RU2680767C1 - Способ переработки железосодержащего шлама - Google Patents

Способ переработки железосодержащего шлама Download PDF

Info

Publication number
RU2680767C1
RU2680767C1 RU2017142036A RU2017142036A RU2680767C1 RU 2680767 C1 RU2680767 C1 RU 2680767C1 RU 2017142036 A RU2017142036 A RU 2017142036A RU 2017142036 A RU2017142036 A RU 2017142036A RU 2680767 C1 RU2680767 C1 RU 2680767C1
Authority
RU
Russia
Prior art keywords
zinc
sludge
lead
leaching
iron
Prior art date
Application number
RU2017142036A
Other languages
English (en)
Inventor
Северин ЖИОРДАНА
Original Assignee
Арселормиттал
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Арселормиттал filed Critical Арселормиттал
Application granted granted Critical
Publication of RU2680767C1 publication Critical patent/RU2680767C1/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • C22B3/06Extraction of metal compounds from ores or concentrates by wet processes by leaching in inorganic acid solutions, e.g. with acids generated in situ; in inorganic salt solutions other than ammonium salt solutions
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/006Wet processes
    • C22B7/007Wet processes by acid leaching
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B13/00Obtaining lead
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B13/00Obtaining lead
    • C22B13/04Obtaining lead by wet processes
    • C22B13/045Recovery from waste materials
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B13/00Obtaining lead
    • C22B13/06Refining
    • C22B13/08Separating metals from lead by precipitating, e.g. Parkes process
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B19/00Obtaining zinc or zinc oxide
    • C22B19/20Obtaining zinc otherwise than by distilling
    • C22B19/22Obtaining zinc otherwise than by distilling with leaching with acids
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/006Wet processes
    • C22B7/008Wet processes by an alkaline or ammoniacal leaching
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/04Working-up slag
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/02Working-up flue dust
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Metallurgy (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Treatment Of Sludge (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

Изобретение относится к способу переработки шлама доменной печи, содержащего железо и 4,5 – 12 мас.% цинка. Этот способ включает стадию выщелачивания, на которой выщелачивающие агенты включают хлористоводородную кислоту и хлорат, и значение рН фильтрата, непосредственно полученного в результате этой стадии выщелачивания, устанавливается строго ниже 1,5. Способ позволяет значительно снизить содержание цинка, уменьшить содержание свинца, а также селективно удалить цинк и свинец с высокой степенью извлечения железа и углерода в отработанном шламе. 2 н. и 12 з.п. ф-лы, 2 ил., 4 табл.

Description

Изобретение относится к способу переработки железосодержащего шлама. Изобретение относится также к оборудованию для реализации данного способа.
При производстве чугуна выделяется газ, содержащий пыль, и выходит через колошник доменной печи. Для рециркуляции газы должны быть очищены от пыли. Для выполнения этой операции очистки используются два метода: сухая очистка с использованием пылеуловителей и/или циклонов, которые собирают самые большие частицы пыли, которые затем направляются непосредственно на установку агломерации, и мокрую очистку в скрубберах, собирающих мельчайшие частицы пыли в воде. Остаток этой стадии мокрой очистки представляет собой шлам.
Средний состав этого шлама включает 15 - 25 мас.% железа, 30 - 50 мас.% углерода, 2 - 12 мас.% цинка и 0,5 - 2% свинца. Цинк и свинец присутствуют в виде оксидов PbO и ZnO, а также, в частности, в виде сульфида ZnS, также называемого сфалеритом, в виде сульфида PbS, и в виде чистых металлов Zn и Pb.
Из-за высокого содержания в них цинка и свинца эти отходы не могут быть непосредственно переработаны на агломерационной установке. Как правило, агломерационные установки позволяют перерабатывать побочные продукты, имеющие содержание ниже 0,40 мас.% цинка и ниже 0,10 мас.% свинца. Поэтому необходимо дополнительно обработать такой шлам, чтобы снизить в них содержание тяжёлых металлов.
Гидрометаллургические процессы являются хорошо известными решениями для удаления примесей из твёрдого вещества или шлама. Эти способы включают стадию выщелачивания, в основном состоящую в смешивании перерабатываемого твёрдого вещества с жидкостью, содержащей выщелачивающий агент, такой как NaOH, NH3 или H2SO4. Примеси твёрдого вещества реагируют с выщелачивающим агентом и переводятся в жидкость. Результатом стадии выщелачивания является смесь выщелоченного твёрдого вещества или шлама и выщелачивающей остаточной жидкости, называемой фильтратом.
Патент BE 1 001 781 описывает способ удаления тяжёлых металлов, таких как цинк и свинец, из шламов доменных печей или кислородных конвертеров. В этом способе травильный раствор, образующийся в результате травления стальных листов, окисляется с использованием раствора Cl2 для получения раствора, богатого ионами Fe3+. Этот обогащенный Fe3+ раствор затем используют для выщелачивания шлама. Целью этой стадии выщелачивания является солюбилизация остатков цинка и свинца, чтобы удалить их из шлама. Этот выщелоченный твёрдый шлам промывают и направляют на агломерационную установку.
Этот способ очень сложный для реализации, поскольку он требует выполнения дополнительной стадии окисления, и это подразумевает рециркуляцию травильного раствора, что невозможно на каждой установке. Кроме того, использование Cl2 в промышленных условиях предполагает принятие жёстких мер безопасности.
Патент EP 1 042 518 описывает способ, в котором первую стадию выщелачивания шлама, содержащего железо, осуществляют в кислом окислительном растворе. Полученную остаточную жидкость выщелачивания подают на стадию разделения, по меньшей мере, на один ионообменник для удаления цинка и свинца. Полученная таким образом жидкость затем окисляется раствором Cl2 для превращения ионов Fe2+, присутствующих в жидкости, в ионы Fe3+. Этот обогащенный Fe3+ раствор, наконец, используется для повторного выщелачивания шлама.
Так же, как и способ, описанный в патенте BE 1 001 781, этот способ является очень сложным и предлагает использование Cl2.
Целью изобретения является создание способа переработки шлама, содержащего железо и цинк, который позволяет значительно снизить содержание цинка при простоте его реализации. Дополнительная цель изобретения заключается в уменьшении содержания свинца. Другой целью изобретения является селективное удаление цинка и свинца, чтобы иметь высокую степень извлечения железа и углерода в переработанном шламе.
С этой целью в изобретении предлагается способ переработки шлама, содержащего железо и 4,5 - 12 мас.% цинка, причём этот способ включает стадию выщелачивания, на которой выщелачивающие агенты включают хлористоводородную кислоту и хлорат, и значение рН фильтрата непосредственно в результате этой стадии выщелачивания устанавливается строго ниже 1,5.
В других осуществлениях способ включает один или несколько из следующих признаков, взятых отдельно или в любой технически осуществимой комбинации:
- фильтрат имеет рН 0,8 - 1,5, предпочтительно 0,8 - 1,2,
- хлорат является хлоратом натрия,
- стадию выщелачивания проводят при температуре 50 - 65°С,
- шлам изначально содержит более 7 мас.% цинка,
- шлам изначально содержит 1 - 2 мас.% свинца,
- после стадии выщелачивания выполняют, по меньшей мере, одну стадию разделения, чтобы отделить выщелоченный шлам от остаточной жидкости в фильтрате,
- стадию осаждения железа проводят после стадии разделения для осаждения гётита,
- стадию осаждения цинка и свинца проводят после стадии осаждения железа для получения гидроксидов цинка и свинца,
- после стадии разделения проводят отдельную стадию осаждения для получения концентрата гидроксидов цинка, свинца и железа,
- стадию осаждения осуществляют добавлением гидроксида кальция,
- конечный продукт представляет собой шлам, содержащий менее 0,40 мас.% цинка и менее 0,10 мас.% свинца,
- шлам изначально содержит, в мас.%:
15% ≤ Fe ≤ 30%
30% ≤ C ≤ 60%
16% ≤ Fe ≤ 30%
1% ≤ Pb ≤ 2%
2% ≤ Al2O3 ≤ 30%
2% ≤ CaO ≤ 5%
0,5% ≤ MgO ≤ 2%
0,1% ≤ Mn ≤ 0,2%
0,05% ≤ P ≤ 0,1%
0,1% ≤ TiO2 ≤ 0,3%
0,02% ≤ Cr2O3 ≤ 0,08%
0,01% ≤ ZrO2 ≤ 0,05%
0% ≤ V2O5 ≤ 0,03%
0,05% ≤ Ti ≤ 0,2%
22% ≤ Fe2O3 ≤ 38%
0% ≤ V ≤ 0,007%
1,5% ≤Zn ≤ 10%
1% ≤ S ≤ 4%
- шлам является шламом доменной печи.
Изобретение также относится к способу переработки, в котором шлам доменной печи обрабатывают этим способом переработки и направляют на агломерационную установку.
Изобретение также относится к установке для осуществления этого способа переработки.
Другие характеристики и преимущества изобретения будут очевидными по прочтению последующего описания.
Чтобы проиллюстрировать изобретение, были проведены испытания, которые будут представлены в описании с помощью не ограничивающих примеров, в частности чертежей, которые представляют:
фиг. 1 является схемой одного осуществления способа по изобретению,
фиг. 2 является схемой другого осуществления способа по изобретению.
Фиг. 1 является схематическим представлением одного осуществления процесса переработки 1 согласно изобретению.
В этом процессе обрабатывают шлам 100, содержащий железо и более 4,5 мас.% цинка, такой как доменный шлам. Изобретение представляет особый интерес для переработки шлама, содержащего более 4,5 мас.% цинка.
Как описано выше, средний состав шлама доменной печи составляет 15 - 30 мас.% железа, 30 - 60 мас.% углерода, 2 - 12 мас.% цинка и 0,5 - 2% свинца. Цинк и свинец присутствуют не только в виде оксидов PbO и ZnO, но также в виде сульфида ZnS, также называемого сфалеритом, и PbS, и в виде чистых металлов, Zn° и Pb°.
Шлам 100 доменной печи подаётся на стадию 2 выщелачивания. Шлам 100 помещают в резервуар для выщелачивания, оборудованный смесительными устройствами, такими как вращающаяся спираль.
Выщелачивающие агенты добавляют в резервуар для выщелачивания. Эти выщелачивающие агенты представляют собой раствор соляной кислоты и хлоратов. Хлораты вводят с использованием водного раствора NaClO3 или порошка NaClO3. Хлораты также могут быть получены с использованием раствора KClO3, например, любого водного раствора или порошка, содержащего хлорат.
Смешивание выщелачивающих агентов со шламом приводит к образованию фильтрата 102, который состоит из твёрдой и жидкой частей. Количество выщелачивающих агентов определяют таким образом, чтобы получить значение рН фильтрата 102 ниже 1,5, предпочтительно 0,8 - 1,5 и более предпочтительно 0,8 - 1,2.
Концентрация выщелачивающих агентов в фильтрате 102 составляет 2,5 - 100 г/л для HCl и 0,4 - 10 г/л для хлоратов.
Резервуар для выщелачивания может быть оборудован нагревательными устройствами для нагрева фильтрата 102; предпочтительно температура фильтрата составляет 50 - 60°С. При температуре ниже 50°С свинец менее растворим, поэтому его растворение затруднено. При температуре выше 60°С соляная кислота выделяет пары, которые необходимо обрабатывать.
Продолжительность стадии 2 выщелачивания предпочтительно составляет от 30 мин до 2 ч.
Соляная кислота в частности реагирует с оксидами цинка и свинца в соответствии со следующими реакциями:
ZnO + 2HCl → ZnCl2 + H2O
PbO + 2HCl → PbCl2 + H2O
Полученные таким образом хлориды цинка и свинца являются растворимыми в воде.
Соляная кислота также реагирует с оксидами железа в соответствии со следующей реакцией:
Fe2O3 + 6H+ → 2Fe3+ + 3H2O
Образующиеся таким образом ионы Fe3+ могут взаимодействовать с цинком в соответствии со следующими реакциями:
Zn° + 2Fe3+ → 2Fe2+ + Zn2+
ZnS + 2Fe3+ → Zn2+ + 2Fe2+ + S°
В это время следующие реакции могут проходить с хлорат ионами:
3ZnS + ClO3 - + 6H+ → 3Zn2+ + S° + Cl- + 3H2O
3PbS + ClO3 - + 6H+ → 3Pb2+ + S° + Cl- + 3H2O
3Zn° + 6H+ + ClO3 - → 3Zn2+ + Cl- + 3H2O
3Pb° + 6H+ + ClO3 - → 3Pb2+ + Cl- + 3H2O
Во всех этих реакциях участвует большое количество кислоты, обязательно должно быть задано низкое значение рН. Более того, если рН выше 1,5, ионы железа Fe3+ могут осаждаться с образованием гётита FeOOH. Поэтому значение рН должно быть установлено ниже 1,5 и предпочтительно ниже 1,2.
Создание рН ниже 0,8 не требуется для снижения содержания цинка и предполагает использование больших количеств хлористоводородной кислоты. Кроме того, чем более кислым является раствор, тем больше железа будет выщелачиваться, что связано с реакцией между оксидами железа и соляной кислотой.
Цинк и свинец, присутствующие в исходном шламе 100, превращаются в водорастворимые элементы, которые удаляются из шлама 100 и переносятся в жидкую часть фильтрата 102.
Продукт этой стадии 2 выщелачивания представляет собой фильтрат 102. Этот фильтрат 102 содержит, в частности, Fe2+, Fe3+, Zn2+, Pb2+.
Чтобы извлечь железо, необходимо иметь этот элемент только в форме Fe3+, то есть ионы Fe2+ необходимо окислить. Эта стадия окисления может быть выполнена с использованием хлорат ионов:
6Fe2+ + 6H+ +ClO3 - → 6Fe3+ + Cl- + 3H2O
Это может выполняться на отдельной стадии 4 окисления, как показано на фиг. 1, или совместно со стадией выщелачивания с начальной концентрацией NaClO3 выше, чем необходима для реакции с цинком и свинцом.
Если выполняется отдельная стадия 4 окисления, то она заключается в добавлении в окислительную емкость окислителя, такого как хлорат, например, с использованием раствора NaClO3 в фильтрат 102.
Продуктом этого окисления является окисленный фильтрат 103, содержащий, в частности, Fe3+, Zn2+, Pb2+.
Для извлечения железа окисленный фильтрат 103 подают на стадию 6 осаждения железа. Эта стадия 6 осаждения железа может быть реализована путём добавления щелочного компонента, такого как гидроксид кальция, к окисленному фильтрату 103. Это добавление приводит к увеличению рН до значения 2 - 3, при котором Fe3+ осаждается в виде гётита FeOOH.
Продукт этой стадии 6 осаждения железа представляет собой первую смесь 104, состоящую из твёрдой части, выщелоченного шлама 110, включающего гётит 120, и жидкой части, остаточной жидкости 106. Такую первую смесь 104 подают на первую стадию 7 разделения, которая может быть реализована любым известным способом разделения жидкость/твёрдое вещество, таким как декантация, флотация или фильтрация.
Выщелоченный шлам 110, включающий гётит 120, может быть подвергнут дальнейшей промывке и сушке для удаления хлоридов. Затем он может быть направлен на агломерационную установку.
Остаточная жидкость 106 всё ещё содержит цинк и свинец, которые могут быть извлечены. Для этого остаточную жидкость 106 подают на стадию 8 осаждения цинка и свинца. Эта стадия осаждения 8 цинка и свинца может быть реализована путем добавления щелочного компонента, такого как гидроксид кальция, к остаточной жидкости 106. Это добавление приводит к повышению рН жидкости, предпочтительно до 9,5, при котором осаждаются гидроксиды цинка и свинца Zn(OH)2 и Pb(OH)2.
Продукт этой стадии осаждения цинка и свинца представляет собой вторую смесь 107, состоящую из твёрдой части, концентрата цинка и свинца 130 и жидкой части, выходящего потока 108. Такую вторую смесь 107 подают на вторую стадию 9 разделения. Эта стадия разделения может быть реализована в соответствующем оборудовании любым известным способом разделения жидкость/твёрдое вещество, таким как декантация, флотация или фильтрация.
Концентрат 130 цинка и свинца может быть подан в вельц-печь, а отходящий поток 108 обрабатывают другими отходящими потоками сталелитейного завода.
Другое осуществление изобретения проиллюстрировано на фиг. 2. В этом осуществлении способ 20 переработки шлама 200, содержащего железо и более 4,5 мас.% цинка, такого как шлам доменной печи, включает стадию 22 выщелачивания, как описано в первом осуществлении.
Фильтрат 202, полученный в результате этой стадии 22 выщелачивания, состоит из твёрдой части, выщелоченного шлама 210, и жидкой части, остаточной жидкости 203. Фильтрат 202 подают на первую стадию 23 разделения, чтобы разделить обе части. Эта стадия 23 разделения может быть реализована любым известным способом отделения жидкости от твёрдого вещества, таким как декантация, флотация или фильтрация.
Выщелоченный шлам 210 может быть подвергнут дальнейшей промывке и сушке, чтобы удалить остающиеся хлориды. Затем его можно подать на агломерационную установку.
Остаточная жидкость 203 включает, в частности, Fe2+, Fe3+, Zn2+ и Pb2+. Эти металлы необходимо извлечь.
Для этого остаточную жидкость 203 подают на стадию 24 осаждения для осаждения цинка, железа и свинца. Эта стадия 24 осаждения может быть реализована путем добавления щелочного компонента, такого как гидроксид кальция, в остаточную жидкость 203. Это добавление позволяет повысить рН жидкости предпочтительно до 9,5, при котором три компонента осаждаются в виде гидроксидов.
Продукт этой стадии осаждения 24 представляет собой смесь 204, состоящую из твёрдой части, концентрата 220 цинка, свинца и железа и жидкой части, выходящего потока 206. Смесь 204 подают на вторую стадию 25 разделения, чтобы разделить обе части. Эта стадия разделения может быть реализована любым известным способом отделения жидкости от твёрдого вещества, таким как декантация, флотация или фильтрация.
В этом осуществлении проводят только одну стадию осаждения, и полученный таким образом концентрат 220 является концентратом цинка, свинца и железа, который может быть направлен в вельц-печь. Выходящий поток 206 обрабатывают другими стоками сталелитейного завода.
Примеры
Серия испытаний 1 - Использование хлората
Испытания проводят на образцах шлама доменной печи, имеющих разные составы. Исходный состав (мас.%) различных образцов представлен в таблице 1. Этот исходный состав определяют с использованием классического метода рентгенофлуоресцентной спектрометрии. Массовые проценты относятся к массовой доле элемента. Действительно, элементы компонентов шлама могут присутствовать в различных минеральных формах, таких как оксиды.
Таблица 1
мас.%
C Fe Zn Pb Si Ca Al Ti S Mg P Mn K Na Cl
S1 39,8 26,1 4,4 1,1 2,3 3,1 1,5 0,1 1,6 0,5 0,1 0,1 0,4 0,2 0,2
S2 39,3 20,1 11,9 0,9 2,4 1,6 1,4 0,1 2,5 0,3 0,0 0,1 0,3 0,1 0,3
S3 40,2 24,8 6,4 0,9 2,5 2,6 0,9 0,1 1,9 0,5 0,1 0,1 0,4 0,3 0,4
S4 45,4 22,8 5,4 1,1 2,7 1,8 1,2 0,1 2,0 0,5 0,1 0,1 0,5 0,3 0,2
S5 51,1 17,2 64 0,9 2,7 2,9 1,4 0,1 2,2 0,4 0,1 0,1 0,9 0,2 0,6
S6 43,6 21,1 7,5 0,9 2,7 1,5 1,2 0,1 2,5 0,4 0,1 0,1 0,5 0,3 0,3
S7 42,3 21,8 6,8 1,5 2,4 2,0 1,3 0,1 2,5 0,4 0,0 0,1 0,3 0,2 0,3
Образец 1 содержит менее 4,5 мас.% цинка.
Образцы 1 - 3 подают на стадию выщелачивания, используя только HCl в качестве выщелачивающего агента без хлората.
Образцы 4 - 7 подают на стадию выщелачивания согласно изобретению, выщелачивающие агенты представляют собой HCl и NaClO3.
HCl, используемая для всех образцов, представляет собой 33 мас.% раствор HCl.
Все остальные условия стадий выщелачивания одинаковы для всех образцов, температура выщелачивающего раствора составляет 60°С, скорость смешивания составляет 300 об/мин. Время обработки составляет один час. Все образцы представляют собой влажный шлам, причем около 55% сухого шлама составляет около 100 г.
После стадии выщелачивания все образцы подают на стадию фильтрации для отделения выщелоченного шлама от остаточной жидкости. Выщелоченный шлам затем подвергают нескольким стадиям промывки, и затем определяют его состав с использованием классического метода рентгенофлуоресцентной спектроскопии. Степень выщелачивания рассчитывается по следующей формуле:
Figure 00000001
Степень выщелачивания: %i(X) =
где: wi(X) представляет массу элемента X в исходном шламе
wf(X) представляет массу элемента X в выщелоченном шламе
Эти условия и результаты представлены в таблице 2:
Таблица 2
Образец n° pH Выщелачивающие агенты (г) Выщелоченный шлам - состав Степень выщелачивания
NaClO3 HCl %Fe %Zn %Pb %C %lFe %l Zn %l Pb %l C
S1 1,2 0 82 24,7 0,31 0,08 57,3 39,9 95,5 81,9 8,2
S2 1,1 0 74 18,3 1,59 0,10 61,4 44,3 91,8 92,8 4,6
S3 1,0 0 65 24,6 0,41 0,08 57,1 35,6 95,9 94,2 8,2
S4 0,8 1,0 99 18,6 0,14 0,02 63,8 43,9 98,0 98,4 3,6
S5 1,0 4,7 80 13,9 0,25 0,03 69,6 45,6 97,4 97,6 7,9
S6 0,5 1,0 149 15 0,19 0,02 66,2 53,8 98,4 97,9 3,7
S7 0,8 1,2 85 22,1 0,11 0,04 55,5 29,5 98,9 98,4 8,7
Для образца 1, так как он имеет низкое содержание цинка (менее 4,5 мас.%), выщелачивание только с HCl в качестве выщелачивающего агента достаточно для достижения низкого содержания (менее 0,40 мас.%) цинка в конечном шламе.
Однако для образцов 2 и 3, которые содержат более 4,5 мас.% цинка, использование в качестве выщелачивающих агентов только HCl недостаточно; содержание цинка в выщелоченном шламе выше 0,40 мас.%
Для образцов 4 - 7, которые перерабатывают в соответствии с изобретением, весь конечный шлам имеет содержание цинка ниже 0,40 мас.% и ниже 0,10 мас.% свинца.
Серия испытаний 2 - pH
Испытания проводят на образцах шлама доменной печи с одинаковым исходным составом. Это исходное содержание (мас.%) железа, цинка, углерода и свинца показано в таблице 3. Этот исходный состав был определён с использованием классического метода рентгенофлуоресцентной спектроскопии, за исключением содержания углерода, которое определено с использованием анализатора углерод-сера. Массовые проценты относятся к массовой доле элемента. Действительно, элементы компоненты шлама могут присутствовать в различных минеральных формах, таких как оксиды.
Таблица 3
Мас.% C Fe Zn Pb Si Ca Al Ti S Mg P Mn K Na Cl
39,8 26,1 4,4 1,1 2,3 3,1 1,5 0,1 1,6 0,5 0,1 0,1 0,4 0,2 0,2
Все образцы подают на стадию выщелачивания, выщелачивающими агентами являются HCl и NaClO3. HCl, используемая для всех образцов, представляет собой 33 мас.% раствор HCl.
Все условия стадий выщелачивания одинаковы для всех образцов, за исключением рН. Температура фильтрата составляет 60°C и скорость перемешивания составляет 300 об/мин. Время переработки составляет 2 часа. Все образцы представляют собой влажный шлам, при этом около 55% сухого шлама составляет около 80 г.
Для образца S8 рН фильтрата составляет 1,5, тогда как для других образцов он находится в диапазоне 0,8 до строго ниже 1,5.
После стадии выщелачивания образцы подают на те же стадии разделения и промывки, которые описаны для серии испытаний 1.
Степень выщелачивания рассчитывается по следующей формуле:
Степень выщелачивания:
Figure 00000002
где Wi(X) является массой элемента X в исходном шламе
Wf(X) является массой элемента X в выщелоченном шламе
Эти условия и результаты представлены в таблице 4:
Таблица 4
Образец n° Выщелачивающие агенты (г) pH Выщелоченный шлам - состав (мас.%) Степень выщелачивания
NaClO3 HCl %Fe %C %Zn %Pb %Fe % Zn % Pb % C
8 1,86 82,9 1,33 26,35 55,15 0,28 0,04 33 95,7 97,9 8
9 1,86 91,2 1,18 24,54 57,15 0,22 0,03 40 96,8 98,2 8
10 1,86 98,1 1,11 23,19 58,85 0,15 0,02 44,7 97,9 98,9 7,8
11 1,86 96,0 0,80 23,64 60,35 0,19 0,05 47,1 97,6 97,6 15,2
12 1,86 59,4 1,5 28,21 49,50 0,45 0,08 22 92,6 94,7 10
13 1,86 40 2,03 27,83 47,05 0,61 0,86 13 89 42,2 9
Выщелоченный шлам, полученный из образцов 12 и 13, является единственным, для которого конечное содержание цинка слишком велико.
Степень выщелачивания железа возрастает вместе с уменьшением рН. Разумный баланс для того чтобы получить хорошую степень извлечения как углерода, так и железа, состоит в том, чтобы иметь рН выше 0,8.
Способ переработки согласно изобретению позволяет достичь конечного содержания цинка ниже 0,40 мас.% и свинца ниже 0,10 мас.%, с подходящей степенью извлечения железа, выше 50% и углерода выше 85%.

Claims (14)

1. Способ переработки шлама доменной печи, содержащего железо и 4,5–12 мас.% цинка, включающий стадию выщелачивания, на которой выщелачивающие агенты включают хлористоводородную кислоту и хлорат, причем значение рН фильтрата, непосредственно получаемого в результате указанной стадии выщелачивания, устанавливают строго ниже 1,5.
2. Способ по п. 1, в котором фильтрат имеет рН 0,8-1,5.
3. Способ по п. 1, в котором фильтрат имеет рН 0,8-1,2.
4. Способ по любому из пп. 1-3, в котором хлорат представляет собой хлорат натрия.
5. Способ по любому из пп. 1-4, в котором стадию выщелачивания осуществляют при температуре 50 – 65°С.
6. Способ по любому из пп. 1-5, в котором шлам изначально содержит более 7 мас.% цинка.
7. Способ по любому из пп. 1-6, в котором шлам изначально содержит 1–2 мас.% свинца.
8. Способ по любому из пп. 1-7, в котором после стадии выщелачивания проводят по меньшей мере одну стадию разделения для отделения выщелоченного шлама от остаточной жидкости в фильтрате.
9. Способ по п. 8, в котором после стадии разделения для осаждения гётита проводят стадию осаждения железа.
10. Способ по п. 8, в котором стадию осаждения цинка и свинца проводят после стадии осаждения железа для получения гидроксидов цинка и свинца.
11. Способ по п. 8, в котором после стадии разделения проводят одностадийное осаждение с получением концентрата гидроксидов цинка, свинца и железа.
12. Способ по любому из пп. 8-11, в котором стадию осаждения осуществляют путём добавления гидроксида кальция.
13. Способ по любому из пп. 1-12, в котором конечный продукт представляет собой шлам, содержащий менее 0,40 мас.% цинка и менее 0,10 мас.% свинца.
14. Способ переработки шлама доменной печи, в котором шлам доменной печи, переработанный способом по любому из пп. 1-13, направляют на агломерационную установку.
RU2017142036A 2015-05-05 2016-05-04 Способ переработки железосодержащего шлама RU2680767C1 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
IBPCT/IB2015/000617 2015-05-05
PCT/IB2015/000617 WO2016178040A1 (en) 2015-05-05 2015-05-05 Method for the treatment of iron-containing sludge
PCT/IB2016/000578 WO2016178073A2 (en) 2015-05-05 2016-05-04 Method for the treatment of iron-containing sludge, and associated equipment

Publications (1)

Publication Number Publication Date
RU2680767C1 true RU2680767C1 (ru) 2019-02-26

Family

ID=53298548

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017142036A RU2680767C1 (ru) 2015-05-05 2016-05-04 Способ переработки железосодержащего шлама

Country Status (12)

Country Link
US (1) US11519053B2 (ru)
EP (1) EP3292226B1 (ru)
JP (1) JP6616845B2 (ru)
KR (1) KR102011208B1 (ru)
CN (2) CN115747509A (ru)
BR (1) BR112017023339B1 (ru)
CA (1) CA2985027C (ru)
ES (1) ES2808857T3 (ru)
MX (1) MX2017014009A (ru)
PL (1) PL3292226T3 (ru)
RU (1) RU2680767C1 (ru)
WO (2) WO2016178040A1 (ru)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018219464A1 (de) * 2017-06-01 2018-12-06 Thyssenkrupp Steel Europe Ag Integrierter prozess zum recycling von gichtschlämmen zur gewinnung von eisenoxid und kohlenstoff
WO2019122985A1 (en) 2017-12-22 2019-06-27 Arcelormittal Method for the treatment of iron-containing sludge

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1042518A1 (fr) * 1997-12-16 2000-10-11 Sidmar N.V. Lixiviation oxydante de boues contaminees contenant du fer avec separation du zinc et du plomb
RU2277597C2 (ru) * 2004-08-17 2006-06-10 Открытое акционерное общество "Магнитогорский металлургический комбинат" Способ обесцинкования шламов доменного производства
EA200600691A1 (ru) * 2003-09-30 2006-08-25 Джегуар Никел Инк. Способ извлечения ценных металлов из сульфидных руд цветных металлов
RU2404271C1 (ru) * 2009-03-03 2010-11-20 Открытое акционерное общество "Магнитогорский металлургический комбинат" Способ переработки некондиционных железо- и цинксодержащих отходов металлургического производства

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4025430A (en) * 1976-01-12 1977-05-24 Amax Inc. Removal of metal ions from waste water
JPS5348906A (en) 1976-10-18 1978-05-02 Dowa Mining Co Method of treating sludge containing heavy metals
US4572771A (en) * 1985-01-31 1986-02-25 Amax Inc. Zinc recovery from steel plant dusts and other zinciferous materials
BE1001781A6 (fr) 1988-06-14 1990-03-06 Centre Rech Metallurgique Procede de traitement de matieres contenant des metaux lourds par lixiviation acide.
JPH0975891A (ja) 1995-09-11 1997-03-25 Nippon Steel Corp 製鉄ダストの湿式処理方法
FI108543B (fi) * 1999-08-12 2002-02-15 Outokumpu Oy Menetelmä epäpuhtauksien poistamiseksi sulfideja sisältävästä kultarikasteesta
JP3938909B2 (ja) 2003-01-28 2007-06-27 独立行政法人科学技術振興機構 白金及びパラジウムを含む試料から白金とパラジウムを選択的に回収する方法
CA2590927C (en) * 2005-05-10 2016-07-05 George Puvvada A process for the treatment of electric and other furnace dusts and residues containing zinc oxides and zinc ferrites
CN100427617C (zh) 2006-08-18 2008-10-22 昆明理工大学 一种炼铁高炉炉尘资源综合利用的方法
JP2008308396A (ja) 2007-06-15 2008-12-25 Natoo Kenkyusho:Kk 含水組成物、活用処理方法ならびに無公害型耐水性処理体
CN101619399B (zh) * 2009-07-21 2011-03-23 中南大学 铜精炼炉渣中有价金属选择性浸出的方法
CN101665265A (zh) * 2009-09-17 2010-03-10 常宁市沿江锌业有限责任公司 一种利用高砷氧化锌和钢铁厂锌灰生产硫酸锌的方法
CN102010994A (zh) * 2010-12-29 2011-04-13 株洲冶炼集团股份有限公司 一种湿法炼锌过程中高酸高铁溶液针铁矿沉铁方法
WO2013086606A1 (en) * 2011-12-12 2013-06-20 Process Research Ortech Inc. Separation of iron from value metals in leaching of laterite ores
AU2013302212B2 (en) * 2012-08-07 2017-08-03 Glencore Queensland Limited Recovery of zinc from lead slag
CN103194602A (zh) * 2013-03-25 2013-07-10 中南大学 一种湿法冶锌工艺除铁并回收富含铁铁渣的方法
CN103613116B (zh) * 2013-12-09 2014-11-05 衡阳师范学院 一种同时综合回收利用钢铁厂锌灰和高砷氧化锌的方法
CN103695657A (zh) * 2013-12-24 2014-04-02 广西博士海意信息科技有限公司 一种从湿法炼锌废渣中富集回收镓锗的方法
LU92379B1 (en) 2014-02-18 2015-08-19 Wurth Paul Sa Process for reducing the amounst of zinc (zn) and lead (pb)in materials containing iron (fe)

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1042518A1 (fr) * 1997-12-16 2000-10-11 Sidmar N.V. Lixiviation oxydante de boues contaminees contenant du fer avec separation du zinc et du plomb
EA200600691A1 (ru) * 2003-09-30 2006-08-25 Джегуар Никел Инк. Способ извлечения ценных металлов из сульфидных руд цветных металлов
RU2277597C2 (ru) * 2004-08-17 2006-06-10 Открытое акционерное общество "Магнитогорский металлургический комбинат" Способ обесцинкования шламов доменного производства
RU2404271C1 (ru) * 2009-03-03 2010-11-20 Открытое акционерное общество "Магнитогорский металлургический комбинат" Способ переработки некондиционных железо- и цинксодержащих отходов металлургического производства

Also Published As

Publication number Publication date
ES2808857T3 (es) 2021-03-02
MX2017014009A (es) 2018-03-02
US20190177815A1 (en) 2019-06-13
BR112017023339B1 (pt) 2021-08-10
CN115747509A (zh) 2023-03-07
CN107532232A (zh) 2018-01-02
WO2016178073A3 (en) 2017-03-16
JP6616845B2 (ja) 2019-12-04
BR112017023339A2 (pt) 2018-07-17
KR20170133494A (ko) 2017-12-05
JP2018514651A (ja) 2018-06-07
KR102011208B1 (ko) 2019-08-14
PL3292226T3 (pl) 2020-10-19
WO2016178040A1 (en) 2016-11-10
CA2985027C (en) 2019-12-03
WO2016178073A2 (en) 2016-11-10
EP3292226B1 (en) 2020-05-13
CA2985027A1 (en) 2016-11-10
US11519053B2 (en) 2022-12-06
EP3292226A2 (en) 2018-03-14

Similar Documents

Publication Publication Date Title
KR20080016607A (ko) 산화 아연 및 아철산염을 함유한 전기로 및 기타 가열로의분제 및 잔재물 처리 방법
EP0427341B1 (en) Method for selectively separating a non-ferrous metal
EP3161173B1 (en) System and process for selective rare earth extraction with sulfur recovery
RU2680767C1 (ru) Способ переработки железосодержащего шлама
JP6193603B2 (ja) 非鉄製錬煙灰からのスコロダイト製造方法
EP2902510A1 (en) A new method for leaching of electric arc furnace dust (EAFD) with sulphuric acid
JP2013237920A (ja) 銅製錬煙灰の処理方法
JP2015214760A (ja) 銅製錬煙灰の処理方法
JP6724433B2 (ja) 排水の処理方法
KR101763549B1 (ko) 출발 물질들로부터 비소를 분리하는 방법 및 장치
RU2737115C1 (ru) Способ обработки железосодержащего шлама
JP7243749B2 (ja) 有価金属の回収方法及び回収装置
JP2003164829A (ja) 重金属を含有する飛灰の処理方法
JP4982662B2 (ja) 湿式亜鉛製錬工程における浸出液の処理方法
JP3944556B2 (ja) 重金属を含有する飛灰の処理方法
JPH07316677A (ja) 製鋼ダストからの有価金属回収方法
CA2055207C (en) Processing of carbon steel furnace dusts
CA1136860A (en) Process for precipitating iron as jarosite with a low non-ferrous metal content
JP2022043470A (ja) タリウムの回収方法
JP2007100153A (ja) 硫酸亜鉛溶液からのタリウム除去方法