RU2680995C1 - Способ получения зародышеобразующих добавок для упрочнения бетона - Google Patents

Способ получения зародышеобразующих добавок для упрочнения бетона Download PDF

Info

Publication number
RU2680995C1
RU2680995C1 RU2017143584A RU2017143584A RU2680995C1 RU 2680995 C1 RU2680995 C1 RU 2680995C1 RU 2017143584 A RU2017143584 A RU 2017143584A RU 2017143584 A RU2017143584 A RU 2017143584A RU 2680995 C1 RU2680995 C1 RU 2680995C1
Authority
RU
Russia
Prior art keywords
compound
calcium
molar ratio
tobermorite
dopant
Prior art date
Application number
RU2017143584A
Other languages
English (en)
Inventor
ДОЛАДО Хорхе САНЧЕС
РЕДОНДО Хуан Хосе ГАЙТЕРО
Original Assignee
Фундасион Текналия Рисерч Энд Инновейшн
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Фундасион Текналия Рисерч Энд Инновейшн filed Critical Фундасион Текналия Рисерч Энд Инновейшн
Application granted granted Critical
Publication of RU2680995C1 publication Critical patent/RU2680995C1/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/20Silicates
    • C01B33/24Alkaline-earth metal silicates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates
    • C04B14/043Alkaline-earth metal silicates, e.g. wollastonite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/0086Seeding materials
    • C04B22/00863Calcium silicate hydrate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B40/00Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
    • C04B40/0028Aspects relating to the mixing step of the mortar preparation
    • C04B40/0039Premixtures of ingredients
    • C04B40/0042Powdery mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B40/00Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
    • C04B40/02Selection of the hardening environment
    • C04B40/024Steam hardening, e.g. in an autoclave
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Abstract

Изобретение относится к области технологии силикатных материалов. Предложен способ получения суспензии, содержащей зародышеобразующие добавки, содержащие гидрат силиката кальция (C-S-H) в виде дефектного тоберморита. Способ включает осуществление реакции, по меньшей мере, одного источника соединения, содержащего Са, по меньшей мере, с одним источником соединения, содержащего Si, в водной среде и в присутствии легирующей примеси, выбранной из группы, состоящей из соединения, содержащего P, соединения, содержащего B, и их смесей. Реакцию осуществляют при температуре от 100 до 350°C и эндогенном давлении или давлении, поддерживаемом постоянным в интервале от 0,1 МПа до 50 МПа. Изобретение обеспечивает получение добавок, эффективных в качестве ускорителя упрочения для бетонов или материала на основе цемента. 7 н. и 17 з.п. ф-лы, 10 ил., 5 табл.

Description

Настоящее изобретение относится к дополнительным цементирующим материалам (SCM), которые должны быть добавлены в бетон до или во время смешивания для улучшения упрочняющих свойств цементных материалов. Более конкретно, настоящее изобретение относится к новому и удобному промышленному способу получения зародышеобразующих добавок, включая кальций-силикатные гидраты (C-S-H) в виде дефектного тоберморита.
УРОВЕНЬ ТЕХНИКИ
Дополнительные цементирующие материалы (SCM) представляют собой примеси, состоящие из порошкообразных или измельченных минеральных материалов, представляющих пуццолановую активность или латентную гидравлическую реактивность, или и то, и другое. Различные SCM можно найти в реальных бетонных смесях.
Хотя использование SCM в целом становится четкой тенденцией для цементной промышленности, их использование на практике во многих случаях ограничено по цене и/или по техническим причинам. В этом смысле использование, например, частиц наносиликатных (NS), наночастиц гидрата силиката кальция (C-S-H) и т. д., которые являются реактивными SCM, увеличивает конечную цену цементного клинкера. С другой стороны, использование дешевых, но не очень реактивных сортов SCM, таких как летучие золы (FA), невозможно повысить, поскольку они бы поставили под угрозу первоначальные свойства прочности.
Взаимодействие частиц NS с портландцементом впервые было изучено S. Chandra и H. Bergqvist ( Proc. Int. Congr. Chem. Cem. 1997, том. 3, 3ii106, 6pp), которые показали, что добавление небольших количеств коллоидного нанокремния достаточно для получения того же пуццоланового эффекта (способности частицы диоксида кремния реагировать с CH до получения C-S-H), как происходит при добавлении больших количеств микрокремнезема (SF). Эти выгодные свойства NS-частиц были отнесены к их тонкости (тогда как частицы NS, используемые авторами, имели удельную площадь 80 м2/г, удельная поверхность кремнезема составляла всего 15-25 м2/г). Впоследствии интенсивные всемирные исследования экспериментально и путем вычислений доказали, что, помимо NS-пуццолановых реакций, использование NS-частиц подразумевает дополнительный механизм роста силикатных цепей в геле C-S-H. Этот новый механизм включает реакции типа «NS+C-S-H=C-S-H (новый)», в котором новый гель C-S-H имеет более длинные и более стабильные цепи. Однако, как уже упоминалось, хотя использование незначительных количеств частиц NS в значительной степени улучшает механические свойства бетона, их практическое использование ограничено из-за их высокой цены (около 2500 €/т).
Более поздняя экспериментальная работа (Thomas и др., J. Phys. Chem. C 2009, том. 113, стр. 4327-4334) продемонстрировала, что добавление наночастиц CSH в обычные портландцементы (OPC) проявляет эффект затравки (эффект матрицы), обеспечивающий новые центры зародышеобразования в поровом пространстве в направлении от поверхностей частиц. Тот же механизм впоследствии описан в других сортах цемента (Hubler и др., Cement and Concrete Research, 2011, том 41, стр. 842-846). Кинетику процесса гидратации и, следовательно, процесс упрочнения можно настроить путем изменения количества добавленных к цементу наночастиц CSH.
Эта простая идея, которая легко понятна в общепринятой модели зарождения и роста, была хорошо воспринята нефтегазовым сектором, где точный контроль регулирования нефти-цемента имеет решающее значение. Тем не менее, синтез C-S-H наночастиц является довольно сложным процессом. Традиционные подходы к синтезу частиц C-S-H, основанные на золь-гель путях, вряд ли масштабируемы. Кроме того, использование этого нового семейства упрочняющих ускорителей-нанопримесей, которые вместо того, чтобы действовать через пуццолановый механизм, действует как матрицы, ограничено из-за их высокой цены (около 2500 €/т)
Для преодоления упомянутых недостатков сообщалось об альтернативных способах, основанных на регулярной гидротермической обработке материалов, содержащих CaO и SiO2 для получения частиц C-S-H. Однако до сих пор ни один из них не был удовлетворительным с точки зрения эффективности затрат и возможности затравки (зародышеобразования). Вообще говоря, известные гидротермальные методы при низких значениях отношения C/S (0,8-1,5) при температурах ниже 140°C приводят к минералам тоберморита с кристаллическими структурами, которые считаются «слишком совершенными» вариантами желаемого цементного геля C-S-H, что обеспечивает низкую способность зародышеобразования. Кроме того, их образование является довольно медленным процессом, требующим, как правило, нескольких дней непрерывного перемешивания в гидротермальной камере. Поскольку, как правило, повышение температуры, как известно, ускоряет химические реакции, была рассмотрена возможность увеличения гидротермальных температур выше 140°C для более быстрого получения дефектных тоберморитоподобных соединений. К сожалению, на самом деле происходит то, что при температурах выше 140°C другие кристаллические структуры, такие как ксонотлит или гиролит, становятся стабильными. Хуже того, сценарий с большими отношениями Ca/Si от 1,5 до 2,5, где гидротермальные обработки ниже ~ 100°C создают только метастабильные растворы порландитов и тоберморитоподобных кристаллов, а гидротермальные обработки при более высоких температурах приводят к тому, что тоберморитоподобные структуры превращаются в более стабильные структуры, такие как афвилит (C1,5SH1,5) или α-C2SH, которые представляют собой минералы с небольшим сходством с цементирующим гелем C-S-H, демонстрирующим низкую способность к зародышеобразованию.
Baltakys и др. (Materials Science-Poland 2009, том 27, № 4/1) раскрывают получение частиц C-H-S из первичных смесей CaO/SiO2 с низкими молярными отношениями Ca/Si 0,83 и 1,0, и в присутствии гипса на 200°C. Установлено, что сульфатные ионы улучшают синтез тоберморита при высокой температуре. Однако этот способ дает кристаллические структуры, которые считаются «слишком совершенными» версиями цементного геля C-S-H, что обеспечивает низкую способность к зародышеобразованию.
В WO 02010/026155 описан способ получения упрочняющей ускоряющей композиции, содержащей продукт C-S-H и водорастворимый гребенчатый полимер, подходящий в качестве пластификатора для гидравлических связующих. Комбинация полимеров и зародышей C-S-H привлекательна с технической точки зрения, но это усложняет процесс синтеза. Кроме того, методология основывается на низкотемпературном синтезе, предпочтительно в диапазоне от 0 до 100°C, что дает длительные процессы синтеза и дорогостоящие издержки производства. В WO 02010/026155 описано применение растворенных алюминиевых и/или магниевых солей в исходных водных растворах, используемых в процессе, для создания дефектов в получаемом C-S-H путем введения в структуру других ионов, отличных от кальция и кремния, что приводит к улучшению эффекта ускорения упрочнения. Эффект ускорения упрочнения C-S-H затем усиливается дефектами, полученными в структуре C-H-S. Это происходит потому, что зародышеобразующая способность зависит от структурной аналогии с настоящим цементным гелем C-S-H (т.е. тем, который естественным образом появляется при процессе гидратации). Необходимость дефектов в полученной структуре является ключевой концепцией, потому что цементирующая наноструктура геля C-S-H на самом деле представляет собой сильно искаженную версию кристаллического тоберморитового минерала. Фактически, в то время как цементирующая C-S-H гель стехиометрия может быть записана как C1,7SH1,8, тоберморит-минерал представляет собой Ca5Si6O16(OH)2•4H2O. Таким образом, как отношение Ca/Si, так и содержание воды в цементном геле C-S-H намного больше, чем значения, обнаруженные в минерале тоберморита. Эта структурная разница объясняет, почему способность упрочнения зародышеобразователей C-S-H также зависит от соотношения Ca/Si. Однако, опять же, время реакции для получения желаемых частиц C-S-H в процессе, описанных в WO 02010/026155, очень велико, что требует высокого потребления энергии и ограничения его промышленного применения.
В WO2014/183846 описана гидротермальная обработка в автоклаве при 200°С исходного материала, содержащего источники CaO и SiO2, с отношением вода/твердые вещества от 0,1 до 100 и соотношением C/S около 2. Исходными материалами предпочтительно являются отходы и побочные продукты. Сообщается, что полученный продукт демонстрирует повышенную латентную гидравлическую и/или пуццолановую реакционную способность и используется в качестве дополнительного цементирующего материала. Однако описанный способ не дает C-H-S с такими характеристиками, как цементирующий C-S-H гель. Скорее всего, этот процесс дает, в основном, α-C2SH, который имеет гораздо меньшую способность образования затравки. Как уже было открыто Guerrero и др. ( J. Am. Ceram. Soc. 2005, том. 88, стр. 1845-1853), хорошо известно, что регулярные гидротермальные обработки отходов, подобных FA, в среде, богатой кальцием, дают гидратированные продукты, такие как α-C2SH и катоит. Кроме того, способ, раскрытый в WO 02014/183846, требует длительного времени пребывания (около 16 часов).
Ввиду вышеизложенного, по-прежнему необходимо обеспечить зародышеобразующие добавки, такие как частицы C-S-H, напоминающие цементирующий гель C-S-H, простыми и промышленно масштабируемыми производственными способами, которые являются экономически эффективными и реактивными.
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
Авторы настоящего изобретения разработали новый способ получения зародышеобразующих добавок, которые полезны в качестве упрочняющих ускорителей для бетона или других цементных материалов, которые преодолевают упомянутые выше недостатки. В частности, этот метод является экономически эффективным, масштабируемым и коротким и может удобно использовать отходы и побочные продукты в качестве исходных материалов. Чтобы прийти к этому удобному способу, изобретатели провели интенсивные исследования, чтобы скорректировать условия реакции. Важно отметить, что изобретатели обнаружили, что конкретные условия реакции в сочетании с использованием небольших количеств конкретных легирующих примесей дают продукт, который содержит зародышеобразующие добавки, в частности, по меньшей мере, частицы C-S-H, которые очень напоминают цементирующий C-S-H-гель. Как описано в примерах ниже, для получения желаемого продукта требуется всего около 4 часов, что является очень значительным улучшением по сравнению с известными способами.
Таким образом, первый аспект настоящего изобретения относится к способу получения суспензии, содержащей зародышеобразующие добавки, которая включает осуществление реакции, по меньшей мере, одного источника кальцийсодержащего соединения, по меньшей мере с одним источником кремнийсодержащего соединения, в водной среде и наличие легирующей примеси, выбранной из группы, состоящей из соединения, содержащего P, соединения, содержащего B, соединения, содержащего S, и их смесей; в которой: (i) реакцию проводят при температуре от 100 до 350°С; (ii) общее молярное отношение Ca к Si составляет от 1,5 до 2,5 и (iii) общее молярное отношение легирующей примеси к Si составляет от 0,01 до 2; при условии, что: (a) когда единственной легирующей примесью является соединение, содержащее P, общее молярное отношение P к Si составляет от 0,1 до 2; (b) когда единственной легирующей примесью является соединение, содержащее B, общее молярное отношение B к Si составляет от 0,01 до 2 и (c) когда единственной легирующей примесью является соединение, содержащее S, общее молярное отношение S к Si составляет от 0,1 до 2.
Полученная суспензия содержит значительную долю C-S-H (или C-A-S-H, если Al присутствует в исходных материалах, как в конкретных вариантах способа осуществления) в виде дефектного тоберморита. Изобретатели охарактеризовали этот C-(A)-S-H и обнаружили, что он имеет высокое структурное сходство с цементирующим гелем C-(A)-S-H (см. пример 7), что демонстрирует удивительно высокую способность зародышеобразования. Никакие предшествующие методы не позволяют получить этот дефектный тоберморит в таких удобных, экономически выгодных условиях. Изобретатели продемонстрировали, что присутствие небольших количеств конкретных легирующих примесей стабилизирует дефектную тоберморитовую фазу, которая образуется во время реакции в ущерб кристаллическим и нежелательным фазам, подобным афвиллиту или α-C2SH. Кроме того, в зависимости от используемой легирующей примеси в полученную суспензию могут быть включены другие зародышеобразующие добавки. В частности, когда P используется как легирующая примесь, пульпа содержит значительную часть гидроксиапатита, который также показывает очень высокую способность к зародышеобразованию.
Таким образом, еще один аспект изобретения предусматривает суспензию, содержащую зародышеобразующие добавки, получаемые способом по изобретению. Эта суспензия может быть дополнительно обработана для получения порошка, который более подходит для транспортировки и использования в цементной промышленности. Соответственно, еще один аспект изобретения относится к порошку, содержащему зародышеобразующие добавки, получаемые способом по настоящему изобретению.
Полученная суспензия или порошок из-за высокой доли зародышеобразующих добавок могут быть использованы непосредственно в качестве ускорителей упрочнения для бетона или других материалов на основе цемента. Альтернативно, полученный порошок может быть составлен таким образом, чтобы получить добавочную композицию для бетона или других материалов на основе цемента. Соответственно, изобретение также обеспечивает добавочную композицию для бетона или других материалов на основе цемента, содержащих порошок, полученный способом по изобретению вместе с соответствующими добавками. Кроме того, еще один аспект изобретения предусматривает использование суспензии, порошка или добавочной композиции в соответствии с изобретением в качестве ускорителя упрочнения для бетона или других материалов на основе цемента.
Наконец, изобретение обеспечивает, в другом аспекте, бетонные или другие материалы на основе цемента, изготовленные из суспензии, порошка или добавочной композиции, получаемой способом по настоящему изобретению.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
ФИГ. 1: показывает рентгенограмму продуктов, полученных в результате гидротермической обработки нелегированного образца (нижняя панель), и легированного образца с B в качестве легирующего элемента (верхняя панель) с молярным отношением Са/Si 2,2, молярным отношением B/Si 1,172, при 200°C, полученных в соответствии с примером 1 (а).
ФИГ. 2: показывает рентгенограмму продуктов, полученных в результате гидротермической обработки нелегированного образца (нижняя панель) и легированного образца с P в качестве легирующего элемента (верхняя панель) с молярным отношением Ca/Si равным 2, P/Si молярным отношение равным 0,35, при 200°С, полученных в соответствии с примером 1 (b).
ФИГ. 3: показывает рентгеновские дифракционные спектры образца с В в качестве легирующего элемента (верхняя панель, В/Si=0,053) и образца с В (В/Si=0,053) и S (S/Si=0,011) в качестве легирующих элементов (нижняя панель) с молярным отношением Ca/Si равным 2, при 200°C, в соответствии с примером 1 (c).
ФИГ. 4: показывает рентгеновские дифракционные спектры образца без легирующего элемента (нижняя панель) и образца с В в качестве легирующего элемента (верхняя панель) с молярным отношением Са/Si 2,2, молярным отношением В/Si 1,172 при 165°C, в соответствии с примером 2 (a).
ФИГ. 5: показывает рентгеновские дифракционные спектры образца без легирующего элемента (нижняя панель) и образца с В в качестве легирующего элемента (верхняя панель) с молярным отношением Са/Si 2,2, молярным отношением В/Si 1,172 при 175°C, в соответствии с примером 2 (a).
ФИГ. 6: показывает рентгеновские дифракционные спектры разных образцов без легирующего элемента (нижняя панель на фиг.6B) и образцы с P в качестве легирующего элемента (верхняя панель на фиг.6B и фиг.6A) с молярным отношением Ca/Si равным 2, P/Si равным 0,35, при 250°C, и 225°C, и 200°C в соответствии с примером 2 (b).
ФИГ. 7: показывает рентгенограмму продуктов, полученных в результате гидротермической обработки нелегированного образца (нижняя панель), и легированного образца с B в качестве легирующего элемента (верхняя панель) с молярным отношением Са/Si 1,60, молярным отношением B/Si 1,172, при 200°C, полученных в соответствии с примером 3.
ФИГ. 8: показывает рентгенограмму продуктов, полученных в результате гидротермической обработки нелегированного образца (нижняя панель) и легированного образца с P в качестве легирующего элемента (верхняя панель) с молярным отношением Ca/Si равным 2, P/Si молярным отношение равным 0,35, при 200°С, полученных в соответствии с примером 4.
ФИГ. 9: показывает повышение прочности на сжатие (ΔR (%)), достигаемое за счет использования различных SCM: NS: нанокремнезем, NA: наноглинозем; МС: микрокремнезем и S: продукт, полученный в соответствии с примером 1а.
ФИГ. 10: показывает структуру тоберморита
ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ
Настоящее изобретение относится к способу получения суспензии, содержащей зародышеобразующие добавки, как определено выше. Способ является удобным, промышленно масштабируемым, коротким и экономически эффективным и требует наличия легирующей примеси, выбранной из группы, состоящей из соединения, содержащего P, соединения, содержащего B, соединения, содержащего S, и их смесей; где общее молярное отношение легирующей примеси к Si составляет от 0,05 до 2.
«Зародышеобразующая добавка» (здесь иногда также называемая «реагент затравки») понимается как соединение, которое повышает процесс зародышеобразования (или «затравки»), то есть, первого шага в формировании либо новой термодинамической фазы, либо новой структуры через самосборку или самоорганизацию. Поскольку гидратация цемента моделируется как процесс зарождения и роста, зародышеобразующие добавки по настоящему изобретению обеспечивают подходящую матрицу для гидратации цемента или материалов на основе цемента и, следовательно, ускоряют их затвердевание. Способ изобретения предусматривает образование продукта, содержащего, по меньшей мере, одно, но иногда большее количество зародышеобразующих добавок. Конкретными зародышеобразующими добавками в настоящем изобретении являются гидраты силиката кальция (C-S-H) в виде дефектного тоберморита. Когда в исходных материалах присутствует алюминийсодержащее соединение, Al частично заменяет Si в структуре гидрата силиката калия, получая, таким образом, гидрат силиката кальция (C-A-S-H) в форме (алюминийзамещенного) дефектного тоберморита, который также является зародышеобразующей добавкой в смысле настоящего изобретения. Оба, C-S-H или C-A-S-H в виде дефектного тоберморита могут быть идентифицированы «базальным» сигналом 2Тета около 7,8° при анализе с помощью рентгеновской дифрактометрии при комнатной температуре. В смысле настоящего изобретения около 7,8° означает, что сигнал XRD появляется от 2Тета=5° до 2Тета=9°. В смысле настоящего изобретения термин «гидрат силиката кальция (алюминия)» или «C- (A) -S-H» включает как C-S-H, так и C-A-S-H, (A) означающий, что когда Al присутствует в исходных материалах, он частично заменяет Si в структуре C-S-H. Специалист в данной области знает эту номенклатуру. Кроме того когда P присутствует как легирующей примеси в процессе изобретения, полученный раствор дополнительно содержит гидроксиапатит в качестве зародышеобразующих добавок. Этот зародышеобразующие добавки обычно являются нерастворимыми соединениями с размерами малых частиц, обычно в диапазоне микро - и нано метров, которые показывают повышенную площадь поверхности. В настоящем описании термины «зародышеобразующий» и «затравка» используются неотличимо.
Под «дефектным тоберморитом» понимается тоберморит или, когда Al присутствует, Al-замещенный тоберморит, со средней длиной цепи (MCL) силикатных цепей, составляющей от 2 до 25 и показывающий базовый пик XRD при 2Тета около 7,8°. Наличие дефектного тоберморита в продукте, полученном способом по изобретению, было определено изобретателями, как описано в примере 7. В некоторых вариантах способа осуществления дефектный тоберморит, получаемый по способу изобретения, имеет MCL от 3 до 20, предпочтительно от 5 до 14, более предпочтительно от 8 до 13 и показывает базовый пик XRD при 2Тета около 7,8°.
В смысле настоящего изобретения «легирующая примесь» представляет собой соединение, которое, добавляемое к реакции, обычно при низких концентрациях, позволяет реакции перейти к желаемому продукту в условиях, которые являются более удобными по сравнению с нелегированной реакцией. В настоящем изобретении легирующая примесь значительно сокращает время получения желаемых продуктов, т.е. зародышеобразующих добавок, определенных выше. Авторы настоящего изобретения продемонстрировали, что настоящие легирующие примеси стабилизируют при высокой температуре дефектный тоберморит, который структурно похож на цементный гель C-S-H и обладает аналогичным зародышеобразующим эффектом.
Термин «отношение A к B» понимается, как обычно на уровне техники, как доля A по отношению к B и обычно выражается как A/B. Отношение может быть выражено как «молярное» отношение или отношение «по весу». Молярное отношение обычно используется для химических реакций и представляет собой долю соединений при выражении в молярной концентрации. Соотношение по весу представляет собой долю при выражении в мас.% концентрации.
В области цементных материалов соединения, содержащие Са и Si, обычно представляют собой СаО и SiO2, но это не единственные соединения, которые могут быть использованы в качестве исходных материалов в настоящем изобретении. Поэтому «общее молярное отношение», например, Ca к Si, понимается молярное отношение всех соединений, содержащих Ca, ко всем соединениям, содержащим Si.
В некоторых вариантах способа осуществления первого аспекта изобретения общее молярное отношение легирующего элемента к кремнию составляет от 0,01 до 2. В других вариантах способа осуществления общее молярное отношение легирующего элемента к кремнию составляет от 0,05 до 1. В конкретных вариантах способа осуществления общее молярное отношение легирующего элемента к кремнию составляет от 0,05 до 0,5, более предпочтительно от 0,06 до 0,5, более предпочтительно от 0,8 до 0,5, более предпочтительно от 0,1 до 0,4, например 0,1, 0,15, 0,17, 0,18, 0,19, 0,2, 0,21, 0,22, 0,23, 0,24, 0,24, 0,26, 0,27, 0,28, 0,29, 0,3, 0,31, 0,32, 0,33, 0,34, 0,35, 0,36, 0,37, 0,38 или 0,39.
Количество легирующей примеси отличается в зависимости от выбранного соединения и используется ли он сам по себе или вместе с другой легирующей примесью.
Один вариант способа осуществления предусматривает способ получения суспензии, содержащей зародышеобразующие добавки, который включает осуществление реакции, по меньшей мере, одного источника соединения, содержащего кальций, по меньшей мере с одним источником кремнийсодержащего соединения, в водной среде и в присутствии выбранной легирующей примеси из группы, состоящей из соединения, содержащего P, соединения, содержащего B, соединения, содержащего S, и их смесей; в которых: (i) реакцию проводят при температуре от 100 до 350°С; (ii) общее молярное отношение Ca к Si составляет от 1,5 до 2,5 и (iii) общее молярное отношение легирующей примеси к Si составляет от 0,01 до 2; при условии, что: (a) когда единственной легирующей примесью является соединение, содержащее P, общее молярное отношение P к Si составляет от 0,1 до 0,5; (b) когда единственной легирующей примесью является соединение, содержащее B, общее молярное отношение B к Si составляет от 0,05 до 0,5 и (c) когда единственной легирующей примесью является соединение, содержащее S, общее молярное отношение S к Si составляет от 0,1 до 0,5. В конкретном варианте способа осуществления: (a) когда единственной легирующей примесью является соединение, содержащее P, общее молярное отношение P к Si составляет от 0,15 до 0,4, например 0,2, 0,25, 0,3 или 0,35; (b) когда единственной легирующей примесью является соединение, содержащее B, общее молярное отношение B к Si составляет от 0,08 до 0,2, например 0,1, 0,13, 0,15 или 0,18 и (c), когда единственной легирующей примесью является соединение, содержащее S, общее молярное отношение S к Si составляет от 0,15 до 0,4, например 0,2, 0,25, 0,3 или 0,35.
В некоторых вариантах способа осуществления легирующие примеси могут быть объединены, и пропорции каждой легирующей примеси могут отличаться от того, когда они используются в качестве единственных легирующих примесей. Когда одно или несколько соединений, содержащих Р, используют в реакции в сочетании с другими легирующими примесями, общее молярное отношение P к Si составляет от 0,01 до 2, предпочтительно от 0,05 до 1, более предпочтительно от 0,06 до 1, более предпочтительно от 0,07 до 0,7, более предпочтительно от 0,8 до 0,4. Когда одно или несколько соединений, содержащих B используются в реакции в сочетании с другими легирующими примесями, общее молярное соотношение B к Si составляет от 0,01 до 2, предпочтительно от 0,04 до 0,5, более предпочтительно от 0,05 до 0,2. Когда одно или несколько соединений, содержащих S, используют в реакции в сочетании с другими легирующими примесями общее молярное отношение S к Si составляет от 0,005 до 2, предпочтительно от 0,01 до 1, более предпочтительно от 0,05 до 0,5.
В некоторых вариантах способа осуществления легирующая примесь представляет собой смесь соединения, содержащего B, и соединения, содержащего P, где общее молярное отношение P+B к Si составляет от 0,01 до 2, предпочтительно от 0,05 до 1, более предпочтительно от 0,06 до 1, более предпочтительно от 0,1 до 0,4. В других конкретных вариантах способа осуществления легирующая примесь представляет собой смесь соединения, содержащего B, и соединения, содержащего S, где общее молярное отношение B+S к Si составляет от 0,01 до 2, предпочтительно от 0,05 до 1, более предпочтительно от 0,06 до 1, более предпочтительно от 0,1 до 0,4. В других вариантах способа осуществления легирующая примесь представляет собой смесь соединения, содержащего P, и соединения, содержащего S, где общее молярное отношение P+S к Si составляет от 0,01 до 2, предпочтительно от 0,05 до 1, более предпочтительно от 0,06 до 1, более предпочтительно от 0,1 до 0,4. В других вариантах способа осуществления легирующая примесь представляет собой смесь соединения, содержащего P, соединения, содержащего B, и соединения, содержащего S, где общее молярное отношение P+B+S к Si составляет от 0,01 до 2, предпочтительно от 0,05 до 1, более предпочтительно от 0,06 до 1, более предпочтительно от 0,1 до 0,4.
Авторы обнаружили, что некоторые смеси легирующих примесей имеют синергические эффекты. Например, использование очень низкого количества соединения, содержащего S, в сочетании с соединением, содержащим В в качестве легирующей примеси, улучшает качество (т.е. зародышеобразующую способность) продукта, полученного способом по изобретению, по сравнению с использованием только одного B (см. фигуру 3). Однако использование такого же низкого количества S не дает продукта с хорошей зародышеобразующей способностью. Поэтому представляется, что использование S в качестве легирующей примеси при низких S-Si молярных отношениях действует только тогда, когда S используется в комбинации с B и/или P (S в качестве дополнительной легирующей примеси). В частности, S можно использовать в качестве дополнительной легирующей примеси при молярном отношении S к Si до 0,01. При использовании в качестве единственной легирующей примеси, количество S должно быть выше 0,1.
Конкретная легирующая примесь может быть выбран из группы солей и оксидов, содержащих B, P или S. Неограничивающими примерами легирующих агентов являются пиридин-3-тригидроксиборат (C5H7BNNaO3), бура в любом состоянии гидратации, таком как Na2B4O7 •10H2O, пентаоксид фосфора (P2O5), фосфорная кислота (H3PO4), сульфат натрия (NaSO4) или сульфат калия (K2SO4). В соответствии с конкретным вариантом способа осуществления легирующей примесью является бура, в любом из ее состояний гидратации, например, Na2B4O7•10H2O. Буру удобно использовать при молярном соотношении буры к Si, составляющем от 0,01 до 2, предпочтительно от 0,025 до 0,5, предпочтительно от 0,05 до 0,5, при использовании в качестве единственной легирующей примеси. В соответствии с другим конкретным вариантом способа осуществления настоящего изобретения легирующей примесью является P2O5. P2O5 удобно использовать при молярном соотношении P2O5 к Si, содержащем от 0,01 до 2, в частности от 0,05 до 1, более предпочтительно от 0,01 до 1, более предпочтительно от 0,1 до 0,5 при использовании в качестве единственной легирующей примеси. В соответствии с другим конкретным вариантом способа осуществления легирующая примесь представляет собой комбинацию буры и сульфата натрия или калия. В упомянутой комбинации буру используют удобно при молярном соотношении буры к Si, составляющем от 0,01 до 0,2, и сульфат натрия или калия удобно использовать при молярном отношении сульфата Na или К к Si, составляющем от 0,01 до 0,5.
Согласно особому варианту способа осуществления общее молярное отношение Ca к Si (Ca/Si) составляет от 1,6 до 2,4. Согласно другому особому варианту способа осуществления общее молярное отношение Са/Si составляет от 1,8 до 2,4. Согласно другому варианту способа осуществления общее молярное соотношение Ca/Si составляет от 1,7 до 2,3, в частности от 1,8 до 2,2, например 1,9, 2 или 2,1.
Содержащее кальций соединение и соединение, содержащее оксид кремния, которое может быть использовано в способе по изобретению, особо не ограничены.
Содержащее кальций соединение может представлять собой оксид кальция, гидроксид кальция или соль кальция, в частности водорастворимую кальциевую соль. В некоторых вариантах способа осуществления соли кальция представляют собой соли кальция карбоновых кислот. В других вариантах кальциевая соль представляет собой хлорид кальция, нитрат кальция, формиат кальция, ацетат кальция, гидрокарбонат кальция, бромид кальция, карбонат кальция, цитрат кальция, хлорат кальция, фторид кальция, глюконат кальция, гипохлорид кальция, йодат кальция, йодид кальция, лактат кальция, нитрит кальция, оксалат кальция, фосфат кальция, пропионат кальция, силикат кальция, стеарат кальция, сульфат кальция, полугидрат сульфата кальция, дигидрат сульфата кальция, сульфид кальция, тартрат кальция, алюминат кальция, трикальций-силикат и/или дикальций-силикат. Гидроксид кальция и/или оксид кальция представляют особый интерес для процесса изобретения из-за их сильных щелочных свойств. В других вариантах осуществления кальцийсодержащее соединение представляет собой силикат кальция, в частности растворимый силикат кальция.
Кремнийсодержащее соединение обычно представляет собой соединение, содержащее диоксид кремния, в частности, водорастворимое силикатное соединение, такое как силикат натрия, силикат калия, стекловолокно, силикат алюминия, силикат трикальция, силикат дикальция, силикат кальция, кремниевая кислота, метасиликат натрия или метасиликат калия. В предпочтительных вариантах способа осуществления соединение, содержащее диоксид кремния, выбирают из метасиликата натрия, метасиликата калия, растворимого стекла и их смесей из-за их чрезвычайно хорошей растворимости в воде. Диоксид кремния, содержащий соединение, используемое в способе изобретения, может также быть микрокремнеземом, пирогенным диоксидом кремния, осажденным диоксидом кремния, доменным шлаком и/или кварцевым песком. Особенно подходят небольшие размеры частиц материала, содержащего диоксид кремния, особенно размеры частиц менее 1 мкм. В некоторых вариантах способа изобретения соединение, содержащее диоксид кремния, выбирается из микрокремнезема, пирогенного диоксида кремния, осажденного диоксида кремния и их смесей. Особенно пригодны осажденный и/или пирогенный диоксид кремния.
Одно или несколько соединений, содержащих кальций, как определено выше, и одного или нескольких соединений, содержащих диоксид кремния, как определено выше, могут быть использованы для способа по изобретению, при условии, что их общее молярное отношение Са/Si находится в пределах от 1,5 до 2,5, особенно от 1,7 до 2,4, более особенно от 1,8 до 2,3.
В процессе изобретения могут присутствовать дополнительные металлсодержащие соединения. В конкретном варианте осуществления способ изобретения дополнительно включает осуществление реакции источника соединения, содержащего алюминий. Соединение, содержащее алюминий, может представлять собой любой алюминат, такой как алюминат натрия, монокальция алюминат, гидроксиды алюминия или соли алюминия. В конкретном варианте осуществления источником соединения, содержащего алюминий, являются отходы, такие как FA, доменный шлак или соляной шлак. Как упоминалось выше, когда Al присутствует в реакции, полученная суспензия содержит дефектный тоберморит, где Si частично замещен Al, то есть он содержит C-(A)-S-H в виде дефектного тоберморита. Соединение, содержащее алюминий, может присутствовать в виде микроэлемента или в заметном количестве. Например, общее молярное отношение Al/Si может составлять от 0,0001 до 1,25, в частности от 0,001 до 1, более предпочтительно от 0,001 до 0,75. В реакции могут также присутствовать соединения Mg, Fe, Ti или Mn.
Кальцийсодержащие соединения, и/или кремнийсодержащие соединения могут быть предоставлены конкретными источниками. Преимущественно источник кальцийсодержащего соединения и источник кремнийсодержащего соединения выбирают из промышленных отходов, промышленных побочных продуктов и их смесей. Эти материалы являются экономически эффективными источниками кальцийсодержащего соединения (соединений) и/или кремнийсодержащего соединения (соединений). Использование этих источников также имеет то преимущество, что данный процесс является экологически чистым.
В одном варианте способа осуществления источник кремнийсодержащего соединения (соединений) выбирают из группы промышленных отходов или побочных продуктов, выбранных из летучей золы, диоксида кремния, молотого гранулированного доменного шлака, солевого шлака, стекла или их смесей. В другом варианте способа осуществления источником кальцийсодержащего соединения(ы), является ацетиленовая известковая суспензия. Согласно конкретному варианту способа осуществления источником кремнийсодержащего соединения является летучая зола (FA), побочный продукт угольной промышленности. Согласно другому конкретному варианту кремнийсодержащий материал представляет собой FA, а кальцийсодержащее соединение представляет собой ацетиленовую известковую суспензию. Согласно другому конкретному варианту кремнийсодержащий материал представляет собой стекло, а кальцийсодержащее соединение представляет собой суспензию ацетиленовой извести.
Исходные материалы, то есть Ca и Si содержащие соединения, обычно имеют небольшой размер частиц, обычно ниже 1 мкм. В конкретных вариантах способа осуществления размер частиц составляет от 0,001 до 1 мкм или от 0,01 до 1 мкм.
Этот процесс может осуществляться в любом обычном устройстве, например, в автоклаве. Указанный способ представляет собой гидротермическую реакцию, проводимую в водной среде, где массовое отношение твердого вещества к воде составляет от 0,001 до 50, предпочтительно от 0,1 до 25, более предпочтительно от 0,5 до 10, еще более предпочтительно от 0,5 до 5. В общем, количество воды в реакции таково, чтобы достичь полной гидратации твердых материалов.
Способ по изобретению имеет место, как указано выше, при температуре, составляющей от 100 до 350°С. В конкретных вариантах способа осуществления температура составляет от 140 до 250°С. В других конкретных вариантах способа осуществления температура составляет от 150 до 230°С, в частности от 160 до 220°С, более предпочтительно от 170 до 210°С, например 180, 190 или 200°С
Давление во время гидротермической обработки является эндогенным (самогенерируемое при обработке при выбранной температуре) или поддерживается постоянным. Согласно конкретному варианту осуществления давление составляет от 0,1 МПа до 50 МПа. Согласно другому конкретному варианту способа осуществления давление является эндогенным.
Способ согласно конкретному варианту осуществления может быть осуществлен при перемешивании для предотвращения декантации твердых веществ, присутствующих в реакционной смеси, когда они находятся более во взвешенном состоянии, чем растворенными по своей природе.
Гидротермальная обработка может продолжаться от минут до часов в зависимости от конкретного кальцийсодержащего соединения и кремнийсодержащего соединения, легирующей примеси, давления или температуры. Обычно время обработки можно широко варьировать от 30 минут до 24 часов. Но предпочтительно, что данный способ позволяет получить продукт, содержащий значительную долю зародышеобразующих добавок за очень короткое время. Таким образом, согласно конкретному варианту способа осуществления, продолжительность процесса по изобретению составляет от 2 до 10 часов, более предпочтительно от 2 до 8 часов, более предпочтительно от 2 до 6 часов, например 3, 3,5, 4, 4,5, 5 или 5,5 часов. Это означает, что данный способ намного менее трудоемкий и, следовательно, менее энергоемкий, чем известные способы. Таким образом, данный способ более удобен для промышленного производства.
Способ, определенный выше, дает суспензию, которая содержит высокую долю зародышеобразующих добавок. Следовательно, один аспект изобретения относится к суспензии, получаемой описанным выше способом. В конкретном варианте способа осуществления зародышеобразующие добавки, содержащиеся в полученной суспензии, содержат гидрат силиката кальция (алюминия) (C-(A)-S-H) в виде дефектного тоберморита. Однако другие зародышеобразующие добавки, такие как гидроксиапатит, которые особенно полезны в качестве ускорителей для упрочнения бетона, были обнаружены в продукте в зависимости от используемой легирующей примеси. Таким образом, в конкретном варианте способа осуществления зародышеобразующие добавки, содержащиеся в суспензии, получаемой способом по изобретению, содержат гидроксиапатит. В некоторых вариантах способа осуществления суспензия содержит дефектный тоберморит и гидроксиапатит.
Полученную суспензию можно использовать непосредственно в качестве ускорителя упрочнения или дополнительно обрабатывать для получения сухого продукта, который более подходит для транспортировки и использования в цементной промышленности. Например, полученную суспензию можно охладить и охлажденную суспензию можно фильтровать и затем сушить. «Высушенный» в контексте настоящего изобретения относится к содержанию воды от 5 до 1 мас.%. Сушку проводят при температуре, составляющей от 80 до 150°С, предпочтительно от 90 до 140°С. В конкретном варианте способа осуществления настоящего изобретения за гидротермальным процессом, определенным выше, следуют этапы фильтрации полученной суспензии, сушки при температуре, составляющей от 80 до 150°С, и дезагломерации полученного твердого вещества с получением порошка. В частном варианте способа осуществления настоящего изобретения сушка производится при температуре составляющей от 100 до 135°С, в частности от 10 до 130°C, для примера, 110, 115, 120 или 125°С. Опять же, высушенный продукт может быть использован в качестве ускорителя упрочнения или может быть дополнительно дезинтегрирован для получения порошка, содержащего зародышеобразующие добавки. Дезагломерацию можно выполнять любым способом, известным в данной области техники.
После дезагломерации получают тонкий порошок, содержащий зародышеобразующие добавки, такие как C-(A)-S-H в виде дефектного тоберморита (а иногда и гидроксиапатита), средний диаметр частиц и площадь поверхности которого зависят от характеристик стадии дезинтеграции, характера кальцийсодержащего соединения и кремнийсодержащего соединения и т. д. Обычно средний диаметр частиц составляет от 0,5 мкм до 100 мкм, более конкретно от 0,7 до 30 мкм, а удельные площади поверхности обычно составляют от 3000 м2/кг до 10 м2/кг, в частности от 59 м2/кг до 2250 м2/кг. Тонкость и площадь поверхности полученных частиц могут быть легко модифицированы механическими средствами, такими как измельчение.
Дефектный тоберморит и гидроксиапатит, полученные способом по настоящему изобретению, являются подходящими матрицами для увеличения цементирующего зародышеобразования C-(A)-S-H и роста. В результате они обеспечивают зародышеобразующую способность и свойства ускорителя упрочнения при использовании в качестве добавок в бетоне или в других материалах на основе цемента. Влияние легирующих элементов на появление дефектного тоберморита показано на фигурах с 1 по 8, где сравниваются спектры XRD разных образцов без и с легирующими элементами. Как видно из полученных спектров, нелегированные составы не дают никакого сигнала при 2Тета=7,8°, тогда как этот сигнал явно присутствует для составов, легированных в соответствии с изобретением. Этот пик является так называемым базальным пиком и является ярким признаком наличия тоберморитоподобных кристаллитов. Для определения его структуры была дополнительно охарактеризована тоберморитовая фаза C-(A)-S-H, содержащаяся в образцах (см. пример 7). Изобретатели обнаружили, что эта фаза состоит из дефектного тоберморита, который имеет структуру, очень похожую на цементирующий гель C-(A)-S-H. Другие важные пики C-(A)-S-H для наблюдения также находятся на 2Тета: 16,2°, 29°, 30°, 31,7° и 49,4°. Аналогично, образцы, легированные P, также отображали сигнал при 25,9°, 31,7°, 32,2° и 32,9°, что свидетельствует о присутствии гидроксиапатита.
Изобретатели также подтвердили содержание зародышеобразующих добавок в порошке, полученном способом по изобретению, и обнаружили, что они присутствуют в значительных пропорциях (см. пример 7). Таким образом, в некоторых вариантах способа осуществления настоящего изобретения содержание C-(A)-S-H в форме порошка дефектного тоберморита по изобретению составляет от 5 до 70 мас.%, в частности от 8 до 50%, более конкретно от 10 до 40%, более конкретно от 15 до 30%. В других вариантах способа осуществления порошок по изобретению содержит от 1 до 30 мас.% C-(A)-S-H в форме дефектного тоберморита и от 5 до 70 мас.% гидроксиапатита. Гидроксиапатит образуется, когда в качестве легирующей примеси используется соединение, содержащее Р. В конкретных вариантах способа осуществления порошок по настоящему изобретению содержит от 5 до 20 мас.%, предпочтительно от 8 до 15% C-(A)-S-H в форме дефектного тоберморита и от 8 до 50 мас.%, более предпочтительно от 10 до 40%, более предпочтительно от 15 до 30% гидроксиапатита.
Как показано на фиг.9, добавление порошка, получаемого способом согласно изобретению, влечет за собой получение материалов на основе цемента, в частности цементных паст, с такими же хорошими характеристиками сжатия, как и при добавлении частиц NS, несколько лучше, чем при использовании частиц с NA и в значительной степени лучше, чем при добавлении частиц SF. Таким образом, способ по изобретению обеспечивает продукты, содержащие зародышеобразующие добавки, которые, по меньшей мере, столь же хороши или даже лучше, чем обычно используемые дополнительные цементирующие материалы и добавки для бетона, простым и промышленно масштабируемым способом, и по гораздо более низкой цене по сравнению с другими способами.
Количество суспензии, агломерированного сухого продукта, порошка или добавки согласно изобретению по отношению к материалу на основе цемента может варьироваться в широких пределах. Согласно одному варианту способа осуществления агломерированный сухой продукт, порошок или добавку по изобретению используют в диапазоне от 0,01 до 20 мас.% по отношению к материалу на основе цемента. В конкретных вариантах способа осуществления количество агломерированного сухого продукта, порошка или добавки по изобретению по отношению к материалу на основе цемента составляет от 0,05 до 15 мас.%, более предпочтительно от 0,5 до 10 мас.%, еще более предпочтительно от 1 до 8%, например 1,5, 2, 2,5, 3, 3,5, 4, 4,5, 5, 5,5, 6, 6,5, 7 или 7,5 мас.%.
В описании и формуле изобретения слова «составлять» и варианты этого слова не предназначены для исключения других технических характеристик, добавок, компонентов или стадий. Кроме того, слово «составлять» охватывает случай «состоящий из». Дополнительные объекты, преимущества и признаки изобретения станут очевидными для специалистов в данной области после изучения описания или могут быть изучены практикой изобретения. Следующие примеры и чертежи приведены в качестве иллюстрации, и они не предназначены для ограничения настоящего изобретения. Ссылочные позиции, относящиеся к чертежам и помещенные в круглые скобки в пункте формулы изобретения, предназначены исключительно для попытки увеличить разборчивость пункта формулы изобретения и не должны толковаться как ограничивающие объем пункта формулы изобретения. Кроме того, настоящее изобретение охватывает все возможные комбинации конкретных и предпочтительных вариантов способа осуществления, описанных здесь.
ПРИМЕРЫ
Чтобы проанализировать влияние легирующих элементов на производство продукта, содержащего зародышеобразующие добавки, в частности, C-(A)-S-H в виде дефектного тоберморита, был проведен ряд экспериментов.
Рентгенограммы во всех примерах были получены с использованием дифрактометра Phillips X'Pert (Эйндховен, Нидерланды) с использованием Ni-фильтрованного Cu Kα-излучения. Рентгенограмма продуктов, полученных в результате описанных гидротермальных обработок для нелегированных и легированных образцов, после фильтрации, сушки и разложения, представлена на фигурах с 1 по 8. Во всех случаях видно, что нелегированные образцы не дают никакого сигнала при 2Тета=7,8°, в то время как сигнал явно присутствует для легированных образцов. Этот пик является так называемым базальным пиком и является ярким признаком наличия тоберморитоподобных кристаллитов. Другие важные пики тоберморитоподобных кристаллитов, такие как 16,2°, 29°, 30°, 31,7° и 49,4°, также идентифицируются вертикальными линиями в панелях и подтверждают ключевую роль легирующего элемента в их внешнем виде.
Бура, используемая в примерах, была Na2B4O7•10H2O (чистая для анализа, Sigma Aldrich). Фосфор, содержащий легирующую примесь, используемый в примерах, был P2O5 (чистый для анализа, Panreac).
Составы подвергали гидротермической обработке при различных температурах, эндогенном давлении, в автоклаве при непрерывном перемешивании. Время составляло 4 часа, если не указано иное. После гидротермической обработки полученную суспензию подвергали последующей обработке для получения порошка. Вкратце, суспензию сначала фильтровали под вакуумом при помощи воронки Бюхнера и фильтровальной бумаги. Полученное твердое вещество затем высушивали при температуре между 60 и 110°С. Наконец, объемное твердое вещество вручную дезинтегрировали ступкой и пестиком для получения тонкого порошка.
Пример 1 Влияние легирующих элементов.
Во всех случаях использовалась та же партия летучей золы и ацетиленовая суспензия известкового молока. Химический состав летучей золы, как определено путем химического анализа (CA) согласно испанского стандарта UNE-EN 196-2 и флуоресценции (FRX) показан в таблице 1.
Таблица 1
LOI SiO2 Al2O3 Fe2O3 MgO K2O Na2O CaO SO3
% CA 5,86 50,34 24,9 4,83 1,81 1,58 0,55 5,89 0,29
% FRX 5,78 50,80 25,37 5,14 1,75 1,73 0,44 5,97
LOI=Потери при прокаливании
Ацетиленовое известковое молоко представляло собой богатую кальцием водную суспензию, вырабатываемую ацетиленовой промышленностью. Суспензия состояла из порландита (Ca(OH)2, содержащего небольшое количество диоксида кремния (<2 мас.%) и некоторых примесей, таких как Al, S (<0,7 мас.%), Fe, Mn и Sr (<0,1 мас.%)). Твердая фракция в суспензии составляла 33 мас.%.
Все составы подвергали гидротермической обработке при 200°С в течение 4 часов при непрерывном перемешивании и эндогенном давлении. Полученную суспензию дополнительно обрабатывали, как описано выше, для получения порошка.
(a) Влияние бора как легирующего элемента
Два образца были подготовлены и сравнены при помощи XRD. Оба нелегированных и легированных образца имели Ca/Si=2,2. Кроме того, легированные образцы легировали бурой в молярном отношении, так чтобы молярное отношение B/Si=0,172
Для нелегированного состава исходный материал соответствовал 107 г FA и 314 г ацетиленового известкового молока. Для легированных составов исходные вещества состоят из 91 г FA, 267 г ацетиленовой суспензии известкового молока и 12,73 г буры с тем, чтобы получить молярное отношение B/Si=0,172. В обоих случаях добавляли воду с учетом количества, уже присутствующего в суспензии, до достижения в сумме 1 литра.
Рентгенограмма продуктов, полученных в результате упомянутой обработки для нелегированных (нижняя панель) и легированных (верхняя панель) образцов, представлена на фиг. 1. Как можно видеть, нелегированный продукт не проявляет характерный пик при 2Тета около 7,8°, в то время как легированный продукт содержит указанный пик. Этот факт отражает важность В-легирующих примесей для стабилизации тобермонитоподобных структур при гидротермической обработке при 200°С.
(b) Влияние фосфора как легирующего элемента
Два образца были подготовлены и сравнены при помощи XRD. Оба нелегированных и легированных образца имели Ca/Si=2. Кроме того, легированные образцы легировали P2O5 в молярном соотношении, так что молярное отношение P/Si=0,35.
Для нелегированного состава исходный материал соответствовал 107 г FA и 314 г ацетиленового известкового молока. Для легированных составов исходные материалы включали 96,3 г FA, 255,15 г ацетиленовой суспензии известкового молока и 20,06 г P2O5, чтобы получить молярное отношение P/Si=0,35. В обоих случаях добавляли воду с учетом количества, уже присутствующего в суспензии, до достижения в сумме 1 литра.
На фиг.2 показаны XRD продуктов без легирующих примесей (нижняя панель) и с легирующей примесью, содержащей фосфор: P2O5 (верхняя панель). Как можно видеть, нелегированный продукт не проявляет характерного пика при 2Тета около 7,8°, в то время как легированный продукт его проявляет. Этот факт отражает важность Р для стабилизации тобермонитоподобных структур при гидротермической обработке при 200°С.
c) Влияние бора и серы в качестве легирующего элемента
Проанализирована возможность объединения различных легирующих элементов в одном и том же процессе реакции. С этой целью были подготовлены два образца. Первый образец, содержащий бор в качестве легирующего элемента в молярной пропорции В/Si=0,053, и второй, где кроме бора при той же молярной пропорции В/Si=0,053 добавляется серосодержащая легирующая примесь (гипс), в такой пропорции, чтобы представить молярное отношение S/Si=0,011.
В обоих составах использовали 107 г FA (химический состав, показанный в таблице 1) и 91,26 г чистой извести, и оба образца имели молярное отношение Ca/Si=2. Для композиций, содержащих только бор в качестве легирующей примеси, добавляли буру. Для состава с комбинацией бора и серы в качестве легирующих элементов добавление «легирования» состояло из 4,25 г буры и 2,45 г Na2SO4. Каждый препарат смешивали с 1 литром воды.
Рентгенограмма продуктов, полученных в результате обработки обоих образцов, представлена на фиг.3. Верхняя панель соответствует образцу, легированному бором, а нижняя - образцу, в котором использовалась комбинация легирующих элементов (бор и сера).
Как можно видеть, оба состава демонстрируют характерный сигнал базального пика (2Тета=7,8°), который указывает на присутствие тоберморитоподобного C-(A)-S-H, что замечательно ввиду низкой концентрации легирующих элементов. Это особенно актуально в случае с образцом, легированным только бором (В/Si=0,053). Также из фиг.3 можно сделать вывод, что добавление крошечного количества серы в качестве дополнительного легирующего элемента (S/Si=0,011) улучшает качество тоберморитоподобного C-(A)-S-H. Стоит отметить, что помимо небольшого заострения базального пика (2Тета=7,8°) другие пики, подобные тем, которые происходят при 2Тета=25° или 2Тета=26°, намного лучше определены.
Пример 2. Влияние легирующих элементов на термическую стабильность.
Как поясняется на фоне изобретения, термическая стабильность тоберморитоподобных структур снижается при увеличении гидротермической температуры и, в частности, достигает 120-140°С, что приводит к другим фазам без зародышеобразующей способности.
Чтобы проанализировать влияние легирующих элементов в пользу стабилизации кристаллитов типа C-(A)-S-H-тоберморита, был проведен ряд экспериментов. Различные гидротермальные температуры (165°C, 175°C, 200°C, 225°C и 250°C) были применены в гидротермальных процессах с другими условиями, как определено выше, для примера 1. Затем обрабатывали полученные суспензии, и порошки анализировали с помощью XRD. Набор экспериментов был проведен с использованием различных легирующих примесей.
Партию летучей золы и ацетиленовую суспензию известкового молока использовали в примере 1.
(a) Гидротермальные температуры 165°C, 175°C, 200°C
Оба нелегированных и легированных образца имели Ca/Si=2,2. Кроме того, легированные образцы легировали бором в молярном отношении, так чтобы молярное отношение B/Si=0,172.
Для нелегированного состава исходный материал соответствовал 107 г FA и 314 г ацетиленового известкового молока. Для легированных составов исходные вещества состояли из 91 г FA, 267 г ацетиленовой суспензии известкового молока и 12,73 г буры с тем, чтобы получить молярное отношение B/Si=0,172. В обоих случаях добавляли воду с учетом количества, уже присутствующего в суспензии, до достижения в сумме 1 литра.
Потом все составы были подвергнуты гидротермической обработке при разных температурах.
Рентгенограмма продуктов, полученных в результате упомянутых гидротермальных обработок для нелегированных и легированных образцов, представлена на фиг.1, фиг.4 и фиг.5 для гидротермических температур 200°C, 165°C и 175°C. Эти цифры показывают, что легированные образцы содержат тоберморитоподобные домены (базальный пик при 7,8°), тогда как нелегированные - нет. Полученные результаты подтверждают значимость легирующего элемента для стабилизации тоберморитоподобных структур при высоких температурах.
(b) Гидротермальные температуры 200°C, 225°C, 250°C
Оба нелегированных и легированных образца имели Ca/Si=2. Кроме того, легированные образцы легировали P2O5, молярное отношение P/Si составляло 0,35.
Для нелегированного состава исходный материал соответствовал 107 г FA и 314 г ацетиленового известкового молока. Для легированных составов исходные материалы включали 96,3 г FA, 255,15 г ацетиленовой суспензии известкового молока и 20,06 г P2O5, чтобы получить молярное отношение P/Si=0,35. В обоих случаях добавляли воду с учетом количества, уже присутствующего в суспензии, до достижения в сумме 1 литра.
Потом все составы были подвергнуты гидротермической обработке при разных температурах.
Рентгенограмма продуктов, полученных в результате упомянутых гидротермальных обработок, представленных на фиг.6, соответствует продуктам, получаемым в результате гидротермических температур 200°С (нелегированных и легированных), 225°С (легированных) и 250°С (легированных) соответственно.
Как видно, даже при 200°C нелегированные составы не дают никакого сигнала при 2Тета=7,8°, тогда как сигнал явно присутствует для легированных составов. Этот пик также хорошо заметен при более высоких температурах (225°C и 250°C), что подтверждает значимость легирующего элемента для стабилизации тоберморитоподобных структур при высоких температурах.
Пример 3: Влияние соотношения Ca/Si.
Для покрытия типичного молярного отношения Ca/Si, содержащегося в цементном геле C-(A)-S-H (обычно в диапазоне от 1,5 до 2,5), изучали три молярных соотношения Ca/Si; а именно Ca/Si=1,6, Ca/Si=2, Ca/Si=2,2.
Кроме того, образцы с Ca/Si=1,6 и Ca/Si=2,2 молярными отношениями были легированы бурой в количестве, так что молярное отношение B/Si=0,172.
Партия летучей золы и ацетиленовой суспензии известкового молока была такой же, как используемая в примере 1. Для нелегированного состава исходный материал соответствовал 107 г FA и 314 г ацетиленового известкового молока и (Ca/Si=2,2), 107 г FA и 254 г ацетиленового известкового молока (Ca/Si=1,6).
Для легированных составов исходные вещества включали 91 г FA и 190 г ацетиленового известкового молока для случая Ca/Si=1,6 и 91 г FA и 267 г ацетиленовой суспензии известкового молока для случая Ca/Si=2,2. В обоих случаях исходные материалы были смешаны с 12,73 г буры, чтобы молярное соотношение составило B/Si=0,172. В обоих случаях добавляли воду с учетом количества, уже присутствующего в суспензии, до достижения в сумме 1 литра.
После этого все составы подвергали той же гидротермальной обработке при 200°C в течение 4 часов с эндогенным давлением и перемешиванием. Полученный раствор был дополнительно обработан для получения порошка, как определено выше.
Рентгенограмма продуктов для нелегированных и легированных образцов с Ca/Si=2,2 и Ca/Si=1,6 показаны на фиг. 1 и фиг. 7. Как видно на фиг. 7, при самом низком соотношении C/S (C/S=1,6) нелегированный образец представляет небольшой выступ примерно при 7°-8°, что указывает на наличие неопределенного тоберморитового домена. Эти результаты ожидались, так как даже при этом низком соотношении C/S образование тоберморитоподобных структур затруднительно при температурах выше 120°C-140°C. Добавление незначительного содержания B (верхняя панель) стабилизирует кристаллическую структуру тоберморита и сигнал базального пика в значительной степени усиливается. Случай C/S=2,2 и T= 200°С (фиг. 1) является худшим сценарием появления тоберморитоподобных доменов, когда отсутствует легирующая примесь. На самом деле, в рентгенограмме нелегированного образца не замечен никакой тоберморитоподобный домен (фиг. 1 снизу). Напротив, как обсуждалось ранее, присутствие небольших количеств В способно стабилизировать тоберморитовую фазу при высоких температурах, так как это отражено на фиг. 1, поскольку появление пика около 7,8° - является ярким признаком торбеморитов.
Пример 4 Влияние различных исходных материалов.
Были приготовлены и сравнены с помощью XRD два образца с Са/Si=2, один с легирующей примесью, один без легирующей примеси. В обоих случаях использовалась та же партия измельченного стекла и извести. Химический состав молотого стекла как определено флуоресценцией (FRX) показан в таблице 2.
Таблица 2
LOI SiO2 Al2O3 Fe2O3 MgO K2O Na2O CaO SO3
% FRX 0,28 70,49 1,83 0,53 2,53 0,81 12,06 9,78 0,05
LOI=Потери при прокаливании
Для нелегированного состава исходный материал соответствовал 67,63 г измельченного стекла и 82,37 г извести.
Для легированного состава исходные материалы составляли 67,63 г измельченного стекла, 82,37 г извести и 20,06 г P2O5 (т.е. Ca/Si=2, P/Si=0,35). В обоих случаях был добавлен 1 литр воды.
После этого оба состава подвергались одинаковой стандартной обработке (при 200°С в автоклаве).
Рентгенограмма продукта в результате упомянутой гидротермической обработки дает сигнал при 2Тета=7,8° (фиг. 8). Этот пик является так называемым базальным пиком и является ярким признаком наличия тоберморитоподобных кристаллитов. Поскольку содержание Al в исходных материалах очень низкое, полученный продукт содержит в основном C-S-H в виде дефектного тоберморита (нет замещений Al в структуре C-S-H). Другие важные тоберморитовые пики, подобные тем, что у 17°, 29°, 31° и 50°, также показаны стрелками и подтверждают ключевую роль легирующего элемента в их внешнем виде.
Пример 5
Этот пример иллюстрирует важность влияния легирующей примеси на зародышеобразующие способности конечного продукта, и как это влияет на ранние механические свойства материала на основе цемента в состоянии цементной пасты.
С этой целью были подготовлены пять разновидностей цементных паст одинаковым образом. Они были получены из 52,5-R цементов с соотношением вода-цемент 0,35 и с добавлением 6 мас.% порошка, полученного в соответствии с изобретением.
Единственное различие между цементными пастами состояло в путях синтеза, используемого при получении порошка, так как один не включает никакой легирующей примеси во время его производства, тогда как второй включает легирующую примесь.
Использованные легированные и нелегированные порошки были изготовлены в соответствии с примерами 1(а) и 3. Один комплект образцов без порошков, содержащий зародышеобразующие добавки дополнительно был подготовлен для сравнения. После смешивания цементные пасты были отлиты в формы в виде призмы (1 см х 1 см х 6 см), уплотнены вибрацией и хранились в течение одного дня в климатической камере при температуре 21±2°С и >90% влажности. Впоследствии их извлекали из формы и выдерживали в течение еще одного дня в насыщенном растворе Ca(OH)2. Позднее прочность на сжатие образцов измеряли с использованием прибора Tester Ibertest Press. В Таблице 3 сравнивается ранняя прочность на сжатие четырех цементных паст. Как видно из таблицы 3, использование легирующих примесей в способе изобретения для приготовления порошка, содержащего зародышеобразующие добавки, заметно улучшает зародышеобразующую способность порошка согласно изобретению.
Таблица 3 Сравнительные примеры
Эффект легирующей примеси Прочность на сжатие (МПа) - 1 день
Сравнительный 28,62 (±2) МПа
порошок, полученный без легирующих примесей ([CaO]/[SiO2 ]=2,2 и B/Si=0 29,41 (±3) МПа
порошок, полученный без легирующих примесей ([CaO]/[SiO2]=1,6 и B/Si=0 30,16 (±2) МПа
порошок, полученный с помощью легирующей примеси
([CaO]/[SiO2 ]=2,2 и B/Si=0,172)
32,27 (±2) МПа
порошок, полученный с помощью легирующей примеси
([CaO]/[SiO2 ]=1,6 и B/Si=0,172)
36,42 (±2) МПа
Пример 6
Сравнительный пример: использование порошка по изобретению в качестве отвердителя по сравнению с другими обычно используемыми SCM.
На фигуре 9 показано увеличение прочности на сжатие (относительно простой цементной пасты) для цементных паст, составленных с соотношением вода-цемент 0,35 и 2 мас.% добавок и отвержденным в течение 7 дней.
Цемент соответствовал обычным портландцементам 52,5 R, в то время как добавки соответствовали частицам нанокремнезема (NS), частицам наноглинозема (NA), микрокремнезему или микросиликату (MS) и порошку, содержащему C-H-S в виде дефектного тоберморита по настоящему изобретению (полученного в соответствии с примером 1а).
После смешивания цементные пасты были отлиты в формы в виде призмы (1 см х 1 см х 6 см), уплотнены вибрацией и хранились в климатической камере в течение 1 дня при температуре 21 ± 2°С и> 90% влажности. После этого образцы извлекали из формы и хранили в течение 7 дней в насыщенном растворе Ca(OH)2. Позднее прочность на сжатие образцов измеряли с использованием прибора Tester Ibertest Press. Как видно из фиг.9, добавление продукта, содержащего C-(A)-S-H в форме дефектного тоберморита по изобретению, влечет за собой получение цементных паст с сжимающими свойствами, столь же хорошими, как показанные с частицами NS, слегка лучше, чем с добавками NA и в значительной степени лучше, чем с добавками MS.
Пример 7
Этот пример иллюстрирует характеристику продукта, полученного способом по настоящему изобретению.
Количественный фазовый анализ Rietveld (RQPA) использовался для количественного определения количества каждой кристаллической фазы наряду с процентом аморфного материала, присутствующего в продуктах, полученных способом по изобретению, как показано в приведенных выше примерах. С этой целью образцы были смешаны в известных пропорциях со стандартизованными образцами кварца и уточнением, реализованным в программном пакете PANalytical HigScore Plus (HSP). Аморфное содержание было определено в соответствии с процедурой, описанной у Suherland и др., Powder Diffraction, 2002, том. 17, стр. 178. Фазы с содержанием менее 1% являются затруднительными для точного определения, поэтому их следует рассматривать как следы.
В качестве иллюстративных случаев в Таблице 4 показан RQPA нелегированного продукта, полученного в примере 1 (a) (Ca/Si=2,2), продукта, легированного P, полученного в примере 2 (Ca/Si=2; P/Si=0,35) и B-легированного продукта, полученного в примере 1 (b) (Ca/Si=2,2; B/Si=0,172).
Таблица 4 RQPA анализ продуктов, полученных в процессе изобретения
Фаза Нелегированная
(Ca/Si=2,2)
P-легированная
(Ca/Si=2, P/Si=0,35)
B-легированная
(Ca/Si=2,2,
B/Si=0,172)
Кальцит 2,4 ± 0,3 0,5* 2,4 ± 0,3
α-дикальция силикат гидрат (C2HS) 21,1 ± 0,6
Портландит 0,4* 0,5* 4,4 ± 0,4
Катоит 52,1 ± 0,9 24,2 ± 0,9 37,5 ± 0,9
Кварц 2,1 ± 0,4
Тоберморит 12,6 ± 0,6 27,2 ± 0,9
Гидроксиапатит 28,5 ± 0,7
Граттаролаит 1,7 ± 0,6 1,9 ± 0,5
Периклаз 0,7*
Аморфные 23,9 ± 0,9 29,8 ± 0,9 25,8 ± 0,9
Можно заметить, что только продукты, полученные при использовании легирующих примесей, содержат C-(A)-S-H в виде дефектного тоберморита, который является фазой, обеспечивающей высокую зародышеобразующую способность. Кроме того продукт, полученный с помощью P, как легирующей примеси содержит гидроксиапатит. Эта фаза также обеспечивает высокую зародышеобразующую способность и, следовательно, также является хорошей зародышеобразующей добавкой. Нелегированный продукт не содержит ни одной из этих фаз (тоберморитподобного C-(A)-S-H или гидроксиапатита). Вместо этого нелегированный продукт содержит α-дикальция силикат гидрат (C2HS), который имеет гораздо меньшую зародышеобразующую способность.
Для того, чтобы определить его структуру по сравнению с цементирующим гелем C-(A)-S-H, дополнительно была охарактеризована тоберморитовая фаза C-(A)-S-H, содержащаяся в вышеуказанных продуктах.
Значительная часть существующих знаний о наноструктуре цементирующего геля C-(A)-S-H получена из структурных сравнений с кристаллическими гидратами силиката кальция. На самом деле, до сих пор было предложено несколько моделей, которые выстраивают структурные аналогии с тоберморитом. Из этих моделей гели C-(A)-S-H можно приблизительно рассматривать как слоистые структуры, в которых листы оксида кальция оснащены ребрами с обеих сторон с силикатными цепями, а свободные ионы кальция и молекулы воды присутствуют в межслоевом пространстве.
Однако экспериментально установлено, что если структура геля C-(A)-S-H фактически состоит из фрагментов тоберморита, эти компоненты должны проявлять множественные дефекты и неоднородности. Фактически, гель C-(A)-S-H можно рассматривать как дефектный тоберморит, образованный отсутствием мостиковых тетраэдров, отсутствием целых сегментов силикатных цепей или включением крошечных сред Ca(OH)2. В экспериментах 29Si ЯМР-спектров для пиков обычно используется номенклатура Qn. Qn - химический сдвиг атома кремния, связанный с n мостиковыми атомами кислорода. Поэтому дефектные тоберморитовые фрагменты геля C-S-H можно объяснить с точки зрения появления сайтов Q1. Сайты Q1 являются конечными сайтами (см. фиг. 10) и, следовательно, являются отпечатком конечной длины силикатной цепи. В общем случае, средняя длина цепи (MCL) силикатных цепей может быть оценена по формуле MCL=2 (Q1+Q2+Q3)/Q1. Идеальный кристалл тоберморита будет иметь бесконечную MCL, поскольку он имеет только Q2 и Q3-сайты.
В таблице 5 показана MCL фазы тоберморита, содержащейся в легированных P и B продуктах из таблицы 4. Для сравнения, MCL идеального и синтезированного тоберморита (синтетический тоберморит) также включена в таблицу.
Таблица 5. MCL C-(A)-S-H тоберморита, рассмотренного в соответствии с настоящим изобретением.
Идеальный
Тоберморит
цементирующий C-(А)-S-H гель P-легированная
(Ca/Si=2, P/Si=0,35)
B-легированная
(Ca/Si=2,2,
B/Si=0,172)
MCL бесконечность 2-141 11,06 8,21
1 F. Puertas и др. Journal of the European Ceramic Society, 2011, том. 31, стр. 2043
Можно заметить, что тоберморит, содержащийся в вышеуказанных продуктах, по сравнению с идеальным тоберморитом, а также с тоберморитподобными структурами, содержащимися в цементирующих гелях C-(A)-S-H, имеет высокое структурное сходство с цементирующим C-(A)-S-H. В настоящих изобретениях считают, что данный способ, таким образом, дает C-(A)-S-H в виде дефектного тоберморита, который похож на цементирующий гель C-(A)-S-H. Это сходство является причиной того, что полученный продукт демонстрирует особенно высокую зародышеобразующую способность, значительно превышающую зародышеобразующую способность синтетического тоберморита. Таким образом, продукты, полученные настоящим способом, могут рассматриваться как содержащие C-(A)-S-H в виде дефектного тоберморита, используемого в качестве ускорителя упрочнения или зародышеобразующей добавки для бетона или других материалов на основе цемента.
ССЫЛКИ, ПРИВЕДЕННЫЕ В ПРИЛОЖЕНИИ
S. Chandra and H. Bergqvist, Proc. Int. Congr. Chem. Cem. 1997, том 3, 3ii106, 6pp
Thomas и. др., J. Phys. Chem. C 2009 г, том 113, стр. 4327-4334
Hubler и др., Cement and Concrete Research 2011, том. 41, стр. 842-846
Baltakys и др, Materials Science-Poland 2009, том. 27, №4/1
WO2010/026155
WO2014/183846
Guerrero и др. J. Am. Ceram. Soс. 2005, т. 88, стр. 1845-1853
Suherland и др, Powder Diffraction, 2002, том. 17, стр. 178.
F. Puertas и др. Journal of the European Ceramic Society, 2011, том. 31, стр. 2043.

Claims (33)

1. Способ получения суспензии, содержащей зародышеобразующие добавки, содержащие гидрат силиката кальция (C-S-H) в виде дефектного тоберморита, при этом способ включает осуществление реакции, по меньшей мере, одного источника соединения, содержащего Са, по меньшей мере, с одним источником соединения, содержащего Si, в водной среде и в присутствии легирующей примеси, выбранной из группы, состоящей из соединения, содержащего P, соединения, содержащего B, и их смесей; в котором:
(i) реакцию осуществляют при температуре от 100 до 350°C и эндогенном давлении или давлении, поддерживаемом постоянным в интервале от 0,1 МПа до 50 МПа;
(ii) общее молярное соотношение Ca к Si составляет от 1,5 до 2,5, и
(iii) общее молярное соотношение легирующей примеси к Si составляет от 0,01 до 2; при условии, что:
(a) когда единственной легирующей примесью является соединение, содержащее P, общее молярное отношение P к Si составляет от 0,1 до 2; а
(б) когда единственной легирующей примесью является соединение, содержащее B, общее молярное отношение B к Si составляет от 0,01 до 2.
2. Способ по п.1, отличающийся тем, что в водной среде присутствует дополнительная легирующая примесь, которая представляет собой соединение, содержащее S, и общее молярное соотношение B + S, P + S или B + P + S к Si составляет от 0,01 до 2.
3. Способ по п.1 или 2, который дополнительно включает осуществление реакции, по меньшей мере, одного источника соединения, содержащего алюминий.
4. Способ по п.3, в котором зародышеобразующие добавки содержат гидрат кальция алюминия силиката (C-A-S-H).
5. Способ по любому из пп. 1-4, в котором соединение, содержащее P, представляет собой P2O5.
6. Способ по п.5, в котором зародышеобразующие добавки дополнительно содержат гидроксиапатит.
7. Способ по любому из пп.1-4, в котором соединение, содержащее B, представляет собой буру.
8. Способ по любому из пп. 1-7, в котором общее молярное отношение Са к Si составляет от 1,8 до 2,4.
9. Способ по любому из пп. 1-8, в котором кальцийсодержащее соединение выбрано из оксида кальция, гидроксида кальция и их смесей.
10. Способ по любому из пп. 1-9, в котором кремнийсодержащее соединение представляет собой водорастворимое силикатное соединение.
11. Способ по любому из пп. 1-10, в котором алюминийсодержащее соединение представляет собой водорастворимый алюминат.
12. Способ по любому из пп. 1-11, в котором источником кальцийсодержащего соединения, источником кремнийсодержащего соединения и источником алюминийсодержащего соединения являются промышленные отходы или побочные продукты.
13. Способ по п.12, в котором источником соединения, содержащего кальций, является ацетиленовое известковое молоко.
14. Способ по п.12, в котором источник кремнийсодержащего соединения и алюминийсодержащего соединения выбирают из летучей золы, микрокремнезема, измельченного гранулированного доменного шлака, солевого шлака, стекла и их смесей.
15. Способ по любому из пп. 1-14, в котором отношение массы твердого вещества к массе воды составляет от 0,2 до 100.
16. Способ по любому из пп. 1-15, в котором температура составляет от 140 до 250°С.
17. Способ по любому из пп. 1-16, в котором продолжительность реакции составляет от 2 до 8 часов.
18. Способ получения порошка, содержащего зародышеобразующие добавки, который включает:
а) осуществление способа по любому из пп.1-17,
b) фильтрацию полученной суспензии,
c) высушивание полученного отфильтрованного продукта при температуре, составляющей от 80 до 150°С, и
d) дезагломерацию полученного высушенного продукта для получения порошка.
19. Суспензия, содержащая зародышеобразующие добавки, получаемые способом по любому из пп.1-17, предназначенная для использования в качестве ускорителя упрочнения для бетона или материала на основе цемента.
20. Порошок, содержащий зародышеобразующие добавки, получаемые способом по п. 18, предназначенный для использования в качестве ускорителя упрочнения для бетона или материала на основе цемента.
21. Порошок по п. 20, который содержит от 5 до 70 мас.% C-(A)-S-H в форме дефектного тоберморита или от 1 до 30 мас.% C-(A)-S-H в форме дефектного тоберморита и от 5 до 70% по массе гидроксиапатита.
22. Применение суспензии по п. 19 в качестве ускорителя упрочнения для бетона или других материалов на основе цемента.
23. Применение порошка по любому из пп. 20-21 в качестве ускорителя упрочнения для бетона или других материалов на основе цемента.
24. Материал на основе цемента, изготовленный с использованием ускорителя упрочнения, выбранного из суспензии по п.19 или порошка по любому из пп.20-21.
RU2017143584A 2015-05-29 2015-05-29 Способ получения зародышеобразующих добавок для упрочнения бетона RU2680995C1 (ru)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2015/061923 WO2016192745A1 (en) 2015-05-29 2015-05-29 Method for the manufacture of calcium silicate hydrate used as hardening accelerator in concrete and cement-based materials, calcium silicate hydrate manufactured with said method

Publications (1)

Publication Number Publication Date
RU2680995C1 true RU2680995C1 (ru) 2019-03-01

Family

ID=53298337

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017143584A RU2680995C1 (ru) 2015-05-29 2015-05-29 Способ получения зародышеобразующих добавок для упрочнения бетона

Country Status (11)

Country Link
US (1) US10968108B2 (ru)
JP (1) JP6464287B2 (ru)
CN (1) CN107848816B (ru)
AR (1) AR104790A1 (ru)
AU (1) AU2015396917B2 (ru)
BR (1) BR112017025397A2 (ru)
CA (1) CA2987482A1 (ru)
CO (1) CO2017011705A2 (ru)
MX (1) MX2017015113A (ru)
RU (1) RU2680995C1 (ru)
WO (1) WO2016192745A1 (ru)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018154013A1 (de) * 2017-02-22 2018-08-30 Cirkel Gmbh & Co. Kg Oxidische Zusammensetzung mit einem Gehalt an semigeordnetem Calcium-Silikat-Hydrat
JP7109480B2 (ja) * 2017-02-22 2022-07-29 ビーエーエスエフ ソシエタス・ヨーロピア 半秩序化ケイ酸カルシウム水和物を含有する組成物
JP6606531B2 (ja) * 2017-06-29 2019-11-13 潤泰精密材料股▲分▼有限公司 非焼成セメント組成物、非焼成コンクリート組成物、非焼成コンクリート及びそれらの調製方法
JP7139159B2 (ja) * 2017-06-30 2022-09-20 Ube三菱セメント株式会社 水和促進剤及び液状水和促進剤
US11306026B2 (en) 2019-06-27 2022-04-19 Terra Co2 Technology Holdings, Inc. Cementitious reagents, methods of manufacturing and uses thereof
PL3990411T3 (pl) 2019-06-27 2024-04-08 Terra Co2 Technology Holdings, Inc. Sposób wytwarzania reagentów cementowych
TWI741833B (zh) * 2020-10-14 2021-10-01 國立成功大學 無機鈣矽水合材料及其製備方法
EP4263942A1 (en) * 2020-12-21 2023-10-25 Terra CO2 Technology Holdings, Inc. Cementitious reagents, methods of manufacturing and uses thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2184713C2 (ru) * 1998-02-23 2002-07-10 Асахи Касеи Кабусики Кайся Материал из высокопрочного отвержденного силиката кальция и способ его изготовления
RU2253635C1 (ru) * 2001-02-19 2005-06-10 Асахи Касеи Кабусики Кайся Отвержденная форма силиката кальция, имеющая высокую прочность
WO2009015769A1 (de) * 2007-07-27 2009-02-05 Forschungszentrum Karlsruhe Gmbh Einphasiges hydraulisches bindemittel, herstellungsverfahren und damit hergestellter baustoff
WO2014183846A1 (en) * 2013-05-11 2014-11-20 Heidelbergcement Ag Method of enhancing the latent hydraulic and/or pozzolanic reactivity of materials

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4126003A (en) * 1977-09-06 1978-11-21 E. I. Du Pont De Nemours And Company Inorganic cement grouting system for use in anchoring a bolt in a hole
US4454048A (en) * 1982-02-08 1984-06-12 Scm Corporation Treating waste water contaminated with a low concentration of latex
US5211750A (en) * 1991-06-19 1993-05-18 Conversion Systems, Inc. Synthetic aggregate and landfill method
JPH06329409A (ja) * 1993-05-24 1994-11-29 Asahi Chem Ind Co Ltd 高結晶性トバモライトの製法
US6726807B1 (en) * 1999-08-26 2004-04-27 G.R. International, Inc. (A Washington Corporation) Multi-phase calcium silicate hydrates, methods for their preparation, and improved paper and pigment products produced therewith
RU2185713C1 (ru) 2001-06-27 2002-07-27 Республиканский научный хозрасчетный инновационный центр агропромышленного комплекса Способ обработки почвы
AR046478A1 (es) * 2002-11-05 2005-12-14 James Hardie Int Finance Bv Metodo y aparato para producir silicato de calcio hidratado
DE102007035259B3 (de) * 2007-07-27 2008-11-13 Forschungszentrum Karlsruhe Gmbh Einphasiges hydraulisches Bindemittel, Verfahren zu seiner Herstellung und mit diesem Bindemittel hergestellter Baustoff
ES2730882T3 (es) 2008-09-02 2019-11-13 Construction Research & Technology Gmbh Uso de una composición acelerante de endurecimiento que contiene un plastificante
EP2389345B1 (en) * 2009-01-22 2020-03-04 The Catholic University Of America Tailored geopolymer composite binders for cement and concrete applications
WO2012072450A2 (en) * 2010-11-30 2012-06-07 Construction Research & Technology Gmbh Cement hydrate products for sprayed concrete
BR112015001980B1 (pt) * 2012-08-13 2020-10-20 Construction Research & Technology Gmbh processo para a preparação de uma composição aceleradora de endurecimento, composição aceleradora de endurecimento, uso da mesma e misturas de material de construção
MX2015006884A (es) * 2013-01-25 2015-09-16 Basf Se Composicion aceleradora de endurecimiento.
ES2635167T3 (es) * 2013-11-27 2017-10-02 Fundación Tecnalia Research & Innovation Método para la fabricación de semillas de C-S-H cementosas
CA2915593A1 (en) * 2014-12-23 2016-06-23 Trican Well Service Ltd. Cement compositions for wellbore cementing operation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2184713C2 (ru) * 1998-02-23 2002-07-10 Асахи Касеи Кабусики Кайся Материал из высокопрочного отвержденного силиката кальция и способ его изготовления
RU2253635C1 (ru) * 2001-02-19 2005-06-10 Асахи Касеи Кабусики Кайся Отвержденная форма силиката кальция, имеющая высокую прочность
WO2009015769A1 (de) * 2007-07-27 2009-02-05 Forschungszentrum Karlsruhe Gmbh Einphasiges hydraulisches bindemittel, herstellungsverfahren und damit hergestellter baustoff
WO2014183846A1 (en) * 2013-05-11 2014-11-20 Heidelbergcement Ag Method of enhancing the latent hydraulic and/or pozzolanic reactivity of materials

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Baltakys K., Influence of gypsum additive on the gyrolite formation process, CEMENT and CONCRETE RESRARCH, Pergamon Press, Elmsford, v. 40, 1, 2010, 376-383. *

Also Published As

Publication number Publication date
BR112017025397A2 (pt) 2018-08-07
MX2017015113A (es) 2018-08-09
CO2017011705A2 (es) 2018-01-31
US20180148340A1 (en) 2018-05-31
JP6464287B2 (ja) 2019-02-06
JP2018516225A (ja) 2018-06-21
AR104790A1 (es) 2017-08-16
AU2015396917B2 (en) 2020-09-24
CN107848816B (zh) 2021-02-09
CN107848816A (zh) 2018-03-27
AU2015396917A1 (en) 2018-01-04
CA2987482A1 (en) 2016-12-08
US10968108B2 (en) 2021-04-06
WO2016192745A1 (en) 2016-12-08

Similar Documents

Publication Publication Date Title
RU2680995C1 (ru) Способ получения зародышеобразующих добавок для упрочнения бетона
RU2517729C2 (ru) Геополимерные композиционные связущие с заданными характеристиками для цемента и бетона
US8226763B2 (en) Single-phase hydraulic binder, methods for the production thereof and structural material produced therewith
KR101621022B1 (ko) 단일상 수경성 바인더, 이의 제조방법 및 이를 사용하여 만든 건축자재
CN110467368B (zh) 一种用于无机固体废弃物建材化的活性激发剂及其制备方法
EP2878585B1 (en) Method for the manufacturing of cementitious C-S-H seeds
Rakhimova Calcium and/or magnesium carbonate and carbonate-bearing rocks in the development of alkali-activated cements–a review
JP2019043806A (ja) 急硬材及び急硬性セメント組成物
Theobald et al. C–S–H–Polycondensate nanocomposites as effective seeding materials for Portland composite cements
Chen et al. Improved mechanical strength of magnesium oxysulfate cement using ferric sulfate
Burciaga-Díaz et al. One-part pastes and mortars of CaO-Na2CO3 activated blast furnace slag: Microstructural evolution, cost and CO2 emissions
Khater Nano-Silica effect on the physicomechanical properties of geopolymer composites
Burciaga-Díaz et al. Limestone and class C fly ash blends activated with binary alkalis of Na2CO3–NaOH and MgO–NaOH: Reaction products and environmental impact
JP2013086030A (ja) ドロマイトスラッジの処理方法及び土質改良材
Moussadik et al. Mineralogical study of a binder based on alkali-activated coal gangue
JP3367010B2 (ja) 土質安定処理用組成物
WO2023232791A1 (en) One-part geopolymer composition
JP2002255602A (ja) 水硬性組成物