與50b上之二晝素值(自相同行以及二不同列)。 每一相關雙重取樣(CDS)所取樣的晝素值的最終平The diurnal values of the four diurnal elements (of the same color) in two different rows and two different columns are thus averaged. If the switches 2a and 21b are both open when the switch 2 is closed, the circuit of FIG. 2 will only store two diurnal values (from the same row and two different columns) on the capacitors 50a and 50b on average. Final level of day-to-day values sampled for each correlated double sampling (CDS)

均,接著將可經由放大器(AMPLIFIER)54(例如54a與 54b) ’再經由列選擇開關(COLUMN SELECTION SWITCH)20(例如·電晶體)’然後經由共同輸出線 (COMMON OUTPUT LINE)30,傳遞至一類比至數位 (ANALOG-TO-DIGITAL) (ADC)轉換器(未顯示)。Both, then pass the amplifier (AMPLIFIER) 54 (such as 54a and 54b) 'then through the column selection switch (COLUMN SELECTION SWITCH) 20 (such as · transistor)' and then through the common output line (COMMON OUTPUT LINE) 30, An analog to digital (ANALOG-TO-DIGITAL) (ADC) converter (not shown).

圖2包括二相同電路(“a”與“b”),每一電路彼此相連, 用以對來自二列(例如:列“1”或列“3”)其中之一,經過個別 的垂直選擇線(VERTICAL SELECTION LINE) (“CL1”或 “CL3”)經由一取樣保持開關(SAMPLE-HOLDING SWITCH)42的畫素,作相關雙重取樣(CDS)的取樣。用來 保持重設或自主動晝素感測器(APS)陣列中之畫素輸出之 訊號電荷(SIGNAL CHARGE)的取樣保持電容 12 20053¾¾ 16323pif.doc (SAMPLE-HOLDING CAPACITANCE) 44,被取樣保持開 關42中斷與垂直選擇線之連接。一參考電壓源 (REFERENCE VOLTAGE SOURCE)46 (例如 4如與 46b)以 串聯方式與取樣保持電容44連接。類比(電荷)減法器是由 一取樣保持電容44(44a或44b)、一放大器(例如:非反向 緩衝器(NON_INVERTING BUFFER))48(48a 或 48b)、以及 一相關雙重取樣(CDS)電容50(50a或50b)所組成。此減法 器一輸出點(相關雙重取樣(CDS)電容50之一端)連接到輸 出放大器(OUTPUT AMPLIFIER)54之輸入端。因為與取樣 保持電容44所儲存的電荷(ELECTRIC CHARGE)數量一致 之非反向緩衝器(放大器)48之電壓輸出,可誘發一即將被 儲存於相關雙重取樣(CDS)電容50中之相等電壓(與相等 電荷),所以在取樣保持電容44上所保持之電荷,可藉由 嵌位開關(CLAMP SWITCH)52之閉路而被複製於(複製至) 相關雙重取樣(CDS)電容50之中。相關雙重取樣(CDS)電 谷50可於稍後藉由嵌位開關52之開路,而變成具有浮動 • 狀態(FL0ATING STATE)(其儲存自取樣保持電容44複製 而來的電壓/電荷)。 如此一來,來自一給予之晝素並且最先被取樣保持電 谷44所接收以及保持之第一電荷(FIRSt CHargE)(例 如:“訊號”電荷Qs),可以複製至並且儲存於相關雙重取 樣(CDS)電容50之中,因此稍後來自相同晝素之第二電荷 (例如·“重設”電荷Qr),可由取樣保持電容44接收以及保 持。 13 200533191 16323pif.doc 如此一來’在操作上,最先供給減法器輸入端(取樣保 持電容44 一端點)的是訊號電壓VS(來自一畫素,垂直經 由一選擇行,例如CL1,),由於嵌位開關52是閉路的(處 於ON態),此來自晝素的訊號電壓VS對取樣保持電容44 充電,也對相關雙重取樣(CDS)電容50充電。接下來,於 肷位開關52開路(切換成OFF)之後’並且輸出重設電位(電 壓)VR(來自相同的晝素,經由一垂直選擇行,例如cL^ 以致重設電壓VR被輸入至類比減法器的輸入端並由取樣 保持電容44予以保持。結果’於類比減法器的輸出端(位 於相關雙重取樣(CDS)電容50的一端)產生一與訊號電壓 VS以及重設電壓VR之間的差一致的差訊號(VS-VR)。於 是可能可獲得一畫素的相關雙重取樣(CDS)所取樣的類比 晝素資料(ANALOG PIXEL DATA),其中,重叠於訊號電 壓VS與重設電壓VR上的固定圖型雜訊成分將被除去。 此相關雙重取樣(CDS)所取樣的類比晝素資料可於開關2〇 閉路時,經由放大器54,再經由開關20,由共同輸出線 30輸出。 每一電容器50a、51a、50b、51b都被用來儲存一電荷 (例如:Qs或Qr),用以輸出代表一畫素的類比影像資料 (ANALOG IMAGE DATA)的最終輸出電壓 v(V=Vs-Vr)。 吾人說過“差訊號(VS-VR)”是由“相關雙重取樣(CDS) 電容50”所保持,並因此每一個相關雙重取樣(CDS)電容 (50a、51a、50b、51b)儲存了四相關雙重取樣(CDS)所取樣 的晝素的四個完整差訊號(VS-VR)。 200533191 16323pif.doc 然而,當改變取樣保持電容44中所保持的電荷時(並 且因而改變由非反向缓衝器(放大器)48輸出之電壓時),單 獨在一相關雙重取樣(CDS)電容50中欲維持一精確代表完 整差訊號(VS-VR)的電荷的話,在實際上可能有困難。實 際上,與其說相關雙重取樣(CDS)電容50(例如:50a、51a'、 50b、51b)儲存一與Qs-Qr有關之完整差訊號(VS々R),不 如說相關雙重取樣(CDS)電容50可能只儲存一與來自所給 的晝素的一電荷相關之電壓(例如:所接收到的來自此晝素 的第一電荷;例如··不是“重設”電荷(Qr)就是“訊號,,電荷(qs) 的其中之一)。 如此一來,縱使在此二取樣保持電容44(44a、4仆)的 其中之一接收到並保持此四畫素的“重設,,電荷Qr之前,此 四晝素每一個的影像“訊號,,電荷Qs(而非“重設,,電荷Qr)先 被儲存於相關雙重取樣(CDS)電容50a、51a、50b、51b的 其中一個之中,並且接著此四(浮動訊號,,電荷Qs(儲存於 相關雙重取樣(CDS)電容5〇a、5la、5〇b、51b之中)在相關 # 雙重取樣(CDS)電容50a、51a、50b、51b之間被合併並且 以除法除,-如由放大器54(例如:54a或,所看到的此 一最後輸出(二減法器其中之—的)將只以接收自此四晝素 其中之一之一重设電荷(儲存於二取樣保持電容料之中) 為土楚如此來,減法器的最後輸出(一如由放大器54 =)’將不疋那些可依序獲得自圖2之電路輸出之四 雙重取樣(CDS)所取樣的晝素值(VS_VR)的數學“平均,,。在 那樣的例子巾’ 有接收到的二“重設,,電荷/電壓會與儲存 2005爾 的四“訊號’’電荷/電壓一起被“平均,,。 圖型 ==二而非從假設是代表“的=Figure 2 includes two identical circuits ("a" and "b"), each of which is connected to each other and is used to select one of the two columns (for example: column "1" or column "3") through individual vertical selection VERTICAL SELECTION LINE ("CL1" or "CL3") is sampled through a pixel of a sample-and-hold switch (SAMPLE-HOLDING SWITCH) 42 for correlated double sampling (CDS). Sample-and-hold capacitor for holding or resetting the signal charge (SIGNAL CHARGE) of the pixel output in the active daylight sensor (APS) array 12 20053¾¾ 16323pif.doc (SAMPLE-HOLDING CAPACITANCE) 44, sample-and-hold switch 42 interrupts the connection with the vertical selection line. A reference voltage source (REFERENCE VOLTAGE SOURCE) 46 (for example, 4 and 46b) is connected in series with the sample-and-hold capacitor 44. The analog (charge) subtractor consists of a sample-and-hold capacitor 44 (44a or 44b), an amplifier (eg, non-inverting buffer (NON_INVERTING BUFFER)) 48 (48a or 48b), and a correlated double sampling (CDS) capacitor 50 (50a or 50b). An output point of the subtractor (one end of a correlated double sampling (CDS) capacitor 50) is connected to an input terminal of an output amplifier (OUTPUT AMPLIFIER) 54. Because the voltage output of the non-inverting buffer (amplifier) 48, which is the same as the amount of charge stored in the sample and hold capacitor 44, can induce an equal voltage (to be stored in the relevant double sampling (CDS) capacitor 50) And equal charge), so the charge held on the sample-and-hold capacitor 44 can be copied (copied) to the correlated double-sampling (CDS) capacitor 50 through the closed circuit of the clamp switch 52. The correlated double sampling (CDS) valley 50 can be changed to a floating state (FL0ATING STATE) (which stores the voltage / charge copied from the sample and hold capacitor 44) by opening the latch switch 52. In this way, the first charge (FIRSt CHargE) (eg, "signal" charge Qs) from a given daylight element that is first received and held by the sample-holding valley 44 can be copied to and stored in the relevant double sample (CDS) capacitor 50, so a second charge (for example, "reset" charge Qr) from the same day element can be received and held by the sample-and-hold capacitor 44 later. 13 200533191 16323pif.doc In this way, 'In operation, the signal voltage VS (from a pixel, via a selection line, such as CL1) is first supplied to the input of the subtractor (sampling and holding capacitor 44), Since the clamp switch 52 is closed (in the ON state), the signal voltage VS from the day element charges the sample-and-hold capacitor 44 and also the related double-sampling (CDS) capacitor 50. Next, after the position switch 52 is opened (switched to OFF), and the reset potential (voltage) VR (from the same day element, via a vertical selection line, such as cL ^, so that the reset voltage VR is input to the analog The input of the subtractor is held by the sample-and-hold capacitor 44. As a result, the output of the analog subtractor (located at the end of the correlated double-sampling (CDS) capacitor 50) produces a voltage between the signal voltage VS and the reset voltage VR. VS-VR. So it is possible to get analog pixel data (ANALOG PIXEL DATA) sampled by one pixel correlated double sampling (CDS), which overlaps the signal voltage VS and reset voltage VR Noise components on the fixed pattern will be removed. The analog diurnal data sampled by this correlated double sampling (CDS) can be output by the common output line 30 through the amplifier 54 and then the switch 20 when the switch 20 is closed. Each capacitor 50a, 51a, 50b, 51b is used to store a charge (for example, Qs or Qr), and is used to output the final output voltage v (V = Vs of ANALOG IMAGE DATA) representing a pixel. -Vr). I said " The "Variance Signal (VS-VR)" is held by the "Correlated Double Sampling (CDS) Capacitor 50" and therefore each Correlated Double Sampling (CDS) capacitor (50a, 51a, 50b, 51b) stores four correlated double samples ( CDS) The four complete differential signals (VS-VR) of the day element sampled. 200533191 16323pif.doc However, when the charge held in the sample-hold capacitor 44 is changed (and thus changed by the non-inverting buffer (amplifier) ) At 48)), it may be difficult to maintain a charge that accurately represents the complete differential signal (VS-VR) in a correlated double sampling (CDS) capacitor 50 alone. In fact, it is not so relevant The double sampling (CDS) capacitor 50 (for example: 50a, 51a ', 50b, 51b) stores a complete differential signal (VS々R) related to Qs-Qr. It is better to say that the correlated double sampling (CDS) capacitor 50 may only store one The voltage associated with a charge from a given day element (eg: the first charge received from this day element; for example ... either the "reset" charge (Qr) or the "signal," the charge (qs) One of them). In this way, even if the two sample-and-hold capacitors 44 (44a 4 servants) one of them receives and maintains the "reset of this four pixels, before the charge Qr, the image of each of these four days," the signal, the charge Qs (not the "reset, the charge Qr) First stored in one of the correlated double sampling (CDS) capacitors 50a, 51a, 50b, 51b, and then four (floating signal, charge Qs (stored in the correlated double sampling (CDS) capacitors 50a, 5la , 50b, 51b) among the correlation # double sampling (CDS) capacitors 50a, 51a, 50b, 51b are combined and divided by division, as seen by the amplifier 54 (eg: 54a or, this A final output (one of the two subtractors) will only receive the reset charge (stored in the two sample-and-hold capacitors) received from one of the four diurnal elements. So the final output of the subtractor (As in the amplifier 54 =) 'Will not be mathematically averaged by the day-to-day values (VS_VR) sampled by the four double sampling (CDS) of the circuit output of FIG. 2 in sequence. In such an example, there are two "resets" received, and the charge / voltage will be "averaged" along with the four "signal" charges / voltages stored in 2005. The pattern == two rather than from the assumption is For "=

揭的=位^機巾由—畫素陣觸擷取的影像執行次取 像心㈣某些降低解析度會有好處的場合會很有利, ,疋在解析度降低了的顯示器上致能一影像的顯示。 =領域(舰线位轉換之後)巾執行次取樣it常需要大 谷1記憶體以及很多的處理時間,這會消耗額外的電力。 藉由圖2的類比-數位“平均,,之操作,用來執行晝素次 取樣的圖2的電路以及其他與@ 2關係密切的已知電路, 都只被修改為在貝爾圖型(BAYER_pATTERN)陣列中,藉 由將一 4x4晝素區域中每一顏色的四畫素一起“平均,,來執 行相關雙重取樣(CDS)所取樣的畫素的次取樣。 【發明内容】 本發明的的目的是提供一種影像感測器,其包括多數 個以行及列方式排列之晝素,每一列畫素都可切換地與至 少二重設資料電容器(RESET DATA CAPACITOR)連接, 用以儲存至少二重設電荷;以及包括至少二影像資料電容 器(IMAGE DATA CAPACITOR),用以儲存至少二影像電 荷(IMAGE CHARGE) 〇 此影像感測器執行一主動畫素感測器(APS)的以N列 16 200533191 16323pif.doc 與N行方式排列的N2晝素的次取樣方法,每_書素都於: 改成輸出一重設電壓(RESET VOLTAGE)以及—影像訊 電壓(IMAGE SIGNAL VOLTAGE),此方法包括下列$ 驟:儲存第一畫素的重設電壓作為第一電容器中的第一電 荷、儲存第二畫素的重設電壓作為第二電容器中的第二電 何、以及合併此苐一與第二電荷成為一平均的重設電冇 (AVERAGED RESET CHARGE)。 次取樣畫素的方法包括:將接收自主動晝素感測器 P (APS)中L2畫素的L2類比畫素重設資料電荷,儲存於^ 個電容器的第一組之中、將接收自主動畫素感測器(Aps) 中L2晝素的L2類比畫素影像資料電荷,儲存於妒個電容 器的第二組中。L的範圍可從1到N。第一平均工作是在 N2個電容器的第一組中所儲存的l2類比晝素重設資料電 荷上執行。同樣的在N2個電容器的第二組中所儲存的L2 類比晝素訊號資料電荷上的第二平均動作也會被執行。 影像感測器包含一與各晝素每一列相連接的平均暨比 • 車交單元(AVERAGING AND COMPARING UNIT) (ACU) 〇 這些平均暨比較單元(ACU) —起工作,在類比領域中執行 平均動作,並且將平均的重設電荷(來自多數個畫素)自平 均的訊號電荷(來自相同的多數個晝素)減去,以產生一差 動電壓(DIFFERENTIAL VOLTAGE)。此影像感測器也將 包含一類比至數位轉換器(ANALOG TO DIGITAL CONVERTER) (ADC),用以執行此差動電壓的類比至數位 轉換。 20053取Uncovered = bit ^ machine towel by-pixel array touch capture image to perform secondary image capture. Some occasions where it would be beneficial to reduce the resolution will be very beneficial. It is possible to enable the display on a display with a reduced resolution. Image display. = Field (after ship line position conversion) To perform sub-sampling it often requires Otani 1 memory and a lot of processing time, which will consume additional power. With the analog-digital "average," operation of Figure 2, the circuit of Figure 2 used to perform day-time subsampling, and other known circuits closely related to @ 2, have only been modified to be in the Bell diagram type (BAYER_pATTERN In the array, sub-sampling of pixels sampled by correlated double sampling (CDS) is performed by "averaging" four pixels of each color in a 4x4 celestial region together. SUMMARY OF THE INVENTION An object of the present invention is to provide an image sensor including a plurality of day pixels arranged in rows and columns, and each column of pixels can be switched with at least two reset data capacitors (RESET DATA CAPACITOR). ) For storing at least two reset charges; and including at least two image data capacitors (IMAGE DATA CAPACITOR) for storing at least two image charges (IMAGE CHARGE). This image sensor implements a main animation sensor. (APS) The sub-sampling method of N2 day elements arranged in N columns 16 200533191 16323pif.doc and N rows, every _ book element is changed to: output a reset voltage (RESET VOLTAGE) and-image signal voltage (IMAGE SIGNAL VOLTAGE), this method includes the following steps: storing the reset voltage of the first pixel as the first charge in the first capacitor, storing the reset voltage of the second pixel as the second capacitor in the second capacitor, And the first and second charges are merged into an average reset voltage (AVERAGED RESET CHARGE). The method of sub-sampling pixels includes resetting the data charge of the L2 analog pixels received from the L2 pixels in the active day sensor P (APS), and storing them in the first group of ^ capacitors. The charge of the L2 analog pixel image data of the L2 dioxin in the animated pixel sensor (Aps) is stored in the second group of capacitors. L can range from 1 to N. The first averaging job is performed on the l2 analogue daylight reset data charge stored in the first set of N2 capacitors. Similarly, the second average operation on the data charge of the L2 analog day signal data stored in the second group of N2 capacitors will also be performed. Image sensor includes an average and ratio connected to each column of each day element • AVERAGING AND COMPARING UNIT (ACU) 〇 These average and comparison units (ACU) work together to perform averaging in the analog domain And subtract the average reset charge (from the majority of pixels) from the average signal charge (from the same majority of pixels) to generate a differential voltage (DIFFERENTIAL VOLTAGE). The image sensor will also include an analog to digital converter (ADC) to perform the analog to digital conversion of the differential voltage. 20053 take

每一畫素都修改成輸出一 樣(以1:L2次取樣比率) 重设電壓以及一影像訊 被電壓,此方法包括下列步驟:將輸出自多數個 的多數個(L2)類比重設資料電荷合併(例如:將儲存於第一 存電容器中的L2纽電荷合併)、以及將輸出自多數 個(L )畫素的多數個(L2)類比影像訊號資料電荷合併(例 如:將儲存於第二_存電容器中的L2影像訊號電荷合 併)。相關雙重取樣(CDS)的操作(例如習知技藝),是利用 各重設資料電荷的合併(平均),以及各影像訊號資料電荷 的合併(平均)(取代來自一晝素之重設與影像電荷),來獲得 代表相同顏色之平均的L2晝素的精確數學“平均,,的差動 電壓(VS-VR)來完成。 藉由觀察代表貝爾圖型陣列一 4x4畫素區域内一顏色 的四相關雙重取樣所取樣的晝素值(電荷量定為 數學“平均”,來驗證本發明的實施例執行的“平均,,(以及次 取樣)功能的精確度,可以下列關係(等式)來表示:Each pixel is modified to output the same (at 1: L2 sampling ratio) reset voltage and a video signal voltage. This method includes the following steps: reset the data charge from the majority (L2) analog output from the majority Merging (for example: merging the L2 button charges stored in the first storage capacitor) and merging the electric charges of the majority (L2) analog image signal data output from the plurality (L) pixels (for example: merging the data stored in the second storage capacitor) _The L2 image signal charge in the storage capacitor is combined). The operation of correlated double sampling (CDS) (such as the conventional technique) is to use the merge (average) of the data charges of each reset and the merge (average) of the data charges of each image signal (instead of the reset and image from the diurnal prime) Charge) to obtain the precise mathematical "average" of the average L2 celestial element representing the same color. The difference voltage (VS-VR) is done by observing a color in a 4x4 pixel area representing a Bell pattern array. The daily prime value (the charge amount is set as a mathematical "average") for the four-correlation double sampling to verify the accuracy of the "average, (and sub-sampling) function performed by the embodiment of the present invention, and the following relationship (equation) To represent:

並且利用加法(ADDITION)的分配(DISTRIBUTIVE)與加 法逆元素(ADDITIVE INVERSE)特性來表示: 1 1And use the addition (ADDITION) of the distribution (DISTRIBUTIVE) and the addition of the inverse element (ADDITIVE INVERSE) characteristics to represent: 1 1

遵循此數學關係,欲被一起平均(被次取樣)的四相關 18 200533191 16323pif.docFollowing this mathematical relationship, the four correlations to be averaged (subsampled) together 18 200533191 16323pif.doc

雙重取樣所取樣的畫素值的精確“平均,,值,可藉由將四“重 =電荷㈣素的Qru + Qri3 + Qr3i + D的組合從四晝 ί電荷的組合Qsi 1+ Qsi3 +知+ Qs33中(類比) '—又侍。藉由將合併的電荷(例如··相等地)分配於相 ^電容σ列如·· C)的四電容器之間,而將四“訊號,,電荷的組 二除以四(例如·於“以減法減去,,此合併的“重設,,電荷之 前)。相似地,藉由將合併的電荷(例如:相等地)分配於相 ^電容(例如:C)的四電容器之間,而將四“重設,,電荷的組 〇除以四(例如:在“減去,,此合併的“訊號,,電荷之前)。如 此一來,就可以執行下列步驟來獲得四相關雙重取樣所取 樣的畫素的“平均,,值:合併以及以除法除(平均,次取樣) 此四相關的“重設,,電荷而獲得一平均的重設電荷qravg、 合併以及以除法除(平均,次取樣)此四相關的“訊號,,電荷 而獲彳十一平均的汛號電荷qsavg、然後藉由從平均的訊號 電荷Qsavg減去平均的重設電荷qravg來執行相關雙重取 樣動作(減法)。由於此方法之結果為一精確次取樣晝素 值,其中此次取樣畫素值代表四相關雙重取樣所取樣的畫 素的數學平均,所以此一常用方法在這裡被稱之為相關雙 重次取樣(CDSS)。取代一如習知技藝中之執行四相關雙重 取樣減法,只需在“平均的’’(次取樣的)、“重設,,、以及“訊 號”等電荷執行一相關雙重取樣減法。如此一來,就可在最 後的相關雙重取樣減法之前執行精確的次取樣。 在本發明一實施例中’相關雙重次取樣CDSS,具有 次取樣比率 B(SUBSAMPLING RATI〇)(—整數(INTEGER) 19 200533191 l63^pif 的2次方:例如4、9、16、25、…等等),這裡B等於四, 可藉由下列三步驟執行··在第一步驟中,兩對重設電壓(電 荷)在列的方向被平均,以及雨對訊號電壓(電荷)在列的方 向被平均、第二步驟中,在行的方向上將二已平均的重設 電壓對平均,而獲得最終(平均的)重設電壓,以及在行的 方向上將二已平均的影像(訊號)電壓對平均,而獲得最終 (平均的)影像(訊號)電壓、在第三步驟中,執行將最終(平 φ 均的)重設電壓從最終(平均的)影像(訊號)電壓減去的類比 減法(例如:利用單一類比減法器)。在本實施例中,電荷 的“平均,,包括將四電容C戶斤儲存的電荷合併成一較大的有 效電容(EFFECTIVE CAPACITOR)(例如:4C),亦包括將 已合併之電荷分配於一適當數量(例如相同數量)的相等電 谷之間(例如C)。 、本發明的再一實施例是提供一種影像感測器(例如··互 補金氧半導體影像感測器CIS),其包括一以多數行以及多 數列所排列而成的晝素陣列,在每一列中的每一晝素在工 _ 作上都被連接到一平均單元(AVERAGING UNIT),其中, 每一平均單π包括第一與第二儲存電容器(st〇rage CAPACITOR),其中,此第一與第二儲存電容器用來儲存 來自第一晝素與第二晝素的類比重設資料(anal〇g RESETDATA)、以及第三與第四儲存電容器,其中,此第 三與第四儲存電容器用來儲存來自第一晝素與第二晝辛的 類比影像訊號資料。 為讓本發明之上述和其他目的、特徵和優點能更明顯 20 2005娜c 易懂,下文特舉較佳實施例,並配合所附圖式,作詳細說 明如下。 【實施方式】 圖3繪示為依本發明一實施例一互補金氧半導體 CMOS影像感測器(CIS)之方塊圖,其中,此互補金氧半導 體CMOS影像感測器CIS包含一主動畫素感測器(Aps)陣 列,以及一用來執行相關雙重次取樣(CDSS)之平均暨比較 電路。圖4繪示為在圖3之主動畫素感測器(APS)陣列中, _ 每—晝素之範例結構(STRUCTURE)之電路圖。 參考圖3與圖4,主動畫素感測器(APS)陣列由多數個 習知技藝之晝素電路所組成,或是較佳地,圖4之書素電 路被修改成依序輸出一 VR(重設)電壓以及一 VS(影像訊號) 電壓。主動畫素感測器(APS)陣列中的每一晝素通常都會包 含光電轉換器(PHOTO-ELECTRIC TRANSDUCER)(例 如:圖4之光二極體PD)。行驅動器電路(R〇w DRIVER CIRCUIT)在習之技藝中已廣為人知,並且在這裡依本發明 φ 之實施例被修改成在相關雙重次取樣(CDSS)時,依序選擇 行號(NUMBERED ROWS)為(1、3、···)之奇數(ODD)對以 及(2、4、…)之偶數(EVEN)對。特別的是,用來傳遞主動 行選擇訊號(ACTIVE ROW SELECT SIGNAL) SEL 的多數 線的其中之一被用來選擇(啟動)此主動行(active ROW)。 當儲存於與畫素的光二極體PD有關的電容之中的電 荷/電壓被讀取時,會閉路由訊號TX所控制的開關Τη。 21 5職 開關ττχ在重設工作的期間内通常都會開路。Ττχ會與重 設開關TRX同時被閉路,以致畫素的光二極體PD的擴散 區域(DIFFUSION AREA)也會被重設。用來控制開關trx 的重設訊號RX,對於習知技藝的人而言是很容易辨識的, 開關TRX緊鄰由訊號TX所控制的開關Ττχ,其被用來將儲 存於與光二極體PD有關的電容之中的電荷/電壓重設至一 “重設”準位。 電晶體ΤΑΜΡ係一“電壓隨動器,,放大器,其用來將儲存 攀 於與光二極體PD有關的電容中的電荷/電壓改變為一相對 應的電壓/電流,此電壓/電流充分的被傳遞給並儲存於平 均暨比較電路的電容器中(參考圖3與圖4)。 由重設訊號RX所控制的開關Trx在每一晝素讀取之 初會被閉路,並且這將結束與光二極體PD有關的電容電 荷/電壓之重设。與光二極體PD有關的電容的“重設,,電荷/ 電壓在輸出點out處提供輸出電壓準位(〇υτρυτ VOLTAGE LEVEL)VR(當開關tsel閉路之時)。當主動晝 • 素感測器APS陣列暴露於一真實影像(光)時,陣列中之^ 二極體以及與每一畫素有關之電容,將產生一與落在晝素 (光一極體PD)上的強度(亮度)一致的“影像/訊號,,電荷(電 壓)。當開關Ττχ閉路而且Trx開路之時,實際的光感應“影 像汛唬將會被放大器τΑΜΡ“放大”,並且於開關Tsel閉路 時,將會被當成影像訊號”電壓vs傳遞給平均暨比較電 路(參考圖3與圖4)中的電容器,並儲存於此電容器之中。 圖5繪示為圖3之主動纟素感測器(Aps)陣歹,】中之顏色 22 20053觀 感測器晝素(COLOR SENSING PIXEL)之貝爾圖型排列及 其各個輸出之方塊圖。我們可藉由將貝爾圖型顏色濾波器 陣列(COLOR HLTER ARRAY)(CFA)重疊於主動畫素感測 器陣列的各個光二極體上來實現貝爾圖型(例如圖4的光 二極體PD)。本發明之實施例被修改成將相同顏色四晝素 組合一起“平均,,(以及相關雙重次取樣(CDSS)),例如:紅 色晝素Rn、R13、R3卜R33配置於一 4x4畫素區域中; 例如··圖5中特別明亮的畫素區域。欲由相關雙重次取樣 • (CDSS) —起取樣的四畫素組合,通常是由來自相同二行以 及相同二列的相同顏色晝素所組成,一如習知技藝的數位 領域次取樣。如此一來,紅色晝素Rll、R13、R31、R33 將一起被相關雙重次取樣(CDSS)所取樣,並且(同時)綠色 晝素G12、G14、G32以及G34將被相關雙重次取樣(CDSS) 所取樣。然後,綠色畫素G21、G23、G41以及G43將一 起被相關雙重次取樣(CDSS)所取樣,以及藍色畫素B22、 B24、B42、B44將一起被相關雙重次取樣(CDSS)所取樣。 鲁相同顏色晝素的四種組合(紅、綠、藍、綠)這樣的相關雙 重次取樣(CDSS)的結果,是為對應的紅、綠、藍、綠等晝 素的四精確“平均的’’畫素值。如此一來,在一主動畫素感 測器APS陣列上執行相關雙重次取樣會有效地對畫素區 域次取樣(在類比領域中),而同時也修正靜態固定圖型雜 訊(FPN)以及幾種型式的時序雜訊。 個別對應行1與行3的行選擇訊號(R〇w SELECTION SIGNAL)SEL1、SEL3會依序的被啟動。當每一行選擇訊 23 200533191 16323pif.doc 號被啟動時,在主動行(ACVTIVE ROW)的所有晝素首先 讀取其之“重設”電壓VR,接著再讀取其之真實“影像訊號,, 電壓VS。(參考如圖8A之時序圖)如圖5中所示的,列\ 中各晝素之輸出順序將包含從紅色濾減^ # t (RED-FILTERED PIXEL)R 11 (先 VR11 然後 VS⑴輪^訊 號,然後接著從紅色濾波畫素R31(先VR31然後▽§31)輸 出5虎。然而’列3中之輸出順序將包含從紅色濾波金素 R13(先VR13然後VS13)輸出訊號,然後接著從=色^波 β 錢R33(先VR33然後VS33)輸出訊號。在二選一的^施 例中,啟動行1與行3之順序可以顛倒過來。同樣的(雖未 顯示於圖5中,但顯示於圖6中),列2中各晝素同時的輸 出將包括從綠色濾波晝素G12(先VR12然後VS12)輸出^ 訊號,然後接著從綠色濾波晝素G32(先VR32然後^s32) 輸出的訊號;以及列4中各晝素同時的輸出將包括從綠色 濾波晝素G14(先VR14然後VS14)輸出的訊號,然後接著 從綠色濾波畫素G34(先VR34然後VS34)輸出的訊號。行 • 2與4中各晝素的值並不輸出,直到行丨與行3中^書素 的值被相關雙重次取樣(CDSS)所取樣為止。 旦’、 圖6繪示為圖3之互補金氧半導體^^〇8影像感測器 (CIS)中,用來執行相關雙重次取樣(CDSS)之多數個平均苎 比較單=(ACU)之間各切換内部連接之方塊圖。在主動= 素感測器APS陣列的—列中,每_晝素都與—垂直傳輸線 (經由其個別的TSEL開關)連接,並 (期)連接。如此一來,圖6中所示之四相鄰; 24 20053¾¾ i6323pif.docThe exact "average, value" of the pixel values sampled by double sampling can be obtained by combining the combination of four "weights = Qru + Qri3 + Qr3i + D of the charge element from the four days and the charge combination Qsi 1 + Qsi3 + + Qs33 (Analog) '-again. By dividing the combined electric charges (for example ...) equally among the four capacitors of the phase ^ capacitance σ column such as ... C), the four "signals," the group two of charges divided by four (for example, "in" Subtracted by subtraction, this combined "reset, before the charge." Similarly, by distributing the combined charge (for example: equally) between the four capacitors of the phase capacitor (for example: C), and Divide the four "reset," the group of charge 0 by four (for example: before "minus, this combined" signal, before the charge). In this way, you can perform the following steps to obtain the "average, value" of the pixels sampled by the four-correlation double sampling: merge and divide (average, sub-sampling) the four-correlation "reset," charge to obtain An average reset charge qravg, merge, and divide (average, sub-sampling) the four related "signals," the charges to obtain the eleventh average flood charge qsavg, and then subtract from the average signal charge Qsavg De-average reset charge qravg to perform the correlated double sampling action (subtraction). Since the result of this method is an accurate sub-sampled day prime value, where the sampled pixel value represents the mathematics of the pixels sampled by four correlated double sampling Averaging, so this common method is referred to here as correlated double subsampling (CDSS). Instead of performing four-correlated double sampling subtraction, as in the conventional art, only the "average" (subsampling), "Reset," and "signal" perform a correlated double sampling subtraction. In this way, accurate sub-fetching can be performed before the last correlated double sampling subtraction In an embodiment of the present invention, the 'correlated double subsampling CDSS has a subsampling ratio B (SUBSAMPLING RATI0) (—integer (INTEGER) 19 200533191 l63 ^ pif to the power of two: for example, 4, 9, 16, 25, … Etc.), where B is equal to four, and can be performed by the following three steps. In the first step, the two pairs of reset voltages (charges) are averaged in the direction of the column, and the signal voltages (charges) of the rain pair are in the column. The directions are averaged. In the second step, the two averaged reset voltages are averaged in the row direction to obtain the final (average) reset voltage, and the two averaged images (in the row direction) The signal (voltage) is averaged to obtain the final (average) image (signal) voltage. In the third step, the final (average) average reset voltage is subtracted from the final (average) image (signal) voltage. Analog subtraction (for example: using a single analog subtractor). In this embodiment, the "average of the charge" includes combining the charges stored by the four-capacity capacitors into one larger effective capacitor (EFFECTIVE CAPACITOR) (for example: 4C ), Including merging The charge is distributed between a suitable number (eg, the same number) of equal valleys (eg, C). A further embodiment of the present invention is to provide an image sensor (such as a complementary metal-oxide-semiconductor image sensor CIS), which includes a daylight array arranged in a plurality of rows and a plurality of columns. Each day element in a column is connected to an average unit (AVERAGING UNIT) in operation, where each average unit π includes a first and a second storage capacitor (stOrage CAPACITOR), where this first The first and second storage capacitors are used to store analog reset data (anal0g RESETDATA) from the first and second storage elements, and the third and fourth storage capacitors, wherein the third and fourth storage capacitors It is used to store analog image signal data from the first dioxin and the second dioxin. In order to make the above and other objects, features, and advantages of the present invention more obvious, the following describes in detail the preferred embodiments and the accompanying drawings. [Embodiment] FIG. 3 is a block diagram of a complementary metal-oxide-semiconductor CMOS image sensor (CIS) according to an embodiment of the present invention. The complementary metal-oxide-semiconductor CMOS image sensor CIS includes a main animation element. An array of sensors (Aps), and an averaging and comparison circuit for performing correlated double subsampling (CDSS). FIG. 4 is a circuit diagram of an exemplary structure of a daylight element (STRUCTURE) in the main animation element sensor (APS) array of FIG. 3. Referring to FIG. 3 and FIG. 4, the main animation element sensor (APS) array is composed of a number of conventional day circuit elements, or preferably, the book element circuit of FIG. 4 is modified to sequentially output a VR (Reset) voltage and a VS (video signal) voltage. Each day element in the main video element sensor (APS) array usually contains a photoelectric converter (PHOTO-ELECTRIC TRANSDUCER) (for example: photodiode PD in Figure 4). Row driver circuits are well known in the art of learning, and here the embodiment of φ according to the present invention is modified to sequentially select the row number (NUMBERED ROWS) in the case of correlated double subsampling (CDSS) They are odd (ODD) pairs of (1, 3, ...) and even (EVEN) pairs of (2, 4, ...). In particular, one of the majority lines used to transmit an active row select signal (SEL) is used to select (enable) this active row. When the charge / voltage stored in the capacitor related to the pixel photodiode PD is read, the switch Tn controlled by the routing signal TX is closed. 21 5-position switch ττχ is normally open during reset operation. Ττχ is closed at the same time as the reset switch TRX, so that the pixel's photodiode PD diffusion area (DIFFUSION AREA) is also reset. The reset signal RX used to control the switch trx is easily recognized by those skilled in the art. The switch TRX is next to the switch ττχ controlled by the signal TX, which is used to store the information related to the photodiode PD. The charge / voltage in the capacitor is reset to a "reset" level. The transistor TAMP is a "voltage follower, an amplifier, which is used to change the charge / voltage stored in the capacitor related to the photodiode PD to a corresponding voltage / current. This voltage / current is sufficient It is passed to and stored in the capacitor of the averaging and comparison circuit (refer to Figure 3 and Figure 4). The switch Trx controlled by the reset signal RX will be closed at the beginning of each day reading, and this will end with Reset of capacitor charge / voltage related to photodiode PD. "Reset of capacitor related to photodiode PD, charge / voltage provides output voltage level (〇υτρυτ VOLTAGE LEVEL) VR at the output point out When the switch tsel is closed). When the active daylight sensor APS array is exposed to a real image (light), the ^ diodes in the array and the capacitance associated with each pixel will produce a "Image / signal, charge (voltage) with the same intensity (brightness) on). When the switch ττχ is closed and Trx is open, the actual light sensing" image flood "will be" magnified "by the amplifier τΑΜΡ and switched on When Tsel is closed, it will be transferred to the capacitor in the averaging and comparison circuit (refer to Fig. 3 and Fig. 4) as the image signal and the voltage will be stored in this capacitor. Fig. 5 shows the active element in Fig. 3 The sensor array (Aps array), the color in the 200522, the sensor's Belle pattern arrangement (COLOR SENSING PIXEL) and its output block diagram. We can use the Belle pattern color filter array (COLOR HLTER ARRAY) (CFA) is superimposed on each photodiode of the main animated pixel sensor array to implement a Bell diagram (such as the photodiode PD of FIG. 4). The embodiment of the present invention is modified to change the same color to four The day prime combination together "average, (to And related double subsampling (CDSS)), for example: red day pixels Rn, R13, R3, and R33 are arranged in a 4x4 pixel area; for example, the particularly bright pixel area in FIG. 5. Correlated Double Subsampling (CDSS) —The four-pixel combination from which the sample is taken is usually composed of the same color celestial elements from the same two rows and the same two columns, as in the digital domain of conventional techniques. In this way, the red daylights Rll, R13, R31, R33 will be sampled by the correlated double subsampling (CDSS), and (simultaneously) the green daylights G12, G14, G32, and G34 will be sampled by the correlated double subsampling (CDSS). Sampled. Then, the green pixels G21, G23, G41, and G43 will be sampled by the correlated double subsampling (CDSS), and the blue pixels B22, B24, B42, and B44 will be sampled by the correlated double subsampling (CDSS). The results of correlated double subsampling (CDSS) such as the four combinations (red, green, blue, green) of the same color daylight are the four accurate "averages" of the corresponding red, green, blue, and green daylight. '' Pixel value. In this way, performing a correlated double subsampling on a main animation pixel sensor APS array will effectively subsample the pixel area (in the analog domain), while also modifying the static fixed pattern Noise (FPN) and several types of timing noise. Individual row selection signals (R0w SELECTION SIGNAL) SEL1, SEL3 corresponding to row 1 and row 3 will be sequentially activated. When each row selection signal 23 200533191 16323pif When the .doc number is activated, all daylight elements in the active row (ACVTIVE ROW) first read its "reset" voltage VR, and then read its true "image signal," voltage VS. (Refer to the timing diagram of Figure 8A) As shown in Figure 5, the output order of each day element in the column \ will include the reduction from red ^ # t (RED-FILTERED PIXEL) R 11 (VR11 first, then VS ⑴) ^ Signal, and then output 5 tigers from the red filtered pixel R31 (VR31 then ▽ §31). However, the output order in column 3 will include the output from the red filtered metal R13 (VR13 then VS13), and then from = Color ^ wave β Qian R33 (VR33 then VS33) output signal. In the alternative embodiment of ^, the order of starting line 1 and line 3 can be reversed. The same (though not shown in Figure 5, but (Shown in Figure 6), the simultaneous output of each day element in column 2 will include the signal output from the green filtered day element G12 (VR12 then VS12), and then output from the green filtered day element G32 (VR32 then ^ s32) And the simultaneous output of each day element in column 4 will include the signal output from the green filtered day element G14 (VR14 then VS14), and then the signal output from the green filtered pixel G34 (VR34 then VS34). Line • The values of each day element in 2 and 4 are not output until the value of line ^ and element 3 in line 3 are compared. Until the sampling of the double subsampling (CDSS). Once, Figure 6 shows the complementary metal oxide semiconductor ^^ 08 image sensor (CIS) of FIG. 3, which is used to perform the majority of the correlated double subsampling (CDSS). A block diagram of the internal connections of each average 苎 comparison sheet = (ACU). In the -column of the active = prime sensor APS array, every _day prime is connected to a vertical transmission line (via its individual TSEL switch) Connected, and (period) connected. In this way, the four shown in Figure 6 are adjacent; 24 20053¾¾ i6323pif.doc

單元(ACU)對應到主動晝素感測器Aps陣列中書 鄰列(卜2、3、4)。如此-來,在讀取工作中的任何= 裡’第-平均暨比較單元(ΑαΜ)與第三平均暨比較單^ (ACU-3)都會接收從相同顏色晝素所接收到的類比書 料(例如:首先從紅色濾波畫素R11與R13從= 畫素與R33、接著再從綠色渡波晝素⑼與、,== 後從綠色濾波畫素G41與G43)。如此一來,為了有效的、 將接收到的與相同顏色晝素有關的類比晝素資料‘‘平 均’’(在類比領域中合併),第一平均暨比較單元(ΑαΜ)與 第三平均暨比較單元(ACU_3)會透過第一平均開關、彼 此^可切換地)相連。相似的,第二平均暨比較單元(acu_2) 與第四平均暨比較單元(ACU_4)會透過第二平均開關 彼此(可切換地)相連。“平均,,開關Savg的功能將在更詳細 顯示第一平均暨比較單元(ACU-1)與第三平均暨比較單元 (ACU-3)的圖7的電路圖的討論中予以詳細的解釋。 在圖3的互補金氧半導體影像感測器(CIS)中,平均暨 比車父單元(ACUs)的結構與工作方法,將參考圖7與圖8a 予以敘述。 圖7繪示為圖3之互補金氧半導體CM〇s影像感測器 (cis)中’二可切換内部連接之平均暨比較單元(ACU)之詳 細電路圖。圖8A繪示為圖3之互補金氧半導體cmos影 像感測器(cis)中,於執行相關雙重次取樣(CDSS)期間所用 之各切換机號以及行選擇(r〇wjELection)訊號之波形之時 序圖。 25 200533191 16323pif.doc (圖3的)平均暨比較電路(AVERAGING & COMPARING CIRCUIT)中的每一平均暨比較單元 (ACU)(例如:第一平均暨比較單元(ACU-1)、第二平均暨 比較單元(ACU-2)、第三平均暨比較單元(ACU-3))都可切 換地透過每一晝素個別開關TSEL而與一特別行的所有畫素 連接(經由一垂直傳輸線)。因此,第一平均暨比較單元 (ACU-1)在工作上與畫素之第一列(列1}中的每一畫素連 接,包括畫素R11與R31等。同樣地,第三平均暨比較單 • 元(ACU_3)在工作上與晝素之第三列(列3)中的每一晝素連 接’包括畫素R13與R33等。通常,主動畫素感測器APS 陣列的每一列中的每一畫素在工作上都與一垂直傳輸線 (透過其個別的TSEL開關)相連,也都與一平均暨比較單元 (ACU)相連。在工作期間,主動晝素感測器APS陣列的每 一列中的一畫素都被一行選擇控制訊號(r〇w_SELect control signal) ’經由一與主動畫素感測器aps陣列的一行 中的所有畫素相連的(水平的)線所啟動。如果W是主動畫 _ 素感測器APS陣列的一行中的畫素數量(整數),則w也將 疋平均暨比較電路中的平均暨比較單元數量。(在本發明一 可選擇的實施例中,比W多的平均暨比較單元ACU(例如 2W)可被切換地相連以服務w列)。如此一來就如前所述 的’在工作期間,所有的平均暨比較單元ACU,包括第一 平均暨比較單元ACU-1以及第三平均暨比較單元ACIj-3 將同時自配置於主動晝素感測器APS陣列相同行中的各 晝素接收類比畫素資料。 26 20053取 ,如圖8A中所述的,行1最先被啟動(被SEL1),接著 行3被啟動(被SEL3)。如此一來,在工作期間,第一平均 暨比較單元ACU-1以及第三平均暨比較單元ACl>3將同 時從相同顏色四晝素(例如Rll、r31、R13、R33)的每一 個’擷取(並儲存)包括“重設”電壓與“影像訊號,,電壓二者類 比晝素資料。因為第一平均暨比較單元ACU-1以及第三平 均旦比較單元ACU-3疋藉由開關Savg相連接,所以可以 • 相互分旱從相同顏色四畫素(例如R11、R31、R13、R3》 所獲得的類比畫素資料。特別的是,第一平约暨比鲂輩 …及第三平均暨比較單元‘ 合併以及以除法除(平均,次取樣)這些獲得自相同顏色四 晝素的每一種型式(“重設”以及“影像訊號,,)晝素,用以產生 “重設”電荷/電壓VR的“平均,,值,以及“影像訊號,,電荷/電 壓VS之“平均,,值。每一平均暨比較單元aCU(例如第一平 均暨比較單元ACU-1以及第三平均暨比較單元aCU-3)更 被修改成從“影像訊號”電荷/電壓之“平均的,,值中,“減 Φ 去重設”電荷/電壓的“平均的”值,用以輸出一最終類比 晝素資料,其中,此最終類比晝素資料代表此四晝素被相 關雙重取樣CDS所取樣後的精確數學平均,用來除去靜態 固定圖型雜訊(FPN)。 每一平均暨比較單元AOJ包括一類比減法器 (ANALOG SUBTRACTOR)(例如減法器q、以及減法器 -2)、以及用來接收與傳送此類比減法器的輸出的放大器 AMP1。放大器AMP1可被實現為一非反向緩衝器(也就是 27 200533191 16323pif.docThe unit (ACU) corresponds to the adjacent column in the Aps array of the active daylight sensor (Bus 2, 3, 4). In this way, any reading in the = '-average-cum-comparison unit (ΑαΜ) and the third average-cum-comparison unit ^ (ACU-3) will receive analog book materials received from the same color day element (For example: first filter pixels R11 and R13 from red = pixels and R33, and then from green wave diurnal and, == and then filter pixels G41 and G43 from green). In this way, in order to effectively `` average '' the received analogue daylight data related to the same color daylight (combined in the analog field), the first average and comparison unit (ΑαΜ) and the third average time The comparison units (ACU_3) are connected via a first average switch (switchable to each other). Similarly, the second average and comparison unit (acu_2) and the fourth average and comparison unit (ACU_4) are connected to each other (switchably) through a second average switch. "Averaging, the function of the switch Savg will be explained in more detail in the discussion of the circuit diagram of Fig. 7 which shows the first average and comparison unit (ACU-1) and the third average and comparison unit (ACU-3) in more detail. In the complementary metal-oxide-semiconductor image sensor (CIS) of FIG. 3, the structure and working method of the average and specific driver units (ACUs) will be described with reference to FIGS. 7 and 8a. FIG. 7 illustrates the complement of FIG. 3 Detailed circuit diagram of the 'two switchable internally connected averaging and comparison units (ACU) in the metal oxide semiconductor CMOS image sensor (cis). Figure 8A shows the complementary metal oxide semiconductor cmos image sensor (Figure 3) cis), timing diagrams of the waveforms of each switch and the waveform of the row select (rwwELEL) signal used during the execution of the correlated double subsampling (CDSS). 25 200533191 16323pif.doc (Figure 3) Averaging and comparison circuit ( Each average and comparison unit (ACU) in AVERAGING & COMPARING CIRCUIT (for example: first average and comparison unit (ACU-1), second average and comparison unit (ACU-2), third average and comparison unit (ACU-3)) can be switched by each switch All pixels in a particular row are connected (via a vertical transmission line). Therefore, the first averaging and comparison unit (ACU-1) is operationally connected to each pixel in the first column (column 1) of the pixel, Including pixels R11, R31, etc. Similarly, the third average and comparison unit (ACU_3) is operationally connected to each day element in the third column (column 3) of day elements' including pixels R13 and R33 Etc. Generally, each pixel in each column of the main animated pixel sensor APS array is operationally connected to a vertical transmission line (through its individual TSEL switch) and is also connected to an averaging and comparison unit (ACU) During operation, one pixel in each column of the APS array of active daylight sensors is selected by a row of select control signal (r0w_SELect control signal) 'in a row with the main animation element sensor aps array All pixels connected by (horizontal) lines are started. If W is the number of pixels (integer) in a row of the main animation _ prime sensor APS array, then w will also be averaged and averaged in the comparison circuit Compare the number of units. (In an alternative embodiment of the invention, A number of average and comparison units ACU (for example, 2W) can be switched to connect to serve the w column. In this way, as described above, 'ACU, all average and comparison units ACU, including the first average and The comparison unit ACU-1 and the third averaging and comparison unit ACIj-3 will simultaneously receive analog pixel data from each day element arranged in the same row of the active day element sensor APS array. 26 20053, as shown in Figure 8A As mentioned, line 1 is activated first (by SEL1), and then line 3 is activated (by SEL3). In this way, during operation, the first average and comparison unit ACU-1 and the third average and comparison unit ACl > 3 will simultaneously extract from each of the four colors of the same color (such as Rll, r31, R13, R33). Take (and store) analog data including "reset" voltage and "image signal," voltage. Because the first average and comparison unit ACU-1 and the third average comparison unit ACU-3, by switching Savg Connected, so you can • Divide each other from the analog pixel data obtained from the four pixels of the same color (such as R11, R31, R13, R3). In particular, the first level and the next generation ... and the third average Cum comparison unit 'merges and divides (average, sub-sampling) each of these types obtained from the same color tetracycline ("reset" and "image signal,") to produce a "reset" charge / Average, value, and "image signal, charge / voltage VS", "average, value" of each voltage / VR. Each average and comparison unit aCU (such as the first average and comparison unit ACU-1 and the third average and Comparison unit aCU-3) has been modified into The "average" value of the "image signal" charge / voltage, "minus Φ to reset" the "average" value of the charge / voltage is used to output a final analog daylight data, where this final analog daylight The data represents the accurate mathematical average of this four-day prime sampled by the correlated double sampling CDS to remove static fixed pattern noise (FPN). Each average and comparison unit AOJ includes an analog subtractor (ANALOG SUBTRACTOR) (eg A subtractor q, and a subtractor-2), and an amplifier AMP1 for receiving and transmitting the output of such a ratio subtractor. The amplifier AMP1 can be implemented as a non-inverting buffer (ie 27 200533191 16323pif.doc

Vref二0),或一如在較佳實施例中所示的為一繫於參考電 壓Vref並且與隨後並聯的類比至數位轉換(ADC)關連使用 的差動放大器(DIFFERENTIAL AMPLIFIER)。這樣的排列 可使得偏壓源(BIAS SOURCE)(Vramp)於平均工作期間處 於第一電壓準位,並且於類比至數位轉換工作期間處於第 一電壓準位,第一電壓準位不同於第二電壓準位。緩衝器 電容器(BUFFER CAPACITOR)(CA)與第二輸出放大器 APM2皆為可自由遙擇的,並且皆包含於此較佳實施例中 (顯示於圖7之中),用以增加類比至數位轉換(ADC)解析度 的增益(GAIN)。每一平均暨比較單元ACU (例如第一平均 暨比較單元ACU-1以及第三平均暨比較單元ACU-3)中的 類比領域減法器的輸出皆由放大器i感測,並由一可自由 遠擇的電谷為CA緩衝並進一步放大,用以作類比至數位 轉換,再由可自由選擇的第二放大器AMP2放大,用以輸 出一代表平均的VS-VR的電壓訊號(例如:VCD1戋 VCD3)。 〆 鲁在較佳實施例中每一類比領域減法器(例如:減法器 1)都包含,並且本質上可能包含多數個相互連接於一共同 點的資料儲存電容器(DATA ST0RAGE CAPACIT〇RX例 如·第一平均暨比較單元ACU-1中的CS1卜CS3卜CR1卜 CR31),其中,此共同點位於與各畫素連接的垂直傳輸線 上,其中,各畫素位於平均暨比較單元Acu透過開關S1 伺服的列中(例如列丨中的畫素是由第一平均暨比較單元 AOM所飼服)。每一平均暨比較單元acu中的四資料儲 28 20053^191 16323pif.doc 存電容器依照接續所有多數個開關(例如·· Si、S2、S3、 以、ss、SR)的切換連接順序所作之決定,填滿並儲存從 諸夕里素的其中之一所接收到的(例如:從相同列的第一行 的-畫素,或從相同列的第三行的一畫素)預定的類比畫素 資料電荷(ANALOG PIXEL DATA CHARGEX例如:“重設,, 或“訊號”資料),其中,這些畫素都與平均暨比較單元 ACU(例如:第一平均暨比較單元連接。在每一平 均暨比較單元ACU中(以及在各平均暨比較單元Acu之 零f曰1,例如:Savg)對應的開關(例如:S2、ss、SR、、 S4)都同時開路或同時閉路。在每一平均暨 中的各開關(例如:sl、S2、ss、SR、S3^4ymu 與行選擇訊號(例如:SEL)同等開路或閉路,如圖8A中之 時序圖所示。 猎由操縱S卜S2、S3、S4、SS與SR等開關,來控 制各晝素、四儲存電容器(例如:csu、CS31、CRn、CR3i) 以及其他電流路徑之間的連接,而使得此四儲存電容界得 # 以以下列順序填滿類比晝素資料:儲存電容器CRU儲存 來自晝素R11(第1列,第!行)的“重設,,電荷、儲存電容器 CS11儲存來自晝素RU(第!列,第!行)的“訊號,,電荷、 儲存電容器CR31儲存來自晝素R31(第1列,第3行)的“重 設”電荷、儲存電容器CS31儲存來自晝素R31(第!列, 3行)的“訊號”電荷。 二者擇-的’於各平均暨比較單元(Acu)的非相關雙 重次取樣模M_-cdssmode)期間(例如:於一標準相關 29 200533191 16323pif.doc 雙重取樣CDS模式期間)’在每—平均暨比較單元(ac切 中(每-第-平均暨比較單元(ΑαΜ)與第二平均暨比較單 元(ACU-2)),CR“重設,,資料儲存電容器其中之一(例如: CRn或CR31 ·,或CR11與CR31有效地合併成一電容器) 接著CS“訊號,,資料儲存電容器其中之一(例如:CS11或 CS31 ’或CS11與CS31有效地合併成一電容器)將載滿從 -晝素接收到的類比晝素㈣。如此—來,此多數個平均 暨比較單兀(ACU)將載滿(並且儲存)僅僅來自各畫素且中 一行的整個“重設,,與“訊號,,類比晝素資料。在載入平均暨 比較單元(ACU)内的資料儲存電容器(CR與cs)的方法期 間,可同時於主動晝素感測器(APS)陣列(例如於R11、 =12、R13、G14、...等畫素上)的單一行(例如第一行)中所 二、晝?上執仃標準的(非次取樣的)相關雙重取樣 〇〇 妾下來,依據那—行選擇線被啟動,平均暨比較 二二(广)接τ來的工作(於非相關雙重次取樣 _N-CDSS)模式期間)可為在主動晝素感· (Aps)陣列 列^於=、B22、G23、B24...等晝素上)的單—行(例如 w a仃所^的晝素上的標準的(非次取樣的)相關雙重 二(CDS)的貫現。在各平均暨比較單元(acu)的非相關雙 式期間(例如:在標準相關雙重取樣(⑽)模式 、SR與Savg等開關並不需要被操作(例如:可 維持開路狀態)。 平/旦比較單70 (Acu)工作的相關雙重次取樣 (_人取樣)^期間’當各平均暨比較單元(ACUX例如:第 30 200533191 16323pif.doc 一平均暨比較單元(acim)與第三平均暨比較單元 (ACl^3))的可切換連接對(pair)中的八儲存電容器,都填 R11、R31、R13、R33等四晝素來的類比(“重設” 與訊號1)晝素資料時,SS、SR與Savg等開關(與s卜S2、 S3 S4等開關同等)可依序被閉路,用以將接收自四畫素 (R,U、R31、R13、R33)之相同型式四晝素資料(“重設”或“訊 遽”)的所有四電荷—起“平均,,(合併並且以除法除)。 然而’在一平均暨比較單元(ACU)的相關雙重次取樣 工作方法(相關雙重次取樣(CDSS)之次取樣模式)的 車^佳實施例中,每一型式的類比晝素資料(“重設,,或“訊號,,) 透Ξ並藉由σ平均開關SaVg的閉路,而在可切換連接的各平 均暨比較單元(ACU)的各對應的資料儲存電容器(不同列 :叭例如:第一列與第三列)之間被“平均,,(合併並且以除 J除即使在所有的資料儲存電容器已被填滿類比晝素資 二=刖)。如此一來,舉例來說,當資料儲存電容器CS11 了來自畫素R11的“訊號,,資料時,資料儲存電容器 以及資料儲存電容器CR13)將會儲存晝素R11的“重 二貝料以及晝素R13的“重設,,資料的“平均,,,而 晝素R11的“重設,,值。 减仔 一各開關,特別是平均開關Savg,在每一平均暨比較單 =CU)中載人四儲存電容器的過程期間,執行平均 二於圖8A的時序圖中,這裡,高準位表示 =的開關。本質上’將開關S1閉路(在所有的平均暨 乂早tg(ACU)中)使對應的資料儲存電容器組,例如: 2〇〇mm fn、CR12(未顯示),CR13、CR14(未顯示鳩滿從一晝 素來的-預定型式的類比晝素資料,其中,此畫素位於由 啟動的行選擇線所決定的行之中(例如:第行選擇線 SEL1之對於第-行)’之後將關S1 _,織將平均開 關Savg閉路。(然而,在所有平均暨比較單元(acu)中的 S3 S4 SS與SR等開關的開路或閉路,是根據每一 平均,比較單元(ACU)中四資料儲存電容器中是那一個已 被預定用來接收那類比晝素資料)。 踗Η 士例二Λ考圖Μ ’於時間〇)處,當平均開關㈣開 被閉路(用來將“重設,,資料載入CR11與 晬二35f广态中)。接著’於時間⑺處,開關S1被開路(跟 日CR13等電容器完全填滿“重設,,晝素資料之 CR二二1關—被閉路’用以將不久之前儲存於 卜^ 3電容㈣的類比畫素㈣(電荷)合併並以 矛矛、於疋,在類比畫素資料(例如:‘‘重設,,資料)已被 m平均暨比較單元(acu)中每一所選的資料儲存電容 » 歹| 〇 : CRU、CR12、CR13、CR14、)接收之後開 著:1 於:T路(表示該些資料儲存電容器的載入完成),接 門政均暨比較單元(ACU)之間的平均開_ Savg被 “的對同f色並且在各晝素相同行中的相同 電荷)一 電例來自畫素ri 1與晝素ri 3之“重設” 中Γ均(合併並且以除法除)。如此一來,從相同行 如:晝素接收到的相同型式類比畫素資料(例 )卩被平均(合併並且以除法除)並儲存於每一 32 20053M91 預定的資料儲存電容器對之中(例如:CR11與CR13)。這 普遍的相同行平均方法論(當開關Savg開路時開關si閉 路’例如:於時間(3)、(5)、與⑺之處;接著當開關 閉路時開關S1開路,例如:於時間(4)、(6)、與(8)之處) 會一直被重複來載入剩餘三對資料儲存電容器的每一對 (例如:CS11與CS13、然後CR31與CR33、接著再CS31 與CS33),使得可切換連接的各平均暨比較單元(ACu)(例 如在第一平均暨比較單元(ACIM)與第三平均暨比較單元 (ACU-3)中)中四對應的資料儲存電容器對中的每一對,將 谷納彳之相同行中相同顏色的二晝素接收到的‘‘重設,,或“訊 號貢料的“平均的”值。 接下來,會執行從相同列(SA]V[E_C0LUMN^各畫素 (來自不同行的各晝素)接收到的相同型式的晝素資料的相 同列平均工作(合併並且以除法除)。從不同行(相同列)各畫 素來的資料的相同列“平均,,(合併並且以除法除)工作,& 以很簡單的藉由下駐縣執行:使關ss _(例如於 時間(9)之處)來等化位於每一平均暨比較單元(acu)内各 CS貧料儲存電容器對(例如在第-平均暨比較單元(AOM) 中的CS11與CS31)所儲存的“訊號,,資料電荷;以及使開關 SR閉路來等化位於每一平均暨比較單元(acu)内各資 ,儲存電谷器對(例如在第一平均暨比較單元(acu])中的 ,CR31)所儲存的“重設’’資料電荷。在最後的相同列 、二=步驟上,位於各可切換連接的平均暨比較單元 U)(例如·第一平均暨比較單元(ACU-1)與第三平均暨 33 200533191 16323pif.doc 比較單元(ACU-3))中的四cs :身料儲存電容 ⑶卜⑶3、CS31、⑽)的每—個都維持著相 均 的“訊號”電荷,其代表從相同顏色四晝素(例如:R1卜 R13、、R31、與R33)所接收的四電荷⑽號)的精確數學 均並且類似的,在最後的(相同列)“平均”步驟上,位於 各可切換連接的平均暨比較單元(ACU)(例如:第一平均魯 比較單元(ACU-1)與第三平均暨比較單元(acu_3))中的; CR貧料儲存電容器(例如:CRU、CR13、CR3i、cr 的每-個都維持著相同的“平均的,,“重設,,電荷,其代 相同顏色四晝素(例如:RU、Ri3、R3iiR3_ 的四(重設)電荷的精確數學平均。 在相關雙重次取樣模式中二可切換連接的平均暨比較 早兀(ACU)中的八資料儲存電容器(CRU、CR13、⑶卜 CR33以及CS11、CS13、CS3卜CS33)之間的資料載入與“平 均,,工作(用以在R11、Rl3、纽與R33等晝素上執行相關 雙,次取樣),將茶考下述等式作更詳盡的解釋,其中,這 籲些等式表示圖8A之時序圖中所繪示的時間(⑴到⑼)處的 各電荷。在這些等式中,Q代表下標的資料儲存電容器中 的電荷’並且號表示電荷的等化,其假定各電容(所有 相同型式的資料儲存電容器的,CS或CR)均相等;下標格 式中的電壓標示(例如:Vresetu)表示與“VRU ”電壓相同; 下標格式中有關電容的標示,例如CcR"/cR3i表示這些下標 的電容器(這裡的例子為CRU與CR31)不論暫時與否,皆 已有效的並聯(用來構成—附加的合併電容)。 34 2〇〇5m?i 於時間⑴處,晝素Rl 1與R13的“重設,,電壓(Vri 1與 VR13)個別被取樣,並個別被載入資料儲存電容器cr^ 與CR13中:Vref 20), or, as shown in the preferred embodiment, a differential amplifier (DIFFERENTIAL AMPLIFIER) connected to a reference voltage Vref and used in parallel with an analog-to-digital conversion (ADC) connected in parallel. This arrangement allows the bias source (BIAS SOURCE) (Vramp) to be at the first voltage level during the average operation period and to be at the first voltage level during the analog-to-digital conversion operation period. The first voltage level is different from the second voltage level. Voltage level. The buffer capacitor (BUFFER CAPACITOR) (CA) and the second output amplifier APM2 are both freely selectable and are included in this preferred embodiment (shown in Figure 7) to increase the analog-to-digital conversion (ADC) Resolution Gain (GAIN). The output of the analog field subtractor in each average and comparison unit ACU (such as the first average and comparison unit ACU-1 and the third average and comparison unit ACU-3) is sensed by the amplifier i and is freely accessible by a The selected valley is buffered by CA and further amplified for analog-to-digital conversion and then amplified by a freely selectable second amplifier AMP2 to output a voltage signal representing the average VS-VR (eg: VCD1 戋 VCD3 ). In the preferred embodiment, Jie Lu includes each analog field subtractor (for example: subtracter 1), and may essentially include a plurality of data storage capacitors (DATA STCAPAGE CAPACIT0RX) connected to a common point. CS1, CS3, CR1, and CR31 in an average and comparison unit ACU-1), where this common point is located on the vertical transmission line connected to each pixel, where each pixel is located in the average and comparison unit Acu servo through the switch S1 (For example, the pixels in column 丨 are fed by the first average and comparison unit AOM). The four data stores in each average and comparison unit acu 28 20053 ^ 191 16323pif.doc The storage capacitor is determined in accordance with the switching connection order of all the majority of switches (such as Si, S2, S3,, ss, SR) , Fill and store the predetermined analog pixels received from one of the primaries (for example: a pixel from the first row of the same column, or a pixel from the third row of the same column) Data charge (ANALOG PIXEL DATA CHARGEX, for example: "Reset," or "Signal" data), where these pixels are connected to the average and comparison unit ACU (for example: the first average and comparison unit. At each average and comparison Unit ACU (and in each average and comparison unit Acu, zero f is 1, for example: Savg) the corresponding switches (for example: S2, ss, SR, S4) are open or closed at the same time. In each average and Each switch (for example: sl, S2, ss, SR, S3 ^ 4ymu) is open or closed with the line selection signal (for example: SEL), as shown in the timing diagram in Figure 8A. S4, SS and SR switches to control each day element and four storage capacitors (Such as: csu, CS31, CRn, CR3i) and other current paths, so that these four storage capacitors are bound to # fill the analog daylight data in the following order: The storage capacitor CRU stores the data from daylight R11 (No. 1 column, row!) "Reset, the charge, storage capacitor CS11 stores the signal from day element RU (column! Column, line!), And the charge, storage capacitor CR31 stores the signal from day element R31 (first Column, row 3), the "reset" charge, and the storage capacitor CS31 stores the "signal" charge from day element R31 (column! Row, row 3). The alternative is-in each average and comparison unit (Acu) Uncorrelated double subsampling mode M_-cdssmode) (for example: during a standard correlation 29 200533191 16323pif.doc double sampling CDS mode) 'in every-average and comparison unit (ac cut in (every-th-average and comparison unit) (ΑαΜ) and the second averaging and comparison unit (ACU-2)), CR "reset, one of the data storage capacitors (for example: CRn or CR31 ·, or CR11 and CR31 effectively merge into a capacitor) and then CS" Signal, one of the data storage capacitors (eg : CS11 or CS31 'or CS11 and CS31 effectively merge into a capacitor) will be loaded with the analog diurnal received from-diurnal. So-this, the majority of the average and comparative unit (ACU) will be full (and Storage) The entire "reset ,, and" signals from the pixels and the middle row, analog day-to-day data. During the method of loading the data storage capacitors (CR and cs) in the average and comparison unit (ACU) , Can day and day in a single row (such as the first row) of an active day sensor array (APS) array (such as R11, = 12, R13, G14, ...)? The standard (non-sub-sampling) correlated double sampling was performed on the next line, and the selection line was activated according to that line, and the average and comparison of the second and second (wide) connection τ work (in non-correlated double sub-sampling_N -CDSS) mode) can be a single row (for example, on the day element by wa 仃) on the active day element sense (Aps) array (^, B22, G23, B24, etc.). The implementation of standard (non-subsampling) correlated double two (CDS). During the uncorrelated dual mode of each average and comparison unit (acu) (for example, in the standard correlated double sampling (⑽) mode, SR and Savg The switch does not need to be operated (for example, it can maintain an open circuit state). The relevant double subsampling (_person sampling) of the flat / denier comparison single 70 (Acu) work ^ period 'When each average and comparison unit (ACUX example: the first 30 200533191 16323pif.doc Eight storage capacitors in the switchable pair of one average and comparison unit (acim) and third average and comparison unit (ACl ^ 3)) are filled with R11, R31, R13, R33, etc. For the four-day analog ("Reset" and signal 1), the SS, SR, and Savg switches (with Sb, S3, S4, etc.) Related to the same) can be closed circuit in order to transfer all the four charges of the same type of four-day data ("reset" or "signal") received from the four pixels (R, U, R31, R13, R33) — From "Average," (combined and divided by division). However, the car's best implementation of the "Related Double Subsampling Working Method (A Correlated Double Subsampling (CDSS) Subsampling Mode) in an Average and Comparison Unit (ACU)" In the example, each type of analog daylight data ("Reset," or "Signal,") is transparent and closed by the σ average switch SaVg. Corresponding data storage capacitors (different columns: for example: first and third columns) are "averaged," (combined and divided by J, even though all data storage capacitors have been filled with analog day-to-day data (2 = 刖). In this way, for example, when the data storage capacitor CS11 receives the “signal from the pixel R11,” the data storage capacitor and the data storage capacitor CR13) will store the “double second of the day R11”. The "reset" of the raw materials and daytime R13 ,, and the value of the “Reset,” of the day R11. Subtract a switch, especially the average switch Savg, during the process of carrying four storage capacitors in each average and comparison table = CU), perform an average of two In the timing diagram of FIG. 8A, here, the high level indicates the switch of =. Essentially 'close the switch S1 (in all the average and early tg (ACU)) to make the corresponding data storage capacitor bank, for example: 2 〇〇mm fn, CR12 (not shown), CR13, CR14 (not shown the full-day-predetermined pattern of day-to-day analog data, where this pixel is located in the row determined by the row selection line activated Medium (for example, the row-selection line SEL1 for the row-), S1_ will be turned off, and the average switch Savg will be closed. (However, S3, S4, SS, and SR switches in all averaging and comparison units (acu) are open or closed. According to each average, which of the four data storage capacitors in the comparison unit (ACU) is reserved To receive that kind of analog data).踗 Η Case 2 Λ Katu M 'at time 0), when the average switch ㈣ is closed (for resetting, the data is loaded into CR11 and 晬 35f wide state). Then' at time ⑺ At the switch S1 is opened (the capacitors such as CR13 and the like are completely filled with "Reset, CR 2 2 1 of the day element data-closed circuit" is used to store the analog pixel 卜 3 capacitor 之前 not long ago. (Charge) Merged and used spear and 疋, in the analog pixel data (for example: `` Reset ,, data '' has been selected by m average and comparison unit (acu) each selected data storage capacitor »歹 | 〇: CRU, CR12, CR13, CR14,) open after receiving: 1 at: T road (indicating that the loading of these data storage capacitors is completed), the average opening between the door control and comparison unit (ACU) _ Savg was "paired with the same color and the same charge in the same row of each day element.) An example of the electric charge comes from the" reset "of pixels ri 1 and day element ri 3 (combined and divided by division). At the same time, the same type of analog pixel data (eg) received from the same line, such as the day element, is averaged (combined and divided by division) and Stored in each of the 32 20053M91 predetermined data storage capacitor pairs (eg, CR11 and CR13). This is generally the same line averaging methodology (the switch si is closed when the switch Savg is open). For example: at time (3), (5) , And; where switch S1 is open when the circuit is opened and closed, for example, at time (4), (6), and (8)) will be repeated to load each of the remaining three pairs of data storage capacitors A pair (for example: CS11 and CS13, then CR31 and CR33, and then CS31 and CS33), so that each average and comparison unit (ACu) (eg, the first average and comparison unit (ACIM) and the third average) Each of the four pairs of corresponding data storage capacitors in the comparison unit (ACU-3) is a `` reset, '' or `` reset, '' or a The "average" value of the tribute. Next, the same column averaging work (merging and dividing by) of the same type of daylight data received from the same column (SA) V [E_C0LUMN ^ each pixel (each daylight from different rows) will be performed. From Different rows (same columns) of the same column of the original data "average, (combined and divided by division) work, & in a very simple way to execute by the county: make off ss _ (for example in time (9 )) To equalize the "signals" stored in each CS lean storage capacitor pair (for example, CS11 and CS31 in the -average and comparison unit (AOM)) located in each average and comparison unit (acu), The data charge; and the switch SR is closed to equalize the data stored in each average and comparison unit (acu) and store the valley pair (eg, CR31 in the first average and comparison unit (acu)) "Reset" the data charge. On the same column at the end, two = steps, are located in the average and comparison unit U of each switchable connection (for example, the first average and comparison unit (ACU-1) and the third average Cum 33 200533191 16323pif.doc comparison unit (ACU-3)) four cs: body storage capacitor 3. CS31, ⑽) each maintain a uniform "signal" charge, which represents the four-charge ⑽ signal received from the same color tetracycline (for example: R1, R13, R31, and R33) The exact math is similar and similar. On the last (same column) "averaging" step, the average and comparison unit (ACU) located in each switchable connection (for example: the first average Lu comparison unit (ACU-1) and the first The three average and comparison units (acu_3)); each of the CR lean storage capacitors (for example: CRU, CR13, CR3i, cr maintains the same "average," reset, charge, its generation Accurate mathematical average of the four (reset) charges of tetrachromatic elements of the same color (for example: RU, Ri3, R3iiR3_. The average of two switchable connections in the correlated double subsampling mode and the eight data stores in the ACU Data loading between capacitors (CRU, CR13, CD, CR33 and CS11, CS13, CS3, CS33) and "average," work (used to perform the relevant double, time, etc. on R11, Rl3, New Zealand and R33) Sampling) to explain the following equations of tea test, in which Each charge at the time (⑴ to ⑼) shown in the timing diagram of Fig. 8A is shown. In these equations, Q represents the charge in the subscripted data storage capacitor 'and the number represents the equalization of the charge. It is assumed that each The capacitance (all the same types of data storage capacitors, CS or CR) are equal; the voltage indication in the subscript format (for example: Vresetu) indicates the same voltage as the "VRU"; the capacitor indication in the subscript format, such as CcR " / cR3i indicates that these sub-capacitors (the examples here are CRU and CR31) have been effectively connected in parallel (for forming—additional combined capacitors) regardless of whether they are temporary or not. 34 2〇5m? I At the time, the “reset” of the day element Rl 1 and R13, the voltage (Vri 1 and VR13) are individually sampled and individually loaded into the data storage capacitors cr ^ and CR13:

Rllpixel : Qcrii = Qcrbi - Ccr11/cr3i(Vreseth - Vref) ^ Rl3pixel : QcR13 - QCR33 - Ccr13/CR33(Vr eseti3 - Vref) 於時間(1)處,CS11、CS13、CS31、與CS33等電容 器也都被充電,但這些起始電荷隨後會被從預定晝素接收 到的適當(影像訊號)畫素資料所取代。 於時間(2)處,R11與R13二晝素個別的“重設,,電壓 (VR11與VR13)在CR11與CR13二電容器之間(平均開關 Savg閉路)被“平均’’(合併並且以除法除):Rllpixel: Qcrii = Qcrbi-Ccr11 / cr3i (Vreseth-Vref) ^ Rl3pixel: QcR13-QCR33-Ccr13 / CR33 (Vr eseti3-Vref) At time (1), CS11, CS13, CS31, and CS33 capacitors are also used Recharge, but these initial charges are then replaced by the appropriate (image signal) pixel data received from the predetermined celestial element. At time (2), the R11 and R13 diurnal are individually reset. The voltage (VR11 and VR13) between the CR11 and CR13 capacitors (average switch Savg closed circuit) is "averaged" (combined and divided by except):

Qcrii = QCR3i = Qcrb = Qcrss = Ccrii/cr3i/cri3/cr33 ( ·Υ_τιι + Vreseth _ vref、Qcrii = QCR3i = Qcrb = Qcrss = Ccrii / cr3i / cri3 / cr33 (· Υ_τιι + Vreseth _ vref,

k 2 J 於時間(3)處,Rll與R13二畫素個別的“影像,,(訊號) 電壓(VS11與VS13),分別被取樣並載入資料儲存電容器 CS11與CS13之中:k 2 J At time (3), the respective “images” of the two pixels Rll and R13, and the (signal) voltage (VS11 and VS13) are sampled and loaded into the data storage capacitors CS11 and CS13, respectively:

於時間(3)處,S3與S4二開關皆開路(用來儲存“重設,, 電壓的電容器CR11、CR13、CR31、與CR33都處於浮動 狀悲)’並且用來儲存“重設,,電壓的電容器CRU、CR13、 CR31 、與 CR33都維持其之前的電荷At time (3), both S3 and S4 switches are open (the capacitors CR11, CR13, CR31, and CR33 are stored in a reset state for storing the reset), and are used to store the reset, Voltage capacitors CRU, CR13, CR31, and CR33 all maintain their previous charge

Qcrii=QCR3i=QCRi尸qCR33(請參考上述的時間⑴)。 於時間(4)處,R11與Ri3二畫素個別的“影像,,(訊號) 35 20053識 電壓(VS11與VS13),都在CS11與CS13二電容器之間(平 均開關Savg閉路)被“平均”(合併並且以除法除):Qcrii = QCR3i = QCRi corpse qCR33 (please refer to the time above). At time (4), the individual “images” of the two pixels of R11 and Ri3, (signal) 35 20053 voltages (VS11 and VS13) are all “averaged” between the two capacitors of CS11 and CS13 (average switch Savg closed circuit). "(Combined and divided by division):

Qcsil = QcS31 = Qcsi3 = QcS33 = CcSl 1/CS31/CS13/CS33 + VSIGNAL13 v 、 、 2 - V rampQcsil = QcS31 = Qcsi3 = QcS33 = CcSl 1 / CS31 / CS13 / CS33 + VSIGNAL13 v,, 2-V ramp

J 於時間(5)處,R31與R33二晝素個別的“重設,,電壓 (VR31與VR33),分別被取樣並載入資料儲存電容器CR31 與CR33之中: • R31 pixel: QCr3i = CCr3i(Vreset3i - Vref) R33 pixel : QcR33 - CcR33(VrESET33 - Vref) 於日守間(5)處’由於開關SS為開路(用來儲存“訊號,,電 壓的電容器CS11與CS13都處於浮動狀態),並且開^ ^ 也開路(用來儲存“重設,,電壓的電容器CR11與CR13都處 於浮動狀態),CS11、CS13、CR11、與CR13等電容器都 個別的維持其之前的電荷。 於時間(6)處,R31與R33二晝素個別的‘‘重設,,電壓 • (VR31與VR33),都在CR31與CR33二電容器之間(平均 開關Savg閉路)被“平均,,(合併並且以除法除): QCR3,=QCR33 =CCR31/CR33 ^ ^ ^於時間(7)處,R31與R33二畫素個別的影像(訊號)電 壓(VS31與VS33),分別被取樣並載入資料儲存電容器 CS31與CS33之中: 36 2005VJll lo323pif.doc R31 pkel: QCS31 = CCS31(VSIGAL31 — Vramp) R33 pixel: QCS33 = CCS33(VSIGAL33 — Vramp) 於時間(8)處,R31與R33二畫素個別的“影像,,(訊號電 壓(VS31與VS33),都在CR31與CR33二電容器之間(平 均開關Savg閉路)被“平均”(合併並且以除法除): QCS31=QCS33 =CCS31/CS33 ί ^^1±^咖3 . Vref ' v 2 j 於時間(9)處,執行最後的平均(四“重設,,電荷的以及四 “訊號”電荷的)。儲存於每一平均暨比較單元(ACU)中的二 (相同行)“平均的重設’’(AVERAGED RESET)電壓都被平均 (當開關SR為閉路時)成一“平均的重設,,電荷qravg ;並且 儲存於每一平均暨比較單元(ACU)中的二(相同行)“平均的 訊號’’(AVERAGED SIGNAL)電壓都被平均成一“平均的訊 號”電荷QSAVG(當開關SS為閉路時):J At time (5), the respective “resets” of R31 and R33 diurnal, the voltage (VR31 and VR33) are sampled and loaded into the data storage capacitors CR31 and CR33, respectively: • R31 pixel: QCr3i = CCr3i (Vreset3i-Vref) R33 pixel: QcR33-CcR33 (VrESET33-Vref) at day guard (5) 'Because the switch SS is open (the capacitors CS11 and CS13 for voltage storage are floating), And open ^ ^ is also open (to store "reset, voltage capacitors CR11 and CR13 are floating state), CS11, CS13, CR11, and CR13 capacitors individually maintain their previous charge. In time (6 ), R31 and R33 diurnal are individually reset, and the voltages • (VR31 and VR33) are both “averaged” between CR31 and CR33 two capacitors (average switch Savg closed circuit), (combined and divided Divide): QCR3, = QCR33 = CCR31 / CR33 ^ ^ ^ At time (7), the individual image (signal) voltages (VS31 and VS33) of the two pixels R31 and R33 are sampled and loaded into the data storage capacitor CS31 Among CS33: 36 2005VJll lo323pif.doc R31 pkel: QCS31 = CCS31 (VSIGAL31 — Vramp) R33 pixel: QCS33 = CCS33 (VSIGAL33 — Vramp) At time (8), the individual “images” of the two pixels of R31 and R33, (the signal voltage (VS31 and VS33) are in the CR31 and CR33 capacitors (Average switch Savg closed circuit) is "averaged" (combined and divided by division): QCS31 = QCS33 = CCS31 / CS33 ί ^^ 1 ± ^ Coffee 3. Vref 'v 2 j At time (9), execute the last Average (four “reset,” and four “signal” charges). The two (same row) “AVERAGED RESET” voltages stored in each average and comparison unit (ACU) are both Is averaged (when the switch SR is closed) into an "average reset, charge qravg; and two (same row)" averaged signal "(average signal) stored in each average and comparison unit (ACU) The voltages are averaged into an "average signal" charge QSAVG (when the switch SS is closed):

QrAVG^QcRI 1=QcR3 1=QcR13=QcR33 並且QrAVG ^ QcRI 1 = QcR3 1 = QcR13 = QcR33 and

Qravg = CcRll/CR31/CR13/CR33Qravg = CcRll / CR31 / CR13 / CR33

VrESET 11+ VrESET13 +VrESET31+ VrESET33 4 -VrefVrESET 11+ VrESET13 + VrESET31 + VrESET33 4 -Vref

QsAVG=QcS 11 =QcS3 1 =QcS 1 3=QcS33 並且QsAVG = QcS 11 = QcS3 1 = QcS 1 3 = QcS33 and

QsAVG = CcSll/CS31/CS13/CS33QsAVG = CcSll / CS31 / CS13 / CS33

VsiGNALll + VsiGNAL13 + VsiGNAL31 + VsiGNAL33 Λ r、 --J---V ref 4 如此一來,就可藉由SS與SR二開關的閉路而得到(例 37 200533191 16323pif.doc 如.從QSAVG與QRAVG)此相同顏色四晝素的最後“平均的” 以及次取樣的“電壓差,,(VS_VR)。在最後的平均之後⑽如 於時間(9)之後)’儲存於第—列與第三列的第 較單元ACW與第三平均暨比較單元娜3中的對應的 CS與CR㈣儲存電容器中的電荷,都儲存了從四畫素得 到的相同的“平均的,,電荷。如此一來,VCD1與vcd3二 輸出的其中之一可被用來讀取(用來作類比至數位轉換)代VsiGNALll + VsiGNAL13 + VsiGNAL31 + VsiGNAL33 Λ r, --J --- V ref 4 In this way, it can be obtained by the closed circuit of the two switches SS and SR (example 37 200533191 16323pif.doc eg. From QSAVG and QRAVG) The last "average" of the same color tetracycline and the "voltage difference between subsampling," (VS_VR). After the last average, such as after time (9)) are stored in the first and third columns The charges in the corresponding CS and CR 中 storage capacitors in the first comparison unit ACW and the third average and comparison unit Na3 store the same "average," charge obtained from the four pixels. In this way, one of the VCD1 and vcd3 outputs can be used for reading (for analog to digital conversion) generation.

表相同顏色四相關雙重次取樣所取樣的最後“電壓 差’’(VS-VR)。 圖8B繪示為一斜升電壓(RAMPING VOLTAGE)與一 °十數為鎖存控制 όίΐ 5虎(COUNTER-LATCHING CONTROL SIGNAL)波形之時序(TIMING)圖,其中,此斜升電壓與此 計數器鎖存控制訊號波形用來同時執行來自圖3之互補金 氧半導體CMOS影像感測器(CIS)中,多數個平均暨比較 單元(ACU)之多數個輸出之類比至數位轉換。在最後的平 均之後(例如於圖8A與圖8B中提及的時間(9)之後),儲存 於(第一列與第三列的)第一平均暨比較單元ACU-1與第三 平均暨比較單元ACU-3中對應的CS與CR資料儲存電容 器中的“平均的重設’’(AVERAGED RESET)與“平均的訊 號’’(AVERAGED SIGNAL)電荷,都利用平均暨比較單元 ACU 中的類比領域減法器(ANALOG DOMAIN SUBTRACTOR)(例如第一平均暨比較單元ACU-1的第一 減法器(SUBTRACTOR-1))來作比較,用來獲得此主動畫素 感測器(APS)陣列四相關雙重次取樣(CDSS)所取樣的晝素 38 200533191 16323pif.doc 的單一(次取樣的)值。包含串聯的CS與CR二電容器的減 法器(例如第一減法器(SUBTRACTOR· 1))連接於Vramp與 放大器AMP1的輸入之間。因此,放大器ΑΜρι輸入端的 電壓代表Vramp+VS+(_VR)的和,這是因為儲存於電容器 CR上的VR電荷的極性,與cs電容器所儲存的電荷 極性以反相方式(串聯)連接。如此一來,放大器Ampi輸 入端的電壓係為被(平均的)VS_Vr鎖存於較高處的 Vramp。計數器致能訊號(c〇UNTEr enableThe table shows the final "voltage difference" (VS-VR) sampled by the four-correlation double subsampling of the same color. Figure 8B shows a ramp voltage (RAMPING VOLTAGE) and a ten-degree latch control. 5 Tiger (COUNTER) -LATCHING CONTROL SIGNAL) Timing chart, where the ramp voltage and this counter latch control signal waveform are used to simultaneously execute most of the complementary metal-oxide-semiconductor CMOS image sensor (CIS) from Figure 3. The analog-to-digital conversion of most outputs of the average and comparison unit (ACU). After the final average (for example, after the time (9) mentioned in Figures 8A and 8B), it is stored in (the first column and the first column Three-column) "AVERAGED RESET" and "Averaged Reset" in the corresponding CS and CR data storage capacitors in the first average and comparison unit ACU-1 and the third average and comparison unit ACU-3 ”(AVERAGED SIGNAL) charges are all made using the analog domain subtractor (ANALOG DOMAIN SUBTRACTOR) in the average and comparison unit ACU (such as the first subtracter (SUBTRACTOR-1) of the first average and comparison unit ACU-1). Compare to get this initiative A single (subsampled) value of the daytime element 38 200533191 16323pif.doc sampled by the four-correlation double subsampling (CDSS) of an element sensor (APS) array. A subtractor consisting of two capacitors in series, CS and CR (eg, the first A subtractor (SUBTRACTOR · 1)) is connected between Vramp and the input of the amplifier AMP1. Therefore, the voltage at the input terminal of the amplifier Αρι represents the sum of Vramp + VS + (_ VR), which is because of the polarity of the VR charge stored in the capacitor CR, The polarity of the charge stored in the cs capacitor is connected in anti-phase (in series). In this way, the voltage at the input of the amplifier Ampi is the Vramp latched by the (average) VS_Vr. The counter enable signal (c〇 UNTEr enable

SIGNAL)(CE)(參考圖3)可被排定時間而來斷定在最後平 均之後(在SS與SR二開關都閉路之後)開始計數。因此, 藉由以一已知(預定的)斜率或至少以一固定斜率上升電壓 Vramp,而同時啟動此計數器之計數(例如在圖3的數位訊 ,輸出電路中),可將VS-VR的大小從一類比值轉換為一 量化的數位值,其中,當放大器AMP1的輸入(從減法器的 輸出而來)跨越一預定的臨限電壓準位(THRESH〇ld VOLTAGE LEVEL)(例如:Vref)時,藉由鎖住計數,而將 • VS-VR的大小從一類比值轉換為一量化的數位值。VS-VR 的大小越大,放大器AMP1到達臨限電壓(vref)所需時間 (計數)就越短。 當放大器AMP1的輸入到達臨限電壓(Vref)時,平均 暨比較單元ACU的訊號VCD(例如··第一平均暨比較單元 ACU-1的VCD1)的值將從低轉變成高。因此,來自每一 平均暨比較單元ACU的訊號VCD(例如:VCD卜VCD2、 VCD3、···)可輸出到鎖存電路(LATCH CIRCUIT)(參考圖 39 20053¾ 9)當作一計數鎖存控制訊號(c〇UNT-lATCH SIGNAL) 〇 圖 9繪示為計數器與鎖存電路(COUNTER LATCHING CIRCUIT)之方塊圖,其中,此計數器與鎖存 電路用同時來執行來自圖3之互補金氧半導體CMOS影像 感測器(CIS)中,多數個平均暨比較單元(ACU)之多數個輸 出(VCD)之類比至數位轉換。此計數器於計數器致能訊號 (COUMTER ENABLE SIGNAL)(CE)啟動時,開始輸出一數 位計數(DIGITAL COUNT)(例如於平均暨比較單元(ACU) 以相關雙重次取樣CDSS模式所作的四晝素的“最後的平 均之後,或是於只一晝素資料於標準的相關雙重取樣CDS 模式期間,載入到每一平均1比較單元(ACU)中之後)。鎖 存電路包括多數個並聯的計數鎖存琴 (C〇UNT丄ATCH)(每一平均暨比較單元(AOJ)含-個),呈 :,這些計數鎖存器在各別的平均暨比較單元(acu)所輸 __的時間點上’將計數輸出鎖 ,η器。每一平均暨比較單元(acu)所輸出的 CD喊可时㈣提供給每— 的個別的計數鎖存器(位於鎖存電路巾)—,^^;(cAdC: 從低轉為㈣值時,此提供給 ^ 此,當計數器到達其計儲存此計數值。因 多數個平均暨比較= 立的) 料路中多數個鎖存器(儲存供每 2〇〇53mi 一平均暨比較單元(ACU)用的計數器值)的内容可輸出給 數位訊號處理器(DIGITAL SIGNAL , 用以作更進一步的改變或儲存或從此一平均暨比較單元 (ACU)發送(次取樣的或非次取樣的)畫素資料。SIGNAL) (CE) (refer to Figure 3) can be scheduled to determine that counting starts after the last average (after both SS and SR switches are closed). Therefore, by increasing the voltage Vramp with a known (predetermined) slope or at least with a fixed slope, and simultaneously starting the counting of this counter (for example, in the digital signal and output circuit of Figure 3), the VS-VR's The magnitude is converted from an analog value to a quantized digital value. When the input of the amplifier AMP1 (from the output of the subtractor) crosses a predetermined threshold voltage level (THRESHOLVOLTAGE LEVEL) (for example: Vref) , The size of the VS-VR is converted from an analog value to a quantized digital value by locking the count. The larger the size of VS-VR, the shorter the time (count) required for the amplifier AMP1 to reach the threshold voltage (vref). When the input of the amplifier AMP1 reaches the threshold voltage (Vref), the value of the signal VCD of the average and comparison unit ACU (for example, · VCD1 of the first average and comparison unit ACU-1) will change from low to high. Therefore, the signal VCD (for example: VCD, VCD2, VCD3, ...) from each average and comparison unit ACU can be output to the latch circuit (LATCH CIRCUIT) (refer to Figure 39 20053¾ 9) as a count latch control Signal (c〇UNT-LATCH SIGNAL) 〇 FIG. 9 shows a block diagram of the counter and latching circuit (COUNTER LATCHING CIRCUIT), in which the counter and the latching circuit are used to simultaneously execute the complementary metal-oxide-semiconductor CMOS from FIG. 3 In the image sensor (CIS), the analog to digital conversion of the majority output (VCD) of the plurality of average and comparison units (ACU). When the counter enable signal (COUMTER ENABLE SIGNAL) (CE) is activated, this counter starts to output a digital counter (e.g., a four-day prime in the average and comparison unit (ACU) in the related double subsampling CDSS mode). "After the final averaging, or after only one day of prime data is loaded into each averaging 1 comparison unit (ACU) during the standard correlated double sampling CDS mode). The latch circuit includes a number of parallel count locks Coontatch (each AOJ includes-one), showing: these count latches at the time points of __ inputted by the respective average and comparison units (acu) On the count output lock, η device. The CD output from each average and comparison unit (acu) can be provided to each individual count latch (located in the latch circuit towel), ^^; (cAdC: from low to threshold value, this is provided to ^, so when the counter reaches its count store this count value. Because most average and comparison = stand) Most latches in the material path (stored for every 2 〇〇53mi The contents of an average and comparison unit (ACU) counter value) can be output To a digital signal processor (DIGITAL SIGNAL) for further changes or storage or sending (sub-sampled or non-sub-sampled) pixel data from this average and comparison unit (ACU).

圖10緣示為依再一實施例,圖3之互補金氧半導體 CMOS景》像感測為(CIS)之主動畫素感測器(Aps)中,用來 執行相關雙重次取樣(CDSS),其平均/次取樣達N2晝素(以 大於4之:欠取樣比率)之多數個平均暨比較單元(acu)之間 f切換㈣連狀錢圖。除了圖1G巾彡油平均暨比較 單兀(NACU)之間的各切換内部連接比較有彈性之外,圖 1〇的平均暨比較電路與圖6的报相似,在此圖中,同時可 連接不同行的大於二的(例如:N)平均暨比較單元(acu)。 加的内部連接支援了各晝素的電荷(重設與訊號)的 σ开亚且赠法除,,平均動作,其中,這些畫素來自至少 :列:Γ如圖6中之平均暨比較單雄OJ)之連接對。因 既,,將Ν多數個平均暨比較單元(NACU)(取代2平均FIG. 10 is a diagram illustrating a complementary metal-oxide-semiconductor CMOS scene in FIG. 3 according to still another embodiment, and the main animated pixel sensor (Aps) of which the image sensor is (CIS) is used to perform correlated double subsampling (CDSS) , Whose average / time sampling reaches N2 celestial factors (with a ratio of greater than 4: undersampling ratio) between a plurality of average and comparison units (acu) to switch between the money graph. Except that the internal connection of each switch between the average and comparative unit (NACU) in Figure 1G is more flexible, the average and comparison circuit in Figure 10 is similar to the report in Figure 6, in this figure, it can be connected at the same time. Greater than two (for example: N) average and comparison units (acu) in different rows. The added internal connection supports the σKia of the charge (reset and signal) of each day element, and divides and gives the average action. Among them, these pixels come from at least: column: Γ as shown in the average and comparison table in Figure 6. OJ) 's connection pair. Therefore, the N-number of average and comparison units (NACU)

二tf:))連接在—起’其每-個都含有N個CR 個αι二=3^個。f料儲存電容器(取代只有2 2N 子電容11以及2個Csf料儲存電容器),一 示“平均的,,佥♦ - 型晝素區域,可被次取樣至表 連接系^ J㈤—4色邮叫的資料。因此,圖10的内部 (CIS)中1中的互補金氧半導體CM0S影像感測器 裡,N可為關雙重次取樣(_),這 幻任何整數(例如·· 2,一如圖6與 200533191 16323pif.doc 圖7中的例子)。 圖11繪示為依本發明再一實施例,一增進的平均聲比 較單元(NACU)之詳細電路圖,其用來對圖3之互補金氧半 導體CMOS影像感測器(ClS)之主動畫素感測器(Aps)中, - 2Nx2N區域中相同顏色之晝素,執行相關雙重次取樣 CDSS的平均/次取樣達炉畫素之多。圖u中描述的增進 的平均暨比較單元(NACU)與圖7中描述的平均暨比較單 元(ACU)很相似,除了圖η的增進的平均暨比較單元Two tf :)) are connected at the beginning, each of which contains N CR αα = 3 ^. F material storage capacitors (replaces only 2 2N subcapacitors 11 and 2 Csf material storage capacitors), showing an "average," 佥 ♦-type daylight region, which can be sub-sampled to the meter connection system ^ J㈤-4 color post Therefore, in the complementary metal oxide semiconductor CM0S image sensor in 1 in Figure 10 (CIS), N can be a double subsampling (_), which is any integer (for example, 2, 1, See Figure 6 and 200533191 16323pif.doc for an example in Figure 7.) Figure 11 shows a detailed circuit diagram of an enhanced average sound comparison unit (NACU) according to yet another embodiment of the present invention, which is used to complement Figure 3 In the main animated pixel sensor (Aps) of the metal oxide semiconductor CMOS image sensor (ClS), -2Nx2N daytime pixels of the same color in the region, perform the relevant double subsampling CDSS average / subsampling up to the number of furnace pixels The enhanced average and comparison unit (NACU) described in Figure u is very similar to the average and comparison unit (ACU) described in Figure 7, except that the enhanced average and comparison unit described in Figure η

• (NACU)中的類比領域減法器是包括2N類比畫素資料儲存 電容器(例如:2N二6、8、10),而非四類比晝素資料儲存電 谷态(以及額外的開關,例如SSN)之外。此額外的資料儲 存電谷器(以及用來控制其之載入與平均的額外開關)支援 在主動晝素感測器APS陣列一 2N X 2N區域中,配置於 不同列與不同行中相同顏色的晝素的相關雙重次取樣 CDSS模式的平均/次取樣。增進的平均暨比較單元(NACU) 的減法器(例如:N減法器-1 (NSUBTRACTOR-1))中之CR # (重設)資料儲存電容器,以來自與增進的平均暨比較單元 (NACU)連接的列的各畫素的(重設)電壓(VR),從CRN充 電(載入)至CR1。增進的平均暨比較單元(NACU)的減法器 (例如:N減法器-1)中之CS (重設)資料儲存電容器,以來 自與增進的平均暨比較單元(NACU)連接的列的相同各晝 素的(影像訊號)電壓(VS),從CSN充電(載入)至CS1。 由於要求對各畫素每一列的增進的平均暨比較單元 (NACU)作相關雙重次取樣CDSS之平均/次取樣,所以圖 42 20053MM, 11的增進的平均暨比較單元(NACU)將以圖1〇中所述之方 式,與其他至少N-1相似的增進的平均暨比較單 可切換地内部連接。事實上,由於圖u的增進的平均暨比 較單元(NACU)亦可對配置於其列中各晝素的其中之 2、3或任何較小整數L(小於n畫素,例如·· L=1、2、3) 執行相關雙重次取樣的平均/次取樣,所以在互補金氧半導 體CMOS影像感測器(CIS)中的所有其他的增進的平均暨 比較單元(NACU)(例如··奇數),可以以圖1〇中所述之二 式可切換地内部連接。然而,每一“平均,,開關Savg都可獨 立地或動態地被控制,以便禁止在所有其他(例如··奇數) 增進的平均暨比較單元(NACU)(包含L奇數個增進的平均 暨比較單元(NACU))的第一方塊中的各增進的平均暨比較 單元(NACU)與所有其他(例如··奇數)平均暨比較單元 (^ACU)(容納其他的l奇數個平均暨比較單元(ACU)的相鄰 第二方塊中的各增進的平均暨比較單元(NACU)之間的“平 勻連接。在此方法中,只有來自相同的2N X 2N或(2L· X 2L)晝素區域的畫素,在L或N可切換内部連接的增進的 平均暨比較單元(NACU)之間的每一方塊的相關雙重次取 樣CDSS模式期間,將可一起被平均。 藉由動態控制 Savg、SI、S2、S3、S4、與(SSI、SS2、···、 SSN)以及(SRI、SR2、…、SRN)等開關,本實施例此增進 的平均暨比較單元(NACU)可被用來對配置於方形(或非方 形)晝素區域中相同顏色一動態選擇數量L2(低到丨2並且高 到N2)之畫素,執行次取樣。 43 2〇〇53m 雔重次取;至少一貫施例提供一種執行相關 又重-人取樣(CDSS)的方法與裝置,其包括:“平類比 湏域中)這些彳< 多數個晝素接收而來的“重設”值與“平 類㈣域中)這些從?數個畫素接收而來的“訊號” 值的成個步驟、後面跟著將“平均的,,重設值從“平均的,,訊 號值減去之㈣’帛來產生—相關雙重絲樣所取樣 (CDSS-SAMPLm))的類比f料,其中,此相關雙重次取樣• The analogue field subtractor in (NACU) includes 2N analog pixel data storage capacitors (eg 2N-2, 6, 8, 10) instead of four analog daylight data storage valleys (and additional switches such as SSN ) Outside. This additional data storage trough (and additional switches to control its loading and averaging) is supported in the active daylight sensor APS array-2N X 2N area, arranged in the same color in different columns and different rows Correlative double subsampling of average daily subsampling in CDSS mode. CR # (reset) data storage capacitor in the subtractor of the enhanced average and comparison unit (NACU) (eg, N subtractor-1 (NSUBTRACTOR-1)) from the enhanced average and comparison unit (NACU) The (reset) voltage (VR) of each pixel of the connected column is charged (loaded) from CRN to CR1. CS (reset) data storage capacitor in the subtractor (eg, N subtracter-1) of the enhanced average and comparison unit (NACU), with the same elements from the columns connected to the enhanced average and comparison unit (NACU) The daytime (video signal) voltage (VS) is charged (loaded) from CSN to CS1. Because the enhanced average and comparison unit (NACU) of each pixel of each pixel is required to perform the average / subsampling of the correlated double subsampling CDSS, the enhanced average and comparison unit (NACU) of Figure 42 20053MM, 11 will be shown in Figure 1 The method described in 〇, similar to other at least N-1, the improved average and comparison are switchably internally connected. In fact, due to the enhanced average and comparison unit (NACU) of graph u, it is also possible to calculate 2, 3 or any smaller integer L (less than n pixels, such as L = 1, 2, 3) Correlation double subsampling average / subsampling is performed, so all other enhanced averaging and comparison units (NACU) in complementary metal oxide semiconductor CMOS image sensors (CIS) (e.g., odd numbers ), Can be switchably internally connected in the manner described in FIG. However, each "average," the switch Savg can be controlled independently or dynamically in order to prohibit all other (eg, odd number) enhanced average and comparison units (NACU) (containing L odd number of improved average and comparison Each of the enhanced average and comparison units (NACU) in the first block of the unit (NACU) and all other (eg, odd number) average and comparison units (^ ACU) (accommodates the other l odd number of average and comparison units ( (ACU) "Evenly connected between the enhanced average and comparison units (NACU) in the second square. In this method, only from the same 2N X 2N or (2L · X 2L) daylight region The pixels of each block can be averaged together during the correlated double-sampling CDSS mode of each block between the L or N switchable internally connected enhanced average and comparison unit (NACU). By dynamically controlling Savg, SI , S2, S3, S4, and (SSI, SS2, ..., SSN) and (SRI, SR2, ..., SRN) and other switches, the enhanced average and comparison unit (NACU) of this embodiment can be used to Configure the same color in a square (or non-square) daylight region-a dynamic selection number Measure L2 (as low as 丨 2 and as high as N2) pixels, and perform sub-sampling. 43 20053m 雔 Repeat sub-sampling; at least consistent embodiments provide a method and device for performing correlated and heavy-human sampling (CDSS) , Which includes: "in the flat analog domain) these 彳 < the" reset "values received by most of the day elements and in the" flat analog domain "these slaves? The "signal" value received by several pixels is formed into a step, followed by the "average, reset value" is subtracted from the "average," signal value to generate-related double silk Sampling (CDSS-SAMPLm)), where the correlation is double-sampling

所取樣的類比倾代表此相同齡四傳統相關雙重取樣所 取樣的晝素的精確數學平均。如此—來,本發明此實施例 提供了在類比領域中,將主動晝素感,(APS)陣列中的多 數個晝素直接並且精確次取樣而同時去除靜態Μ的雜訊 (FPN)的能力。 雖然本發明已以較佳實施例揭露如上,然其並非用以 限J本發明,,任何熟習此技藝者,在不脫離本發明之精神 =範圍内,當可作些許之更動與潤飾,因此本發明之保護 範圍當視後附之申請專利範圍所界定者為準。 【圖式簡單說明】 抑圖1繪不為習知技藝互補金氧半導體CMOS影像感测 為(CIS)之方塊圖,其中,此互補金氧半導體CM〇s影像 感測器包含一主動畫素感測器(APS)陣列。 圖2繪示為習知技藝一相關雙重取樣(CDS)電路的方 塊圖,其中,此相關雙重取樣(CDS)電路被改成約為相同 顏色四晝素的平均。 圖3繪示為依本發明一實施例一互補金氧半導體 44 200533191 16323pif.doc CMOS影像感測器(CIS)之方塊圖,其中,此互補金氧半導 體CMOS影像感測器CIS包含一主動晝素感測器(八以)陣 列,以及一用來執行相關雙重次取樣(CDSS)之平均暨比較 電路。 一 圖4繪示為在圖3之互補金氧半導體CM〇s影像感測 器CIS之主動畫素感測器(APS)陣列中,每一晝素之範例 結構(STRUCTURE)之電路圖。 圖5繪示為圖3之主動畫素感測器(Aps)陣列中之顏色 感測器畫素(COLOR SENSING PIXEL)之貝爾圖型排列及 其各個輸出之方塊圖。 圖6繪示為圖3之互補金氧半導體CM〇s影像感測器 (cis)中,用來執行相關雙重次取樣(CDSS)之多數個平均暨 比較單元(AVERAGING & COMPUTING UNIT) (ACU)之 間各切換内部連接之方塊圖。 圖7繪示為圖3之互補金氧半導體CM0S影像感測器 (CIS)中’一可切換内部連接之平均暨比較單元(ACU)之詳 • 細電路圖。 沖圖8A繪示為圖3之互補金氧半導體CM〇s影像感測 裔(CIS)中,於執行相關雙重次取樣(CDSS)時所用之各切換 Λ號以及行選擇訊號之波形之時序圖。 圖8Β緣示為一斜升電壓(RAMPING VOLTAGE)與一 计數為鎖存控制訊號(COUNTER-LATCHING CONTROL ^IGN^L)波形之時序(TIMING)圖,其中,此斜升電壓與此 什數為鎖存控制訊號波形用來同時執行來自圖3之互補金 45 200533191 ,半導體CMOS影像感測器(CIS)中,多數個平均暨比較 單7L (ACU)之多數個輸出之類比至數位轉換。 圖9繪示為計數器與鎖存電路(c〇unter LATCmNG aRCUIT)之方塊圖,其中,此計數器與鎖存 電路用來同時執行來自圖3之互補金氧半導體CM0S影像 感測器(CIS)中’多數個平均暨比較單元(ACU)之多數個輸 出(VCD)之類比至數位轉換。 圖10繪示為依再一實施例,圖3之互補金氧半導體 CMOS影像感測器(CIS)之主動晝素感·(Aps)中,用來 執行相關雙重次取樣(CDSS),其平均/次取樣達N2晝素(以 大於4之次取樣比率)之多數個平均暨比較單元(acu)之間 各切換内部連接之方塊圖。 0 圖11示為依本發明再一實施例,一增進的平均譽比 較單元(NACU)之詳細電路圖,其用來對圖3之互補金&半 導體CMOS影像感測器(CIS)之主動畫素感測器(Aps)中, 一 2Nx2N區域中相同顏色之畫素,執行相關雙重次取樣 Φ CDSS的平均/次取樣達N2晝素之多。 【主要元件符號說明】The analogy sampled represents the exact mathematical mean of the celestial samples sampled by this traditional four-correlation double sampling of the same age. In this way, this embodiment of the present invention provides the ability to directly and accurately subsample most of the daylight elements in the active daylight sensory (APS) array while removing static M noise (FPN) in the analog field. . Although the present invention has been disclosed as above with a preferred embodiment, it is not intended to limit the present invention. Any person skilled in the art can make some changes and decorations without departing from the spirit of the present invention. Therefore, The protection scope of the present invention shall be determined by the scope of the attached patent application. [Brief description of the diagram] Fig. 1 is a block diagram of a complementary metal oxide semiconductor CMOS image sensor (CIS), which is not a conventional technique. The complementary metal oxide semiconductor CMOS image sensor includes a main animation element. Sensor (APS) array. FIG. 2 is a block diagram of a related art double-sampling (CDS) circuit, in which the double-sampling (CDS) circuit is modified to an average of four days of the same color. FIG. 3 is a block diagram of a CMOS image sensor (CIS) 44 200533191 16323pif.doc according to an embodiment of the present invention. The CMOS image sensor (CIS) includes an active daylight sensor. Elementary sensor array, and an averaging and comparison circuit for performing correlated double subsampling (CDSS). 1 FIG. 4 is a circuit diagram of an exemplary structure of each day element in the main animation element sensor (APS) array of the complementary metal-oxide semiconductor CMOS image sensor CIS of FIG. 3. Fig. 5 is a block diagram showing the arrangement of the bell pattern of the color sensor pixels (COLOR SENSING PIXEL) in the main animation element sensor (Aps) array of Fig. 3 and the block diagram of each output thereof. FIG. 6 shows a plurality of AVERAGING & COMPUTING UNITs (ACU) in the complementary metal-oxide-semiconductor CMOS image sensor (cis) of FIG. 3 for performing correlated double subsampling (CDSS). ) Switch between internal connections. Figure 7 is a detailed circuit diagram of the 'A switchable internally connected averaging and comparison unit (ACU)' in the complementary metal-oxide semiconductor CMOS image sensor (CIS) of Figure 3. FIG. 8A shows a timing diagram of the waveforms of the switching Λ and row selection signals used in performing the correlated double subsampling (CDSS) in the complementary metal-oxide semiconductor CMOS image sensing system (CIS) of FIG. 3. . Fig. 8B shows the timing diagram of a ramping voltage (RAMPING VOLTAGE) and a count of a latching control signal (COUNTER-LATCHING CONTROL ^ IGN ^ L). Among them, the ramping voltage is different from this. In order to latch the control signal waveforms, the complementary metal 45 200533191 from FIG. 3 is used to simultaneously perform analog-to-digital conversion of the majority of the average and comparison output of the 7L (ACU) in the semiconductor CMOS image sensor (CIS). FIG. 9 is a block diagram of a counter and a latch circuit (counter LATCmNG aRCUIT), wherein the counter and the latch circuit are used to simultaneously execute the CMOS image sensor (CIS) from the complementary metal oxide semiconductor of FIG. 3 'Analog-to-digital conversion of majority output (VCD) of majority average and comparison unit (ACU). FIG. 10 is a diagram illustrating a complementary double subsampling (CDSS) in the active daylight sensor (Aps) of the complementary metal-oxide semiconductor CMOS image sensor (CIS) of FIG. A block diagram of the internal connection between the average and comparison units (acu) of the N2 day sample (at a subsampling ratio greater than 4) per sample. 0 FIG. 11 is a detailed circuit diagram of an enhanced average reputation comparison unit (NACU) according to yet another embodiment of the present invention, which is used for the main animation of the complementary metal & semiconductor CMOS image sensor (CIS) of FIG. 3 In a pixel sensor (Aps), pixels of the same color in a 2Nx2N area are subjected to correlated double subsampling. The average / subsampling of CDSS reaches as many as N2 day pixels. [Description of main component symbols]

Vramp :偏壓源 S卜 S2、S3、S4、SS、SR、Savg、2、20、2la、21b、 52、Ττχ、TRX、ΤΑΜΡ、TSEL :開關 csil、CS13、CS3卜 CS33、CRU、CR13、CR3卜 CR33、CS1、CSN、CR卜CRN :資料儲存電容器 CA :緩衝器電容器 46 200533191 16323pif.doc AMP1、AMP2 :放大器 ,Vramp: bias source S2, S3, S4, SS, SR, Savg, 2, 20, 2la, 21b, 52, Tτχ, TRX, TAMP, TSEL: switches csil, CS13, CS3, CS33, CRU, CR13, CR3, CR33, CS1, CSN, CR and CRN: data storage capacitor CA: buffer capacitor 46 200533191 16323pif.doc AMP1, AMP2: amplifier,

Vref :參考電壓源 VCD卜VCD3 :電壓訊號 VR11、VR12、VR13、VR14、VR31、VR32、VR33、 VR34 ·· “重設”電壓 VS11、VS12、VS13、VS14、VS31、VS32、VS33、 VS34 : “影像”(訊號)電壓Vref: Reference voltage source VCD and VCD3: Voltage signals VR11, VR12, VR13, VR14, VR31, VR32, VR33, VR34 "Reset" voltage VS11, VS12, VS13, VS14, VS31, VS32, VS33, VS34: " "Image" (signal) voltage

SEL、SEL1、SEL2、SEL3 :主動行選擇訊號 B22、B24、B42、B44 :藍色畫素 30 :共同輸出線 50、50a、50b、51a、51b ··相關雙重取樣(CDS)電容 CE :計數器致能訊號 G12、G14、G21、G23、G41、G43 :綠色畫素 48、48a、48b :非反向緩衝器 54、54a、54b :輸出放大器 PD :光二極體SEL, SEL1, SEL2, SEL3: Active line selection signals B22, B24, B42, B44: Blue pixels 30: Common output lines 50, 50a, 50b, 51a, 51b. Correlated double sampling (CDS) capacitor CE: Counter Enable signals G12, G14, G21, G23, G41, G43: Green pixels 48, 48a, 48b: Non-inverting buffers 54, 54a, 54b: Output amplifier PD: Photodiode

Rll、R13、R31、R33 :紅色畫素 RX :重設訊號 44、44a、44b :取樣保持電容 42、42a、42b :取樣保持開關 TX :訊號 CL1、CL3 :垂直選擇線Rll, R13, R31, R33: Red pixels RX: Reset signals 44, 44a, 44b: Sample-and-hold capacitors 42, 42a, 42b: Sample-and-hold switches TX: Signals CL1, CL3: Vertical selection lines

Vcd、VCD1、VCD2、VCD3、VCD4 :電壓訊號 47Vcd, VCD1, VCD2, VCD3, VCD4: voltage signal 47

Claims (1)

20053觀 十、申請專利範圍: 之晝素,其包括多數個以行及列方式排列 連接,用以儲二也與至少二_^ 料電容器,用以儲存;=:電:及包括至少二影像資 -平均1項所叙影像制ϋ,更包括 產n Μ均電路利用該至少二重設ΐ= 產生一平均的重設電荷而執行—第—平均工作h電何來 該平均=二=圍第1項所述之影像感測器’其中, 荷而執行-第二影像電荷來產生一平均的影像電 該第-平利域第3項所述之影像感測器,复中, -類比減法哭,JL丨弟”項所述之影像感測器’更包括 電荷自該平“:===均的重設 -類:===項=像感測器,更包括 (ADC7)=;行該!動_類比至數:換至數位轉換器 兮平均電^糊朗第6項所述y彡像❹❻1中, ===該類比至數位轉換器(觀)通常是由同-偏 ^如申4專利範圍第7項 該偏壓源_第-與第二平駐作期間像^二:_其第中一電 48 20053縱 L 縻準位 處於-第比;工作期^ 準位。 ^弟一電壓準位不同於該第二電壓 該第9一===2 ^所述之影像感測器,其中, 素的該些重設值;:平:::=,目同㈣ 列的該些畫素的該些重設料以平驟將排列於相同 爾細,μ, 該平均電路4專^圍第2項所述之影像感測器,其中, 開關包括—配置於該至少二重設資料電容器之間的 該平電如路申圍第3項所述之影像感測器·,其中, 之間的開關。匕—配置於該至少二影像訊號資料電容器 該影===第1項所述之影像感測器,其中, 14% 為互補金氧半導體CMOS型式。 方半,·:種在主動晝素感測器(APS)陣列中次取樣晝素的 的琴2匕括·將接收自該主動晝素感測器(APS)中L2畫素 ^之畫素重設資料電荷,儲存於N2個電容器一第 佥、 取樣思素的方法,更包括··將接收自該主動 旦〜!KAPS)中L2晝素的該l2類比畫素影像資料電 49 20053魏 荷’儲存於N2個電容器一第二組中。 16·如申請專利範圍第14項所述之在主動畫素感測器 (APS)陣列中次取樣晝素的方法,更包括:在該N2個電容 器的第一組中所儲存的該L2類比畫素重設資料電荷上執 行一第一平均工作。20053 View ten. Scope of patent application: Zhisu, which includes a large number of rows and columns connected to store two and at least two capacitors for storage; =: electricity: and includes at least two images The video system described in the item 1 of the asset-average method, including the production of the average circuit using the at least two resets, is generated by an average reset charge. The image sensor described in the first item, wherein the second image charge is performed to generate an average image signal. The image sensor described in the third level of the Pingli domain, complex, and analogy. "Subtraction cry, JL 丨 brother" The image sensor described in the "item" also includes the charge from the flat ": === reset-class: === item = image sensor, more (ADC7) = ; Do this! Move_Analog to Digital: Switch to the digital converter and average the electric power ^ In the y❹❻image ❹❻1 described in item 6, === The analog to digital converter (view) is usually made by the same-bias ^ The 7th scope of the patent application No. 7 the bias source _ the first and second stationary period image ^ Second: _ its first Zhongyi Electric 48 20053 vertical L 縻 level is in the -th ratio; working period ^ Bit. ^ The first voltage level is different from the second voltage and the ninth one === 2 ^ The image sensor described in the above, wherein the reset values of the element are equal to :::: == The reset materials of the pixels will be arranged in the same size, μ, the average circuit 4 is specifically for the image sensor described in item 2, wherein the switch includes-is disposed in the at least The resetting the image sensor between the data capacitors as described in item 3 of Lu Shenwei, wherein, the switch between the two. Dagger—The image sensor is disposed on the at least two image signal data capacitors. The image sensor described in the first item, wherein 14% is a complementary metal-oxide-semiconductor CMOS type. Fang Ban, ·: A kind of piano 2 that samples the daylight in the active daylight sensor (APS) array. · The pixel that will receive L2 pixels from the active daylight sensor (APS). The method of resetting the data charge and storing it in the N2 capacitors, sampling method, and more will include receiving from the initiative ~! KA12) The L2 day pixel image data of this l2 analog pixel is stored in a second group of N2 capacitors. 16. The method for subsampling the day element in the main animation element sensor (APS) array as described in item 14 of the scope of patent application, further comprising: the L2 analog stored in the first group of the N2 capacitors A first averaging operation is performed on the pixel reset data charge. Π·如申請專利範圍第丨6項所述之在主動晝素感測器 (APS)陣列中次取樣晝素的方法,其中,該第一平均工作執 行於類比領域之中。 18·如申請專利範圍第16項所述之在主動晝素感測器 (APS)陣列中次取樣晝素的方法,其中,該第一平均工作包 括合併所有該L2類比晝素重設資料電荷。 料利範圍第16項所述之在主動晝素感測器 (APS)陣财次取樣晝素的方法,其中,合併所有該 比晝素重設資料電荷包括在N2個電容器的 、 並聯至少二電容器。 、、且之間彼 專利範圍第18項所述之在主動畫素感_、 車列中二人取樣晝素的方法,更包括在Ν2個電容时一 類比晝素影像晴料電荷上ΐ: 括合併所有該方法,其t ’糾二平均工作包 在心11& 旦素影像喊貝料電荷,並且更⑽ 22 組之間並聯至少二電容器。 ,如申請專概㈣21項所述之在絲4素感夠器 50 2005砸c yAPS)陣列巾:欠取樣晝素的方法,更包括在—類比領域中執 ^二減法工作,其中,一差動電壓是藉由將N2個電容器的 該第-組之間之至少—電容器與n2個電容器的該第二組 之間之至少一電容器串聯而獲得。 23·如申凊專利範圍第22項所述之在主動晝素感測器 (APS^陣列中次取樣晝素的方法,更包括執行來自該減法工 作的該差動電壓的類比至數位轉換(ADC)。 24·如申請專利範圍第23項所述之在主動畫素感測器 (APS)陣列中次取樣畫素的方法,其中,該差動電壓的平均 工作與類比至數位轉換ADc是利用一被一單一偏壓 壓的電路來執行。Π. The method of subsampling a daylight in an active daylight sensor (APS) array as described in item 6 of the patent application range, wherein the first average work is performed in the analog field. 18. The method of subsampling a daylight in an active daylight sensor (APS) array as described in item 16 of the scope of patent application, wherein the first averaging work includes merging all of the L2 analog daylighting reset data charges . The method for sampling daylight in the active daylight sensor (APS) array as described in item 16 of the material benefit range, wherein all the data charges of the resetting daylight reset are included in the N2 capacitors, and at least two are connected in parallel. Capacitor. The method of sampling the daytime element in the main animation element __ and the train line described in item 18 of the patent scope includes the analogue of the daytime image clear charge on the N2 capacitors: Including merging all of the methods, its t's two-average work package includes the charge of the electric charge, and more than 22 capacitors are connected in parallel between the 22 groups. As described in the application section (21), in the silk 4 element sensor (50, 2005, c, yAPS) array towel: the method of undersampling the day element, including performing two subtraction operations in the analog field, of which a differential The voltage is obtained by connecting at least one capacitor between the -group of N2 capacitors and at least one capacitor between the second group of n2 capacitors in series. 23. The method of subsampling a daylight sensor in an active daylight sensor (APS ^ array as described in item 22 of the scope of patent application) further includes performing an analog-to-digital conversion of the differential voltage from the subtraction operation ( ADC) 24. The method for sub-sampling pixels in the main animation pixel sensor (APS) array as described in item 23 of the scope of patent application, wherein the average operation of the differential voltage and analog-to-digital conversion ADc are This is performed using a circuit that is pressed by a single bias. 25·如申請專利範圍第23項所述之在主動晝素感測器 (Α^)陣列中次取樣晝素的方法,其中,該單一偏壓源在該 平均工作期間是處於一低電壓準位,並且於類比至數位轉 換ADC期間是處於—高電壓準位。 26·如申請專利範圍第21項所述之在主動畫素感測哭 ^APS)陣列中次取樣畫素的方法 ,其中,L等於N, 等於4。 27·如申請專利範圍第26項所述之在主動晝素感測界 PS)陣列中次取樣晝素的方法,其中,該四畫素被排列& =行與二列之陣列,並且該第一平均工作包括··從該第一 II中之第—對晝素獲得二重設電荷之一第一相同行平均、 ^该第二行中之第二對畫素獲得二重設電荷之一第二相同 行平均、接著將該第一相同行平均與該第二相同行平均_ 51 200533191 16323pif.doc 起平均。 28· —種影像感測器,包括: 列晝素中之畫素都工之晝素陣列,在每〆 平均單元包括-第一與第 二疋連接,其中,每〆 第二儲存電容器用來儲存^二,器’其中,該第一與 晝素之嶋重設資料、以及晝素叹來自一第二 該第三與第四儲存電 弟—,、弟四儲存電容器,其中, 自該第二畫素之類比影軸號=來自該第-晝素以及來 料被儲存為電荷。、 °"弟—晝素之該類比重設貧 3〇.如申請專利範圍第28 像感測器更包括一第—平均開闕,=讀感測器,該影 用來執行包括將儲存於至少 單_ ^亥第—平均開關 平均的-第—平均工作 千均早7°中_比重設資料 t > 30 ^ * 單元中的類比來執行包括將儲存於至少二平均 m、上象虎資料平均的—第二平均工作。 中,該第^專工^圍第/1項所述之影像感測器,其 中。 作與该弟二平均工作皆執行於類比領域 中’每—平申均1專第二=二影像感測器,其 ¥N儲存電容器,用來館存 52 200533191 16323pif.doc 來自第N晝素的類比影像訊號資料。 3—4·如申請專利範圍帛28項所述之影像感測器,其 存來元更包括:—第2N儲存電容器,用來儲 存I自弟N畫素軸比重設資料。 一 35.如申凊專利範圍第28項所述之影像感測器,其每 : = 至數位轉換器(ADC)’用以執行來自該 二-早7L的夕數個輸出的類比至數位轉換。 由’姑:如申請專利範圍第35項所述之影像感測器,其 自該些U: J ί:=器(adc)被修改成同時執行來 17 Λ i的數個輸出的類比至數位轉換。 一相同偏壓源些類比至數位轉換器(ADC)皆由 38·如申請專利筋圚 中’該偏壓源於該平均‘二m=,其 ;於類比至數位轉換器工作期間;:一;::: 第一電壓準位不同於該第二電壓準位。奴卓位’邊 中,該第圍第31項所述之影像感測器,其 設資料予以平均。將_於相同行各畫素的類比重 40·如申晴專利範圍第& ^ 中,該第二平均1作包 /述之影像感測器,其 像訊號資料予以平均。、1 ;相同行各晝素的類比影 41.如申請專利範圍第28項所述之影像感測器’其 53 2005331^ 單Λ更包括—配置於該第-與第二儲存電容 _,_平触於_财各晝素的 由ί2.一如申請專利範圍第28項所述之影像感測器,其 σα母彳均單凡更包括一配置於該第三與第四館存電容 器之間的影像訊號·平均開關,用以平均位於相同列中各晝 素的類比影像訊號資料。25. The method of subsampling a daylight in an active daylight sensor (A ^) array as described in item 23 of the scope of the patent application, wherein the single bias source is at a low voltage level during the average operation period. And during the analog-to-digital conversion ADC is at-high voltage level. 26. The method for sub-sampling pixels in the main animation pixel sensing array (APS) array as described in item 21 of the scope of patent application, wherein L is equal to N and equal to 4. 27. The method for subsampling celestial elements in an active celestial sensing field (PS) array as described in item 26 of the scope of patent application, wherein the four pixels are arranged & an array of rows and two columns, and the The first averaging job includes: averaging one of the first two rows in the first II to obtain a reset charge for the day element, and ^ obtaining the two reset charges in the second pair of pixels in the second row. A second identical line is averaged, and then the first identical line is averaged with the second identical line average_ 51 200533191 16323pif.doc. 28 · —A kind of image sensor, comprising: a pixel array of pixels in a row of pixels, an average cell in each frame including-a first and a second frame, wherein each second storage capacitor is used for Store ^ 2, device ', where the first and day prime reset data, and day prime from a second, the third and fourth storage electric brothers, and brother four storage capacitors, where, from the first The analog pixel number of the two pixels = from this -day element and the incoming material is stored as a charge. ° " Brother-Day Su's analogue reset is poor 30. For example, the scope of the patent application No. 28 image sensor includes a first-average opening, = read sensor, the image is used to perform including the storage Performing at least a single _ ^ Haidi-average switch average-the first-the average working thousand are 7 ° earlier than the _ ratio reset data t > 30 ^ * The analogy in the unit to perform includes including storing at least two average m, above Tiger profile average-second average job. In the image sensor described in item / 1, the ^ specialist ^, among them. The average work of the two brothers is performed in the field of analogy. 'Every-Pingshen is a special second = two image sensors. Its ¥ N storage capacitor is used to store 52 200533191 16323pif.doc from the Nth day. Analog video signal data. 3-4. The image sensor as described in the 28 items of the scope of patent application, the storage unit further includes:-The 2N storage capacitor, which is used to store the I pixel N axis axis reset data. 35. The image sensor described in claim 28 of the patent scope, each of: = to digital converter (ADC) 'is used to perform analog-to-digital conversion of several outputs from the second to early 7L . From 'Gu: The image sensor described in Item 35 of the scope of patent application, from which the U: J ί: = 器 (adc) is modified to perform the analogy to digital output of 17 Λ i to digital at the same time Conversion. An analog-to-digital converter (ADC) of the same bias source is composed of 38. As in the patent application, 'The bias is derived from the average' two m =, which is during the operation of the analog-to-digital converter; ; ::: The first voltage level is different from the second voltage level. In the “Slave position”, the image sensor described in the 31st item of the perimeter is designed to average the data. The pixel weight of each pixel in the same row is 40. As in Shen Qing's patent scope & ^, the second average 1 is used as the image sensor, and the image signal data is averaged. , 1; Analog images of the same day and day. 41. The image sensor described in item 28 of the scope of patent application 'its 53 2005331 ^ single Λ also includes-arranged in the-and the second storage capacitor _, _ Flat touch on _ Cai Ge daysu by ί 2. As the image sensor described in the scope of the patent application No. 28, its σα mother 彳 are single and include a storage capacitor placed in the third and fourth halls The average image signal · average switch is used to average the analog image signal data of each day element in the same row. 43·如申請專利範圍第28項所述之影像感測器,其 中,該影像感測器為互補金氧半導體CM〇s型式。 44·如申請專利範圍第28項所述之影像感測器,更包 括一數位訊號處理器。 45· —種對以多數行以及多數列方式排列的晝素陣列 次取樣的方法,每一晝素都被修改成輸出一重設電壓以及 一影像訊戒電壓,該方法包括下列少驟·· 儲存自一第一組儲存電容器中多數個晝素輸出之多數 個重設電壓;43. The image sensor according to item 28 of the scope of application for a patent, wherein the image sensor is a complementary metal oxide semiconductor CMOS type. 44. The image sensor described in item 28 of the scope of patent application, further comprising a digital signal processor. 45 · —A method of subsampling a celestial array arranged in a majority row and a plurality of columns. Each celestial element is modified to output a reset voltage and an image signal voltage. The method includes the following steps: · Storage Reset voltages from a plurality of daylight output in a first set of storage capacitors; 儲存自一第二組儲存電容器中多數個畫素輸出之多數 個影像訊號電壓; 合併該儲存於該第一組儲存電容器中之多數個重設電 壓;以及 合併該儲存於該第二組儲存電容器中之多數個影像訊 號電壓。 46·如申請專利範圍第45項所述之對以多數行以及多 數列方式排列的晝素陣列次取樣的方法,更包括以串聯方 54Storing a plurality of image signal voltages output from a plurality of pixels in a second set of storage capacitors; merging a plurality of reset voltages stored in the first set of storage capacitors; and merging the storages stored in the second set of storage capacitors Most of the video signal voltages. 46. The method of sub-sampling a celestial array arranged in a plurality of rows and a plurality of columns as described in item 45 of the scope of patent application, further including a cascade method 54 2〇〇mm 47·如申請專利範圍第45項所述之對以多數行以 數列方式㈣的畫素_次取樣的方法,更包括檢測跨二 该些位於該第-與該第二組儲存電m串聯的 容器上之電壓。 电 48.如申請專利範圍第45項所述之對以多數行以及多 數列方式排列的畫素陣列次取樣的方法,更包括數位量化 该跨於該些位於該第一與該第二組儲存電容器之間串聯的 儲存電容器上之電壓。 49· 一種對主動晝素感測器(APS)陣列的以n行以及N 列方式排列的N2晝素次取樣的方法,每一晝素都被修改成 輸出一重設電壓以及一影像訊號電壓,該方法包括下列步 驟: 儲存一第一畫素的重設電壓,作為一第一電容器中的 一第一電荷; 儲存一第二晝素的重設電壓,作為一第二電容器中的 一第二電荷;以及 將該第一與第二電荷合併成一平均的重設電荷。 55200mm 47. The method of sampling pixels in a plurality of rows and in a series as described in item 45 of the scope of patent application, and further includes detecting across two or more of the first and second sets of storage. Voltage across a container in which m is connected in series. 48. The method of subsampling a pixel array arranged in a plurality of rows and a plurality of columns as described in item 45 of the scope of the patent application, further comprising digitally quantifying the span between the first and second sets of storages. Voltage across a storage capacitor in series between capacitors. 49 · A method of sub-sampling N2 day elements arranged in n rows and N columns of an active day element sensor (APS) array, each day element is modified to output a reset voltage and an image signal voltage, The method includes the following steps: storing a reset voltage of a first pixel as a first charge in a first capacitor; storing a reset voltage of a second pixel as a second in a second capacitor Charge; and combining the first and second charges into an average reset charge. 55
TW094107090A 2004-03-16 2005-03-09 Method and circuit for performing correlated double sub-sampling (CDSS) of pixels in an active pixel sensor (APS) array TWI256840B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020040017675A KR100994993B1 (en) 2004-03-16 2004-03-16 Solid state image sensing device and driving method thereof outputting digital image signals of averaged sub-sampled analog signals
US11/068,205 US7554584B2 (en) 2004-03-16 2005-02-28 Method and circuit for performing correlated double sub-sampling (CDSS) of pixels in an active pixel sensor (APS) array

Publications (2)

Publication Number Publication Date
TW200533191A true TW200533191A (en) 2005-10-01
TWI256840B TWI256840B (en) 2006-06-11

Family

ID=34921821

Family Applications (1)

Application Number Title Priority Date Filing Date
TW094107090A TWI256840B (en) 2004-03-16 2005-03-09 Method and circuit for performing correlated double sub-sampling (CDSS) of pixels in an active pixel sensor (APS) array

Country Status (5)

Country Link
JP (1) JP4764036B2 (en)
CN (1) CN100594709C (en)
DE (1) DE102005012509A1 (en)
FR (1) FR2867936B1 (en)
TW (1) TWI256840B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI559768B (en) * 2015-06-22 2016-11-21 友達光電股份有限公司 Sampling control circuit for passive pixel and method thereof

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101305602B (en) * 2005-11-08 2011-11-09 松下电器产业株式会社 Correlating double sampling circuit and sample hold circuit
WO2007099620A1 (en) * 2006-03-01 2007-09-07 Fujitsu Limited Semiconductor integrated circuit
JP5142749B2 (en) * 2008-02-14 2013-02-13 キヤノン株式会社 IMAGING DEVICE, IMAGING DEVICE CONTROL METHOD, AND IMAGING SYSTEM
CN101557456B (en) * 2008-04-10 2010-12-29 联咏科技股份有限公司 Correlated duplex-sampling circuit and complementary metal oxide semiconductor (CMOS) image sensing unit
JP5311954B2 (en) * 2008-09-30 2013-10-09 キヤノン株式会社 Driving method of solid-state imaging device
US20100137143A1 (en) 2008-10-22 2010-06-03 Ion Torrent Systems Incorporated Methods and apparatus for measuring analytes
EP2342552B1 (en) * 2008-10-22 2022-09-14 Life Technologies Corporation Floating gate chemical field effect transistor array with bilayer gate dielectric
JP5426587B2 (en) * 2011-01-31 2014-02-26 株式会社東芝 Solid-state imaging device and pixel averaging processing method thereof
US8749656B2 (en) * 2011-03-16 2014-06-10 Analog Devices, Inc. Apparatus and method for image decimation for image sensors
JP6011546B2 (en) * 2011-12-27 2016-10-19 株式会社ニコン Imaging device and imaging apparatus
CN103872065B (en) * 2014-03-10 2016-09-21 北京空间机电研究所 Vertical electric charge transfer imaging detector pixel merges method
CN113493735B (en) * 2020-04-02 2023-06-16 成都今是科技有限公司 Gene sequencing array structure and gene sequencing device
CN113612948B (en) * 2021-08-27 2024-03-05 锐芯微电子股份有限公司 Readout circuit and image sensor

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1013746A (en) * 1996-06-27 1998-01-16 Sony Corp Solid-state image pickup device
JP2001036816A (en) * 1999-06-23 2001-02-09 Taiwan Advanced Sensors Corp Automatic calibration of a/d converter in cmos-type image sensor
JP2002165132A (en) * 2000-11-22 2002-06-07 Innotech Corp Solid-state image pickup device and its drive method
KR100498594B1 (en) * 2000-12-30 2005-07-01 매그나칩 반도체 유한회사 Cmos image sensor
JP2002330349A (en) * 2001-04-26 2002-11-15 Fujitsu Ltd Xy address type solid-state image pickup device
US6914227B2 (en) * 2001-06-25 2005-07-05 Canon Kabushiki Kaisha Image sensing apparatus capable of outputting image by converting resolution by adding and reading out a plurality of pixels, its control method, and image sensing system
US20040246354A1 (en) * 2003-06-04 2004-12-09 Hongli Yang CMOS image sensor having high speed sub sampling

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI559768B (en) * 2015-06-22 2016-11-21 友達光電股份有限公司 Sampling control circuit for passive pixel and method thereof

Also Published As

Publication number Publication date
CN1681290A (en) 2005-10-12
FR2867936A1 (en) 2005-09-23
JP2005269646A (en) 2005-09-29
JP4764036B2 (en) 2011-08-31
TWI256840B (en) 2006-06-11
FR2867936B1 (en) 2009-04-17
DE102005012509A1 (en) 2005-10-13
CN100594709C (en) 2010-03-17

Similar Documents

Publication Publication Date Title
TW200533191A (en) Method and circuit for performing correlated double sub-sampling (CDSS) of pixels in an active pixel sensor (APS) array
US20050206752A1 (en) Method and circuit for performing correlated double sub-sampling (CDSS) of pixels in an active pixel sensor (APS) array
US8520110B2 (en) Solid-state imaging device, driving control method, and imaging apparatus
JP3521109B2 (en) Solid-state imaging device for motion detection
TW548962B (en) X-Y address type solid-state image pickup device
TWI516122B (en) Solid-state imaging device, signal processing method of solid-state imaging device, and electronic apparatus
CN101394474B (en) Solid state image pickup device
JP3854729B2 (en) Imaging apparatus and imaging system using the same
US9602749B2 (en) Image sensor, control method, and electronic apparatus
EP2323409A2 (en) Image sensor with charge binning
US8125550B2 (en) Correlation double sampling circuit for image sensor
US8411184B2 (en) Column output circuits for image sensors
CN1946136B (en) Drive method of imaging device
CN102291543A (en) Solid-state image pickup element and camera system
KR20060070470A (en) Solid-state imaging device and method for driving the same
CN101320974A (en) A/d conversion circuit, control method thereof, solid-state imaging device, and imaging apparatus
JP5895525B2 (en) Image sensor
JP6670451B2 (en) Solid-state imaging device, signal processing method, and electronic device
JP2014060573A (en) Solid-state image sensor, control method and electronic apparatus
EP3510763A1 (en) System and method for dynamic pixel management of a cross pixel interconnected cmos image sensor
JP2015159464A (en) Solid state imaging apparatus and imaging system
RU2378791C2 (en) Device for image perception and image grabber system
US20140104470A1 (en) Data transfer circuit, imaging device and imaginapparatus
CN210694150U (en) Image sensor with a plurality of pixels
JP2000295530A (en) Solid-state image pickup device