RU2662934C1 - Катализатор изодепарафинизации и способ получения низкозастывающих дизельных топлив с его использованием - Google Patents

Катализатор изодепарафинизации и способ получения низкозастывающих дизельных топлив с его использованием Download PDF

Info

Publication number
RU2662934C1
RU2662934C1 RU2017122923A RU2017122923A RU2662934C1 RU 2662934 C1 RU2662934 C1 RU 2662934C1 RU 2017122923 A RU2017122923 A RU 2017122923A RU 2017122923 A RU2017122923 A RU 2017122923A RU 2662934 C1 RU2662934 C1 RU 2662934C1
Authority
RU
Russia
Prior art keywords
catalyst
temperature
isodeparaffinization
mixture
diesel
Prior art date
Application number
RU2017122923A
Other languages
English (en)
Inventor
Людмила Александровна Красильникова
Людмила Алексеевна Гуляева
Всеволод Артурович Хавкин
Павел Анатольевич Никульшин
Анна Вячеславовна Андреева
Дмитрий Олегович Кондрашев
Андрей Владимирович Клейменов
Дмитрий Валерьевич Храпов
Александр Павлович Кубарев
Original Assignee
Акционерное общество "Газпромнефть - Омский НПЗ" (АО "Газпромнефть-ОНПЗ")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Акционерное общество "Газпромнефть - Омский НПЗ" (АО "Газпромнефть-ОНПЗ") filed Critical Акционерное общество "Газпромнефть - Омский НПЗ" (АО "Газпромнефть-ОНПЗ")
Priority to RU2017122923A priority Critical patent/RU2662934C1/ru
Priority to PCT/RU2018/000417 priority patent/WO2019004874A1/ru
Application granted granted Critical
Publication of RU2662934C1 publication Critical patent/RU2662934C1/ru

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/185Phosphorus; Compounds thereof with iron group metals or platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J27/188Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with chromium, molybdenum, tungsten or polonium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/064Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing iron group metals, noble metals or copper
    • B01J29/072Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/076Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/10Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing iron group metals, noble metals or copper
    • B01J29/14Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/16Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/42Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing iron group metals, noble metals or copper
    • B01J29/46Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/48Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing arsenic, antimony, bismuth, vanadium, niobium tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • C10G45/06Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof
    • C10G45/08Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof in combination with chromium, molybdenum, or tungsten metals, or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • C10G45/12Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing crystalline alumino-silicates, e.g. molecular sieves
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/58Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins
    • C10G45/60Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins characterised by the catalyst used
    • C10G45/64Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins characterised by the catalyst used containing crystalline alumino-silicates, e.g. molecular sieves

Abstract

Изобретение относится к области нефтепереработки, а именно к разработке катализатора изодепарафинизации и способа получения низкозастывающих дизельных топлив зимних и арктического сортов с использованием разработанного катализатора. Заявлен катализатор изодепарафинизации дизельных дистиллятов, содержащий в качестве кислотного компонента смесь высококремнеземных цеолитов, гидрирующие переходные металлы - оксиды никеля, молибдена и/или вольфрама, оксид меди, промотор оксид бора и/или фосфора и связующее оксид алюминия при следующем соотношении компонентов при загрузке, % мас.: смесь цеолитов (кислотный компонент) - 45,0-70,0, гидрирующие переходные металлы (в виде оксидов) - 6,5-20,0, медь (в виде оксида) - 0,3-1,5, промотор - 2,0-4,0, оксид алюминия - до 100,0; при этом в процессе изодепарафинизации катализатор используют в сульфидной форме или металлической форме. Заявлен также способ изодепарафинизации дизельных дистиллятов при повышенной температуре и давлении в присутствии описанного выше катализатора. Технический результат заключается в уменьшении температуры активации катализатора и энергозатрат. 2 н. и 4 з.п. ф-лы, 3 табл., 7 пр.

Description

Изобретение относится к области нефтепереработки, а именно разработке катализатора изодепарафинизации и способа получения низкозастывающих дизельных топлив зимних и арктического сортов с использованием разработанного катализатора.
Дизельные топлива, предназначенные для эксплуатации в условиях холодного и арктического климата, должны обладать надлежащими низкотемпературными характеристиками - низкими значениями температуры помутнения и предельной температуры фильтруемости. Указанные характеристики влияют на пуск и работу двигателей в условиях низких температур и определяются, в первую очередь, содержанием н-парафиновых углеводородов в составе дизельного топлива. Наибольшее негативное влияние на низкотемпературные свойства дизельного топлива оказывают нормальные парафиновые углеводороды с числом углеродных атомов в молекуле от 12, которые имеют высокие температуры плавления.
Изодепарафинизация позволяет получать дизельные топлива надлежащего качества с более высокими выходами без увеличенного потребления водорода. Катализаторы изодепарафинизации, как правило, содержат цеолит специфичной структуры, гидрирующий металл, промотор и в качестве связующего оксид алюминия. В процессе изодепарафинизации, как правило, используют гидроочищенное углеводородное сырье, не содержащее соединений серы, азота, которые являются ядом для катализаторов процесса.
Известны катализаторы изодепарафинизации парафиновых углеводородов на основе благородных металлов (RU 2320407, 2008; RU 2560157, 2014; RU 2616003, 2017).
В патенте RU 2320407 описан следующий состав катализатора, % мас.: платина (Pt) 0,15-0,60; оксид алюминия (Аl2O3) 58,61-89,43; цеолит ZSM 5 или BETA в Н-форме 5-40; модификаторы оксид вольфрама 1-4; оксид индия 0,24-0,97.
В патенте RU 2560157 предлагается катализатор следующего состава, мас. %: платина 0,20-0,40, цеолит ZSM-23 или SAPO-41 10-40 и оксид алюминия - остальное.
В патенте RU 2616003 представлена совмещенная схема получения низкозастывающего дизельного топлива, включающая процессы изодепарафинизации и гидрофинишинга. В процессе изодепарафинизации используют катализатор, содержащий платину и/или палладий и цеолит структуры: МТТ (ZSM-23, SSZ-32), TON (Theta, ZSM-22), *MRE (ZSM-48).
Недостатками этих катализаторов являются многостадийность процесса их получения, использование дорогостоящих благородных металлов в качестве гидрирующих компонентов, недоступность некоторых видов цеолитов, например, марки SAPO.
Известны катализаторы изодепарафинизации парафиновых углеводородов, не содержащие в качестве гидрирующих компонентов благородные металлы, на основе переходных металлов никеля, кобальта, молибдена в виде оксидов.
Известен катализатор для гидрооблагораживания утяжеленных нефтяных фракций. (RU 2183505, 2002).
Катализатор в качестве гидрирующих металлов содержит вольфрам и/или молибден, никель или кобальт, в качестве фазообразующих промоторов содержит алюмосиликатные соединения аморфного и кристаллического строения и/или их смеси в количестве 20-70% масс. от общей массы носителя, в качестве алюмосиликатных соединений кристаллического строения содержит цеолиты типа β, Y, ZSM-5.
Недостатком данного катализатора является то, что температура застывания целевой дизельной фракции минус 35°С достигается при достаточно низких объёмных скоростях подачи сырья - 1,0-2,0 час-1, что не позволяет получать дизельные топлива арктических сортов. В патенте отсутствует дополнительная информация по выходу целевого продукта - дизельной фракции, предельной температуре фильтруемости.
Известен способ получения низкозастывающих дизельных топлив путем переработки утяжеленных нефтяных фракций (180-417°С) с использованием цеолитсодержащего катализатора, активированного перед реакцией в среде водорода при температуре 300-400°С в течение 3-6 часов. (RU 2225433, 2002). Недостатком данного способа активации является низкая стабильность работы катализаторов, отсутствие информации по выходу целевого продукта и предельной температуре фильтруемости.
Наиболее близкими к заявляемому являются описанные в патенте RU 2549617, 2015, катализатор и способ изопарафинизации дизельных дистиллятов с его использованием.
Катализатор включает смесь высококремнеземных цеолитов, гидрирующие переходные металлы: никель, вольфрам и/или молибден, связующее и дополнительно содержит промотор - оксид бора или оксид фосфора, или их смесь. В качестве смеси высококремнеземных цеолитов содержит тройную смесь из цеолитов: широкопористого фожазита - ультрастабильного USY, среднепористого ZSM-12 или ZSM-22, а также пентасила ЦВН или ZSM-11, при содержании кислотных центров в цеолитах в диапазоне 350-1030 мкмоль/г, в качестве связующего содержит оксид алюминия. Активацию катализатора проводят в токе водорода при повышенной температуре до 480-500°С.
Катализатор имеет следующий состав, % мас.: смесь цеолитов (кислотный компонент) 60,0-80,0; гидрирующие металлы (в виде оксидов) 6,0-20,0; промотор 0,5-4,0; оксид алюминия до 100,0.
Заявлен также способ изодепарафинизации дизельных дистиллятов с использованием разработанного катализатора, в качестве дизельных дистиллятов используют гидроочищенные прямогонные дизельные дистилляты, процесс проводят при температуре 250-400°С, давлении 2-5 МПа, объемной скорости подачи сырья 2-4 час-1, при соотношении Н2/сырье, равном 400-1200 нм33.
Недостатком прототипа является то, что применяемый в процессе изодепарафинизации катализатор используют в металлической форме, полученной при восстановлении оксидов металлов в токе водорода при повышенной температуре 480-500°С, что связано с высокими энергозатратами, приводящими к повышенным экономическим затратам.
Технической задачей настоящего изобретения является разработка композиции катализатора изодепарафинизации дизельных дистиллятов, содержащей гидрирующие переходные металлы (никель, молибден, вольфрам) и дополнительного включения металлической меди, позволяющей уменьшить температуру активации катализатора, и способа получения низкозастывающих дизельных топлив зимних и арктических сортов с использованием этого катализатора в сульфидной или металлической форме, в зависимости от возможности установки изодепарафинизации, что способствует универсальности его применения.
Технический результат достигается разработкой катализатора изодепарафинизации дизельных дистиллятов, содержащего в качестве кислотного компонента смесь высококремнеземных цеолитов, гидрирующие переходные металлы - оксиды никеля, молибдена и/или вольфрама, промотор оксид бора и/или фосфора, и связующее оксид алюминия. Катализатор отличается тем, что дополнительно содержит металл группы I В - оксид меди, при следующем соотношении компонентов при загрузке, % мас.:
смесь цеолитов (кислотный компонент) 45,0-70,0
гидрирующие переходные металлы
(в виде оксидов) 6,5-20,0
медь (в виде оксида) 0,3-1,5
промотор 2,0-4,0
оксид алюминия до 100,0
при этом в процессе изодепарафинизации катализатор используют в сульфидной или металлической форме.
Следует отметить, что использование катализатора изодепарафинизации в сульфидной или металлической форме дает возможность его универсального применения в зависимости от заводской потребности.
Процесс сульфидирования катализатора изодепарафинизации проводят в реакторе при температуре 200-350°С, что значительно ниже, чем при активации катализатора водородом в металлическую форму при температуре 480-500°С по прототипу, что позволяет улучшить экономические и энергетические показатели процесса. Также это позволяет при пакетной загрузке проводить совместно процесс сульфидирования катализаторов изодепарафинизации и гидроочистки (гидрофинишинга) непосредственно в реакторе.
Металлическую форму получают обработкой катализатора в среде водорода при температуре 430-460°С и давлении 2,5-4,0 МПа. Основным преимуществом катализатора изодепарафинизации в металлической форме перед описанным в прототипе является снижение температуры активации в процессе восстановления с 480-500°С до 430-460°С, что также позволяет улучшить экономические и энергетические показатели процесса.
Заявленный катализатор содержит тройную смесь высококремнеземных алюмосиликатных компонентов из цеолитов с различной структурой пор:
широкопористые - ультрастабильный USY или цеолит бета β с трехмерной системой 12-членных кислородных структур входного окна,
среднепористый - ZSM-12 с одномерной системой 12-членных кислородных структур входного окна, параллельных непересекающихся каналов,
цеолит структуры пентасил - ЦВН, ZSM-5, ZSM-11 с трехмерной системой 10-членных кислородных структур входного окна, при следующем соотношении компонентов, % мас.:
ультрастабильный USY, или цеолит β 5-15
цеолит ZSM-12 10-35
цеолит структуры пентасил - ЦВН, ZSM-5, ZSM-11 7-30
Сочетание цеолитов с различной структурой пор в композиции катализатора снижает крекирующую и повышает изомеризующую активности.
Структура образцов цеолитов была подтверждена методом рентгенофазового анализа на порошковом дифрактометре D2 PHASER фирмы BRUKER. Характеристика кислотности образцов проводилась методом термопрограммированной десорбции аммиака (ТПД NH3).
Физико-химические свойства цеолитов приведены в таблице 1.
Figure 00000001
Образцы катализатора изодепарафинизации готовят методом влажного смешения - соэкструзией.
В смесильную машину загружают расчетные количества гидрооксида алюминия, цеолитов, пептизирующий агент, массу перемешивают до однородного состояния. Затем вводят расчетное количество активных компонентов в виде солей соответствующих металлов: никеля азотнокислого, меди азотнокислой, молибдата аммония и/или паравольфрамата аммония. Добавляют расчетное количество промоторов борной и/или фосфорной кислоты. Массу перемешивают до однородного состояния, затем упаривают и формуют на экструзионной машине в гранулы, провяливают, сушат и прокаливают.
В таблице 2 представлен химический состав синтезированных образцов катализатора: с 1-3 - это составы катализатора настоящего изобретения, 4 образец - пример для сравнения, не содержащий медь, пример 5 - сравнительный пример по прототипу, пат. РФ №2549617 (для сравнения взят пример 3 из таблицы 3, как наиболее близкий по составу к заявляемому).
Предлагаемый способ изодепарафинизации дизельных фракций с использованием разработанного катализатора включает активацию катализатора сульфидированием или восстановлением в присутствии водородсодержащего газа.
I. Получение сульфидной формы катализатора
Перевод неактивной оксидной формы гидрирующих металлов никеля, меди, молибдена или вольфрама в сульфидную состоит из стадий сушки, смачивания и сульфидирования. Сушку и смачивание катализатора прямогонным гидроочищенным дизельным топливом проводят при температуре 150°С и давлении 3 МПа.
Процесс сульфидирования осуществляют при давлении 3 МПа в токе циркуляционного водородсодержащего газа смесью гидроочищенной прямогонной дизельной фракции и осерняющего агента диметилдисульфида (ДМДС) при температуре 200-350°С. Для поддержания сульфидной формы катализатора в процессе работы добавляют в сырье осерняющий агент диметилдисульфид.
II. Получение металлической формы катализатора
Предлагаемый способ изодепарафинизации дизельных фракций с использованием разработанного катализатора также включает активацию катализатора при повышенной температуре в среде водорода с получением гидрирующих компонентов в металлической форме.
Катализатор предварительно сушат в токе водорода при атмосферном давлении и соотношении водород/катализатор не менее 500 об./об. Температуру повышают ступенчато до 100°С, 150°С и 250°С (скорость нагрева 25°С в час) с выдержкой при каждой температуре до полного прекращения выделения воды. После окончания сушки поднимают давление водорода до 2,5-4 МПа и повышают температуру активации до 430-460°С (скорость нагрева 25°С в час), и при соотношении водород/катализатор не менее 600-1250 об./об. катализатор выдерживают в течение 8-12 часов. После окончания активации температуру в реакторе понижают до температуры реакции, включают подачу сырья и процесс изодепарафинизации проводят при выбранных технологических параметрах.
После окончания активации заявленного катализатора сульфидированием или восстановлением в среде водорода процесс изодепарафинизации проводят в присутствии циркулирующего водородсодержащего газа при соотношении Н2/сырье=500-1250 нл/л, при температуре 280-390°С, давлении 2,5-4,0 МПа, объемной скорости подачи сырья 1,5-5 час-1. В качестве дизельных дистиллятов используют гидроочищенные прямогонные дизельные дистилляты.
В таблице 3 приведены технологические параметры процесса изодепарафинизации и показатели качества компонентов дизельных топлив, полученных с применением образцов катализатора в сульфидной или металлической формах.
Ниже приведены примеры 1-6
Пример 1
Способ изодепарафинизации гидроочищенной прямогонной дизельной фракции с применением образца катализатора изодепарафинизации 1 в сульфидной форме осуществляют при температуре 280°С, давлении 2,5 МПа, объемной скорости подачи сырья 1,5 час-1, при соотношении Н2/сырье, равном 500 нм33. Получен целевой продукт с выходом 92% мас., с предельной температурой фильтруемости минус 41°С, температурой вспышки 46°С, что соответствует базовому компоненту топлива дизельного зимнего не выше минус 38°С согласно ГОСТ Р 55475-2013.
Пример 2
Способ изодепарафинизации гидроочищенной прямогонной дизельной фракции с применением образца катализатора изодепарафинизации 2 в сульфидной форме осуществляют при температурах 310°С и 320°С, давлении 3,0 МПа, объемной скорости подачи сырья 3,0 час-1, при соотношении Н2/сырье, равном 700 нм33. Получен целевой продукт при температуре 310°С с выходом 93% мас., с предельной температурой фильтруемости минус 42°С, температурой вспышки 53°С, что соответствует базовому компоненту дизельного топлива зимнего не выше минус 38°С согласно ГОСТ Р 55475-2013.
При температуре 320°С получен целевой продукт с выходом 92% мас., с предельной температурой фильтруемости минус 44°С, температурой вспышки 43°С, что соответствует базовому компоненту дизельного топлива арктического с предельной температурой фильтруемости не выше минус 44°С согласно ГОСТ Р 55475-2013.
Пример 3
Способ изодепарафинизации гидроочищенной прямогонной дизельной фракции с применением образца катализатора изодепарафинизации 3 в сульфидной форме осуществляют при температуре 390°С, давлении 4,0 МПа, объемной скорости подачи сырья 5,0 час-1, при соотношении Н2/сырье, равном 1250 нм33. Получен целевой продукт с выходом 94% мас., с предельной температурой фильтруемости минус 41°С, температурой вспышки 38°С, что соответствует базовому компоненту топлива дизельного зимнего не выше минус 38°С согласно ГОСТ Р 55475-2013.
Пример 4 (сравнительный без меди)
Способ изодепарафинизации гидроочищенной прямогонной дизельной фракции с применением образца катализатора изодепарафинизации 4 в сульфидной форме (без меди) осуществляют при температурах 310°С и 320°С, давлении 3,0 МПа, объемной скорости подачи сырья 3,0 час-1, при соотношении Н2/сырье, равном 700 нм33, т.е. в условиях примера 2.
Получен целевой продукт при температуре 310°С с выходом 90% мас., с предельной температурой фильтруемости минус 39°С, температурой вспышки 52°С, что соответствует базовому компоненту дизельного топлива зимнего не выше минус 38°С согласно ГОСТ Р 55475-2013, однако выход и предельная температура фильтруемости ниже, чем в примере 2 с катализатором, содержащим медь (соответственно 93% мас. и минус 42°С).
При температуре 320°С получен целевой продукт с выходом 89% мас., с предельной температурой фильтруемости минус 40°С, температурой вспышки 49°С, что соответствует базовому компоненту дизельного топлива зимнего не выше минус 38°С °С согласно ГОСТ Р 55475-2013, однако выход и предельная температура фильтруемости ниже, чем в примере 2 с катализатором, содержащим медь (соответственно 92% мас. и минус 44°С).
Различие в каталитической активности и селективности образцов возникает за счет введения в образец 2 меди, обладающей собственной гидрирующей и изомеризующей активностью. Медь взаимодействует с металлом никелем в водородсодержащей среде, изменяет электронное состояние никеля за счет образования твердого раствора Ni1-x Cux и предотвращает агломерацию частиц никеля на поверхности катализатора, повышает дисперсность и снижает крекирующую активность никеля. При этом повышается выход целевого продукта.
Таким образом, введение меди в состав катализатора, и использование катализатора в процессе изодепарафинизации в сульфидной форме, позволяет улучшить показатели качества компонентов дизельного топлива - выход дизельной фракции на исходное сырье и понизить предельную температуру фильтруемости (примеры 1-4).
Пример 5
Способ изодепарафинизации гидроочищенной прямогонной дизельной фракции с применением образца катализатора изодепарафинизации 1 в металлической форме, активированного в среде водородсодержащего газа, осуществляют при температуре 315°С, давлении 3,0 МПа, объемной скорости подачи сырья 2,5 час-1, при соотношении Н2/сырье, равном 600 нм33. Получен целевой продукт с выходом 92% мас., с предельной температурой фильтруемости минус 42°С, температурой вспышки 48°С, что соответствует базовому компоненту топлива дизельного зимнего не выше минус 38°С согласно ГОСТ Р 55475-2013.
Пример 6
Способ изодепарафинизации гидроочищенной прямогонной дизельной фракции с применением образца катализатора изодепарафинизации 2 в металлической форме, активированного в среде водородсодержащего газа, осуществляют при температуре 310°С, давлении 3,8 МПа, объемной скорости подачи сырья 3,0 час-1, при соотношении Н2/сырье, равном 650 нм33. Получен целевой продукт с выходом 94% мас., с предельной температурой фильтруемости минус 44°С, температурой вспышки 45°С, что соответствует базовому компоненту дизельного топлива арктического с предельной температурой фильтруемости не выше минус 44°С согласно ГОСТ Р 55475-2013.
Сравнение показателей качества компонентов дизельного топлива примеров 5 и 6, содержащих в составе катализатора медь и использующих катализатор в металлической форме, по сравнению с прототипом - пат. РФ №2549617 показывает, что заявленный катализатор проявляет примерно ту же активность, что и в прототипе (выход дизельной фракции 92-94% мае, предельная температура фильтруемости минус 42 - минус 44°С), однако активация катализатора в металлическую форму проводилась при более низкой температуре (430-460°С) по сравнению с прототипом (480-500°С), что уменьшает энергозатраты и позволяет улучшить экономические показатели процесса.
Технический результат: разработаный катализатор изодепарафинизации дизельных дистиллятов, содержащий гидрирующие переходные металлы (никель, молибден, вольфрам) позволяет уменьшить температуру активации катализатора за счет включения в состав катализатора меди, использование катализатора в сульфидной и металлической формах в процессе изодепарафинизации уменьшает энергозатраты за счет уменьшения температуры активации катализатора, что улучшает экономические показатели процесса, а также дает возможность использования катализатора изобретения в одной из двух форм активации в зависимости от возможностей установки, что говорит об универсальности его применения.
В процессе изодепарафинизации дизельных дистиллятов получают базовые компоненты дизельных топлив с выходом на сырье от 92% мас. до 94% мас., с температурой предельной фильтруемости от минус 41°С до минус 44°С, что соответствует ГОСТ Р 55475-2013 для зимних и арктических сортов дизельного топлива.
Figure 00000002
*Связующее оксид алюминия до 100% масс.
Figure 00000003

Claims (9)

1. Катализатор изодепарафинизации дизельных дистиллятов, содержащий в качестве кислотного компонента смесь высококремнеземных цеолитов, гидрирующие переходные металлы - оксиды никеля, молибдена и/или вольфрама, промотор оксид бора и/или фосфора и связующее оксид алюминия, отличающийся тем, что катализатор дополнительно содержит металл группы I В - оксид меди, при следующем соотношении компонентов при загрузке, % мас.:
смесь цеолитов (кислотный компонент) 45,0-70,0 гидрирующие переходные металлы (в виде оксидов) 6,5-20,0 медь (в виде оксида) 0,3-1,5 промотор 2,0-4,0 оксид алюминия до 100,0
при этом в процессе изодепарафинизации катализатор используют в сульфидной или в металлической форме.
2. Катализатор по п. 1, отличающийся тем, что смесь высококремнеземных алюмосиликатных компонентов включает тройную смесь из цеолитов с различной структурой пор при следующем соотношении компонентов, % мас.:
широкопористые - ультрастабильный USY или цеолит бета β 5-15 среднепористый - ZSM-12 10-35 цеолит структуры пентасил - ЦВН, ZSM-5, ZSM-11 7-30
3. Катализатор по п. 1, отличающийся тем, что сульфидную форму катализатора получают обработкой смесью гидроочищенной прямогонной дизельной фракции с осерняющим агентом диметилдисульфидом в токе циркуляционного водородсодержащего газа при температуре 200-350°С.
4. Катализатор по п. 1, отличающийся тем, что металлическую форму катализатора получают восстановлением в токе водородсодержащего газа при температуре 430-460°С.
5. Способ изодепарафинизации дизельных дистиллятов при повышенной температуре и давлении в присутствии катализатора, отличающийся тем, что используют катализатор по пп. 1-4.
6. Способ по п. 5, отличающийся тем, что процесс осуществляют в присутствии циркулирующего водородсодержащего газа при соотношении Н2/сырье=500-1250 нл/л, при температуре 280-390°С, давлении 2,5-4,0 МПа, объемной скорости подачи сырья 1,5-5 час-1.
RU2017122923A 2017-06-27 2017-06-27 Катализатор изодепарафинизации и способ получения низкозастывающих дизельных топлив с его использованием RU2662934C1 (ru)

Priority Applications (2)

Application Number Priority Date Filing Date Title
RU2017122923A RU2662934C1 (ru) 2017-06-27 2017-06-27 Катализатор изодепарафинизации и способ получения низкозастывающих дизельных топлив с его использованием
PCT/RU2018/000417 WO2019004874A1 (ru) 2017-06-27 2018-06-25 Катализатор изодепарафинизации и способ получения низкозастывающих дизельных топлив с его использованием

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2017122923A RU2662934C1 (ru) 2017-06-27 2017-06-27 Катализатор изодепарафинизации и способ получения низкозастывающих дизельных топлив с его использованием

Publications (1)

Publication Number Publication Date
RU2662934C1 true RU2662934C1 (ru) 2018-07-31

Family

ID=63142427

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017122923A RU2662934C1 (ru) 2017-06-27 2017-06-27 Катализатор изодепарафинизации и способ получения низкозастывающих дизельных топлив с его использованием

Country Status (2)

Country Link
RU (1) RU2662934C1 (ru)
WO (1) WO2019004874A1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2690947C1 (ru) * 2019-02-11 2019-06-07 Акционерное общество "Газпромнефть - Омский НПЗ" (АО "Газпромнефть-ОНПЗ") Способ восстановления активности цеолитсодержащего катализатора
RU2699419C1 (ru) * 2018-10-03 2019-09-05 Открытое акционерное общество "Славнефть-Ярославнефтеоргсинтез" (ОАО "Славнефть-ЯНОС") Способ получения компонента для буровых растворов
RU2773356C1 (ru) * 2021-05-26 2022-06-02 Акционерное общество «Газпромнефть - Омский НПЗ» (АО «Газпромнефть - ОНПЗ») Способ приготовления катализатора изодепарафинизации дизельных фракций

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001032305A1 (en) * 1999-10-29 2001-05-10 Exxon Research And Engineering Company Process for the preparation of high activity carbon monoxide hydrogenation catalysts; the catalyst compositions, use of the catalysts for conducting such reactions, and the products of such reactions
US20060052236A1 (en) * 1999-09-07 2006-03-09 Angevine Philip J Hydroprocessing catalyst with zeolite and high mesoporosity
RU2535213C1 (ru) * 2013-10-22 2014-12-10 Открытое акционерное общество "Всероссийский научно-исследовательский институт по переработке нефти" (ОАО "ВНИИ НП") Катализатор и способ гидроизомеризации дизельных дистиллятов с его использованием
RU2549617C1 (ru) * 2014-04-02 2015-04-27 Открытое акционерное общество "Газпромнефть-Омский НПЗ" Катализатор и способ изодепарафинизации дизельных дистиллятов с его использованием
RU2560157C1 (ru) * 2014-09-12 2015-08-20 Открытое акционерное общество "Нефтяная компания "Роснефть" Катализатор изодепарафинизации дизельных фракций и способ его получения
RU2612134C1 (ru) * 2015-12-25 2017-03-02 Акционерное общество "Всероссийский научно-исследовательский институт по переработке нефти" (АО "ВНИИ НП") Катализатор гидроизодепарафинизации среднедистиллятных углеводородных фракций

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060052236A1 (en) * 1999-09-07 2006-03-09 Angevine Philip J Hydroprocessing catalyst with zeolite and high mesoporosity
WO2001032305A1 (en) * 1999-10-29 2001-05-10 Exxon Research And Engineering Company Process for the preparation of high activity carbon monoxide hydrogenation catalysts; the catalyst compositions, use of the catalysts for conducting such reactions, and the products of such reactions
RU2535213C1 (ru) * 2013-10-22 2014-12-10 Открытое акционерное общество "Всероссийский научно-исследовательский институт по переработке нефти" (ОАО "ВНИИ НП") Катализатор и способ гидроизомеризации дизельных дистиллятов с его использованием
RU2549617C1 (ru) * 2014-04-02 2015-04-27 Открытое акционерное общество "Газпромнефть-Омский НПЗ" Катализатор и способ изодепарафинизации дизельных дистиллятов с его использованием
RU2560157C1 (ru) * 2014-09-12 2015-08-20 Открытое акционерное общество "Нефтяная компания "Роснефть" Катализатор изодепарафинизации дизельных фракций и способ его получения
RU2612134C1 (ru) * 2015-12-25 2017-03-02 Акционерное общество "Всероссийский научно-исследовательский институт по переработке нефти" (АО "ВНИИ НП") Катализатор гидроизодепарафинизации среднедистиллятных углеводородных фракций

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2699419C1 (ru) * 2018-10-03 2019-09-05 Открытое акционерное общество "Славнефть-Ярославнефтеоргсинтез" (ОАО "Славнефть-ЯНОС") Способ получения компонента для буровых растворов
RU2690947C1 (ru) * 2019-02-11 2019-06-07 Акционерное общество "Газпромнефть - Омский НПЗ" (АО "Газпромнефть-ОНПЗ") Способ восстановления активности цеолитсодержащего катализатора
RU2773356C1 (ru) * 2021-05-26 2022-06-02 Акционерное общество «Газпромнефть - Омский НПЗ» (АО «Газпромнефть - ОНПЗ») Способ приготовления катализатора изодепарафинизации дизельных фракций
RU2773377C1 (ru) * 2021-05-26 2022-06-02 Акционерное общество «Газпромнефть - Омский НПЗ» (АО «Газпромнефть - ОНПЗ») Катализатор изодепарафинизации дизельных фракций
RU2773434C1 (ru) * 2021-05-26 2022-06-03 Акционерное общество «Газпромнефть - Омский НПЗ» (АО «Газпромнефть - ОНПЗ») Способ получения низкозастывающего дизельного топлива

Also Published As

Publication number Publication date
WO2019004874A1 (ru) 2019-01-03

Similar Documents

Publication Publication Date Title
KR101622925B1 (ko) 수소화 이성화 촉매, 이의 제조방법, 탄화수소유의 탈랍 방법 및 윤활유 기유의 제조방법
AU2008268777B2 (en) Hydroisomerization catalyst, method of dewaxing hydrocarbon oil, process for producing base oil, and process for producing lube base oil
US7625478B2 (en) Hydroprocessing with blended ZSM-48 catalysts
KR102196011B1 (ko) 윤활유 기유의 제조 방법
RU2596187C2 (ru) Композиция катализатора конверсии углеводородов
WO2017033512A1 (ja) 潤滑油基油の製造方法
CZ291230B6 (cs) Způsob výroby mazacího foukaného oleje a katalyzátor pro tento způsob
JPH067926B2 (ja) 潤滑油の接触脱ロウ方法
KR101810827B1 (ko) 윤활유 기유의 제조 방법 및 윤활유 기유
KR20130010073A (ko) 수소화 이성화 촉매, 이의 제조 방법, 탄화수소유의 탈랍 방법, 탄화수소의 제조 방법 및 윤활유 기유의 제조 방법
EP1973654A1 (en) Hydroprocessing with blended zsm-48 catalysts
JPS6143697A (ja) 接触脱ロウ方法
JP2002501570A (ja) 高級ディーゼル燃料の製造プロセス
KR101643547B1 (ko) 탄화수소유의 탈랍 방법 및 윤활유용 기유의 제조 방법
EP2376603A1 (en) Sour service hydroprocessing for diesel fuel production
JP3578216B2 (ja) 低流動点を有する重質潤滑油を製造する方法
RU2662934C1 (ru) Катализатор изодепарафинизации и способ получения низкозастывающих дизельных топлив с его использованием
NO317330B1 (no) Katalysator basert pa en molekylsikt og fremgangsmate for selektiv hydroisomerisering av langkjedede linaere og/eller lett forgrenede paraffiner under anvendelse av katalysatoren
RU2535213C1 (ru) Катализатор и способ гидроизомеризации дизельных дистиллятов с его использованием
US3989617A (en) Catalytic treatment of lubrication oil base stock for improvement of oxidative stability
RU2549617C1 (ru) Катализатор и способ изодепарафинизации дизельных дистиллятов с его использованием
RU2616003C1 (ru) Способ получения низкосернистого низкозастывающего дизельного топлива
RU2612134C1 (ru) Катализатор гидроизодепарафинизации среднедистиллятных углеводородных фракций
US10239053B2 (en) Dispersed noble metal-containing catalyst for hydrocarbon conversion
US5332490A (en) Catalytic process for dewaxing hydrocarbon feedstocks

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20190628

NF4A Reinstatement of patent

Effective date: 20200709