SG112066A1 - Complementary field-effect transistors and methods of manufacture - Google Patents
Complementary field-effect transistors and methods of manufactureInfo
- Publication number
- SG112066A1 SG112066A1 SG200406900A SG200406900A SG112066A1 SG 112066 A1 SG112066 A1 SG 112066A1 SG 200406900 A SG200406900 A SG 200406900A SG 200406900 A SG200406900 A SG 200406900A SG 112066 A1 SG112066 A1 SG 112066A1
- Authority
- SG
- Singapore
- Prior art keywords
- manufacture
- methods
- effect transistors
- complementary field
- complementary
- Prior art date
Links
- 230000000295 complement effect Effects 0.000 title 1
- 230000005669 field effect Effects 0.000 title 1
- 238000004519 manufacturing process Methods 0.000 title 1
- 238000000034 method Methods 0.000 title 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/77—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
- H01L21/78—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
- H01L21/82—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
- H01L21/822—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
- H01L21/8232—Field-effect technology
- H01L21/8234—MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
- H01L21/8238—Complementary field-effect transistors, e.g. CMOS
- H01L21/823807—Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the channel structures, e.g. channel implants, halo or pocket implants, or channel materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/77—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
- H01L21/78—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
- H01L21/82—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
- H01L21/822—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
- H01L21/8232—Field-effect technology
- H01L21/8234—MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
- H01L21/8238—Complementary field-effect transistors, e.g. CMOS
- H01L21/823814—Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the source or drain structures, e.g. specific source or drain implants or silicided source or drain structures or raised source or drain structures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/77—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
- H01L21/78—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
- H01L21/82—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
- H01L21/822—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
- H01L21/8232—Field-effect technology
- H01L21/8234—MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
- H01L21/8238—Complementary field-effect transistors, e.g. CMOS
- H01L21/823864—Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the gate sidewall spacers, e.g. double spacers, particular spacer material or shape
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/04—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes
- H01L29/045—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes by their particular orientation of crystalline planes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66409—Unipolar field-effect transistors
- H01L29/66477—Unipolar field-effect transistors with an insulated gate, i.e. MISFET
- H01L29/665—Unipolar field-effect transistors with an insulated gate, i.e. MISFET using self aligned silicidation, i.e. salicide
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66409—Unipolar field-effect transistors
- H01L29/66477—Unipolar field-effect transistors with an insulated gate, i.e. MISFET
- H01L29/6656—Unipolar field-effect transistors with an insulated gate, i.e. MISFET using multiple spacer layers, e.g. multiple sidewall spacers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66409—Unipolar field-effect transistors
- H01L29/66477—Unipolar field-effect transistors with an insulated gate, i.e. MISFET
- H01L29/66568—Lateral single gate silicon transistors
- H01L29/66575—Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate
- H01L29/6659—Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate with both lightly doped source and drain extensions and source and drain self-aligned to the sides of the gate, e.g. lightly doped drain [LDD] MOSFET, double diffused drain [DDD] MOSFET
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/7842—Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate
- H01L29/7843—Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate the means being an applied insulating layer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/7842—Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate
- H01L29/7845—Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate the means being a conductive material, e.g. silicided S/D or Gate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/7833—Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Computer Hardware Design (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US52613303P | 2003-12-01 | 2003-12-01 | |
US10/896,270 US20050116360A1 (en) | 2003-12-01 | 2004-07-21 | Complementary field-effect transistors and methods of manufacture |
Publications (1)
Publication Number | Publication Date |
---|---|
SG112066A1 true SG112066A1 (en) | 2005-06-29 |
Family
ID=36821062
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
SG200406900A SG112066A1 (en) | 2003-12-01 | 2004-11-20 | Complementary field-effect transistors and methods of manufacture |
Country Status (4)
Country | Link |
---|---|
US (1) | US20050116360A1 (zh) |
CN (2) | CN2793924Y (zh) |
SG (1) | SG112066A1 (zh) |
TW (1) | TWI285951B (zh) |
Families Citing this family (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3256084B2 (ja) | 1994-05-26 | 2002-02-12 | 株式会社半導体エネルギー研究所 | 半導体集積回路およびその作製方法 |
KR100487656B1 (ko) * | 2003-08-12 | 2005-05-03 | 삼성전자주식회사 | 반도체 기판과 ″l″형 스페이서 사이에 에어 갭을구비하는 반도체 소자 및 그 제조 방법 |
JP4653949B2 (ja) | 2003-12-10 | 2011-03-16 | ルネサスエレクトロニクス株式会社 | 半導体装置の製造方法および半導体装置 |
US7361973B2 (en) * | 2004-05-21 | 2008-04-22 | International Business Machines Corporation | Embedded stressed nitride liners for CMOS performance improvement |
US7138323B2 (en) * | 2004-07-28 | 2006-11-21 | Intel Corporation | Planarizing a semiconductor structure to form replacement metal gates |
US7265425B2 (en) * | 2004-11-15 | 2007-09-04 | Taiwan Semiconductor Manufacturing Company, Ltd. | Semiconductor device employing an extension spacer and a method of forming the same |
US20060267106A1 (en) * | 2005-05-26 | 2006-11-30 | Taiwan Semiconductor Manufacturing Company, Ltd. | Novel semiconductor device with improved channel strain effect |
JP5033316B2 (ja) * | 2005-07-05 | 2012-09-26 | 日産自動車株式会社 | 半導体装置の製造方法 |
CN101218667B (zh) * | 2005-07-07 | 2010-12-29 | 富士通半导体股份有限公司 | 半导体器件及其制造方法 |
US7670892B2 (en) * | 2005-11-07 | 2010-03-02 | Texas Instruments Incorporated | Nitrogen based implants for defect reduction in strained silicon |
JP5076119B2 (ja) * | 2006-02-22 | 2012-11-21 | 富士通セミコンダクター株式会社 | 半導体装置及びその製造方法 |
CN100466207C (zh) * | 2006-02-28 | 2009-03-04 | 联华电子股份有限公司 | 半导体晶体管元件及其制作方法 |
DE102006019835B4 (de) * | 2006-04-28 | 2011-05-12 | Advanced Micro Devices, Inc., Sunnyvale | Transistor mit einem Kanal mit Zugverformung, der entlang einer kristallographischen Orientierung mit erhöhter Ladungsträgerbeweglichkeit orientiert ist |
US7719089B2 (en) * | 2006-05-05 | 2010-05-18 | Sony Corporation | MOSFET having a channel region with enhanced flexure-induced stress |
US7781277B2 (en) * | 2006-05-12 | 2010-08-24 | Freescale Semiconductor, Inc. | Selective uniaxial stress relaxation by layout optimization in strained silicon on insulator integrated circuit |
US7504336B2 (en) * | 2006-05-19 | 2009-03-17 | International Business Machines Corporation | Methods for forming CMOS devices with intrinsically stressed metal silicide layers |
US7468313B2 (en) * | 2006-05-30 | 2008-12-23 | Freescale Semiconductor, Inc. | Engineering strain in thick strained-SOI substrates |
US7485524B2 (en) * | 2006-06-21 | 2009-02-03 | International Business Machines Corporation | MOSFETs comprising source/drain regions with slanted upper surfaces, and method for fabricating the same |
JP2008016475A (ja) * | 2006-07-03 | 2008-01-24 | Renesas Technology Corp | 半導体装置 |
JP2008041899A (ja) * | 2006-08-04 | 2008-02-21 | Toshiba Corp | 半導体装置 |
US7439120B2 (en) * | 2006-08-11 | 2008-10-21 | Advanced Micro Devices, Inc. | Method for fabricating stress enhanced MOS circuits |
US7416931B2 (en) * | 2006-08-22 | 2008-08-26 | Advanced Micro Devices, Inc. | Methods for fabricating a stress enhanced MOS circuit |
US7968148B2 (en) * | 2006-09-15 | 2011-06-28 | Globalfoundries Singapore Pte. Ltd. | Integrated circuit system with clean surfaces |
US7442601B2 (en) * | 2006-09-18 | 2008-10-28 | Advanced Micro Devices, Inc. | Stress enhanced CMOS circuits and methods for their fabrication |
US7868361B2 (en) * | 2007-06-21 | 2011-01-11 | Taiwan Semiconductor Manufacturing Company, Ltd. | Semiconductor device with both I/O and core components and method of fabricating same |
JP2009123960A (ja) * | 2007-11-15 | 2009-06-04 | Toshiba Corp | 半導体装置 |
JP2009170523A (ja) * | 2008-01-11 | 2009-07-30 | Rohm Co Ltd | 半導体装置およびその製造方法 |
JP5668277B2 (ja) * | 2009-06-12 | 2015-02-12 | ソニー株式会社 | 半導体装置 |
CN102881590B (zh) * | 2011-07-12 | 2017-05-10 | 联华电子股份有限公司 | 修补层形成方法及金属氧化物半导体晶体管结构 |
US8527933B2 (en) | 2011-09-20 | 2013-09-03 | Freescale Semiconductor, Inc. | Layout technique for stress management cells |
KR102201606B1 (ko) * | 2013-12-27 | 2021-01-12 | 인텔 코포레이션 | Cmos에 대한 2-축 인장 변형된 ge 채널 |
US9853148B2 (en) * | 2016-02-02 | 2017-12-26 | Taiwan Semiconductor Manufacturing Company Ltd. | Power MOSFETs and methods for manufacturing the same |
US11462397B2 (en) * | 2019-07-31 | 2022-10-04 | Taiwan Semiconductor Manufacturing Co., Ltd. | Semiconductor device and method of forming the same |
US20230019608A1 (en) * | 2021-07-09 | 2023-01-19 | Taiwan Semiconductor Manufacturing Company, Ltd. | Seal ring for semiconductor device with gate-all-around transistors |
CN116666421A (zh) * | 2022-02-18 | 2023-08-29 | 联华电子股份有限公司 | 半导体元件 |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5296401A (en) * | 1990-01-11 | 1994-03-22 | Mitsubishi Denki Kabushiki Kaisha | MIS device having p channel MOS device and n channel MOS device with LDD structure and manufacturing method thereof |
US5461243A (en) * | 1993-10-29 | 1995-10-24 | International Business Machines Corporation | Substrate for tensilely strained semiconductor |
US5710450A (en) * | 1994-12-23 | 1998-01-20 | Intel Corporation | Transistor with ultra shallow tip and method of fabrication |
US6157213A (en) * | 1998-10-19 | 2000-12-05 | Xilinx, Inc. | Layout architecture and method for fabricating PLDs including multiple discrete devices formed on a single chip |
JP2001338988A (ja) * | 2000-05-25 | 2001-12-07 | Hitachi Ltd | 半導体装置及びその製造方法 |
US6524935B1 (en) * | 2000-09-29 | 2003-02-25 | International Business Machines Corporation | Preparation of strained Si/SiGe on insulator by hydrogen induced layer transfer technique |
US6563152B2 (en) * | 2000-12-29 | 2003-05-13 | Intel Corporation | Technique to obtain high mobility channels in MOS transistors by forming a strain layer on an underside of a channel |
JP2003179071A (ja) * | 2001-10-25 | 2003-06-27 | Sharp Corp | Mddおよび選択cvdシリサイドを用いて深いサブミクロンcmosソース/ドレインを製造する方法 |
KR100476900B1 (ko) * | 2002-05-22 | 2005-03-18 | 삼성전자주식회사 | 테스트 소자 그룹 회로를 포함하는 반도체 집적 회로 장치 |
AU2003247513A1 (en) * | 2002-06-10 | 2003-12-22 | Amberwave Systems Corporation | Growing source and drain elements by selecive epitaxy |
JP4030383B2 (ja) * | 2002-08-26 | 2008-01-09 | 株式会社ルネサステクノロジ | 半導体装置およびその製造方法 |
US6864135B2 (en) * | 2002-10-31 | 2005-03-08 | Freescale Semiconductor, Inc. | Semiconductor fabrication process using transistor spacers of differing widths |
CN100437970C (zh) * | 2003-03-07 | 2008-11-26 | 琥珀波系统公司 | 一种结构及用于形成半导体结构的方法 |
US7319258B2 (en) * | 2003-10-31 | 2008-01-15 | Taiwan Semiconductor Manufacturing Company, Ltd. | Semiconductor-on-insulator chip with<100>-oriented transistors |
-
2004
- 2004-07-21 US US10/896,270 patent/US20050116360A1/en not_active Abandoned
- 2004-11-20 SG SG200406900A patent/SG112066A1/en unknown
- 2004-12-01 CN CNU2004201158809U patent/CN2793924Y/zh not_active Expired - Lifetime
- 2004-12-01 CN CNB2004100961965A patent/CN100394614C/zh active Active
- 2004-12-01 TW TW093137034A patent/TWI285951B/zh active
Also Published As
Publication number | Publication date |
---|---|
CN2793924Y (zh) | 2006-07-05 |
TW200529424A (en) | 2005-09-01 |
TWI285951B (en) | 2007-08-21 |
CN1645625A (zh) | 2005-07-27 |
US20050116360A1 (en) | 2005-06-02 |
CN100394614C (zh) | 2008-06-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
SG112066A1 (en) | Complementary field-effect transistors and methods of manufacture | |
SG115690A1 (en) | Strained-channel transistor and methods of manufacture | |
SG120135A1 (en) | Strained channel complementary field-effect transistors and methods of manufacture | |
GB2430805B (en) | U-gate transistors and methods of fabrication | |
AU2003286806A8 (en) | Novel field effect transistor and method of fabrication | |
EP1667646A4 (en) | METHOD FOR USE OF AMMONIA-OXIDATING BACTERIA | |
HK1120160A1 (en) | Trenched-gate field effect transistors and methods of forming the same | |
HK1094881A1 (en) | Organic photosensitive devices and methods of making thereof | |
AU2003248770A8 (en) | Integrated circuit including field effect transistor and method of manufacture | |
EP1745573A4 (en) | PROCESS FOR PREPARING 2-DEOXY-BETA-L-NUCLEOSIDES | |
IL178996A0 (en) | Thienopyridinone compounds and methods of treatment | |
IL182436A0 (en) | Thienopyridinone compounds and methods of treatment | |
GB2404283B (en) | Silicon-on-insulator transistor and method of manufacturing the same | |
AU2002315026A1 (en) | Field-effect transistor and method of making the same | |
GB0107405D0 (en) | Field effect transistor structure and method of manufacture | |
EP1678157A4 (en) | Heterocyclic compounds and process for their preparation and use | |
EP1487024A4 (en) | LATERAL JUNCTION FIELD EFFECT TRANSISTOR AND METHOD FOR MANUFACTURING THE SAME | |
EP1548843A4 (en) | FIELD EFFECT TRANSISTOR | |
AU2003297348A8 (en) | Method of fabricating organic field effect transistors | |
GB0324523D0 (en) | Compositions and methods of treatment | |
GB0225205D0 (en) | Thin film transistors and methods of manufacture thereof | |
GB2395602B (en) | MOS transistor and method of manufacturing the same | |
GB0304555D0 (en) | Compounds and methods of manufacture | |
GB0404749D0 (en) | Trench field effect transistor and method of making it | |
TWI341546B (en) | Semiconductor device and method of manufacture |