SG50467A1 - Double implanted laterally diffused mos device and method thereof - Google Patents
Double implanted laterally diffused mos device and method thereofInfo
- Publication number
- SG50467A1 SG50467A1 SG1996002125A SG1996002125A SG50467A1 SG 50467 A1 SG50467 A1 SG 50467A1 SG 1996002125 A SG1996002125 A SG 1996002125A SG 1996002125 A SG1996002125 A SG 1996002125A SG 50467 A1 SG50467 A1 SG 50467A1
- Authority
- SG
- Singapore
- Prior art keywords
- mos device
- laterally diffused
- diffused mos
- double implanted
- implanted laterally
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66409—Unipolar field-effect transistors
- H01L29/66477—Unipolar field-effect transistors with an insulated gate, i.e. MISFET
- H01L29/66568—Lateral single gate silicon transistors
- H01L29/66659—Lateral single gate silicon transistors with asymmetry in the channel direction, e.g. lateral high-voltage MISFETs with drain offset region, extended drain MISFETs
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/10—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
- H01L29/1025—Channel region of field-effect devices
- H01L29/1029—Channel region of field-effect devices of field-effect transistors
- H01L29/1033—Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure
- H01L29/1041—Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure with a non-uniform doping structure in the channel region surface
- H01L29/1045—Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure with a non-uniform doping structure in the channel region surface the doping structure being parallel to the channel length, e.g. DMOS like
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/10—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
- H01L29/107—Substrate region of field-effect devices
- H01L29/1075—Substrate region of field-effect devices of field-effect transistors
- H01L29/1079—Substrate region of field-effect devices of field-effect transistors with insulated gate
- H01L29/1083—Substrate region of field-effect devices of field-effect transistors with insulated gate with an inactive supplementary region, e.g. for preventing punch-through, improving capacity effect or leakage current
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/7833—Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
- H01L29/7835—Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's with asymmetrical source and drain regions, e.g. lateral high-voltage MISFETs with drain offset region, extended drain MISFETs
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Ceramic Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Manufacturing & Machinery (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/153,503 US5371394A (en) | 1993-11-15 | 1993-11-15 | Double implanted laterally diffused MOS device and method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
SG50467A1 true SG50467A1 (en) | 1998-07-20 |
Family
ID=22547476
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
SG1996002125A SG50467A1 (en) | 1993-11-15 | 1994-11-07 | Double implanted laterally diffused mos device and method thereof |
Country Status (7)
Country | Link |
---|---|
US (1) | US5371394A (ko) |
EP (1) | EP0653795B1 (ko) |
JP (1) | JPH07183501A (ko) |
KR (1) | KR950015828A (ko) |
CN (1) | CN1036816C (ko) |
DE (1) | DE69419871T2 (ko) |
SG (1) | SG50467A1 (ko) |
Families Citing this family (52)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3221766B2 (ja) * | 1993-04-23 | 2001-10-22 | 三菱電機株式会社 | 電界効果トランジスタの製造方法 |
DE4340592C2 (de) * | 1993-11-29 | 2002-04-18 | Gold Star Electronics | Verfahren zum Herstellen eines nichtflüchtigen Halbleiterspeichers und einen nach diesem Verfahren hergestellten Halbleiterspeicher |
US5372960A (en) * | 1994-01-04 | 1994-12-13 | Motorola, Inc. | Method of fabricating an insulated gate semiconductor device |
US5466616A (en) * | 1994-04-06 | 1995-11-14 | United Microelectronics Corp. | Method of producing an LDMOS transistor having reduced dimensions, reduced leakage, and a reduced propensity to latch-up |
US5650340A (en) * | 1994-08-18 | 1997-07-22 | Sun Microsystems, Inc. | Method of making asymmetric low power MOS devices |
US6031272A (en) * | 1994-11-16 | 2000-02-29 | Matsushita Electric Industrial Co., Ltd. | MOS type semiconductor device having an impurity diffusion layer with a nonuniform impurity concentration profile in a channel region |
US5510279A (en) * | 1995-01-06 | 1996-04-23 | United Microelectronics Corp. | Method of fabricating an asymmetric lightly doped drain transistor device |
US5744372A (en) | 1995-04-12 | 1998-04-28 | National Semiconductor Corporation | Fabrication of complementary field-effect transistors each having multi-part channel |
KR960042942A (ko) * | 1995-05-04 | 1996-12-21 | 빈센트 비.인그라시아 | 반도체 디바이스 형성 방법 |
JPH08330590A (ja) * | 1995-06-05 | 1996-12-13 | Motorola Inc | 絶縁ゲート電界効果トランジスタ構造およびその製造方法 |
US5675166A (en) * | 1995-07-07 | 1997-10-07 | Motorola, Inc. | FET with stable threshold voltage and method of manufacturing the same |
US5716866A (en) * | 1995-08-30 | 1998-02-10 | Motorola, Inc. | Method of forming a semiconductor device |
US6127700A (en) * | 1995-09-12 | 2000-10-03 | National Semiconductor Corporation | Field-effect transistor having local threshold-adjust doping |
US5573961A (en) * | 1995-11-09 | 1996-11-12 | Taiwan Semiconductor Manufacturing Company Ltd. | Method of making a body contact for a MOSFET device fabricated in an SOI layer |
US5681761A (en) * | 1995-12-28 | 1997-10-28 | Philips Electronics North America Corporation | Microwave power SOI-MOSFET with high conductivity metal gate |
US5748025A (en) * | 1996-03-29 | 1998-05-05 | Intel Corporation | Method and apparatus for providing high voltage with a low voltage CMOS integrated circuit |
US6096610A (en) * | 1996-03-29 | 2000-08-01 | Intel Corporation | Transistor suitable for high voltage circuit |
JP3356629B2 (ja) * | 1996-07-15 | 2002-12-16 | 日本電気株式会社 | 横型mosトランジスタの製造方法 |
US5770880A (en) * | 1996-09-03 | 1998-06-23 | Harris Corporation | P-collector H.V. PMOS switch VT adjusted source/drain |
US5793089A (en) * | 1997-01-10 | 1998-08-11 | Advanced Micro Devices, Inc. | Graded MOS transistor junction formed by aligning a sequence of implants to a selectively removable polysilicon sidewall space and oxide thermally grown thereon |
US5837572A (en) * | 1997-01-10 | 1998-11-17 | Advanced Micro Devices, Inc. | CMOS integrated circuit formed by using removable spacers to produce asymmetrical NMOS junctions before asymmetrical PMOS junctions for optimizing thermal diffusivity of dopants implanted therein |
US5895955A (en) * | 1997-01-10 | 1999-04-20 | Advanced Micro Devices, Inc. | MOS transistor employing a removable, dual layer etch stop to protect implant regions from sidewall spacer overetch |
US6080614A (en) * | 1997-06-30 | 2000-06-27 | Intersil Corp | Method of making a MOS-gated semiconductor device with a single diffusion |
US6127233A (en) * | 1997-12-05 | 2000-10-03 | Texas Instruments Incorporated | Lateral MOSFET having a barrier between the source/drain regions and the channel region |
US6153487A (en) * | 1998-03-17 | 2000-11-28 | Advanced Micro Devices, Inc. | Approach for the formation of semiconductor devices which reduces band-to-band tunneling current and short-channel effects |
US6048772A (en) * | 1998-05-04 | 2000-04-11 | Xemod, Inc. | Method for fabricating a lateral RF MOS device with an non-diffusion source-backside connection |
US6020611A (en) * | 1998-06-10 | 2000-02-01 | Motorola, Inc. | Semiconductor component and method of manufacture |
US6124610A (en) | 1998-06-26 | 2000-09-26 | Advanced Micro Devices, Inc. | Isotropically etching sidewall spacers to be used for both an NMOS source/drain implant and a PMOS LDD implant |
FR2794898B1 (fr) * | 1999-06-11 | 2001-09-14 | France Telecom | Dispositif semi-conducteur a tension de seuil compensee et procede de fabrication |
US6395610B1 (en) | 1999-06-24 | 2002-05-28 | Lucent Technologies Inc. | Method of making bipolar transistor semiconductor device including graded, grown, high quality oxide layer |
US6521496B1 (en) | 1999-06-24 | 2003-02-18 | Lucent Technologies Inc. | Non-volatile memory semiconductor device including a graded, grown, high quality control gate oxide layer and associated methods |
US6551946B1 (en) | 1999-06-24 | 2003-04-22 | Agere Systems Inc. | Two-step oxidation process for oxidizing a silicon substrate wherein the first step is carried out at a temperature below the viscoelastic temperature of silicon dioxide and the second step is carried out at a temperature above the viscoelastic temperature |
US6670242B1 (en) | 1999-06-24 | 2003-12-30 | Agere Systems Inc. | Method for making an integrated circuit device including a graded, grown, high quality gate oxide layer and a nitride layer |
US6509230B1 (en) | 1999-06-24 | 2003-01-21 | Lucent Technologies Inc. | Non-volatile memory semiconductor device including a graded, grown, high quality oxide layer and associated methods |
FR2796204B1 (fr) * | 1999-07-07 | 2003-08-08 | St Microelectronics Sa | Transistor mosfet a canal court |
EP1111687B1 (en) * | 1999-12-22 | 2011-06-22 | Panasonic Electric Works Co., Ltd. | MOS semiconductor device |
US20030235957A1 (en) * | 2002-06-25 | 2003-12-25 | Samir Chaudhry | Method and structure for graded gate oxides on vertical and non-planar surfaces |
US6825543B2 (en) * | 2000-12-28 | 2004-11-30 | Canon Kabushiki Kaisha | Semiconductor device, method for manufacturing the same, and liquid jet apparatus |
US6822297B2 (en) * | 2001-06-07 | 2004-11-23 | Texas Instruments Incorporated | Additional n-type LDD/pocket implant for improving short-channel NMOS ESD robustness |
US20030062571A1 (en) * | 2001-10-03 | 2003-04-03 | Franca-Neto Luiz M. | Low noise microwave transistor based on low carrier velocity dispersion control |
US6686627B2 (en) * | 2001-12-26 | 2004-02-03 | Sirenza Microdevices, Inc. | Multiple conductive plug structure for lateral RF MOS devices |
KR100549949B1 (ko) * | 2003-12-23 | 2006-02-07 | 삼성전자주식회사 | 리세스 타입 모오스 트랜지스터의 제조방법 및 그의 구조 |
KR100709069B1 (ko) * | 2005-08-19 | 2007-04-18 | 전북대학교산학협력단 | 과잉운반자의 드레인 효율을 높인 이종접합 반도체소자구조 및 이의 제조방법 |
DE102005060521A1 (de) * | 2005-12-09 | 2007-06-14 | Atmel Germany Gmbh | DMOS-Transistor mit optimierter Randstruktur |
CN101577224B (zh) * | 2008-05-05 | 2011-07-06 | 中芯国际集成电路制造(北京)有限公司 | 栅氧化层形成方法 |
JP5239548B2 (ja) * | 2008-06-25 | 2013-07-17 | 富士通セミコンダクター株式会社 | 半導体装置及び半導体装置の製造方法 |
DE102009006885B4 (de) * | 2009-01-30 | 2011-09-22 | Advanced Micro Devices, Inc. | Verfahren zum Erzeugen einer abgestuften Wannenimplantation für asymmetrische Transistoren mit kleinen Gateelektrodenabständen und Halbleiterbauelemente |
WO2010086153A1 (en) * | 2009-01-30 | 2010-08-05 | Advanced Micro Devices, Inc | Graded well implantation for asymmetric transistors having reduced gate electrode pitches |
US8163619B2 (en) * | 2009-03-27 | 2012-04-24 | National Semiconductor Corporation | Fabrication of semiconductor structure having asymmetric field-effect transistor with tailored pocket portion along source/drain zone |
JP5374553B2 (ja) * | 2011-08-01 | 2013-12-25 | ルネサスエレクトロニクス株式会社 | 半導体装置 |
US9653459B2 (en) * | 2012-07-03 | 2017-05-16 | Taiwan Semiconductor Manufacturing Company, Ltd. | MOSFET having source region formed in a double wells region |
JP6651957B2 (ja) * | 2016-04-06 | 2020-02-19 | 株式会社デンソー | 半導体装置およびその製造方法 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IT1214615B (it) * | 1985-06-19 | 1990-01-18 | Ates Componenti Elettron | Transistore mos a canale n con limitazione dell'effetto di perforazione (punch-through) erelativo processo di formazione. |
JPS62269362A (ja) * | 1986-05-19 | 1987-11-21 | Fujitsu Ltd | Misトランジスタおよびその製造方法 |
JP2698645B2 (ja) * | 1988-05-25 | 1998-01-19 | 株式会社東芝 | Mosfet |
USH986H (en) * | 1989-06-09 | 1991-11-05 | International Business Machines Corporation | Field effect-transistor with asymmetrical structure |
US5536957A (en) * | 1990-01-16 | 1996-07-16 | Mitsubishi Denki Kabushiki Kaisha | MOS field effect transistor having source/drain regions surrounded by impurity wells |
JPH05211328A (ja) * | 1992-01-20 | 1993-08-20 | Nec Corp | Mosトランジスタおよびその製造方法 |
-
1993
- 1993-11-15 US US08/153,503 patent/US5371394A/en not_active Expired - Lifetime
-
1994
- 1994-11-07 EP EP94117497A patent/EP0653795B1/en not_active Expired - Lifetime
- 1994-11-07 SG SG1996002125A patent/SG50467A1/en unknown
- 1994-11-07 DE DE69419871T patent/DE69419871T2/de not_active Expired - Lifetime
- 1994-11-09 KR KR1019940029237A patent/KR950015828A/ko not_active Application Discontinuation
- 1994-11-10 CN CN94117619A patent/CN1036816C/zh not_active Expired - Lifetime
- 1994-11-11 JP JP6301678A patent/JPH07183501A/ja active Pending
Also Published As
Publication number | Publication date |
---|---|
JPH07183501A (ja) | 1995-07-21 |
CN1036816C (zh) | 1997-12-24 |
US5371394A (en) | 1994-12-06 |
KR950015828A (ko) | 1995-06-17 |
CN1106573A (zh) | 1995-08-09 |
EP0653795A2 (en) | 1995-05-17 |
EP0653795A3 (en) | 1996-01-31 |
DE69419871T2 (de) | 2000-03-16 |
DE69419871D1 (de) | 1999-09-09 |
EP0653795B1 (en) | 1999-08-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
SG50467A1 (en) | Double implanted laterally diffused mos device and method thereof | |
KR950011019B1 (en) | Power transistor device and its making method | |
SG45292A1 (en) | Dmos transistor structure and method | |
GB2306505B (en) | Rolling bearing and rolling device | |
HUP9901390A3 (en) | Continuously operating infusion device and method | |
EP0851232A4 (en) | AUTOMATIC ANALYZER AND METHOD FOR GRAPHIC REPRESENTATION | |
GB2288686B (en) | Medical training device and method | |
GR950300032T1 (en) | Method and device for breadmaking. | |
GB9312993D0 (en) | Method and device | |
SG48792A1 (en) | Renewable neural implant device and method | |
EP0768716A3 (en) | Bipolar transistor and manufacturing method | |
AU8879091A (en) | Relaxation device and method | |
AP9400630A0 (en) | Diagnostic device and method | |
PL314225A1 (en) | Device base and insert combination | |
EP0481454A3 (en) | Lateral mos fet and manufacturing method thereof | |
GB9323546D0 (en) | Fluid treatment device and method | |
GB9023145D0 (en) | Device and method | |
GB9809448D0 (en) | Treatment device and method | |
GB2277681B (en) | Hair treatment device and method | |
AU8062091A (en) | Exercise and rehabilitation device and method | |
GB9021777D0 (en) | Device and method | |
GB2274455B (en) | Fluid treatment device and method | |
AU5393694A (en) | Anchoring device and method | |
GB9025737D0 (en) | Device and method | |
AU3013592A (en) | Stimulus imparting device and method |