RU2752094C1 - Титановый сплав и способ его получения - Google Patents

Титановый сплав и способ его получения Download PDF

Info

Publication number
RU2752094C1
RU2752094C1 RU2020128914A RU2020128914A RU2752094C1 RU 2752094 C1 RU2752094 C1 RU 2752094C1 RU 2020128914 A RU2020128914 A RU 2020128914A RU 2020128914 A RU2020128914 A RU 2020128914A RU 2752094 C1 RU2752094 C1 RU 2752094C1
Authority
RU
Russia
Prior art keywords
titanium alloy
content
phase
corrosion resistance
less
Prior art date
Application number
RU2020128914A
Other languages
English (en)
Inventor
Хироси КАМИО
Кадзухиро Такахаси
Original Assignee
Ниппон Стил Корпорейшн
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ниппон Стил Корпорейшн filed Critical Ниппон Стил Корпорейшн
Application granted granted Critical
Publication of RU2752094C1 publication Critical patent/RU2752094C1/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • C22F1/183High-melting or refractory metals or alloys based thereon of titanium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

Изобретение относится к металлургии, в частности к титановому сплаву. Титановый сплав в форме пластины или листа, содержащий, мас.%: C 0,10-0,30; N 0,001-0,03; S 0,001-0,03; P 0,001-0,03; Si 0,001-0,10; Fe 0,01-0,3; H 0,015 или менее; O 0,25 или менее и Ti и неизбежные примеси - остальное, причем поверхностный слой образован единственной α-фазой. Способ производства титанового сплава в форме пластины или листа включает выполнение финальной термообработки титанового сплава при температуре от 750 до 820 °C и охлаждение со скоростью 0,001 °C/с или более и 2000 °C/с или менее. Сплав характеризуется высокой коррозионной стойкостью при сохранении высокой обрабатываемости. 2 н.п. ф-лы, 4 ил., 2 табл., 24 пр.

Description

[Область техники]
[0001] Настоящее изобретение относится к титановому сплаву и способу его получения.
[Предпосылки создания изобретения]
[0002] Технически чистый титан проявляет превосходную коррозионную стойкость даже в морской воде, в которой корродирует обычная нержавеющая сталь, такая как SUS 304. Технически чистый титан используется в опреснительных установках и подобном благодаря его высокой коррозионной стойкости.
[0003] Между тем, материал для химической установки иногда используется в среде, у которой коррозионная активность выше, чем у морской воды, например в соляной кислоте. В такой среде технически чистый титан также подвергается значительной коррозии.
[0004] При планировании использование в такой жесткой коррозионной среде, был разработан титановый сплав с высокой коррозионной стойкостью, у которого коррозионная стойкость в жестких коррозионных средах выше, чем у технически чистого титана.
[0005] В патентном документе 1 раскрывается сплав, содержащий элемент платиновой группы, такой как Pd. В патентном документе 2 и непатентном документе 1 раскрываются сплавы, в которые добавлен элемент платиновой группы и, кроме того, выделяется интерметаллическое соединение.
[0006] Эти титановые сплавы содержат редкий элемент, такой как Pd, который увеличивает стоимость сырья для сплавов. По этой причине стоит задача повысить коррозионную стойкость титана без использования дорогих редких элементов. Поэтому были сделаны различные предложения относительно титанового сплава, в который не добавляются редкие элементы, а используются распространенные элементы.
[0007] Так, в патентном документе 3 раскрывается решение, в котором для улучшения коррозионной стойкости и прочности Ti используется C. Однако, как показано на ФИГ. 4, в титановом сплаве, описанном в Патентном документе 3, выделяется TiC, и, таким образом, встает задача, касающаяся обрабатываемости, которая становится проблемой в случае, когда титановый сплав действительно применяется в теплообменниках или частях химической установки.
[Документы предшествующего уровня техники]
[Патентный документ]
[0008] Патентный документ 1: Публикация международной заявки № WO 2007/077645
Патентный документ 2: выложенная японская патентная публикация № H6-25779.
Patent Document 3: Японский перевод публикации международной заявки РСТ № 2009-509038.
[Непатентный документ]
[0009] Непатентный документ 1: «Tetsu-to-Hagane», Vol. 80, No. 4 (1994), pp. 353-358
[Раскрытие изобретения]
[Проблемы, решаемые изобретением]
[0010] Задачей настоящего изобретения является создание титанового сплава, улучшающего коррозионную стойкость при сохранении высокой обрабатываемости, за счет добавления в титановый сплав С вместо редкого элемента.
[Средства для решения проблем]
[0011] Авторы настоящего изобретения дополнительно провели исследования, и в их результате они обнаружили, что когда титановый сплав, содержащий от 0,10 до 0,30% добавленного к нему C, подвергается термообработке при температуре от 750 до 820°C и охлаждению со скоростью 0,001°C/с или более, можно создать поверхностную структуру, образованную единственной α-фазой, что позволяет улучшить коррозионную стойкость при сохранении отличной обрабатываемости.
[0012] Сущность настоящего изобретения заключается в следующем.
(1) Титановый сплав содержит, в мас.%, C: от 0,10 до 0,30%; N: от 0,001 до 0,03%; S: от 0,001 до 0,03%; P: от 0,001 до 0,03%; Si: от 0,001 до 0,10%; Fe: от 0,01 до 0,3%; H: 0,015% или менее; О: 0,25% или менее; и остальное Ti и неизбежные примеси, в котором поверхностная структура образована единственной α-фазой.
[0013] (2) Способ производства титанового сплава, содержащего, в мас.%, C: от 0,10 до 0,30%; N: от 0,001 до 0,03%; S: от 0,001 до 0,03%; P: от 0,001 до 0,03%; Si: от 0,001 до 0,10%; Fe: от 0,01 до 0,3%; H: 0,015% или менее; О: 0,25% или менее; и остальное Ti и неизбежные примеси, включает в себя выполнение финальной термообработки титанового сплава при температуре от 750 до 820℃ и охлаждение со скоростью 0,001°C/с или более.
[Эффект изобретения]
[0014] Согласно настоящему изобретению, можно предоставить титановый сплав, обладающий высокой коррозионной стойкостью, при сохранении высокой обрабатываемости. Конкретно, когда титановый сплав, имеющий состав в диапазоне согласно настоящему изобретению, производят способом согласно настоящему изобретению, поверхностная структура состоит из α-фазы, и как обрабатываемость, так и коррозионная стойкость улучшаются.
[Краткое описание чертежей]
[0015] [ФИГ. 1] На ФИГ. 1 представлен вид, иллюстрирующий взаимосвязь между скоростью коррозии при испытании на погружение в соляную кислоту и добавленным количеством C.
[ФИГ. 2] На ФИГ. 2 представлен вид, иллюстрирующий взаимосвязь между скоростью коррозии при испытании на погружение в соляную кислоту и температурой термообработки.
[ФИГ. 3] На ФИГ. 3 представлен один из примеров фотографии металлической структуры титанового сплава, изготовленного способом производства согласно настоящему изобретению.
[ФИГ. 4] На ФИГ. 4 представлен один из примеров фотографии металлической структуры титанового сплава, изготовленного обычным способом производства.
[Варианты осуществления изобретения]
[0016] (Химический состав)
Титановый сплав по настоящему изобретению содержит C: от 0,10 до 0,30%, N: от 0,001 до 0,03%, S: от 0,001 до 0,03%, P: от 0,001 до 0,03%, Si: от 0,001 до 0,10%, Fe: от 0,01 до 0,3%, H: 0,015% или меньше (включая 0%), O: 0,25% или меньше (включая 0%), а остаток состоит из Ti и неизбежных примесей. Слеудет отметить, что в пояснении ниже каждое содержание, обозначенное «%», означает «мас.%».
[0017] <C: 0,10 до 0,30%>
В настоящем изобретении C играет важную роль для улучшения коррозионной стойкости. В соответствии с увеличением содержания C скорость коррозии снижается, а коррозионная стойкость повышается (ФИГ. 1). Эффект повышения коррозионной стойкости, полученный за счет содержания C, заметно проявляется, когда содержание C составляет 0,10% или более. Между тем, как будет описано далее, эффект повышения коррозионной стойкости, полученный за счет добавления C, становится наиболее заметным, когда формируется однофазная α-структура, и C присутствует в α-фазе в качестве элемента внедрения твердого раствора. Кроме того, добавление большого количества C является нежелательным, поскольку облегчается выделение TiC, оказывающее неблагоприятное влияние на обрабатываемость. Добавление большого количества углерода оказывает отрицательное влияние на обрабатываемость и, вдобавок к этому, не обеспечивает достаточного проявления эффекта увеличения коррозионной стойкости. Таким образом, содержание C устанавливается от 0,10 до 0,30%. Следует отметить, что более предпочтительный нижний предел содержания твердого раствора C составляет 0,12%, а более предпочтительный верхний предел содержания твердого раствора C составляет 0,28%. α-фаза, в которой C растворен в твердом веществе, как элемент твердого раствора внедрения, представляет собой α-фазу поверхностной структуры, которая будет описана далее.
[0018] <N: 0,001 до 0,03%>
N является важным элементом, эффективным для повышения прочности, но с увеличением его содержания ухудшаются пластичность и ударная вязкость. Кроме того, N представляет собой элемент внедрения твердого раствора, равно как и C, который играет важную роль для увеличения коррозионной стойкости в настоящем изобретении. По этой причине существует вероятность того, что содержание C в твердом растворе снижается за счет увеличения содержания N. Потому содержание N устанавливается от 0,001 до 0,03%. Более предпочтительный верхний предел содержания N составляет 0,025%.
[0019] <S: 0,001 до 0,03%>
S является важным элементом, эффективным для повышения прочности, но с увеличением его содержания ухудшаются пластичность и ударная вязкость. Кроме того, S представляет собой элемент внедрения твердого раствора, равно как и C, который играет важную роль для увеличения коррозионной стойкости в настоящем изобретении. По этой причине существует вероятность того, что содержание C в твердом растворе снижается за счет увеличения содержания S. Потому содержание S устанавливается от 0,001 до 0,03%. Более предпочтительный верхний предел содержания S составляет 0,025%.
[0020] <P: 0,001 до 0,03%>
P является важным элементом, эффективным для повышения прочности, но с увеличением его содержания ухудшаются пластичность и ударная вязкость. Кроме того, P представляет собой элемент внедрения твердого раствора, равно как и C, который играет важную роль для увеличения коррозионной стойкости в настоящем изобретении. По этой причине существует вероятность того, что содержание C в твердом растворе снижается за счет увеличения содержания P. Потому содержание P устанавливается от 0,001 до 0,03%. Более предпочтительный верхний предел содержания P составляет 0,025%.
[0021] <Si: 0,001 до 0,10%>
Si является относительно недорогим элементом и является элементом, эффективным для увеличения термостойкости (стойкости к окислению, термической стойкости), но добавление большого количества Si способствует выделению соединения, что ухудшает пластичность и ударную вязкость. Потому содержание Si устанавливается от 0,001 до 0,10%. Более предпочтительный нижний предел содержания Si составляет 0,003%, а более предпочтительный верхний предел содержания Si составляет 0,08%.
[0022] <Fe: 0,01 до 0,3%>
Fe является элементом, эффективным для повышения прочности, но с увеличением его содержания ухудшаются пластичность и ударная вязкость. Кроме того, Fe является сильным β-стабилизирующим элементом среди элементов, содержащихся в титановом сплаве по настоящему изобретению, и, если добавляется большое количество Fe, становится трудно получить однофазную α-микроструктуру, которая будет описана ниже. Потому содержание Fe устанавливается от 0,01 до 0,30%. Более предпочтительный нижний предел содержания Fe составляет 0,03%, а более предпочтительный нижний предел содержания Fe составляет 0,25%.
[0023] <H: 0,015% или менее>
H является элементом который образует гидрид титана, ухудшающий пластичность и ударную вязкость материала. По этой причине предпочтительно, чтобы содержание H было небольшим, но увеличение H неизбежно в производственном процессе. Кроме того, H представляет собой элемент внедрения твердого раствора, равно как и C, который играет важную роль для увеличения коррозионной стойкости в настоящем изобретении. По этой причине существует вероятность того, что содержание C в твердом растворе снижается за счет увеличения содержания H. Поэтому содержание H ограничивается 0,015% или менее. Кроме того, при получении титанового сплава с низким содержанием H как описано выше, необходимо использовать губчатый титан высокой чистоты, но, если губчатый титан высокой чистоты используется чрезмерно, это приводит к увеличению стоимости. В настоящем изобретении H является примесным элементом и его содержание может составлять 0%, но предпочтительно, чтобы содержание H составляло 0,001% или более с точки зрения стоимости. Более предпочтительный верхний предел содержания H составляет 0,005%.
[0024] <O: 0,25% или менее>
O является важным элементом, эффективным для повышения прочности, но с увеличением его содержания ухудшаются пластичность и ударная вязкость. Кроме того, O представляет собой элемент внедрения твердого раствора, равно как и C, который играет важную роль для увеличения коррозионной стойкости в настоящем изобретении. По этой причине существует вероятность того, что содержание C в твердом растворе снижается за счет увеличения содержания O. Потому содержание O устанавливается 0,25% или менее. Кроме того, при получении титанового сплава с низким содержанием O как описано выше, необходимо использовать губчатый титан высокой чистоты, но, если губчатый титан высокой чистоты используется чрезмерно, это приводит к увеличению стоимости. В настоящем изобретении O является примесным элементом и его содержание может составлять 0%, но предпочтительно, чтобы содержание O составляло 0,01% или более с точки зрения стоимости. Более предпочтительный верхний предел содержания O составляет 0,20%.
[0025] <Поверхностный слой, образованный единственной α-фазой>
Когда поверхностный слой образован единственной α-фазой, это означает, что структура поверхностного слоя состоит из зерен α-фазы, а интенсивность пика дифракции рентгеновских лучей TiC составляет 10% или менее по сравнению с фоновой интенсивностью. Здесь поверхностный слой составляет не более 5 мкм в глубину от поверхности. α-фаза не включает в себя никакой α’-фазы и никакой игольчатой α-фазы. На ФИГ. 3 представлено состояние поверхности титанового сплава, изготовленного с помощью способа производства по изобретению согласно настоящей заявке.
[0026] α-фаза имеет гексагональную плотноупакованную структуру, и ее кристаллическая структура и распределение границ зерен отличаются от таковых для α'-фазы и игольчатой α-фазы, которые образуются при превращении из β-фазы. Твердорастворный атом C в α-фазе, вероятно, будет находиться между атомами Ti в качестве элемента внедрения твердого раствора, и атом C влияет на электронное состояние вокруг ядер атомов Ti, чтобы ингибировать анодную реакцию, в результате чего коррозионная стойкость может быть увеличена. Анодная реакция указывает на реакцию, в которой металл подвергается коррозии и ионизируется. Хотя электроны вокруг ядер атомов Ti должны быть отделены от ядер атомов Ti, когда металл ионизируется, за счет того, что C растворен в твердом веществе в α-фазе, затруднено высвобождение электронов, что улучшает коррозионную стойкость. α’- фаза и игольчатая α-фаза не могут привести к достаточному эффекту увеличения коррозионной стойкости по сравнению с α-фазой, потому что α'-фаза не имеет плотноупакованной структуры, а игольчатая α-фаза сильно зависит от сегрегации на границах зерен.
[0027] TiC – это твердое соединение, которое значительно ухудшает обрабатываемость материала. Однако в поверхностном слое титанового сплава по настоящему изобретению, углерод почти полностью растворен в твердом растворе, а почти не выделяется, так что обрабатываемость никогда не ухудшается.
[0028] <Температура термообработки>
Даже в материале, удовлетворяющем описанному выше химическому составу, микроструктура поверхностного слоя изменяется из-за температуры термообработки. По этой причине наблюдаемая свойства также изменяются. Как показано на ФИГ. 2 скорость коррозии титанового сплава, полученного термообработкой при температуре около 800°C, снижается до самой низкой скорости. Поэтому в настоящем изобретении температура термообработки составляет от 750 до 820°C. Время выдержки в этом температурном диапазоне особо не ограничивается, и достаточно проводить выдержку в течение периода времени, составляющего 1 с или более, а желательно 30 с или более.
[0029] Причина, по которой скорость коррозии титанового сплава снижается при температуре от 750 до 820°C, заключается в том, что, если термообработка выполняется при температуре, которая выходит за пределы этого температурного диапазона, происходит выделение TiC или микроструктура превращается в α’-фазу или игольчатую α-фазу. Например, на ФИГ. 4 показано состояние поверхностного слоя титанового сплава, изготовленного обычным способом, в котором термообработка выполняется при температуре, выходящей за пределы этого температурного диапазона. На поверхностном слое образуются выделения TiC в виде островков (ФИГ. 4). TiC - твердое соединение, которое значительно ухудшает обрабатываемость материала. По этой причине обрабатываемость титанового сплава, изготовленного обычным способом, ухудшается.
[0030] <Скорость охлаждения>
Даже когда температура термообработки находится в пределах вышеописанного диапазона, если скорость охлаждения низкая, в процессе охлаждения происходит выделение TiC, что препятствует тому, чтобы поверхностный слой состоял из α-фазы. Скорость охлаждения по настоящему изобретению составляет 0,001°C/с или более, предпочтительно 1°C/с или более. Кроме того, чем выше скорость охлаждения, тем больше можно подавить выделение TiC, но слишком высокая скорость охлаждения оказывает неблагоприятное воздействие влияние на сохранение формы титановой пластины, поэтому верхний предел скорости охлаждения устанавливается равным 2000°C/с.
[0031] <Способ получения>
Далее будет описан способ производства титанового сплава по настоящему изобретению. Титановый сплав по настоящему изобретению может быть изготовлен без использования особого специального способа таким образом, чтобы пескоструйная и травильная обработка выполнялись по мере необходимости между соответствующими процессами, такими как литье → блюмовая прокатка (или горячая ковка) → горячая прокатка → отжиг (→ холодная прокатка → окончательный отжиг), как и для обычного технически чистого титана. Следует отметить, что в описании вышеупомянутых процессов процесс (→ холодной прокатки → окончательного отжига), заключенный в круглые скобки, не является обязательным, но он соответствующим образом выполняется в зависимости от толщины, формы, размера и подобного титанового сплава, который должен быть изготовлен.
[Примеры]
[0032] Далее в этом документе настоящее изобретение будет описано более конкретно с приведением примеров. Настоящее изобретение не ограничивается приведенными ниже примерами.
[0033] Использовались плавильные материалы, содержащие титановую губку и заданные добавочные элементы, и титановые слитки, имеющие соответствующий химический состав, показанный в Таблице 1, были отлиты с использованием вакуумно-дуговой плавильной печи. Среди добавочных элементов электролитическое железо добавлялось как Fe, а порошок TiC добавлялся как C.
[0034] Следует отметить, что Al, V, Cr, Ru, Pd, Ni и Co в таблице не являются элементами, которые следует добавлять специально, а значения в таблице показывают, что содержание вышеописанных соответствующих элементов находится на уровне примесей.
[0035] [Таблица 1]
Figure 00000001
[0036] Для получения горячекатаного листа толщиной 4,0 мм выполняли ковку и горячую прокатку при температуре нагрева от 800 до 1000°C, используя каждый из отлитых титановых слитков, и путем травления и механической обработки были изготовлены образцы для оценки коррозионной стойкости. После этого проводили вакуумный отжиг при соответствующих температурах, указанных в Таблице 2, и оценивали коррозионную стойкость.
[0037] Поверхностные структуры идентифицировали с помощью XRD (дифракции рентгеновских лучей) и наблюдения микроструктуры. Для дифракции рентгеновских лучей согласно условиям Co Kα-лучи использовали в качестве характеристических рентгеновских лучей, подавали напряжение 30 кВ и ток 100 мА. Диапазон дифракции рентгеновских лучей был установлен на 10° ≤ 2θ ≤ 110°, шаг был установлен на 0,04°, время интегрирования было установлено на 2 с, а угол падения рентгеновского излучения был установлен на 0,3°. Наличие/отсутствие α-фазы, β-фазы, α'-фазы и TiC проверяли на основании положения пика дифракции рентгеновских лучей образца 20 мм в длину и 20 мм в ширину), и поверхностная структура была всесторонне изучена, включая наличие/отсутствие игольчатой α на основе наблюдения микроструктуры. Когда была обнаружена интенсивность пика дифракции рентгеновских лучей, превышающая интенсивность фона более чем на 10%, было установлено, что β-фаза, α'-фаза и TiC образовывались в поверхностных структурах, а в других случаях считалось, что структура поверхности образована единственной α-фазой.
[0038] Что касается коррозионной стойкости, образцы для испытаний были погружены на 168 часов в водный раствор соляной кислоты с концентрацией 3 мас.% при 90°C, скорость коррозии была рассчитана путем сравнения веса до и после погружения и на основании величины скорости коррозии оценивали коррозионную стойкость. Случай, когда скорость коррозии составляла 2 мм/год или меньше, был признан приемлемым. Результаты оценочного испытания на коррозионную стойкость представлены в Таблице 2. Что касается обрабатываемости, испытание на растяжение было проведено в соответствии со способом, описанным в JIS Z 2241, и обрабатываемость была оценена на основе удлинения при испытании. Удлинение измеряли с помощью тензометра, и случай, когда общее удлинение составляло 40% или более, был признан приемлемым.
[Таблица 2]
МАТЕРИАЛ ТЕМПЕРАТУРА ТЕРМООБРАБОТКИ (°C) СКОРОСТЬ ОХЛАЖДЕНИЯ (°C/S) ПОВЕРХНОСТНАЯ СТРУКТУРА СКОРОСТЬ КОРРОЗИИ (ММ/ГОД) УДЛИНЕНИЕ
(%)
ПРИМЕР ИЗОБРЕТЕНИЯ 1 B 800 0,0124 α 1,46 47
ПРИМЕР ИЗОБРЕТЕНИЯ 2 C 700 0,0114 α 0,59 43
ПРИМЕР ИЗОБРЕТЕНИЯ 3 C 800 0,0122 α 0,79 44
ПРИМЕР ИЗОБРЕТЕНИЯ 4 D 770 0,114 α 0,49 44
ПРИМЕР ИЗОБРЕТЕНИЯ 5 J 810 0,198 α 0,95 45
ПРИМЕР ИЗОБРЕТЕНИЯ 6 K 780 0,228 α 0,48 43
ПРИМЕР ИЗОБРЕТЕНИЯ 7 L 800 0,358 α 0,39 44
ПРИМЕР ИЗОБРЕТЕНИЯ 8 M 790 0,512 α 0,34 42
ПРИМЕР ИЗОБРЕТЕНИЯ 9 N 760 1,121 α 0,22 40
СРАВНИТЕЛЬНЫЙ ПРИМЕР 10 B 600 0,012 α+TiC 6,93 27
СРАВНИТЕЛЬНЫЙ ПРИМЕР 11 B 875 0,0144 α+α' 11,65 20
СРАВНИТЕЛЬНЫЙ ПРИМЕР 12 C 875 0,0141 α+α' 4,51 22
СРАВНИТЕЛЬНЫЙ ПРИМЕР 13 D 600 0,0118 α+β+TiC 3,02 29
СРАВНИТЕЛЬНЫЙ ПРИМЕР 14 D 800 0,00037 α+β 11,94 25
СРАВНИТЕЛЬНЫЙ ПРИМЕР 15 B 875 0,0133 a+α'+TiC 14,06 19
СРАВНИТЕЛЬНЫЙ ПРИМЕР 16 B 800 0,00045 α+TiC 5,48 25
СРАВНИТЕЛЬНЫЙ ПРИМЕР 17 A 800 0,0137 α 6,71 30
СРАВНИТЕЛЬНЫЙ ПРИМЕР 18 E 700 0,00032 α+TiC 7,85 27
СРАВНИТЕЛЬНЫЙ ПРИМЕР 19 F 700 0,0134 α+TiC 5,94 22
СРАВНИТЕЛЬНЫЙ ПРИМЕР 20 H 700 0,00025 α+TiC 7,94 30
СРАВНИТЕЛЬНЫЙ ПРИМЕР 21 I 700 0,0119 α+TiC 5,72 29
СРАВНИТЕЛЬНЫЙ ПРИМЕР 22 G 700 0,00031 α+TiC 7,32 23
СРАВНИТЕЛЬНЫЙ ПРИМЕР 23 0 800 0,954 α+TiC 6,25 25
СРАВНИТЕЛЬНЫЙ ПРИМЕР 24 E 800 0,883 α+TiC 6,12 24
[0039] В каждом из № 1 - № 9, удовлетворяющих всем компонентам материала, температуре термообработки и структуре поверхностного слоя, определенным настоящим изобретением, скорость коррозии была в целом низкой, чтобы увеличить коррозионную стойкость, и наблюдалось достаточное удлинение, таким образом, было подтверждено, что были получены как коррозионная стойкость, так и обрабатываемость.
[0040] В каждом из № 10 - № 16, хотя компоненты материала, такие как углерод, находились в пределах диапазона по настоящему изобретению, температура термообработки или скорость охлаждения находились вне диапазона по настоящему изобретению, вследствие чего поверхностная структура не была образована единственной α-фазой, скорость коррозии была большой, и не было обнаружено удовлетворительного удлинения. В каждом из № 14, № 16, № 18 и № 20 скорость охлаждения была низкой, что приводило к выделению TiC в процессе охлаждения.
В каждом из № 17 - № 24 элемент, снижающий предел растворимости C, такой как S, P или Si, был добавлен в диапазоне, равном или превышающем диапазон по настоящему изобретению, вследствие чего единственная α фаза не была получена даже при соблюдении температуры или скорости охлаждения по настоящему изобретению, коррозионная стойкость также не увеличилась, а относительное удлинение было низким из-за выделения TiC.
В каждом из № 1 и № 5 обесцвечивание или подобное почти не наблюдалось в наружной среде, но в каждом из № 23 и № 24 цвет поверхности становился коричневым в наружной среде.

Claims (5)

1. Титановый сплав в форме пластины или листа, содержащий, мас.%:
C 0,10-0,30 N 0,001-0,03 S 0,001-0,03 P 0,001-0,03 Si 0,001-0,10 Fe 0,01-0,3 H 0,015 или менее O 0,25 или менее Ti и неизбежные примеси остальное,
причем поверхностный слой образован единственной α-фазой.
2. Способ производства титанового сплава, содержащего, мас.%: C 0,10-0,30; N 0,001-0,03; S 0,001-0,03; P 0,001-0,03; Si 0,001-0,10; Fe 0,01-0,3; H 0,015 или менее; О 0,25 или менее; и остальное Ti и неизбежные примеси, причем способ включает в себя:
выполнение финальной термообработки титанового сплава при температуре от 750 до 820 °C и охлаждение со скоростью 0,001 °C/с или более и 2000 °C/с или менее.
RU2020128914A 2018-04-10 2018-04-10 Титановый сплав и способ его получения RU2752094C1 (ru)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/015065 WO2019198147A1 (ja) 2018-04-10 2018-04-10 チタン合金およびその製造方法

Publications (1)

Publication Number Publication Date
RU2752094C1 true RU2752094C1 (ru) 2021-07-22

Family

ID=68163163

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2020128914A RU2752094C1 (ru) 2018-04-10 2018-04-10 Титановый сплав и способ его получения

Country Status (5)

Country Link
JP (1) JP6927418B2 (ru)
KR (1) KR102340036B1 (ru)
CN (1) CN111902550B (ru)
RU (1) RU2752094C1 (ru)
WO (1) WO2019198147A1 (ru)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024100802A1 (ja) * 2022-11-09 2024-05-16 日本製鉄株式会社 チタン材、化学装置部品、及び化学装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52115713U (ru) * 1976-02-27 1977-09-02
JP3426605B2 (ja) * 1995-04-21 2003-07-14 新日本製鐵株式会社 高強度・高延性チタン合金およびその製造方法
JP2013095964A (ja) * 2011-10-31 2013-05-20 Kobe Steel Ltd チタン板、チタン板の製造方法、およびプレート式熱交換器の熱交換プレートの製造方法
US20150376738A1 (en) * 2013-03-19 2015-12-31 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Titanium sheet
RU2643736C2 (ru) * 2014-01-22 2018-02-05 Ниппон Стил Энд Сумитомо Метал Корпорейшн Титановый материал или материал из титанового сплава, имеющий поверхностную электропроводность, а также использующие его сепаратор топливной ячейки и топливная ячейка

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0625779A (ja) 1992-07-08 1994-02-01 Nkk Corp 硫酸及び塩酸に対する耐食性に優れたチタン合金
US20070062614A1 (en) 2005-09-19 2007-03-22 Grauman James S Titanium alloy having improved corrosion resistance and strength
JP3916088B2 (ja) 2005-12-28 2007-05-16 住友金属工業株式会社 耐食材用チタン合金
JP5421796B2 (ja) * 2010-01-13 2014-02-19 株式会社神戸製鋼所 超音波探傷試験における欠陥検出能力に優れたチタン合金ビレット
CN104099531B (zh) * 2014-07-31 2016-08-24 宁国市宁武耐磨材料有限公司 一种高硬度耐磨球及其制备方法
TWI637065B (zh) * 2015-07-29 2018-10-01 日商新日鐵住金股份有限公司 Titanium composite and titanium for hot work

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52115713U (ru) * 1976-02-27 1977-09-02
JP3426605B2 (ja) * 1995-04-21 2003-07-14 新日本製鐵株式会社 高強度・高延性チタン合金およびその製造方法
JP2013095964A (ja) * 2011-10-31 2013-05-20 Kobe Steel Ltd チタン板、チタン板の製造方法、およびプレート式熱交換器の熱交換プレートの製造方法
US20150376738A1 (en) * 2013-03-19 2015-12-31 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Titanium sheet
RU2643736C2 (ru) * 2014-01-22 2018-02-05 Ниппон Стил Энд Сумитомо Метал Корпорейшн Титановый материал или материал из титанового сплава, имеющий поверхностную электропроводность, а также использующие его сепаратор топливной ячейки и топливная ячейка

Also Published As

Publication number Publication date
JPWO2019198147A1 (ja) 2021-01-14
CN111902550B (zh) 2022-03-08
KR102340036B1 (ko) 2021-12-16
WO2019198147A1 (ja) 2019-10-17
JP6927418B2 (ja) 2021-08-25
KR20200118878A (ko) 2020-10-16
CN111902550A (zh) 2020-11-06

Similar Documents

Publication Publication Date Title
JP4168066B2 (ja) プラズマ処理装置に用いられる陽極酸化処理用アルミニウム合金およびその製造方法、陽極酸化皮膜を有するアルミニウム合金部材、ならびにプラズマ処理装置
JP5911891B2 (ja) 海水用銅合金材及びその製造方法
US20030188810A1 (en) Super-elastic titanium alloy for medical uses
JPH0841600A (ja) 耐食性デュプレックスステンレス鋼
KR20120001660A (ko) 내입계 부식성이 우수한 타이타늄 합금
KR20130059399A (ko) 티탄재
JP2006124835A (ja) 析出硬化型銅基合金
JP2009007625A (ja) 電気・電子部品用高強度銅合金の製造方法
JP7144840B2 (ja) チタン合金、その製造方法およびそれを用いたエンジン部品
RU2752094C1 (ru) Титановый сплав и способ его получения
US20050039827A1 (en) Copper alloy having excellent corrosion cracking resistance and dezincing resistance, and method for producing same
JP2009079271A (ja) Ca含有Mg合金圧延材
JP3824944B2 (ja) 耐応力腐食割れ性および耐脱亜鉛性に優れた銅合金およびその製造方法
JPH083670A (ja) 加工性および耐食性に優れたNi基合金
KR910009498B1 (ko) 내식성 Cu 합금
JP6085211B2 (ja) スケール付着抑制性と成形性に優れたチタン合金材およびその製造方法、ならびに熱交換器または海水蒸発器
JP4798943B2 (ja) 成形加工用アルミニウム合金板およびその製造方法
JP7387139B2 (ja) チタン合金、その製造方法およびそれを用いたエンジン部品
TWI650428B (zh) 鈦合金及其製造方法
JP4065146B2 (ja) 耐食性に優れたチタン合金及びその製造方法
JP3274175B2 (ja) 熱交換器用銅基合金およびその製造法
JP6686744B2 (ja) チタン合金板およびその製造方法。
JP3319482B2 (ja) 耐蝕性銅基合金材
WO2024100802A1 (ja) チタン材、化学装置部品、及び化学装置
JP3274176B2 (ja) 熱交換器用銅基合金およびその製造法