RU2714316C1 - Катализатор окислительного дегидрирования этана в этилен и способ его получения - Google Patents

Катализатор окислительного дегидрирования этана в этилен и способ его получения Download PDF

Info

Publication number
RU2714316C1
RU2714316C1 RU2019134376A RU2019134376A RU2714316C1 RU 2714316 C1 RU2714316 C1 RU 2714316C1 RU 2019134376 A RU2019134376 A RU 2019134376A RU 2019134376 A RU2019134376 A RU 2019134376A RU 2714316 C1 RU2714316 C1 RU 2714316C1
Authority
RU
Russia
Prior art keywords
hours
catalyst
fluorine
ammonium
ethylene
Prior art date
Application number
RU2019134376A
Other languages
English (en)
Inventor
Ильяс Магомедович Герзелиев
Вера Александровна Остроумова
Антон Львович Максимов
Данис Хасанович Файрузов
Original Assignee
Общество с ограниченной ответственностью "Газпром нефтехим Салават" (ООО "Газпром нефтехим Салават")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью "Газпром нефтехим Салават" (ООО "Газпром нефтехим Салават") filed Critical Общество с ограниченной ответственностью "Газпром нефтехим Салават" (ООО "Газпром нефтехим Салават")
Priority to RU2019134376A priority Critical patent/RU2714316C1/ru
Application granted granted Critical
Publication of RU2714316C1 publication Critical patent/RU2714316C1/ru

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/20Vanadium, niobium or tantalum
    • B01J23/22Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/28Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/06Halogens; Compounds thereof
    • B01J27/125Halogens; Compounds thereof with scandium, yttrium, aluminium, gallium, indium or thallium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/06Halogens; Compounds thereof
    • B01J27/132Halogens; Compounds thereof with chromium, molybdenum, tungsten or polonium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/42Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with a hydrogen acceptor
    • C07C5/48Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with a hydrogen acceptor with oxygen as an acceptor

Abstract

Изобретение относится к получению этилена из этана путем каталитической окислительной конверсии с раздельной подачей сырья и окислителя и одновременного получения технического азота из воздуха и может использоваться в химической и нефтехимической отраслях промышленности. Предложен катализатор окислительного дегидрирования этана в этилен, содержащий оксиды ванадия и молибдена, нанесенный на оксид алюминия, который дополнительно модифицирован фтором при соотношении F/Al, равном 1/1000-1/10, при следующем соотношении компонентов, % мас.: оксиды ванадия и молибдена 5-40, модифицированный фтором оксид алюминия - остальное, при массовом отношении молибдена к ванадию, равном 3-6. Катализатор дополнительно может содержать оксид ниобия в количестве 0,1-5 % мас. Для получения катализатора оксид алюминия предварительно обрабатывают раствором фторида аммония с получением модифицированного фтором оксида алюминия. Затем растворяют в воде парамолибдат аммония и метаванадат аммония, добавляют модифицированный фтором оксид алюминия и подвергают гидротермальной обработке в течение 8-36 часов при температуре 100-180°С. Сушку ведут в две стадии - вначале путем провяливания на воздухе без нагрева, затем при нагреве до 100-200°С, а прокаливание в три стадии - 2-4 ч при 300-350°С, 2-3,5 ч при 500°С и 1-3,5 ч при 600-700°С. Технический результат: повышение селективности по этилену и его выхода. 2 н. и 3 з.п. ф-лы, 1 табл., 12 пр.

Description

Изобретение относится к получению этилена из этана путем каталитической окислительной конверсии с раздельной подачей сырья и окислителя и одновременного получения технического азота из воздуха и может использоваться в химической и нефтехимической отраслях промышленности.
В настоящее время большое внимание уделяется разработке процессов каталитической конверсии этана и пропана в соответствующие олефины. Реакция каталитического превращения этана в этилен обратима, поэтому выход продуктов конверсии ограничивается термодинамическим равновесием, и для получения этилена требуются довольно высокие температуры (до 700°С). Превращение углеводородов при таких температурах сопровождается термическим крекингом, что снижает селективность процесса и приводит к необходимости проведения процесса при достаточно низкой конверсии этана для сохранения высокой селективности по этилену (80-95%). Интенсивное коксообразование на поверхности катализаторов в процессе реакции приводит к падению активности и селективности катализаторов и вызывает необходимость проведения окислительной регенерации, причем время регенерации и восстановления катализатора часто превышает время полезной работы.
Указанные недостатки устраняются при использовании в процессе окислителя. Применение окислителя при конверсии низших алканов в олефины имеет ряд преимуществ: повышение выхода продукта, снижение температуры осуществления реакции в связи с ее экзотермичностью, увеличение времени полезной работы катализатора из-за возможного выгорания кокса в процессе реакции. Однако и данный путь вызывает ряд технологических проблем:
- высокая энергоемкость и капиталоемкость процесса: при реализации окислительной конверсии этана в этилен с использованием кислорода в качестве окислителя требуются дополнительные капитальные затраты на выделение кислорода из воздуха и организацию взрывобезопасного производства, а при использовании воздуха в качестве окислителя в состав продуктов реакции входит балластный азот, который требует дополнительных затрат для его выделения;
- взрывоопасность смеси этан-кислород.
В связи с этим наиболее целесообразной является технология окислительной конверсии этана в этилен с раздельной подачей сырья и окислителя, которая обеспечивает взрывобезопасность процесса, с применением катализаторов окислительного дегидрирования.
Известен способ получения этилена из этана путем окислительной конверсии с раздельной подачей предельного углеводорода и кислорода при повышенных давлениях. В качестве катализаторов предпочтительно используют смешанные соединения на основе нестехиометрического оксикарбоната редкоземельных металлов, но могут также использовать оксиды или другие восстанавливаемые соединения Sn, Pb, Bi, Tl, Cd, Mn, Sb, Ge, In, Ru, Pr, Ce, Fe, Tb, Cr, Mo, Re, W, V. В окислительно-восстановительном режиме низшие алканы и кислород непосредственно не смешивают. Активную фазу катализатора на кислородной подложке подвергают циклическим реакциям окисления и восстановления, так что катализатор попеременно контактирует с окислителем и низшим алканом. Низшие алканы реагируют со связанным кислородом и восстанавливают катализатор. Поскольку низшие алканы не контактируют с газообразным кислородом, подавляется гомогенное окисление и значительно возрастает безопасность конверсии алканов. Дегидрирование этана и окисление катализатора осуществляют в двух различных реакторах, что обеспечивает непрерывность процесса и возможность осуществлять каждую его стадию в оптимальных условиях. После дегидрирования восстановленный катализатор с помощью транспортного (продувочного) потока инертного газа, такого как азот, подают в реактор окисления. После окисления катализатор отделяют от воздуха и возвращают в реактор дегидрирования. Подходящие реакторы могут быть реакторами с псевдоожиженным слоем. Отработанный воздух подвергают многоступенчатому охлаждению и расширению, используя его энергию, а затем выбрасывают. Конверсия низших алканов обычно составляет не более 40%, но может достигать 80% (см., WO 02/24614 А1, опубл. 28.03.2002, кл. МПК С07С 11/02, С07С 2/84, С07С 5/48, С07С 7/152).
В известном способе кислород воздуха не расходуется в процессе полностью - около 15-30% кислорода остается не превращенным. Повторно используют лишь тепло нагретого отработанного воздуха. Сам же отработанный воздух, обедненный кислородом после окисления катализатора и содержащий загрязняющие примеси, в дальнейшем не применяют, выбрасывая его как отходящий газ. Кроме того, селективность по олефинам невысока - молярное отношение олефина к алкановому побочному продукту составляет 1:1-2.5:1 при суммарной селективности по ним 40-70%.
Наиболее близкими к предложенному изобретению по совокупности существенных признаков и техническому результату (прототипом) являются катализатор окислительного дегидрирования этана в этилен, способ получения этого катализатора и способ окислительного дегидрирования этана в этилен (см., патент РФ 2612305 С1, кл. МПК С07С 5/48, С07С 11/04, B01J 23/22, B01J 23/28, B01J 27/057, B01J 23/20, B01J 23/26, B01J 23/755, опубл. 06.03.2017).
Катализатор окислительного дегидрирования этана в этилен V-Мо/γ-Al2O3 представляет собой смешанный оксид ванадия и молибдена, нанесенный на γ-Al2O3.
Катализатор V-Мо/γ-Al2O3 получают путем пропитки γ-Al2O3 предшественником пентаоксида ванадия (например, раствором ацетилацетоната ванадия в толуоле) с последующими сушкой и прокаливанием и дальнейшим нанесением (NH4)6Mo7O24⋅4Н2О в щелочной среде по влагопоглощению носителя с последующими сушкой и прокаливанием.
Эти катализатор и способ обеспечивают одновременное получение этилена и технического азота взрывобезопасным способом в раздельной подачей сырья и окислителя. Однако селективность по этилену невысока - только 60-68% мас. При конверсии этана, находящейся в пределах 24-28% мас., это приводит к тому, что выход этилена не превышает 16.8% мас.
Задача изобретения - повысить селективность по этилену и выход этилена в способе одновременного получения этилена и технического азота из этана.
Решение поставленной задачи достигается тем, что катализатор окислительного дегидрирования этана в этилен содержит оксиды ванадия и молибдена, нанесенные на оксид алюминия, дополнительно модифицированный фтором при соотношении F/Al, равном 1/1000-1/10, при следующем соотношении компонентов, % масс:
оксиды ванадия и молибдена 5-40
модифицированный фтором
оксид алюминия остальное,
при массовом отношении молибдена к ванадию, равном 3-6.
Катализатор дополнительно может содержать оксид ниобия в количестве 0,1-5% масс.
Решение поставленной задачи также достигается тем, что в способе получения катализатора окислительного дегидрирования этана в этилен, включающем нанесение на оксид алюминия предшественников пентаоксида ванадия и триоксида молибдена с последующей сушкой и прокаливанием, для получения описанного выше катализатора оксид алюминия предварительно обрабатывают раствором фторида аммония с получением модифицированного фтором оксида алюминия, указанное нанесение осуществляют путем растворения в воде парамолибдата аммония и метаванадата аммония, добавления модифицированного фтором оксида алюминия и гидротермальной обработки в течение 8-36 часов при температуре 100-180°С, сушку ведут в две стадии -вначале путем провяливания на воздухе без нагрева, затем при нагреве до 100-200°С, а прокаливание в три стадии - 2-4 ч при 300-350°С, 2-3.5 ч при 500°С и 1-3,5 ч при 600-700°С.
Предпочтительно после прокаливания осуществляют пропитку катализатора аммонийным оксалатом ниобия, повторную сушку и прокаливание.
Модифицированный фтором оксид алюминия в частном случае осуществления изобретении сушат и прокаливают.
Осуществление изобретения подтверждается следующими примерами.
Пример 1.
Приготовление катализатора с фтормодифицированием оксида алюминия и дальнейшей гидротермальной обработкой полученного фтормодифицированного оксида алюминия, где F/Al=1/20, Mo/V=4 (10 масс. % MoO3 и V2O5), 0,1 масс. % Nb2O5
На 18,0 г свежепрокаленного микросферического оксида алюминия обрабатывают 15,1 г 4,3%-ного раствора фторида аммония. Фтормодифицированный оксид алюминия сушат при 120°С 10 ч, прокаливают при 480°С 6 ч.
Готовят раствор растворением в 24 г воды 2,12 г парамолибдата аммония и 0,35 г метаванадата аммония при температуре 60-90°С. После полного растворения аммонийных солей раствор переносят в статический автоклав, снабженный тефлоновым стаканом, добавляют фтормодифицированный оксид алюминия. Автоклавирование проводят при температуре 120°С в течение 24 ч.
После охлаждения автоклава его содержимое переносят на фильтр, порошок фильтруют. После удаления всей влаги с порошка катализатор провяливают на воздухе в течение 24 ч, сушат при 120°С 8 ч, прокаливают в режиме 300°С - 2 ч, 500°С - 2 ч, 700°С - 3 ч.
Далее готовят раствор 0,07 г аммонийного оксалата ниобия (содержание ниобия в соли 20,7 масс. %) в 16 г воды при комнатной температуре, которым пропитывают по влагопоглощению полученный образец катализатора. Модифицированный образец провяливают в течение 10 ч, сушат при 100°С 24 ч и далее прокаливают при 500°С 4 ч.
Осуществляют дегидрирование на пилотной установке при температуре 600°С и кратности циркуляции катализатора, определяющей отношение кислорода к этану равным 10. Продукты реакции вместе с катализатором поступают в сепаратор реактора дегидрирования и выводят как продукт. Отработанный (восстановленный) катализатор направляют в реактор окисления. Осуществляют окисление отработанного катализатора воздухом при 600°С в псевдоожиженном слое. Оттуда смесь газов, содержащая отработанный воздух - газ, в основном содержащий азот, и транспортный азот, вместе с катализатором поступает в сепаратор реактора окисления. Регенерированный катализатор возвращают в реактор дегидрирования и выводят второй продукт - технический азот. Окислительное дегидрирование наряду с целевой реакцией получения этилена сопровождается образованием оксида углерода, диоксида углерода, метана, водорода, что характеризует селективность катализатора по образованию целевого продукта - этилена.
Результаты процесса представлены в таблице 1.
Пример 2.
Приготовление катализатора гидротермальной обработкой раствором солей молибдена, ванадия и фтора, где F/Al=1/200, Mo/V=4 (20 масс. % MoO3 и V2O5).
Готовят раствор растворением в 270 г воды 47,65 г парамолибдата аммония, 7,89 г метаванадата аммония и 0,65 г фторида аммония при температуре 60-90°С. После полного растворения аммонийных солей раствор переносят во вращающийся автоклав для гидротермального синтеза, снабженный тефлоновым стаканом, добавляют 180,0 г микросферического оксида алюминия. Автоклавирование проводят во вращающемся автоклаве при температуре 180°С в течение 10 ч (скорость вращения автоклава около 60 об/мин).
После охлаждения автоклава его содержимое переносят на фильтр, порошок фильтруют. После удаления всей влаги с порошка катализатор провяливают на воздухе в течение 24 ч, сушат при 180°С 8 ч, прокаливают в режиме 300°С - 2,5 ч, 500°С - 2 ч, 700°С - 4 ч.
Результаты процесса представлены в таблице 1.
Пример 3.
Приготовление катализатора с фтормодифицированием оксида алюминия и дальнейшей гидротермальной обработкой полученного фтормодифицированного оксида алюминия, где F/Al=1/10, Mo/V=5 (30 масс. % MoO3 и V2O5), 2,5 масс. % Nb2O5.
На 140,0 г свежепрокаленного микросферического оксида алюминия обрабатывают 122,2 г 8,3%-ного раствора фторида аммония. Фтормодифицированный оксид алюминия сушат при 100°С 14 ч, прокаливают при 550°С 8 ч.
Готовят раствор растворением в 240 г воды 65,32 г парамолибдата аммония и 8,66 г метаванадата аммония при температуре 60-90°С. После полного растворения аммонийных солей раствор переносят во вращающийся автоклав для гидротермального синтеза, снабженный тефлоновым стаканом, добавляют фтормодифицированный оксид алюминия. Автоклавирование проводят при температуре 100°С в течение 36 ч (скорость вращения автоклава около 60 об/мин).
После охлаждения автоклава его содержимое переносят на фильтр, порошок фильтруют. После удаления всей влаги с порошка катализатор провяливают на воздухе в течение 36 ч, сушат при 100°С 14 ч, прокаливают в режиме 300°С - 2 ч, 500°С - 2 ч, 700°С - 1 ч.
Далее готовят раствор 17,32 г аммонийного оксалата ниобия (содержание ниобия в соли 20,7 масс. %) в 160 г воды при комнатной температуре, которым пропитывают по влагопоглощению полученный образец катализатора. Модифицированный образец провяливают 24 ч, сушат при 200°С 10 ч и далее прокаливают при 500°С 4 ч и 700°С 2 ч.
Результаты процесса представлены в таблице 1.
Пример 4.
Приготовление катализатора гидротермальной обработкой раствором солей молибдена, ванадия и фтора, где F/Al=1/400, Mo/V=4,5 (10 масс. % МоО3 и V2O5).
Готовят раствор растворением в 24 г воды 2,15 г парамолибдата аммония, 0,32 г метаванадата аммония и 0,033 г фторида аммония при температуре 60-90°С. После полного растворения аммонийных солей раствор переносят в статический автоклав, снабженный тефлоновым стаканом, добавляют 18,0 г микросферического оксида алюминия. Автоклавирование проводят в статическом автоклаве при температуре 155°С в течение 10 ч.
После охлаждения автоклава его содержимое переносят на фильтр, порошок фильтруют. После удаления всей влаги с порошка катализатор провяливают на воздухе в течение 24 ч, сушат при 180°С 12 ч, прокаливают в режиме 300°С - 3 ч, 500°С - 3 ч, 700°С - 2 ч.
Результаты процесса представлены в таблице 1.
Пример 5 (сравнительный)
Приготовление катализатора с фтормодифицированием оксида алюминия и дальнейшей гидротермальной обработкой полученного фтормодифицированного оксида алюминия, где F/Al=1/40, Mo/V=3 (40 масс. % MoO3 и V2O5).
На 18,0 г свежепрокаленного микросферического оксида алюминия обрабатывают 14,7 г 2,2%-ного раствора фторида аммония. Фтормодифицированный оксид алюминия сушат при 200°С 8 ч, прокаливают при 600°С 3 ч.
Готовят раствор растворением в 24 г воды 12,15 г парамолибдата аммония и 2,68 г метаванадата аммония при температуре 60-90°С. После полного растворения аммонийных солей раствор переносят в статический автоклав, снабженный тефлоновым стаканом, добавляют фтормодифицированный оксид алюминия. Автоклавирование проводят при температуре 170°С в течение 1 ч.
После охлаждения автоклава его содержимое переносят на фильтр, порошок фильтруют. После удаления всей влаги с порошка катализатор провяливают на воздухе в течение 48 ч, сушат при 200°С 8 ч, прокаливают в режиме 350°С - 2 ч, 550°С - 2 ч, 650°С - 3 ч.
Результаты процесса представлены в таблице 1.
Пример 6.
Приготовление катализатора гидротермальной обработкой раствором солей молибдена, ванадия и фтора, где F/Al=1/200, Mo/V=4 (10 масс. % МоО3 и V2O5), 1 масс. % Nb2O5.
Готовят раствор растворением в 23 г воды 2,12 г парамолибдата аммония, 0,35 г метаванадата аммония и 0,065 г фторида аммония при температуре 60-90°С. После полного растворения аммонийных солей раствор переносят в статический автоклав, снабженный тефлоновым стаканом, добавляют 18,0 г микросферического оксида алюминия. Автоклавирование проводят при температуре 100°С в течение 36 ч.
После охлаждения автоклава его содержимое переносят на фильтр, порошок фильтруют. После удаления всей влаги с порошка катализатор провяливают на воздухе в течение 25 ч, сушат при 200°С 10 ч, прокаливают в режиме 300°С - 2 ч, 500°С - 2 ч, 700°С - 3 ч.
Далее готовят раствор 0,68 г аммонийного оксалата ниобия (содержание ниобия в соли 20,7 масс. %) в 16 г воды при комнатной температуре, которым пропитывают по влагопоглощению полученный образец катализатора. Модифицированный образец провяливают 20 ч, сушат при 120°С 12 ч и далее прокаливают при 600°С 4 ч.
Результаты процесса представлены в таблице 1.
Пример 7.
Приготовление катализатора с фтормодифицированием оксида алюминия и дальнейшей гидротермальной обработкой полученного фтормодифицированного оксида алюминия, где F/Al=1/1000, Mo/V=4 (10 масс. % MoO3 и V2O5), 5 масс. % Nb2O5
На 180,0 г свежепрокаленного микросферического оксида алюминия обрабатывают 144,1 г 0,1%-ного раствора фторида аммония. Фтормодифицированный оксид алюминия сушат при 100°С 4 ч, прокаливают при 550°С 6 ч.
Готовят раствор растворением в 234 г воды 21,18 г парамолибдата аммония и 3,51 г метаванадата аммония при температуре 60-90°С. После полного растворения аммонийных солей раствор переносят во вращающийся автоклав, снабженный тефлоновым стаканом, добавляют фтормодифицированный оксид алюминия. Автоклавирование проводят во вращающемся автоклаве (скорость вращения 60 об/мин) при температуре 180°С в течение 8 ч.
После охлаждения автоклава его содержимое переносят на фильтр, порошок фильтруют. После удаления всей влаги с порошка катализатор провяливают на воздухе в течение 48 ч, сушат при 100°С 8 ч, при 200°С 14 ч, прокаливают в режиме 300°С - 3,5 ч, 500°С - 3,5 ч, 700°С - 3,5 ч.
Далее готовят раствор 35,56 г аммонийного оксалата ниобия (содержание ниобия в соли 20,7 масс. %) в 160 г воды при комнатной температуре, которым пропитывают по влагопоглощению полученный образец катализатора. Модифицированный образец провяливают 15 ч, сушат при 120°С 20 ч и далее прокаливают в режиме 500°С - 2 ч, 700°С - 3 ч.
Результаты процесса представлены в таблице 1.
Пример 8.
Приготовление катализатора гидротермальной обработкой раствором солей молибдена, ванадия и фтора, где F/Al=1/500, Mo/V=3,5 (10 масс. % MoO3 и V2O5), 3 масс. % Nb2O5.
Готовят раствор растворением в 24 г воды 2,08 г парамолибдата аммония, 0,39 г метаванадата аммония и 0,026 г фторида аммония при температуре 60-90°С. После полного растворения аммонийных солей раствор переносят в статический автоклав, снабженный тефлоновым стаканом, добавляют 18,0 г микросферического оксида алюминия. Автоклавирование проводят при температуре 135°С в течение 14 ч.
После охлаждения автоклава его содержимое переносят на фильтр, порошок фильтруют. После удаления всей влаги с порошка катализатор провяливают на воздухе в течение 20 ч, сушат при 170°С 11 ч, прокаливают в режиме 300°С - 3 ч, 450°С - 4 ч, 600°С - 2 ч.
Далее готовят раствор 2,09 г аммонийного оксалата ниобия (содержание ниобия в соли 20,7 масс. %) в 16 г воды при комнатной температуре, которым пропитывают по влагопоглощению полученный образец катализатора. Модифицированный образец провяливают 48 ч, сушат при 120°С 10 ч и 160°С 10 ч, далее прокаливают при 550°С 4 ч.
Результаты процесса представлены в таблице 1.
Пример 9.
Приготовление катализатора с фтормодифицированием оксида алюминия и дальнейшей гидротермальной обработкой полученного фтормодифицированного оксида алюминия, где F/Al=1/100, Mo/V=4 (10 масс. % MoO3 и V2O5), 1 масс. % Nb2O5
На 180,0 г свежепрокаленного микросферического оксида алюминия обрабатывают 144,1 г 0,9%-ного раствора фторида аммония. Фтормодифицированный оксид алюминия сушат при 130°С 5 ч, прокаливают при 580°С 6 ч.
Готовят раствор растворением в 234 г воды 21,18 г парамолибдата аммония и 3,51 г метаванадата аммония при температуре 60-90°С. После полного растворения аммонийных солей раствор переносят во вращающийся автоклав для гидротермального синтеза, снабженный тефлоновым стаканом, добавляют фтормодифицированный оксид алюминия. Автоклавирование проводят во вращающемся автоклаве (скорость вращения 60 об/мин) при температуре 145°С в течение 24 ч.
После охлаждения автоклава его содержимое переносят на фильтр, порошок фильтруют. После удаления всей влаги с порошка катализатор провяливают на воздухе в течение 40 ч, сушат при 100°С 8 ч, при 200°С 14 ч, прокаливают в режиме 400°С - 2 ч, 500°С - 2 ч, 600°С - 3 ч.
Далее готовят раствор 6,82 г аммонийного оксалата ниобия (содержание ниобия в соли 20,7 масс. %) в 144 г воды при комнатной температуре, которым пропитывают по влагопоглощению полученный образец катализатора. Модифицированный образец провяливают 22 ч, сушат при 110°С 18 ч и далее прокаливают при 550°С 4 ч.
Результаты процесса представлены в таблице 1.
Пример 10.
Приготовление катализатора гидротермальной обработкой раствором солей молибдена, ванадия и фтора, где F/Al=1/100, Mo/V=6 (10 масс. % МоО3 и V2O5).
Готовят раствор растворением в 24 г воды 1,02 г парамолибдата аммония, 0,15 г метаванадата аммония и 0,13 г фторида аммония при температуре 60-90°С. После полного растворения аммонийных солей раствор переносят в статический автоклав, снабженный тефлоновым стаканом, добавляют 18,0 г микросферического оксида алюминия. Автоклавирование проводят при температуре 100°С в течение 36 ч.
После охлаждения автоклава его содержимое переносят на фильтр, порошок фильтруют. После удаления всей влаги с порошка катализатор провяливают на воздухе в течение 20 ч, сушат при 100°С 14 ч, прокаливают в режиме 300°С - 3 ч, 450°С - 4 ч, 600°С - 2 ч.
Результаты процесса представлены в таблице 1.
Пример 11
Приготовление катализатора гидротермальной обработкой раствором солей молибдена, ванадия и фтора, где F/Al=1/400, Mo/V=6 (10 масс. % MoO3 и V2O5).
Готовят раствор растворением в 24 г воды 2,205 г парамолибдата аммония, 0,245 г метаванадата аммония и 0,033 г фторида аммония при температуре 60-90°С. После полного растворения аммонийных солей раствор переносят в статический автоклав, снабженный тефлоновым стаканом, добавляют 18,0 г микросферического оксида алюминия. Автоклавирование проводят в статическом автоклаве при температуре 170°С в течение 10 ч.
После охлаждения автоклава его содержимое переносят на фильтр, порошок фильтруют. После удаления всей влаги с порошка катализатор провяливают на воздухе в течение 24 ч, сушат при 180°С 12 ч, прокаливают в режиме 300°С - 3 ч, 450°С - 3 ч, 650°С - 2 ч.
Результаты процесса представлены в таблице 1.
Пример 12 (по прототипу).
Катализатор V-Mo/γ-Al2O3 получают путем пропитки γ-Al2O3 предшественником пентаоксида ванадия (например, раствором ацетилацетоната ванадия в толуоле) с последующими сушкой и прокаливанием и дальнейшим нанесением (NH4)6Mo7O24⋅4H2O в щелочной среде по влагопоглощению носителя с последующими сушкой и прокаливанием. Таким образом, предложенный катализатор обеспечивает повышение селективности по товарному продукту - этилену и выхода последнего.
Figure 00000001
Figure 00000002

Claims (7)

1. Катализатор окислительного дегидрирования этана в этилен, содержащий оксиды ванадия и молибдена, нанесенный на оксид алюминия, отличающийся тем, что он содержит оксид алюминия, дополнительно модифицированный фтором при соотношении F/Al, равном 1/1000-1/10, при следующем соотношении компонентов, % мас.:
оксиды ванадия и молибдена 5-40 модифицированный фтором оксид алюминия остальное,
при массовом отношении молибдена к ванадию, равном 3-6.
2. Катализатор по п. 1, отличающийся тем, что он дополнительно содержит оксид ниобия в количестве 0,1-5 % мас.
3. Способ получения катализатора окислительного дегидрирования этана в этилен, включающий нанесение на оксид алюминия предшественников пентаоксида ванадия и триоксида молибдена с последующей сушкой и прокаливанием, отличающийся тем, что для получения катализатора по п. 1 оксид алюминия предварительно обрабатывают раствором фторида аммония с получением модифицированного фтором оксида алюминия, указанное нанесение осуществляют путем растворения в воде парамолибдата аммония и метаванадата аммония, добавления модифицированного фтором оксида алюминия и гидротермальной обработки в течение 8-36 часов при температуре 100-180°С, сушку ведут в две стадии - вначале путем провяливания на воздухе без нагрева, затем при нагреве до 100-200°С, а прокаливание в три стадии - 2-4 ч при 300-350°С, 2-3,5 ч при 500°С и 1-3,5 ч при 600-700°С.
4. Способ по п. 3, отличающийся тем, что после прокаливания осуществляют пропитку катализатора аммонийным оксалатом ниобия, повторную сушку и прокаливание.
5. Способ по п. 3 или 4, отличающийся тем, что модифицированный фтором оксид алюминия сушат и прокаливают.
RU2019134376A 2019-10-25 2019-10-25 Катализатор окислительного дегидрирования этана в этилен и способ его получения RU2714316C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2019134376A RU2714316C1 (ru) 2019-10-25 2019-10-25 Катализатор окислительного дегидрирования этана в этилен и способ его получения

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2019134376A RU2714316C1 (ru) 2019-10-25 2019-10-25 Катализатор окислительного дегидрирования этана в этилен и способ его получения

Publications (1)

Publication Number Publication Date
RU2714316C1 true RU2714316C1 (ru) 2020-02-14

Family

ID=69625848

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2019134376A RU2714316C1 (ru) 2019-10-25 2019-10-25 Катализатор окислительного дегидрирования этана в этилен и способ его получения

Country Status (1)

Country Link
RU (1) RU2714316C1 (ru)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2350594C1 (ru) * 2007-08-13 2009-03-27 Общество с ограниченной ответственностью "Катализ" Алюмооксидный носитель, способ получения алюмооксидного носителя и способ получения катализатора дегидрирования c3-c5 парафиновых углеводородов на этом носителе
RU2358958C1 (ru) * 2007-12-25 2009-06-20 Леонид Модестович Кустов Способ приготовления активной фазы катализатора окислительного дегидрирования углеводородов, катализатор на ее основе, способ его получения и способ окислительного дегидрирования этана с его использованием
RU2412145C2 (ru) * 2005-06-01 2011-02-20 Селаниз Интернэшнл Корпорейшн Способ селективного окисления этана до этилена
RU2612305C1 (ru) * 2015-11-03 2017-03-06 Федеральное государственное бюджетное учреждение науки Ордена Трудового Красного Знамени Институт нефтехимического синтеза им. А.В. Топчиева Российской академии наук (ИНХС РАН) Способ окислительной конверсии этана в этилен
US20190275502A1 (en) * 2015-08-19 2019-09-12 Nova Chemicals (International) S.A. Oxidative dehydrogenation catalyst

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2412145C2 (ru) * 2005-06-01 2011-02-20 Селаниз Интернэшнл Корпорейшн Способ селективного окисления этана до этилена
RU2350594C1 (ru) * 2007-08-13 2009-03-27 Общество с ограниченной ответственностью "Катализ" Алюмооксидный носитель, способ получения алюмооксидного носителя и способ получения катализатора дегидрирования c3-c5 парафиновых углеводородов на этом носителе
RU2358958C1 (ru) * 2007-12-25 2009-06-20 Леонид Модестович Кустов Способ приготовления активной фазы катализатора окислительного дегидрирования углеводородов, катализатор на ее основе, способ его получения и способ окислительного дегидрирования этана с его использованием
US20190275502A1 (en) * 2015-08-19 2019-09-12 Nova Chemicals (International) S.A. Oxidative dehydrogenation catalyst
RU2612305C1 (ru) * 2015-11-03 2017-03-06 Федеральное государственное бюджетное учреждение науки Ордена Трудового Красного Знамени Институт нефтехимического синтеза им. А.В. Топчиева Российской академии наук (ИНХС РАН) Способ окислительной конверсии этана в этилен

Similar Documents

Publication Publication Date Title
EP0206042B1 (en) Method of oxidative conversion of methane
Sofranko et al. Catalytic oxidative coupling of methane over sodium-promoted Mn/SiO2 and Mn/MgO
US4774216A (en) Composition of matter for oxidative conversion of organic compounds
US7009075B2 (en) Process for the selective conversion of alkanes to unsaturated carboxylic acids
US20070238608A1 (en) Catalyst compostion for the selective conversion of alkanes to unsaturated carboxylic acids, method of making and method of using thereof
RU2108861C1 (ru) Способ активации каталитической композиции на основе соединения галлия и оксида алюминия и каталитическая композиция для дегидрирования с2 - с5-парафинов
RU2234368C2 (ru) Катализаторы для окисления этана до уксусной кислоты и способы их получения и использования
KR20020030016A (ko) 재순환 방법
CA2933484C (en) Improved catalyst for ethane odh
US20150086471A1 (en) Multimetallic mixed oxides, its preparation and use for the oxidative dehydrogenation of ethane for producing ethylene
US4310717A (en) Oxidative dehydrogenation and catalyst
CN111215045B (zh) 一种铈基双金属氧化物催化剂及其制备方法和在低碳烷烃脱氢中的应用
RU2612305C1 (ru) Способ окислительной конверсии этана в этилен
RU2714316C1 (ru) Катализатор окислительного дегидрирования этана в этилен и способ его получения
JPH0639397B2 (ja) C▲下3▼及びc▲下4▼炭化水素の転化用触媒及びその転化法
TWI391371B (zh) 在基於乙烷之製程中使用化學反應自乙烷中分離乙烯以製造醋酸之方法
WO2020078980A1 (en) Catalyst for alkane oxidative dehydrogenation and/or alkene oxidation
AU777050B2 (en) Process for the production of olefins
WO2021107541A1 (ko) 알칸족 가스로부터 올레핀 제조용 탈수소촉매 및 그 제조방법
RU2627664C1 (ru) Катализатор дегидрирования лёгких парафиновых углеводородов и способ получения непредельных углеводородов с его использованием
WO2020049462A1 (en) Vanadium oxide supported catalyst for alkane dehydrogenation
KR20240047442A (ko) 알칸을 올레핀으로 탈수소화하기 위한 촉매 및 방법
JP2020522380A (ja) 安定性、転換率、及び選択度が向上したオレフィン製造用触媒及びその製造方法
KR20240050384A (ko) 알칸을 올레핀으로 탈수소화하기 위한 촉매 및 방법
US20230271170A1 (en) Oxides of sulfur and their use as oxygen transfer reagents