RU2639733C2 - Устройство с широкой цветовой палитрой на основе сид - Google Patents

Устройство с широкой цветовой палитрой на основе сид Download PDF

Info

Publication number
RU2639733C2
RU2639733C2 RU2015120339A RU2015120339A RU2639733C2 RU 2639733 C2 RU2639733 C2 RU 2639733C2 RU 2015120339 A RU2015120339 A RU 2015120339A RU 2015120339 A RU2015120339 A RU 2015120339A RU 2639733 C2 RU2639733 C2 RU 2639733C2
Authority
RU
Russia
Prior art keywords
red
light source
light
luminescent material
group
Prior art date
Application number
RU2015120339A
Other languages
English (en)
Other versions
RU2015120339A (ru
Inventor
Фолькер ВАЙЛЕР
Петер Йозеф ШМИДТ
Ханс-Хельмут БЕХТЕЛЬ
Original Assignee
Люмиледс Холдинг Б.В.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Люмиледс Холдинг Б.В. filed Critical Люмиледс Холдинг Б.В.
Publication of RU2015120339A publication Critical patent/RU2015120339A/ru
Application granted granted Critical
Publication of RU2639733C2 publication Critical patent/RU2639733C2/ru

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • H01L33/504Elements with two or more wavelength conversion materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/0883Arsenides; Nitrides; Phosphides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/61Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing fluorine, chlorine, bromine, iodine or unspecified halogen elements
    • C09K11/617Silicates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/64Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing aluminium
    • C09K11/646Silicates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/7729Chalcogenides
    • C09K11/7731Chalcogenides with alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/77348Silicon Aluminium Nitrides or Silicon Aluminium Oxynitrides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/60Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction
    • F21K9/64Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction using wavelength conversion means distinct or spaced from the light-generating element, e.g. a remote phosphor layer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/08Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters for producing coloured light, e.g. monochromatic; for reducing intensity of light
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133603Direct backlight with LEDs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133614Illuminating devices using photoluminescence, e.g. phosphors illuminated by UV or blue light
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Abstract

Изобретение относится к области осветительной техники и касается осветительного блока. Осветительный блок включает в себя источник синего света, источник зеленого света и два источника красного света. Первый источник красного света содержит первый люминесцирующий красным материал, выполненный с возможностью выдавать красный свет с широкополосным спектральным распределением света. Второй источник красного света содержит второй люминесцирующий красным материал, выполненный с возможностью выдавать красный свет со спектральным распределением света, содержащим одну или более красных линий излучения. Технический результат заключается в расширении цветовой палитры испускаемого света. 3 н. и 12 з.п. ф-лы, 16 ил., 6 табл.

Description

Область изобретения
Изобретение относится к осветительному блоку, который может генерировать свет с широкой цветовой палитрой. Изобретение дополнительно относится к устройству отображения на жидкокристаллических индикаторах (ЖКИ), содержащему такой осветительный блок в качестве блока подсветки.
Предпосылки создания изобретения
Люминесцирующие зеленым материалы для применения в LED (светоизлучающих устройствах) известны в данной области техники. Например, международная патентная заявка WO/2004/036962 описывает светоизлучающее устройство, содержащее светоизлучающую структуру, способную испускать основной свет с длиной волны менее 480 нм, и люминесцентный экран, содержащий люминофор с общей формулой (Sr1-a-bCabBacMgdZne)SixNyOz:Eua, в котором 0,002≤a≤0,2, 0,0≤b≤0,25, 0,0≤c≤0,25, 0,0≤d≤0,25, 0,0≤e≤0,25, 1,5≤x≤2,5, 1,5≤y≤2,5 и 1,5≤z≤2,5. Дополнительно WO/2004/030109 описывает возбуждаемый УФ-синим люминесцирующий зеленым материал, состоящий из допированной Eu оксинитридной кристаллической решетки основы с общим составом MSi2O2N2, в котором M представляет собой по меньшей мере один из щелочноземельных металлов, выбранных из группы Ca, Sr, Ba.
Сущность изобретения
Существующие решения светоизлучающих устройств с преобразованием люминофором, по-видимому, страдают или от недостатка интенсивности в красной спектральной области, что не позволяет изготавливать устройства с теплым белым светом (КЦТ < 5000K) и ограничивает свойства воспроизведения цвета, или в них приходится использовать люминофоры, которые имеют существенную часть испускаемой энергии при длинах волн > 650 нм и ухудшают световую отдачу (лм/Вт) таких устройств из-за ограниченной чувствительности глаза в глубокой красной спектральной области. Последние из упомянутых люминофоры обычно представляют собой излучающие полосу спектра материалы, основанные на активации Eu(II) (т.е. двухвалентным европием). С помощью этого активатора ширина спектральной полосы, выраженная в виде полной ширины на половине максимума (ПШПМ), по природе ограничена примерно 50 нм при необходимых длинах волн излучения (пиковый максимум >600 нм). Таким образом, для светоизлучающих устройств с преобразованием люминофором очень желательными являются люминесцентные материалы с узкой полосой или линейчатым излучением в красной спектральной области, поскольку они будут давать увеличенную спектральную эффективность для осветительных целей. В дисплеях такие материалы с насыщенными красными цветовыми точками ведут к более широкой цветовой палитре, если используются, например, в светоизлучающих устройствах для подсветки ЖКИ.
Обнаружено, что для светоизлучающих диодов с преобразованием люминофором (СИД с преобразованием люминофором) очень желательны люминесцентные материалы с узкой полосой или линейчатым излучением. По-видимому, они дают увеличенную спектральную эффективность и значительно увеличенную цветовую палитру в зеленой и красной спектральной области, если применены для устройств подсветки дисплеев (улучшенное цветоделение и насыщенность). Однако при использовании зеленых и красных люминофоров известного уровня техники, подобных допированному редкоземельными металлами АИГ и допированному Eu CaAlSiN3, можно добиться только ограниченной цветовой палитры.
Следовательно, аспект по изобретению состоит в том, чтобы обеспечить альтернативный осветительный блок, выполненный с возможностью использования альтернативного сочетания люминофоров, которое может обеспечивать широкую цветовую палитру. Также аспект по изобретению состоит в том, чтобы обеспечить альтернативное устройство отображения на ЖКИ, содержащее такой осветительный блок, выполненный в качестве устройства подсветки (и включающий в себя один или более цветных фильтров). Дополнительный аспект по изобретению состоит в том, чтобы обеспечить сочетание люминофоров, которое можно применять в варианте осуществления осветительного блока.
В первом аспекте изобретение обеспечивает осветительный блок, содержащий источник синего света, источник зеленого света, первый источник красного света, содержащий первый люминесцирующий красным материал, выполненный с возможностью выдавать красный свет с широкополосным спектральным распределением света, и второй источник красного света, содержащий второй люминесцирующий красным материал, выполненный с возможностью выдавать красный свет со спектральным распределением света, содержащим одну или более красных линий излучения.
В конкретном варианте осуществления осветительный блок включает в себя смесь люминофорных материалов, содержащую сложный фторид, излучающий красный свет в узком диапазоне (например, (K,Rb)2SiF6:Mn, такой как K2SiF6:Mn), и допированный Ln (допированный лантаноидом, в частности европием и/или церием) щелочноземельный нитридосиликат (например, (Ba,Sr,Ca,Mg)AlSiN3:Eu; в частности, (Sr,Ca,Mg)AlSiN3:Eu), возбуждаемые СИДом синего свечения. В сочетании с СИДом зеленого свечения можно достигнуть 80% цветовой палитры NTSC (National Television System Committee - Национальный Комитет по Телевизионным Стандартам) или выше посредством добавления испускающих красную линию Mn-активированных фторидов к излучающему в широком диапазоне люминофору (Ba,Sr,Ca,Mg)AlSiN3:Eu, в частности люминофору (Sr,Ca,Mg)AlSiN3:Eu.
В еще одном конкретном варианте осуществления применяют СИД розового свечения с преобразованием люминофором. Устройство СИДа розового свечения с преобразованием люминофором содержит СИД синего свечения и излучающую красный свет люминофорную смесь, содержащую излучающий в широком диапазоне люминесцирующий красным материал (такой как (Ba,Sr,Ca,Mg)AlSiN3:Eu, в частности (Sr,Ca,Mg)AlSiN3:Eu) и дополнительный излучатель красного света в узком диапазоне (подобный K2SiF6, допированному Mn). Люминесцирующая красным смесь люминофоров имеет сильное и широкополосное поглощение в области примерно 455 нм, возбуждаемое СИДом синего свечения. Моделирования таких люминофорных слоев с СИДами синего и зеленого свечения (центрованных около 455 нм и 530 нм соответственно) выявляют значительное усовершенствование цветовой палитры NTSC (>80% и выше). Это моделирование подтверждается данными измерений приготовленных люминофорных слоев, достаточно хорошо совпадающими с моделированием.
В еще одном дополнительном аспекте изобретение обеспечивает устройство отображения на основе ЖКИ, содержащее осветительный блок, как определено в настоящем документе, выполненный в качестве блока подсветки. Из-за большой цветовой палитры с помощью устройства отображения на основе ЖКИ можно отображать широкий диапазон цветов. Как будет ясно специалисту в данной области техники, такое устройство отображения на основе ЖКИ дополнительно может включать в себя один или более цветных фильтров, в частности, расположенных ниже по потоку света от блока подсветки (но выше по потоку света от дисплея устройства отображения на основе ЖКИ).
В еще одном дополнительном аспекте изобретение обеспечивает сочетание люминофоров, содержащее люминесцирующий зеленым материал, выбранный из группы, состоящей из содержащего двухвалентный европий оксинитрида, содержащего двухвалентный европий тиогаллата, содержащего трехвалентный церий нитрида, содержащего трехвалентный церий оксинитрида и содержащего трехвалентный церий граната, первый люминесцирующий красным материал, выбранный из группы, состоящей из (Ba,Sr,Ca,Mg)AlSiN3:Eu и (Ba,Sr,Ca)2Si5-xAlxOxN8-x:Eu, где x находится в диапазоне 0-4 (таком как 0 или 0,5-4, подобно 1-4, подобно 2-3; еще более конкретно 0-0,4, таком как 0-0,2), и второй люминесцирующий красным материал, выбранный из группы, состоящей из M2AX6, допированного четырехвалентным марганцем, при этом M содержит одновалентные катионы, выбранные из группы, состоящей из Li, Na, K, Rb, Cs, NH4, при этом A содержит четырехвалентный катион, выбранный из группы, состоящей из Si, Ti, Ge, Sn и Zr, и при этом X содержит одновалентный анион, выбранный из группы, состоящей из F, Cl, Br и I, но по меньшей мере содержит F (как-то, в частности, практически только F). Однако следует отметить, что для получения преимуществ по изобретению в осветительном блоке или устройстве отображения на основе ЖКИ также можно применять другие опции, отличные от этого сочетания люминофоров (также см. ниже).
Осветительный блок по изобретению может представлять собой осветительный блок, который применяют для общего освещения, но также может представлять собой осветительный блок, который применяют, например, для подсветки. Неограничивающий ряд применений приведен ниже. Следует отметить, что термин «осветительный блок» также может относиться к множеству осветительных блоков.
Осветительный блок содержит по меньшей мере четыре источника света. Как будет ясно специалисту в данной области техники, осветительный блок может генерировать свет (т.е. свет осветительного блока), только когда осветительный блок находится в работе. Осветительный блок будет содержать по меньшей мере один источник света, который используют в качестве источника возбуждения. Он может представлять собой, например, СИД синего свечения или СИД УФ свечения, или сочетание обоих типов СИДов. Термины «СИД синего свечения» или «СИД УФ свечения» относятся к СИДам, которые выполнены с возможностью генерировать, во время работы, соответственно синий свет или УФ свет. Выбор источника(ов) возбуждения может зависеть от типа люминесцентных материалов, как известно специалисту в данной области техники. Когда источник возбуждения содержит СИД УФ свечения, осветительный блок дополнительно может содержать люминесцирующий синим материал, выполненный с возможностью генерировать синий свет при возбуждении источником света в виде СИДа УФ свечения. Следует отметить, что один или более других люминесцентных материалов могут быть выполнены с возможностью возбуждения непосредственно УФ светом и/или синим светом люминесцирующего синим материала. Также следует отметить, что термины «источник света» и «СИД» также могут относиться соответственно к множеству источников света и СИДов. Например, когда источник зеленого света (также см. ниже) содержит люминесцентный материал, СИД синего свечения может быть выполнен с возможностью возбуждать этот люминесцирующий зеленым материал, а также первый люминесцирующий красным материал и второй люминесцентный материал. Можно выбирать различные конфигурации, включая, например, СИД с преобразованием люминофором с использованием только люминесцирующего зеленым материала и СИД с преобразованием люминофором с использованием только люминесцирующего красным материала(ов), но также можно применять сочетания люминесцентных материалов, причем либо на СИД (в том числе в смоле), либо удаленно (т.е. на ненулевом расстоянии) от СИДа(ов), например, в качестве покрытия на выходном окне или встроенными в пропускающее окно. СИД с преобразованием люминофором, с СИДом синего свечения, только с люминесцирующим красным материалом(ами), которые возбуждаемы с помощью упомянутого СИДа синего свечения, в настоящем документе также обозначают как СИД розового свечения. Термин «люминесцирующий синим материал» может в вариантах осуществления также относиться к множеству люминесцирующих синим материалов. Термин «источник света» может в принципе относиться к любому источнику света, известному в данной области техники, но, в частности, может ссылаться на источник света на основе СИД, в настоящем документе также обозначаемый как СИД. Описание ниже будет, в целях понимания, направлено только на источники света на основе СИД.
Источник света выполнен с возможностью обеспечивать УФ и/или синий свет (см. выше). В предпочтительном варианте осуществления светоизлучающий диод выполнен с возможностью генерировать свет СИДа с синей составляющей. Другими словами, источник света содержит СИД синего свечения. В еще одном варианте осуществления светоизлучающий диод выполнен с возможностью генерировать свет СИДа с УФ составляющей. Другими словами, источник света содержит СИД УФ свечения. Когда применяют источник УФ света, а желателен синий или белый свет, в качестве синего компонента можно применять, например, общеизвестный материал BaMgAl10O17:Eu2+. Однако альтернативно или дополнительно можно применять также другие люминесцентные материалы, которые способны преобразовывать УФ свет в синий свет. Предпочтительно источник света представляет собой источник света, который во время работы излучает по меньшей мере свет с длиной волны, выбранной из диапазона 200-490 нм, в частности источник света, который во время работы излучает по меньшей мере свет с длиной волны, выбранной из диапазона 400-490 нм, еще более конкретно в диапазоне 440-490 нм. Этот свет частично может быть использован люминесцентным материалом(ами) (см. ниже). В конкретном варианте осуществления источник света содержит твердотельный источник света на основе СИД (такой как СИД или лазерный диод). Термин «источник света» также может относиться к множеству источников света, такому как от 2 до 20 (твердотельных) источников света на основе СИД. Следовательно, термин СИД также может ссылаться на множество СИДов. Следовательно, в конкретном варианте осуществления источник света выполнен с возможностью генерировать синий свет.
Употребляемый здесь термин «белый свет» известен специалисту в данной области техники. В частности, он относится к свету, имеющему коррелированную цветовую температуру (КЦТ) между примерно 2000 и 20000 K, в частности 2700-20000 K, для общего освещения, в частности, в диапазоне примерно от 2700 K до 6500 K, а для целей подсветки, в частности, в диапазоне примерно от 7000 K до 20000 K и, в частности, в пределах примерно 15 SDCM (стандартное отклонение совпадения цветов) от BBL (линия цветностей абсолютного черного тела), в частности, в пределах примерно 10 SDCM от BBL, еще более конкретно в пределах примерно 5 SDCM от BBL.
В варианте осуществления источник света также может обеспечивать свет источника света, имеющий коррелированную цветовую температуру (КЦТ) между примерно 5000 и 20000 K, например, от СИДов с прямым преобразованием люминофором (светоизлучающий диод синего свечения с тонким слоем люминофора, например, для получения 10000 K). Таким образом, в конкретном варианте осуществления источник света выполнен с возможностью обеспечивать свет источника света с коррелированной цветовой температурой в диапазоне 5000-20000 K, еще более конкретно в диапазоне 6000-20000 K, таком как 8000-20000 K. Преимущество относительно высокой коррелированной цветовой температуры может состоять в том, что в свете источника света может быть относительно высокая синяя составляющая.
Таким образом, осветительный блок, в частности, содержит источник света, который может представлять собой один или более из СИДа УФ свечения и СИДа синего свечения. Первый из них в сочетании с люминесцирующим синим материалом, выполненным с возможностью преобразования по меньшей мере части УФ света (СИДа) в синий свет, может обеспечивать источник синего света. Главным образом, применяют СИД синего свечения, в частности, имеющий центроидное излучение в вышеуказанном диапазоне(ах) длин волн, главным образом, 440-490 нм. Таким образом, в варианте осуществления источник синего света содержит светоизлучающий диод (СИД) синего свечения. Термин «источник синего света» также может относиться к множеству источников синего света.
Как и источник синего света может содержать один или более из (a) СИДа УФ свечения в сочетании с люминесцирующим синим материалом, и (b) СИДа синего свечения, источник зеленого света может содержать один или более из СИДа УФ свечения в сочетании с люминесцирующим зеленым материалом (выполненным с возможностью преобразования по меньшей мере части УФ света (СИДа) в зеленый свет), СИДа синего свечения в сочетании с люминесцирующим зеленым материалом (выполненным с возможностью преобразования по меньшей мере части синего света (СИДа) в зеленый свет) и СИДа зеленого свечения. Как ясно из приведенного выше, также можно применять сочетание из двух или более этих источников зеленого света. Кроме того, можно применять люминесцирующий зеленым материал, который преобразует по меньшей мере часть синего света из люминесцирующего синим материала (когда применяют такой люминесцирующий синим материал).
Термин «источник зеленого света» также может относиться к множеству источников зеленого света. Термин «люминесцирующий зеленым материал» может в вариантах осуществления также относиться к множеству люминесцирующих зеленым материалов. В конкретном варианте осуществления источник зеленого света содержит люминесцентный материал, который выполнен с возможностью преобразования по меньшей мере части синего света источника синего света и преобразования упомянутого синего света в зеленый свет.
Как указано выше, источник зеленого света может включать в себя люминесцирующий зеленым материал, который преобразует по меньшей мере часть света источника света, такого как СИД синего свечения, в зеленый свет (во время работы). В частности, люминесцирующий (зеленым) материал может содержать один или более люминофоров, выбранных из группы, состоящей из содержащего трехвалентный церий граната и содержащего трехвалентный церий оксинитрида. Таким образом, в варианте осуществления источник зеленого света включает в себя люминесцентный материал, содержащий M3A5O12:Ce3+, при этом M выбирают из группы, состоящей из Sc, Y, Tb, Gd и Lu, и при этом A выбирают из группы, состоящей из Al и Ga. В частности, M по меньшей мере содержит один или более из Y и Lu, и при этом A по меньшей мере содержит Al. Материалы этих типов могут давать наивысшие эффективности. В конкретном варианте осуществления второй люминесцирующий красным материал содержит по меньшей мере два люминесцентных материала типа M3A5O12:Ce3+, при этом M выбирают из группы, состоящей из Y и Lu, при этом A выбирают из группы, состоящей из Al, и при этом соотношение Y:Lu отличается для этих по меньшей мере двух люминесцентных материалов. Например, один из них может быть основан исключительно на Y, такой как Y3Al5O12:Ce3+, а один из них может представлять собой систему на основе Y, Lu, такую как (Y0,5Lu0,5)3Al5O12:Ce3+. Варианты осуществления гранатов, главным образом, включают гранаты M3A5O12, при этом M содержит по меньшей мере иттрий или лютеций, и при этом A содержит по меньшей мере алюминий. Такой гранат может быть допирован церием (Ce), празеодимом (Pr) или сочетанием церия и празеодима; однако в первую очередь Ce. Главным образом, A содержит алюминий (Al), однако также может частично содержать галлий (Ga) и/или скандий (Sc), и/или индий (In), в частности, до примерно 20% Al, более конкретно, до примерно 10% Al (т.е. ионы A практически состоят из 90 или более мольных % Al и 10 или менее мольных % одного или более из Ga, Sc и In); A, в частности, может содержать примерно до 10% галлия. В другом варианте, A и O могут быть по меньшей мере частично замещены Si и N. Элемент M, в частности, может быть выбран из группы, состоящей из иттрия (Y), гадолиния (Gd), тербия (Tb) и лютеция (Lu). Дополнительно, Gd и/или Tb, в частности, составляют только количество вплоть до примерно 20% M. В конкретном варианте осуществления люминесцентный материал из граната содержит (Y1-xLux)3B5O12:Ce, при этом x равен или больше 0 и равен или меньше 1. Термин «:Ce» или «:Ce3+» указывает на то, что часть ионов металла (т.е. в гранатах: часть ионов «M») в люминесцентном материале замещена на Ce. Например, в случае (Y1-xLux)3Al5O12:Ce часть Y и/или Lu замещена на Ce. Это обозначение известно специалистам в данной области техники. Ce заменит M в целом не больше чем на 10%; в целом, концентрация Ce будет находиться в диапазоне 0,1-4%, в частности, 0,1-2% (относительно M). В случае 1% Ce и 10% Y, полная правильная формула может представлять собой (Y0,1Lu0,89Ce0,01)3Al5O12. Ce в гранатах находится практически или только в трехвалентном состоянии, как известно специалистам в данной области техники.
В конкретном варианте осуществления источник зеленого света содержит СИД с центроидной длиной волны излучения в диапазоне 510-540 нм.
Источники красного света, в целом, всегда включают в себя два (или более) различных люминесцентных (люминесцирующих) материала. Первый люминесцирующий красным материал обеспечивает при возбуждении светом широкополосную люминесценцию, которая представляет собой по меньшей мере часть красной области спектра. Второй люминесцирующий красным материал предоставляет при возбуждении светом спектр с одной или более линиями. Характерные люминесцентные частицы, которые генерируют линейчатые излучения, представляют собой лантаноиды (f-f переходы, подобные Pr3+, Sm3+ и Eu3+), хром (линейчатое излучение 2E) и четырехвалентный марганец (также излучение 2E). В частности, второй люминесцирующий красным материал основан на четырехвалентном марганце (Mn(IV)).
Таким образом, источник красного света независимо от того включает ли он в себя первый люминесцирующий красным материал или второй люминесцентный материал, может содержать один или более из СИДа УФ свечения в сочетании с люминесцирующим красным материалом (выполненным с возможностью преобразования по меньшей мере части УФ света (СИДа) в красный свет) и СИДа синего свечения в сочетании с люминесцирующим красным материалом (выполненным с возможностью преобразования по меньшей мере части синего света (СИДа) в красный свет). Как будет ясно из приведенного выше, также можно применять сочетания двух или более из этих источников красного света. Дополнительно можно применять люминесцирующий красным материал, который преобразует по меньшей мере часть синего света люминесцирующего синим материала (когда применяют такой люминесцирующий синим материал). Следует отметить, что для возбуждения всех люминесцентных материалов можно использовать единственный источник света. Однако также включены варианты осуществления, в которых поднабор из одного или более источников света выполнен с возможностью обеспечивать вместе с первым люминесцирующим красным материалом и/или вторым люминесцирующим красным материалом красный свет, а другой поднабор из одного или более источников света выполнен с возможностью обеспечивать синий и/или (необязательно вместе с люминесцирующим зеленым материалом) зеленый свет (см. также выше).
Примеры широкополосных излучателей, узкополосных излучателей и линейчатых излучателей, например, описаны Г. Блассе и Б.К. Грабмайером (G. Blasse and B.C. Grabmaier), Luminescent Materials, Springer-Verlag Berlin Heidelberg 1994, в частности главы 1-6 и 10 (ISBN 3-540-58019-0/ISBN 0-387-58019-0).
Термин «(первый или второй) источник красного света» и схожие термины также может относиться к множеству (первых или вторых) источников красного света соответственно. Термин «первый люминесцирующий красным материал» в вариантах осуществления также может относиться к множеству первых люминесцирующих красным материалов. Аналогичным образом термин «второй люминесцирующий красным материал» может в вариантах осуществления также относиться к множеству вторых люминесцирующих красным материалов.
В частности, представляется, что широкополосный излучающий красным материал с центроидной длиной волны выше примерно 590 нм и с относительной широкой полосой излучения может обеспечивать хорошие результаты. Таким образом, в варианте осуществления первый источник красного света выполнен с возможностью выдавать красный свет с широкополосным спектральным распределением света с центроидной длиной волны излучения ≥590 нм и с полной шириной на половине максимума (ПШПМ) ≥70 нм (но, в частности, ≤ 130 нм). Широкополосные излучатели часто представляют собой системы, которые имеют стоксов сдвиг, который известен в данной области техники. В настоящем документе термин «центроидная длина волны» и «полная ширина на половине максимума», в частности, относятся к значениям, которые можно извлекать из спектров излучения на шкале длин волн и по энергии (например, Вт/нм). Термин «центроидная длина волны» известен в данной области техники и относится к значению длины волны, при котором половина световой энергии находится на более коротких, а половина энергии на более длинных длинах волн; это значение приводят в нанометрах (нм). Это спектральное среднее интенсивности по длине волны (Σ λ×Iλ/(Σ I); т.е. интегрирование интенсивности по полосе излучения, нормализованное по интегрированной интенсивности). Центроидную длину волны и полную ширину на половине максимума, как обычно, определяют при комнатной температуре (в частности, 20°C) соответствующего люминесцентного материала.
Излучающие красный свет люминесцентные материалы, которые имеют широкополосные излучения, в частности, представляют собой содержащие двухвалентный европий материалы. Таким образом, в конкретном варианте осуществления первый источник красного света содержит упомянутый первый люминесцирующий красным материал, выбранный из группы, состоящей из содержащего двухвалентный европий сульфида, содержащего двухвалентный европий нитрида и содержащего двухвалентный европий оксинитрида. Таким образом, в варианте осуществления первый люминесцирующий красным материал выбирают из группы, состоящей из содержащего двухвалентный европий сульфида, содержащего двухвалентный европий нитрида и содержащего двухвалентный европий оксинитрида. В частности, первый люминесцирующий красным материал выбирают из группы, состоящей из (Ba,Sr,Ca,Mg)AlSiN3:Eu (в частности, (Sr,Ca,Mg)AlSiN3:Eu) и (Ba,Sr,Ca)2Si5-xAlxOxN8-x:Eu (где x как указано выше). В этих соединениях европий (Eu) является практически или только двухвалентным и замещает один или более из указанных двухвалентных катионов.
В целом, Eu не будет присутствовать в количествах более 10% от катиона, в частности в диапазоне примерно 0,5-10%, более конкретно в диапазоне примерно 0,5-5% относительно катиона(ов), который он замещает. Термин «:Eu» или «:Eu2+» указывает на то, что часть ионов металла замещена на Eu (в этих примерах Eu2+). Например, в случае 2% Eu в CaAlSiN3:Eu, правильная формула может представлять собой (Ca0,98Eu0,02)AlSiN3. Двухвалентный европий будет в целом замещать двухвалентные катионы, такие как приведенные выше двухвалентные катионы щелочноземельного металла, в частности, Mg, Ca, Sr и Ba, еще более конкретно Ca, Sr или Ba.
Дополнительно материал (Ba,Sr,Ca)2Si5-xAlxOxN8-x:Eu (где x как указано выше) также можно обозначать как M2Si5-xAlxOxN8-x:Eu, при этом M представляет собой один или более элементов, выбранных из группы, состоящей из бария (Ba), стронция (Sr) и кальция (Ca); в частности в варианте осуществления M содержит в этом соединении Sr и/или Ba. Таким образом, термин «(Ba,Sr,Ca)» и схожие термины могут указывать на то, что в соединении присутствуют один или более из Ba, Sr и Ca (в положении(ях) M). В дополнительном конкретном варианте осуществления M состоит из Sr и/или Ba (без учета присутствия Eu), в частности 50-100%, в частности 50-90% Ba и 50-0%, в частности 50-10% Sr, как-то Ba1,5Sr0,5Si5N8:Eu, (т.е. 75% Ba; 25% Sr). Здесь Eu вводят и замещают им по меньшей мере часть M, т.е. один или более из Ba, Sr и Ca).
Аналогичным образом материал (Ba,Sr,Ca,Mg)AlSiN3:Eu также можно обозначать как MAlSiN3:Eu, в котором M представляет собой один или более элементов, выбранных из группы, состоящей из бария (Ba), стронция (Sr), кальция (Ca) и магния (Mg); в частности M содержит в этом соединении кальций или стронций, или кальций и стронций, чаще главным образом кальций. Здесь Eu вводят и замещают им по меньшей мере часть M (т.е. один или более из Mg, Ba, Sr и Ca). Предпочтительно в варианте осуществления первый люминесцирующий красным материал содержит (Ca,Sr,Mg)AlSiN3:Eu, предпочтительно CaAlSiN3:Eu. Дополнительно в другом варианте осуществления, который можно сочетать с предыдущим, первый люминесцирующий красным материал содержит (Ca,Sr,Ba)2Si5-xAlxOxN8-x:Eu, предпочтительно (Sr,Ba)2Si5N8:Eu. Термины «(Ca,Sr,Ba)» обозначают, что соответствующий катион может быть занят одним или более из кальция, стронция или бария. Они также указывают на то, что в таком материале соответствующие места катионов могут быть заняты катионами, выбранными из группы, состоящей из кальция, стронция и бария. Таким образом, материал, например, может содержать кальций и стронций или только стронций и т.д. Аналогичным образом это применимо к другим терминам (с таким катионом(ами)).
Таким образом, в варианте осуществления первый люминесцирующий красным материал дополнительно может содержать M2Si5N8:Eu2+, при этом M выбирают из группы, состоящей из Ca, Sr и Ba, еще более конкретно при этом M выбирают из группы, состоящей из Sr и Ba. В еще одном варианте осуществления, который можно сочетать с предыдущим, первый люминесцирующий красным материал дополнительно может содержать MAlSiN3:Eu2+, при этом M выбирают из группы, состоящей из Mg, Ca, Sr и Ba, еще более конкретно при этом M выбирают из группы, состоящей из Sr и Ca.
Дополнительно представляется, в частности, что (второй) излучающий красную линию материал с центроидной длиной волны выше примерно 610 нм и с относительно узкой шириной полосы может обеспечивать хорошие результаты, в частности, такие как приведенные выше содержащие четырехвалентный марганец системы. В частности, второй источник красного света выполнен с возможностью обеспечения красного света со спектральным распределением света, содержащим одну или более красных линий излучения, имеющих центроидную длину волны излучения ≥ 610 нм, и с одной или более красными линиями излучения, имеющими полную ширину на половине максимума (ПШПМ) ≤ 50 нм.
Конкретный пример такого второго люминесцирующего красным материала относится к типу M2AX6, допированному Mn4+ (т.е. в положении A). В частности, второй источник красного света содержит упомянутый первый люминесцирующий красным материал, выбранный из группы, состоящей из M2AX6, допированного четырехвалентным марганцем, при этом M содержит одновалентные катионы, выбранные из группы, состоящей из Li, Na, K, Rb, Cs, NH4, в частности, по меньшей мере содержащей калий (K), при этом A содержит четырехвалентный катион, выбранный из группы, состоящей из Si, Ti, Ge, Sn и Zr, в частности, по меньшей мере содержащей кремний (Si), и при этом X содержит одновалентный анион, выбранный из группы, состоящей из F, Cl, Br и I, но по меньшей мере содержащей F (и, главным образом, практически содержащей только F). В этом контексте выражение «по меньшей мере содержащий» главным образом относится к вариантам осуществления, в которых конкретные вещества могут содержать одну или более из указанных разновидностей частиц, но содержат по меньшей мере частицы, которые обозначены с использованием «по меньшей мере содержит». В качестве примера, когда M по меньшей мере содержит K, это может подразумевать варианты осуществления, в которых частицы или одновалентный катион M (или положение(я) M в кристаллической решетке основы) включает в себя >0% K, вплоть до 100%. Таким образом, например, включены следующие варианты осуществления: (K0,01Rb0,99)2SiF6:Mn, RbKSiF6:Mn и K2SiF6:Mn, и т.д. и т.п. В варианте осуществления M содержит K и/или Rb (т.е. (Rb,K)2SiF6:Mn).
Как известно в данной области техники, выражение «M2AX6, допированный Mn4+» также можно обозначать как M2AX6:Mn4+. Здесь термин «:Mn» или «:Mn4+» указывает на то, что часть четырехвалентных ионов A замещена на четырехвалентный Mn. Термин «четырехвалентный марганец» относится к Mn4+. Он является общеизвестным люминесцентным ионом. В формуле, которая указана выше, часть четырехвалентного катиона A (такого как Si) является замещенной марганцем. Таким образом, M'xM2-2xAX6, допированный четырехвалентным марганцем, также можно обозначать как M'xM2-2xA1-mMnmX6. Мольная процентная доля марганца, т.е. процентная доля четырехвалентного катиона A, который он замещает, в целом будет находиться в диапазоне 0,1-15%, в частности 1-12%, т.е. m находится в диапазоне 0,001-0,15, в частности в диапазоне 0,01-0,12.
A содержит четырехвалентный катион и, в частности, по меньшей мере содержит кремний. A может необязательно дополнительно содержать один или более из титана (Ti), германия (Ge), олова (Sn) и цинка (Zn). Предпочтительно по меньшей мере 80% еще более предпочтительно по меньшей мере 90%, как-то по меньшей мере 95% M состоит из кремния. Таким образом, в конкретном варианте осуществления M2AX6 также можно описать в виде M2A1-m-t-g-s-zrMnmTitGegSnsZrzrX6, при этом m представляет собой то, что указано выше, и при этом каждый из t, g, s, zr индивидуально находится предпочтительно в диапазоне 0-0,2, в частности 0-0,1, еще более конкретно 0-0,05, при этом t+g+s+zr меньше 1, в частности равно или меньше 0,2, предпочтительно в диапазоне 0-0,2, в частности 0-0,1, еще более конкретно 0-0,05, и при этом A, главным образом, представляет собой Si.
Как указано выше, M относится к одновалентным катионам, но, в частности, по меньшей мере содержит один или более из калия и рубидия. Другие одновалентные катионы, которые дополнительно могут содержаться в M, можно выбирать из группы, состоящей из лития (Li), натрия (Na), цезия (Cs) и аммония (NH4+). Предпочтительно по меньшей мере 80%, еще более предпочтительно по меньшей мере 90%, как-то 95% M состоит из одного или более из калия и рубидия. В конкретном варианте осуществления M2AX6 также можно описать как (K1-r-l-n-c-nhRbrLilNanCsc(NH4)nh)2AX6, при этом r находится в диапазоне 0-1 (и при этом соотношение калий - рубидий предпочтительно представляет собой то, что указано выше), при этом каждый из l, n, c, nh индивидуально предпочтительно находится в диапазоне 0-0,2, в частности 0-0,1, еще более конкретно 0-0,05, и при этом l+n+c+nh меньше 1, в частности равна или меньше 0,2, предпочтительно в диапазоне 0-0,2, в частности 0-0,1, еще более конкретно 0-0,05. Таким образом, изобретение также предусматривает (K1-r-l-n-c-nhRbrLilNanCsc(NH4)nh)2AX6:Mn и схожие узкополосные люминесцентные материалы. A в настоящем документе, в частности, представляет собой Si.
Как указано выше, X относится к одновалентному аниону, но по меньшей мере содержит фтор. Другие одновалентные анионы, которые необязательно могут присутствовать, можно выбирать из группы, состоящей из хлора (Cl), брома (Br) и йода (I). Предпочтительно, по меньшей мере 80%, еще более предпочтительно по меньшей мере 90%, как от 95% X состоит из фтора. Таким образом, в конкретном варианте осуществления M2AX6 также можно описать как M2A(F1-cl-b-iClclBrbIi)6, при этом каждый из cl, b, i индивидуально предпочтительно находится в диапазоне 0-0,2, в частности 0-0,1, еще более конкретно 0-0,05, и при этом cl+b+i составляет меньше 1, в частности равна или меньше 0,2, предпочтительно в диапазоне 0-0,2, в частности 0-0,1, еще более конкретно 0-0,05.
Таким образом, M2AX6 также мощно описать как (K1-r-l-n-c-nhRbrLilNanCsc(NH4)nh)2Si1-m-t-g-s-zrMnmTitGegSnsZrzr(F1-cl-b-iClclBrbIi)6, причем значения для r, l, n, c, nh, m, t, g, s, zr, cl, b, i указаны выше. Таким образом, изобретение также предусматривает (K1-r-l-n-c-nhRbrLilNanCsc(NH4)nh)2Si1-m-t-g-s-zrMnmTitGegSnsZrzr(F1-cl-b-iClclBrbIi)6:Mn и схожие узкополосные люминесцентные материалы. Однако, в частности, второй источник красного света содержит упомянутый второй люминесцирующий красным материал, содержащий K2SiF6:Mn.
Поскольку марганец замещает часть ионов кристаллической решетки основы и имеет конкретную функцию, его также обозначают как «допант» или «активатор». Таким образом, гексафторсиликат допируют или активируют марганцем (Mn4+).
В дополнение к или альтернативно содержащей марганец системе второй источник красного света может включать в себя упомянутый второй люминесцирующий красным материал, содержащий материал из светопреобразующих наночастиц.
Показано, что наночастицы, такие как квантовые точки (QD), вызывают большой интерес в осветительных применениях. Они, например, могут служить в качестве неорганического люминофора при преобразовании синего света в другие цвета и имеют преимущество в виде относительно узкой полосы излучения и преимущество в виде настройки цвета за счет размера квантовых точек, чтобы иметь возможность получать высококачественный чистый белый свет.
Квантовые точки или люминесцентные наночастицы, которые в настоящем документе обозначают как светопреобразующие наночастицы, могут, например, содержать квантовые точки из полупроводниковых соединений элементов II-VI групп, выбранных из группы, состоящей из CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, HgS, HgSe, HgTe, CdSeS, CdSeTe, CdSTe, ZnSeS, ZnSeTe, ZnSTe, HgSeS, HgSeTe, HgSTe, CdZnS, CdZnSe, CdZnTe, CdHgS, CdHgSe, CdHgTe, HgZnS, HgZnSe, HgZnTe, CdZnSeS, CdZnSeTe, CdZnSTe, CdHgSeS, CdHgSeTe, CdHgSTe, HgZnSeS, HgZnSeTe и HgZnSTe. В другом варианте осуществления люминесцентные наночастицы, например, могут представлять собой квантовые точки из полупроводниковых соединений элементов III-V групп, выбранных из группы, состоящей из GaN, GaP, GaAs, AlN, AlP, AlAs, InN, InP, InAs, GaNP, GaNAs, GaPAs, AlNP, AlNAs, AlPAs, InNP, InNAs, InPAs, GaAlNP, GaAlNAs, GaAlPAs, GaInNP, GaInNAs, GaInPAs, InAlNP, InAlNAs и InAlPAs. В еще одном дополнительном варианте осуществления люминесцентные наночастицы могут представлять собой, например, квантовые точки из полупроводников типа халькопирита I-III-VI2, выбранных из группы, состоящей из CuInS2, CuInSe2, CuGaS2, CuGaSe2, AgInS2, AgInSe2, AgGaS2 и AgGaSe2. В еще одном дополнительном варианте осуществления люминесцентные наночастицы могут представлять собой, например, квантовые точки из полупроводников I-V-VI2, таких как выбранные из группы, состоящей из LiAsSe2, NaAsSe2 и KAsSe2. В еще одном дополнительном варианте осуществления люминесцентные наночастицы могут представлять собой, например, нанокристаллы полупроводниковых соединений элементов IV-VI групп, такие как SbTe. В конкретном варианте осуществления люминесцентные наночастицы выбирают из группы, состоящей из InP, CuInS2, CuInSe2, CdTe, CdSe, CdSeTe, AgInS2 и AgInSe2. В еще одном дополнительном варианте осуществления люминесцентные наночастицы могут представлять собой, например, нанокристаллы одного из полупроводниковых соединений элементов II-VI, III-V, I-III-V и IV-VI групп, выбранных из материалов, описанных выше, с внутренним допантом, таким как ZnSe:Mn, ZnS:Mn. Допирующие элементы можно выбирать из Mn, Ag, Zn, Eu, S, P, Cu, Ce, Te, Au, Pb, Tb, Sb, Sn и Tl. В настоящем документе люминесцентный материал на основе люминесцентных наночастиц также может содержать квантовые точки различных типов, такие как CdSe и ZnSe:Mn.
Представляется особенно благоприятным использовать квантовые точки II-VI. Таким образом, в варианте осуществления люминесцентные квантовые точки на основе полупроводников содержат квантовые точки II-VI, в частности, выбранные из группы, состоящей из CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, HgS, HgSe, HgTe, CdSeS, CdSeTe, CdSTe, ZnSeS, ZnSeTe, ZnSTe, HgSeS, HgSeTe, HgSTe, CdZnS, CdZnSe, CdZnTe, CdHgS, CdHgSe, CdHgTe, HgZnS, HgZnSe, HgZnTe, CdZnSeS, CdZnSeTe, CdZnSTe, CdHgSeS, CdHgSeTe, CdHgSTe, HgZnSeS, HgZnSeTe и HgZnSTe, еще более конкретно выбранные из группы, состоящей из CdS, CdSe, CdSe/CdS и CdSe/CdS/ZnS.
В варианте осуществления применяют квантовые точки, не содержащие Cd. В конкретном варианте осуществления светопреобразующие наночастицы содержат квантовые точки III-V, более конкретно квантовые точки на основе InP, такие как квантовые точки с сердцевиной и оболочкой InP-ZnS. Следует отметить, что термины «квантовая точка InP» или «квантовая точка на основе InP» и схожие термины могут относиться к «голым» квантовым точкам InP, но также к квантовым точкам InP с сердцевиной и оболочкой, с оболочкой на сердцевине из InP, такие как квантовые точки с сердцевиной и оболочкой InP-ZnS, подобные квантовым точкам точка-в-стержне InP-ZnS.
Люминесцентные наночастицы (без покрытия) могут иметь размеры в диапазоне примерно 2-50 нм, в частности 2-20 нм, как-то 5-15 нм; главным образом по меньшей мере 90% наночастиц имеют размер в указанных диапазонах соответственно (т.е., например, по меньшей мере 90% наночастиц имеют размеры в диапазоне 2-50 нм или, в частности, по меньшей мере 90% наночастиц имеют размеры в диапазоне 5-15 нм). Термин «размеры», в частности, относится к одному или более из длины, ширины и диаметра в зависимости от формы наночастицы.
В вариантах осуществления светопреобразующие наночастицы имеют средний размер частиц в диапазоне примерно от 1 до примерно 1000 нанометров (нм), а предпочтительно в диапазоне примерно от 1 до примерно 100 нм. В варианте осуществления наночастицы имеют средний размер частиц в диапазоне примерно 1-50 нм, в частности от 1 до примерно 20 нм, и в целом по меньшей мере 1,5 нм, такой как по меньшей мере 2 нм. В варианте осуществления наночастицы имеют средний размер частиц в диапазоне примерно от 1 до примерно 20 нм.
Типичные точки выполняют из бинарных сплавов, таких как селенид кадмия, сульфид кадмия, арсенид индия и фосфид индия. Однако точки также можно выполнять из тройных сплавов, таких как селенид-сульфид кадмия. Эти квантовые точки могут содержать всего лишь от 100 до 100000 атомов в пределах объема квантовой точки, с диаметром от 10 до 50 атомов. Это соответствует примерно 2-10 нанометрам. Например, могут быть обеспечены сферические частицы, такие как CdSe, InP или CuInSe2, с диаметром примерно 3 нм. Люминесцентные наночастицы (без покрытия) могут иметь форму сферы, куба, стержней, проволок, диска, с несколькими ножками и т.д., с размером в одном измерении меньше 10 нм. Например, могут быть обеспечены наностержни из CdSe длиной 20 нм и диаметром 4 нм.
Таким образом, в варианте осуществления люминесцентные квантовые точки на основе полупроводников содержат квантовые точки с сердцевиной и оболочкой. В еще одном варианте осуществления люминесцентные квантовые точки на основе полупроводников содержат наночастицы типа «точка-в-стержне». Также можно применять сочетание частиц различных типов. Например, можно применять частицы с сердцевиной и оболочкой и точки-в-стержнях и/или можно применять сочетания из двух или более указанных выше наночастиц, таких как CdS и CdSe. Здесь термин «различные типы» может относиться к различным геометрическим формам, а также к полупроводниковым люминесцентным материалам различных типов. Таким образом, также можно применять сочетание из двух или более (приведенных выше) квантовых точек или люминесцентных наночастиц.
В варианте осуществления наночастицы могут содержать полупроводниковые нанокристаллы, включающие в себя сердцевину, содержащую первый полупроводниковый материал, и оболочку, содержащую второй полупроводниковый материал, при этом оболочка расположена поверх по меньшей мере участка поверхности сердцевины. Полупроводниковый нанокристалл, включающий в себя сердцевину и оболочку, также обозначают как полупроводниковый нанокристалл «сердцевина/оболочка».
Например, полупроводниковый нанокристалл может включать в себя сердцевину, имеющую формулу MX, где M может представлять собой кадмий, цинк, магний, ртуть, алюминий, галлий, индий, таллий или их смеси, а X может представлять собой кислород, серу, селен, теллур, азот, фосфор, мышьяк, сурьму или их смеси. Примеры материалов, пригодных для использования в качестве сердцевин полупроводниковых нанокристаллов, включают в себя, но не ограничиваются этим, ZnO, ZnS, ZnSe, ZnTe, CdO, CdS, CdSe, CdTe, MgS, MgSe, GaAs, GaN, GaP, GaSe, GaSb, HgO, HgS, HgSe, HgTe, InAs, InN, InP, InSb, AlAs, AlN, AlP, AlSb, TlN, TlP, TlAs, TlSb, PbO, PbS, PbSe, PbTe, Ge, Si, сплав, содержащий любое из вышеприведенного, и/или смесь, содержащую любое из приведенного выше, включая тройные и четверные смеси или сплавы.
Оболочка может представлять собой полупроводниковый материал, имеющий состав, который является таким же, как и состав сердцевины, или отличным от него. Оболочка содержит внешнее покрытие из полупроводникового материала на поверхности сердцевины, при этом полупроводниковый нанокристалл может включать в себя элемент IV группы, соединение элементов II-VI групп, соединение элементов II-V групп, соединение элементов III-VI групп, соединение элементов III-V групп, соединение элементов IV-VI групп, соединение элементов I-III-VI групп, соединение элементов II-IV-VI групп, соединение элементов II-IV-V групп, сплавы, содержащие любое из вышеприведенного, и/или смеси, содержащие любое из вышеприведенного, включая тройные и четверные смеси или сплавы. Примеры включают, но не ограничиваются этим, ZnO, ZnS, ZnSe, ZnTe, CdO, CdS, CdSe, CdTe, MgS, MgSe, GaAs, GaN, GaP, GaSe, GaSb, HgO, HgS, HgSe, HgTe, InAs, InN, InP, InSb, AlAs, AlN, AlP, AlSb, TlN, TlP, TlAs, TlSb, PbO, PbS, PbSe, PbTe, Ge, Si, сплав, содержащий любое из вышеприведенного, и/или смесь, содержащая любое из вышеприведенного. Например, внешние покрытия из ZnS, ZnSe или CdS можно выращивать на полупроводниковых нанокристаллах CdSe или CdTe. Процесс нанесения внешнего покрытия описан, например, в патенте США 6322901. Регулируя температуру реакционной смеси во время нанесения внешнего покрытия и контролируя спектр поглощения сердцевины, можно получать материалы с внешним покрытием, которые имеют высокий квантовый выход излучения и узкое распределение по размерам. Внешнее покрытие может содержать один или более слоев. Внешнее покрытие может содержать по меньшей мере один полупроводниковый материал, который является таким же, как состав сердцевины, или отличается от него. Предпочтительно внешнее покрытие имеет толщину от примерно одного до примерно десяти монослоев. Внешнее покрытие также может иметь толщину больше десяти монослоев. В варианте осуществления на сердцевине может содержаться больше одного внешнего покрытия.
В частности, внешнее покрытие содержит по меньшей мере один полупроводниковый материал, который отличается от состава сердцевины; т.е. он имеет другой состав, чем состав сердцевины.
В варианте осуществления материал окружающей «оболочки» может иметь большую ширину запрещенной зоны, чем ширина запрещенной зоны материала сердцевины. В определенных других вариантах осуществления материал окружающей оболочки может иметь меньшую ширину запрещенной зоны, чем ширина запрещенной зоны материала сердцевины.
В варианте осуществления оболочку можно выбирать имеющей межатомное расстояние, близкое к таковому у подложки-«сердцевины». В определенных других вариантах осуществления материалы оболочки и сердцевины могут иметь одну и ту же кристаллическую структуру.
Примеры материалов (сердцевины)оболочки полупроводниковых нанокристаллов включают в себя, без ограничения: красный (например, (CdSe)ZnS (сердцевина)оболочка), зеленый (например, (CdZnSe)CdZnS (сердцевина)оболочка и т.д.) и синий (например, (CdS)CdZnS (сердцевина)оболочка (также дополнительно смотри выше примеры конкретных светопреобразующих наночастиц на основе полупроводников).
Таким образом, вышеуказанная внешняя поверхность может представлять собой поверхность голой квантовой точки (т.е. квантовой точки, не содержащей дополнительной оболочки или покрытия) или может представлять собой поверхность покрытой квантовой точки, такой как квантовая точка с сердцевиной и оболочкой (подобной с сердцевиной и оболочкой или точка-в-стержне), т.е. (внешней) поверхности оболочки.
Следовательно, в конкретном варианте осуществления светопреобразующие наночастицы выбирают из группы, состоящей из наночастиц с сердцевиной и оболочкой, имеющих сердцевины и оболочки, содержащие одно или более из CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, HgS, HgSe, HgTe, CdSeS, CdSeTe, CdSTe, ZnSeS, ZnSeTe, ZnSTe, HgSeS, HgSeTe, HgSTe, CdZnS, CdZnSe, CdZnTe, CdHgS, CdHgSe, CdHgTe, HgZnS, HgZnSe, HgZnTe, CdZnSeS, CdZnSeTe, CdZnSTe, CdHgSeS, CdHgSeTe, CdHgSTe, HgZnSeS, HgZnSeTe, HgZnSTe, GaN, GaP, GaAs, AlN, AlP, AlAs, InN, InP, InAs, GaNP, GaNAs, GaPAs, AlNP, AlNAs, AlPAs, InNP, InNAs, InPAs, GaAlNP, GaAlNAs, GaAlPAs, GaInNP, GaInNAs, GaInPAs, InAlNP, InAlNAs и InAlPAs.
В целом, сердцевины и оболочки содержат материал одного и того же класса, но практически состоят из различных материалов, подобно оболочке из ZnS, окружающей сердцевину из CdSe, и т.д.
В конкретном варианте осуществления, который может обеспечивать относительно широкую цветовую палитру, источник синего света содержит светоизлучающий диод (СИД) синего свечения, источник зеленого света содержит СИД с центроидной длиной волны излучения в диапазоне 510-540 нм, первый источник красного света содержит упомянутый первый люминесцентный материал, выбранный из группы, состоящей из (Mg,Ca,Sr,Ba)AlSiN3:Eu (в частности, (Mg,Ca,Sr)AlSiN3:Eu) и (Ba,Sr,Ca)2Si5-xAlxOxN8-x:Eu (где x как указано выше), а второй источник красного света содержит упомянутый второй люминесцирующий красным материал, содержащий K2SiF6:Mn.
Как указано выше, в дополнительном аспекте изобретение обеспечивает устройство отображения на основе ЖКИ, содержащее осветительный блок в соответствии с любым из предыдущих пунктов, выполненный в качестве блока подсветки. В еще одном дополнительном аспекте изобретение также обеспечивает сочетание люминофоров, включающее в себя люминесцирующий зеленым материал, выбранный из группы, состоящей из содержащего двухвалентный европий оксинитрида, содержащего двухвалентный европий тиогаллата, содержащего трехвалентный церий нитрида, содержащего трехвалентный церий оксинитрида и содержащего трехвалентный церий граната, люминесцирующий красным материал, выбранный из группы, состоящей из (Mg,Ca,Sr,Ba)AlSiN3:Eu и (Ba,Sr,Ca)2Si5-xAlxOxN8-x:Eu (где x как указано выше), и второй люминесцирующий красным материал, выбранный из группы, состоящей из M2AX6, допированного четырехвалентным марганцем, при этом M содержит одновалентные катионы, выбранные из группы, состоящей из Li, Na, K, Rb, Cs, NH4, при этом A содержит четырехвалентный катион, выбранный из группы, состоящей из Si, Ti, Ge, Sn и Zr, и при этом X содержит одновалентный анион, выбранный из группы, состоящей из F, Cl, Br и I, но по меньшей мере содержит F. Однако, как указано выше, также возможны другие сочетания.
Так же, как указано выше, термин «люминесцентный материал» также может относиться к множеству различных люминесцентных материалов. Термин «люминесцентный материал» в настоящем документе, в частности, относится к неорганическим люминесцентным материалам. Аналогичным образом это применимо к термину «люминофор». Эти термины известны специалисту в данной области техники. Таким образом, как будет ясно специалисту в данной области техники, также можно применять сочетания люминофоров. Дополнительно, как будет ясно специалисту в данной области техники, можно применять оптимизацию люминесцентного материала(ов) (или люминофоров) в отношении одного или более составляющих элементов, концентрации активатора, размера частицы и т.д. или оптимизацию в отношении сочетания(й) люминесцентных материалов, чтобы оптимизировать осветительное устройство.
Источник света может быть выполнен в (световой) камере с отражающей(ими) стенкой(ами) (такой как покрытая(ые) отражающим материалом, подобно TiO2) и прозрачным окном. В варианте осуществления окно представляет собой светопреобразующий слой. В еще одном дополнительном варианте осуществления окно содержит светопреобразующий слой. Этот слой может быть расположен выше по потоку света относительно окна или ниже по потоку света относительно окна. В еще одном дополнительном варианте осуществления светопреобразующие слои применяют с обеих сторон окна.
Термины «выше по потоку света» и «ниже по потоку света» относятся к расположению предметов или конструктивных элементов относительно распространения света от генерирующего свет средства (здесь - источника света), при этом относительно первого положения в пучке света от генерирующего свет средства второе положение в пучке света ближе к генерирующему свет средству находится «выше по потоку света», а третье положение в пучке света еще дальше от генерирующего свет средства находится «ниже по потоку света».
Люминесцентный материал выполнен с возможностью преобразования по меньшей мере части света источника света. Другими словами, можно сказать, что источник света излучательно связан с люминесцентным материалом. Когда источник света содержит источник света, излучающий практически УФ свет, люминесцентный материал может быть выполнен с возможностью преобразования практически всего света источника света, который падает на люминесцентный материал. В случае источника света, выполненного с возможностью генерирования синего света, люминесцентный материал может частично преобразовывать свет источника света. В зависимости от конфигурации, часть остающегося света источника света можно пропускать через слой, содержащий люминесцентный материал.
Далее указан ряд областей применения изобретения:
- системы офисного освещения
- системы для домашнего применения
- системы для освещения магазинов
- системы для освещения домов
- системы направленного освещения
- системы точечного освещения
- системы театрального освещения
- системы для применения в волоконной оптике
- проекционные системы
- системы собственной подсветки устройств отображения
- системы пикселированных устройств отображения
- системы сегментированных устройств отображения
- системы предупреждающих знаков
- системы для применения в медицинском освещении
- системы указывающих знаков и
- системы декоративного освещения
- портативные системы
- автомобильные применения
- системы освещения теплиц.
Как указано выше, осветительный блок можно использовать в качестве блока подсветки в устройстве отображения на основе ЖКИ. Таким образом, в дополнительном аспекте изобретение обеспечивает также устройство отображения на основе ЖКИ, содержащее осветительный блок, который определен в настоящем документе, выполненный в качестве блока подсветки.
Термины «фиолетовый свет» или «фиолетовое свечение», в частности, относятся к свету, имеющему длину волны в диапазоне примерно 380-440 нм. Термины «синий свет» или «синее свечение», в частности, относятся к свету, имеющему длину волны в диапазоне примерно 440-490 нм (включая некоторые фиолетовые и голубые оттенки). Термины «зеленый свет» или «зеленое свечение», в частности, относятся к свету, имеющему длину волны в диапазоне примерно 490-560 нм. Термины «желтый свет» или «желтое свечение», в частности, относятся к свету, имеющему длину волны в диапазоне примерно 540-570 нм. Термины «оранжевый свет» или «оранжевое свечение», в частности, относятся к свету, имеющему длину волны в диапазоне примерно 570-600 нм. Термины «красный свет» или «красное свечение», в частности, относятся к свету, имеющему длину волны в диапазоне примерно 600-750 нм. Термин «розовый свет» или «розовое свечение» относится к свету, имеющему синюю и красную составляющие. Термины «видимый», «видимый свет» или «видимое свечение» относятся к свету, имеющему длину волны в диапазоне примерно 380-750 нм.
Термин «практически» в настоящем документе, такой как в «практически все излучение» или в «практически состоит», будет понятен специалисту в данной области техники. Термин «практически» также может включать в себя варианты осуществления с «целиком», «полностью», «все» и т.д. Таким образом, в вариантах осуществления наречие практически также может быть удалено. Когда применим, термин «практически» также может относиться к 90% или более, такому как 95% или более, в частности 99% или более, еще более конкретно 99,5% или более, включая 100%. Термин «содержать» включает в себя также варианты осуществления, в которых термин «содержит» обозначает «состоит из».
Кроме того, термины первый, второй, третий и т.п. в описании и в формуле изобретения используют для того, чтобы различать схожие элементы, а не обязательно для описания последовательного или хронологического порядка. Следует понимать, что используемые таким образом термины являются взаимозаменяемыми при подходящих обстоятельствах и что варианты осуществления данного изобретения, описанные в настоящем документе, способны работать в других последовательностях, нежели описанные или проиллюстрированные в настоящем документе.
В настоящем документе устройства, среди прочего, описаны во время работы. Как будет ясно специалисту в данной области техники, изобретение не ограничено способами работы или устройствами в работе.
Следует отметить, что вышеупомянутые варианты осуществления иллюстрируют, но не ограничивают изобретение, и что специалисты в данной области техники будут способны разработать многие альтернативные варианты осуществления без отступления от объема приложенной формулы изобретения. В формуле изобретения любые ссылочные позиции, помещенные между круглыми скобками, не следует истолковывать как ограничивающие пункт формулы изобретения. Использование глагола «содержать» и его спряжений не исключает присутствия элементов или этапов, отличных от тех, которые указаны в пункте формулы изобретения. Элемент в единственном числе не исключает присутствия множества таких элементов. Сам факт того, что определенные меры перечислены во взаимно различных зависимых пунктах формулы изобретения, не указывает на то, что не может быть с выгодой использовано сочетание этих мер.
Дополнительно изобретение применимо к устройству, содержащему один или более отличительных признаков, описанных в описании и/или показанных на приложенных фигурах. Изобретение дополнительно относится к способу или процессу, содержащему один или более отличительных признаков, описанных в описании и/или показанных на приложенных фигурах.
Различные аспекты, обсужденные в этом патенте, можно комбинировать для того, чтобы обеспечивать дополнительные преимущества. Кроме того, некоторые признаки могут формировать основу для одной или более выделенных заявок.
Краткое описание фигур
Варианты осуществления изобретения теперь будут описаны только в качестве примера со ссылкой на сопроводительные схематические рисунки, на которых соответствующие символьные обозначения указывают на соответствующие части и на которых:
Фиг. 1a-1e схематически изображают некоторые аспекты по изобретению; эти фигуры не обязательно выполнены в масштабе.
Фиг. 2a - спектры отражения и излучения порошка K2SiF6:Mn (R1, E1), порошка ECAS (R2, E2) и слоя на основе силикона, содержащего 18 объем. % K2SiF6:Mn и 2 объем. % ECAS (R3).
Фиг. 2b представляет спектры (E4) излучения СИДа (B) синего свечения и слоя на основе силикона, содержащего 18 об.% K2SiF6:Mn и 2 об.% ECAS. Узкополосный люминесцентный материал содержит по меньшей мере одну линию излучения, которая находится выше 610 нм и которая имеет указанную центроидную длину волны CW и полную ширину на половине максимума ПШПМ.
Фиг. 3 - функции пропускания, выбранные для RGB пикселей дисплея на основе ЖКИ.
Фиг. 4a-4b показывают СИДом зеленого 510 нм свечения, слева (a) цветовой график (диаграмма цветности CIE) и справа (b) спектр излучения блока подсветки.
Фиг. 5a-5b: показывают СИДом зеленого 520 нм свечения, слева (a) цветовой график (диаграмма цветности CIE) и справа (b) спектр излучения блока подсветки.
Фиг. 6a-6b показывают СИДом зеленого 530 нм свечения, слева (a) цветовой график (диаграмма цветности CIE) и справа (b) спектр излучения блока подсветки; и
Фиг. 7a-7b показывают СИДом зеленого 540 нм свечения, слева (a) цветовой график (диаграмма цветности CIE) и справа (b) спектр излучения блока подсветки.
Подробное описание вариантов осуществления
Фиг. 1a схематически изображает вариант осуществления осветительного блока 100, который описан в настоящем документе. Осветительный блок 100 содержит источник 107 света, здесь источник света 110 синего света (т. е. источник 110 синего света; позиция 110 относится к источнику; дополнительное указание «синего света» указывает на характер источника), источник (зеленого света) 120, первый источник (красного света) 1310, содержащий первый люминесцирующий красным материал 1311, выполненный с возможностью обеспечения красного света 31 с широкополосным спектральным распределением света, и второй источник (красного света) 1320, содержащий второй люминесцирующий красным материал 1321, выполненный с возможностью обеспечения красного света 32 со спектральным распределением света, содержащим одну или более красных линий излучения.
Здесь, в этом варианте осуществления, источник 110 синего света содержит СИД синего свечения. Над этим источником 110 синего света, как-то в смоле поверх кристалла СИД, обозначенной позицией 111, можно располагать преобразователь 1300 света. Этот преобразователь 1300 света может содержать один или более люминесцентных материалов. Здесь преобразователь 1300 света содержит как первый люминесцирующий красным материал 1311, так и второй люминесцирующий красным материал 1321. Эти два люминесцентных материала представляют собой источники красного света, поскольку они способны поглощать свет источника света из источника 110 синего света и преобразовывать его в широкополосный красный свет 31 и узкополосный красный свет 32. Синий свет обозначен позицией 11; его источник обозначен позицией 110.
В качестве примера в этом варианте осуществления источник 120 зеленого света показан как СИД, который выполнен с возможностью генерировать зеленый свет, обозначенный позицией 21. Таким образом, он может представлять собой только СИД без люминесцентного материала.
Здесь осветительный блок содержит световую камеру 105 с пропускающим свет окном 102. Свет источников света выходит из этого окна 102, т.е. широкополосный красный свет 31, узкополосный красный свет 32, зеленый свет 21 и синий свет 11. Весь свет, выходящий из окна выхода света или пропускающего окна 102, обозначен как свет 101 осветительного блока. Как указано выше, этот свет состоит из составляющих, которые в сочетании с набором RGB фильтров генерируют широкую цветовую палитру на передней части экрана (FOS). Цветовую палитру определяют с помощью цветовых точек, получающихся для избирательного пропускания света источника света для всех цветных фильтров отдельно.
Источник 110 синего света в сочетании с двумя люминесцирующими красным материалами 1311, 1321 в настоящем документе также обозначают как «СИД розового свечения с преобразованием люминофором» (который может, таким образом, обеспечивать розовый свет, который в этом варианте осуществления представляет собой сочетание синего света 11, широкополосного красного света 31 и узкополосного красного света 32).
Фиг. 1b схематически изображает вариант осуществления, в котором источник 110 синего света представляет собой СИД (источник 107 света содержит источник 110, выполненный с возможностью выдавать синий свет). Этот СИД используют, чтобы выдавать синий свет для люминесцентных материалов, которые предусмотрены выше по потоку света к пропускающему свет окну 102 в виде слоя или покрытия. Таким образом, в этом варианте осуществления преобразователь 1300 расположен на ненулевом расстоянии от кристалла 111 СИДа. Это расстояние обозначено позицией d1 (дополнительно см. ниже). Преобразователь 1300, в частности, можно располагать на ненулевом расстоянии d1 от источника 110 света (или другого источника(ов) света, который может представлять собой, например, светоизлучающий диод, несмотря на то, что расстояние d также может быть нулевым, например, когда преобразователь 1300 света расположен на кристалле СИД или внедрен в (силиконовый) конус на кристалле (см. также фиг. 1c) СИД. Преобразователь 1300 необязательно может обеспечивать возможность проникновения по меньшей мере части света 11 источника света через преобразователь. Таким образом, ниже по потоку света от преобразователя можно найти сочетание преобразованного света на основе люминесценции(й) люминесцентного материала(ов), содержащегося в преобразователе 1300 света, и света 11 источника света. Свет ниже по потоку света от преобразователя света обозначен как свет осветительного устройства 101. Расстояние d1, в частности, может составлять в диапазоне 0,1-100 мм, в частности 0,5-100 мм, как-то 1-20 мм, как и, в частности, 1-50 мм, как и примерно 1-3 мм для применений близко к источнику света и 5-50 мм для более удаленных применений. Однако следует отметить, что изобретение не ограничено применениями, в которых d1>0. Изобретение и описанные в настоящем документе конкретные варианты осуществления также можно применять в других вариантах осуществления с d1=0. В таких случаях преобразователь света, в частности, можно выполнять в физическом контакте с кристаллом СИД.
Следует отметить, что источник 107 света альтернативно может представлять собой источник света, выполненный с возможностью обеспечивать УФ свет. В таком случае осветительный блок 100 может быть выполнен с возможностью (практически) предотвращения света источника света ниже по потоку света от окна выхода света/ниже по потоку света от преобразователя. Например, преобразователь света можно выполнять с возможностью преобразования практически всего УФ света источника света в свет люминесценции одного или более люминесцентных материалов, содержащихся в преобразователе света. В этом варианте осуществления источник (зеленого света) 120 содержит люминесцирующий зеленым материал, обозначенный позицией 1200. Этот люминесцирующий зеленым материал 1200, когда возбужден, обеспечивает зеленый свет 21. Преобразователь 1300 света дополнительно может содержать люминесцирующий синим материал, выполненный с возможностью генерировать синий свет при возбуждении светом 11 источника света.
Альтернативно или дополнительно источник 110 синего света содержит СИД УФ свечения с люминесцирующим синим материалом, который по меньшей мере частично преобразует УФ свет источника света в синий свет.
Фиг. 1c схематически изображает вариант осуществления, в котором преобразователь 1300 света расположен на кристалле 111 СИД источника 107 света. Этот источник 107 света может представлять собой СИД УФ свечения или, как изображено, источник 110 синего света, т.е. СИД синего свечения. Преобразователь 1300 в таком варианте осуществления содержит широкополосный люминесцирующий красным материал 1311; тем самым обеспечен первый источник красного света 1310 (следует отметить, что эта позиция относится к источнику, который представляет собой источник красного света). Дополнительно преобразователь 1300 содержит узкополосный люминесцирующий красным материал 1321. Таким образом, обеспечен второй источник красного света 1320; этот второй источник (красного света) 1320 (т.е. второй источник красного света 1320) содержит узкополосный люминесцентный материал 1321, который, когда возбужден, обеспечивает узкополосный красный свет 32. Здесь преобразователь 1300 также необязательно содержит люминесцирующий зеленым материал 1200, который обеспечивает, когда возбужден, зеленый свет 21 (и тем самым также представляет собой источник 120 зеленого света).
Следует отметить, что вышеописанные варианты осуществления можно комбинировать. Дополнительно изобретение также относится к альтернативным компоновкам, как будет ясно специалисту в данной области техники.
Фиг. 1d схематически изображает одно из применений осветительного блока 100, здесь - в жидкокристаллическом устройстве 2 отображения, которое содержит блок 200 подсветки, включающий в себя один или более осветительных блоков 100 (здесь схематически изображен один осветительный блок), а также панель 300 ЖКИ, которую можно подсвечивать светом 101 осветительного устройства из осветительного блока(ов) 100 блока 200 подсветки. Также в качестве примера источник(и) 107 света представляют собой источники синего света 110. В этом варианте осуществления изображено множество таких источников 110, которые используют для возбуждения люминесцентного материала(ов), содержащегося в преобразователе 1300. Такое устройство отображения на основе ЖКИ дополнительно может включать в себя один или более цветных фильтров, в частности, расположенных ниже по потоку света от блока подсветки (но выше по потоку света от дисплея устройства отображения на основе ЖКИ). Эти фильтры могут фильтровать (задний) свет 101 осветительного устройства. В целях ясности эти фильтры не изображены.
Фиг. 1e схематически изображает спектр излучения широкополосного люминесцентного материала. Линия ПШПМ обозначает середину между верхом полосы и фоновым сигналом; позиция CW обозначает длину волны, при которой слева и справа от пунктирной линии на этой длине волны находятся равные интенсивности. Она известна как центроидная длина волны.
ПРИМЕРЫ
Пример 1
Излучающие красным люминофорные слои, необходимые, среди прочего, для СИДа розового свечения с преобразованием люминофором, описанного в настоящем документе, можно получать посредством суспендирования имеющегося в продаже ECAS (Sr0,8Ca0,2SiAlN3:Eu(0,8%)) и K2SiF6:Mn (приготовленного, как сообщено Адачи (Adachi) и др., Journal of Applied Physics 104, 023512, 2008, Direct synthesis and properties of K2SiF6:Mn4+ phosphor by wet chemical etching of Si wafer), в полимере на силиконовой основе при комнатных температурах. Пленку хорошо перемешанной суспензии отливают на стеклянную подложку и отверждают при 150°C в течение 4 часов на воздухе. Отвержденные слои составляют примерно 120 мкм по толщине, степень заполнения люминофором в сумме составляет 20 об.% (18 об.% K2SiF6:Mn, 2 об.% ECAS). Измеренные спектры отражения порошка K2SiF6:Mn и ECAS и слоя на основе силикона, содержащего 18 об. % K2SiF6:Mn и 2 об.% ECAS, показаны на фигуре 2a. Измеренные спектры излучения слоя, содержащего K2SiF6:Mn и ECAS, показаны на фиг. 2b.
Фиг. 2a представляет спектры отражения и излучения порошка K2SiF6:Mn (R1 (т.е. отражение); E1 (т.е. излучение)), порошка ECAS (R2; E2) и слоя на основе силикона, содержащего 18 об.% K2SiF6:Mn и 2 об.% ECAS (R3). Фиг. 2b показывает спектры излучения (E4) СИДа (B) синего свечения и слоя на основе силикона, содержащего 18 об. % K2SiF6:Mn и 2 об.% ECAS. Узкополосный люминесцентный материал содержит по меньшей мере одну линию излучения, которая находится выше 610 нм и которая имеет указанную центроидную длину волны CW и узкую полную ширину на половине максимума ПШПМ, которая значительно ниже 50 нм (всего несколько нанометров).
С помощью дополнительного СИДа зеленого свечения, центрированного на 530 нм, можно получать широкую цветовую палитру, расположенную в пределах NTSC.
Таким образом, изобретение в варианте осуществления обеспечивает СИД с преобразованием люминофором с одним излучающим узкий глубокий красный свет компонентом в виде K2SiF6, допированного Mn(IV), в сочетании с излучающим узкий зеленый свет компонентом с ПШПМ ≤ 50 нм, с другим люминофором, добавленным к компоненту Mn(IV), который максимизирует покрытие цветового пространства палитры для определений NTSC и sRGB. Следовательно, источник света может состоять из:
A: СИДа непосредственного зеленого свечения с длиной волны пикового излучения >510 нм и <540 нм и СИДа с преобразованием люминофором с двумя люминофорами, при этом один допирован Mn(IV), а второй люминофор имеет пиковое излучение между 590 и 630 нм и ПШПМ ≥ 70 нм.
B: СИДа с преобразованием тремя люминофорами с применением зеленого люминофора β-SiAlON или (Sr,Ca)(1-x)Ga2S4:Eux, допированного Eu (0,01<x<0,1), люминофора, допированного Mn(IV), и третьего люминофора, имеющего пиковое излучение между 590 и 630 нм и ПШПМ ≥ 70 нм.
Дополнительные примеры применения красного люминофора с преобразованием люминофором в подсветке ЖКИ.
Следующий пример показывает рабочие характеристики передней части экрана (FOS) для дисплея на основе ЖКИ с одним набором RGB цветных фильтров, представленных на фиг. 3, в отношении спектрального состава блока подсветки на основе СИД, где R обозначает красный фильтр, G обозначает зеленый фильтр и B обозначает синий фильтр.
Сначала приведены некоторые сравнительные примеры: типичный блок подсветки на основе СИД с преобразованием люминофором объединяет СИД синего свечения с люминофором, излучающим зеленый и излучающим красный.
Сравнительный пример 1
Зеленый люминофор: LuAG (Lu2,94Al5O12:Ce0,06)
Красный люминофор: (Sr,Ca)AlSiN3, допированный Eu
Определяли цветовую палитру FOS в сравнении с характерными палитрами sRGB и NTSC вместе с цветовыми точками блока подсветки и белой цветовой точкой FOS и спектром излучения блока подсветки для СИДов синего свечения с пиковым излучением при 440, 450, 460 и 470 нм соответственно, см. табл.1:
Таблица 1
Область цветовой палитры FOS относительно определений sRGB и NTSC и световой эквивалент FOS
Синий пик [нм] sRGB NTSC LE (СЭ) [лм/Вт] pr_redbroad pr_green pr_blue
440 98,29% 69,62% 273 23,97% 36,65% 39,38%
450 96,86% 68,60% 275 27,89% 36,41% 35,71%
460 91,23% 64,62% 264 32,34% 31,27% 36,39%
470 79,69% 56,44% 241 38,27% 21,29% 40,43%
Здесь pr_redbroad, pr_green, pr_blue, pr_redKSiF (см. ниже) и pr_redQD (см. ниже) представляют собой доли мощности различных излучателей. Эти значения дают в сумме 100%.
Сравнительный пример 2
Чтобы увеличить покрытие палитры NTSC, СИД розового свечения (СИД синего свечения + красный люминофор) объединяют с СИДом зеленого свечения в диапазоне пикового излучения 520-530 нм.
Зеленый: СИД непосредственного излучения
Красный люминофор: (Sr,Ca)AlSiN3, допированный Eu
СИД синего свечения: пиковое излучение 450 нм
Получили следующие данные, см. табл.2:
Таблица 2
Область цветовой палитры FOS относительно определений sRGB и NTSC и световой эквивалент FOS для СИДа синего 450 нм свечения и различных СИДов зеленого свечения
Зеленый пик [нм] sRGB NTSC СЭ [лм/Вт] pr_redbroad pr_green pr_blue
510 103,73% 73,47% 243 47,09% 23,57% 29,34%
520 109,20% 77,34% 257 45,29% 22,07% 32,64%
530 109,68% 77,68% 270 42,38% 22,50% 35,12%
540 106,30% 75,29% 283 37,82% 24,87% 37,32%
По сравнению с блоком подсветки на основе СИД зеленого свечения с преобразованием люминофором, не увеличивается значительно ни цветовая палитра, ни СЭ.
Синий пик[нм] sRGB NTSC СЭ [лм/Вт]
450 96,86% 68,60% 275
Сравнительный пример 3
Из-за ограниченной отсечки красного цветного фильтра покрытие палитры NTSC может быть значительно увеличено, только если используют люминофор, излучающий узкий красный свет, см. табл. 3.
Известные материалы с желаемыми свойствами представляют собой фторидные люминофоры, допированные Mn(IV):
Зеленый: СИД непосредственного свечения
Красный люминофор: K2SiF6, допированный Mn(IV)
СИД синего свечения: пиковое излучение 450 нм
Таблица 3
Область цветовой палитры FOS относительно определений sRGB и NTSC и световой эквивалент FOS для СИДа синего 450 нм свечения и различных СИДов зеленого свечения
Зеленый пик [нм] sRGB NTSC СЭ [лм/Вт] pr_green pr_redKSiF pr_blue
510 132,14% 93,59% 233 28,79% 41,40% 29,80%
520 138,77% 98,29% 250 26,79% 39,53% 33,68%
530 136,61% 96,76% 265 26,89% 36,54% 36,57%
540 128,58% 91,07% 280 28,99% 32,00% 39,00%
Теперь палитра приближается к области определения NTSC, но она покрывает не то же самое цветовое пространство. Недостатком является слишком красная цветовая точка, создающая проблемы при воспроизведении цвета изображения.
Дополнительно определяли цветовую палитру FOS с помощью блоков подсветки, использующих различные СИДы непосредственного зеленого свечения с пиком 510, 520, 530 и 540 нм соответственно.
Пример 2
Целью данного изобретения, среди прочего, является построение блока подсветки ЖКИ с максимальным перекрытием цветовой палитры FOS с определением NTSC.
Это выполняют посредством объединения СИДа непосредственного зеленого свечения с СИДом с преобразованием люминофором, состоящим из СИДа синего свечения и двух люминофоров, при этом один представляет собой люминофор, допированный Mn(IV), другой представляет собой (Sr,Ca)AlSiN3, допированный Eu.
Фигуры 4a-7b представляют цветовую палитру FOS в сравнении с характерными палитрами sRGB и NTSC вместе с излучениями подсветки.
Фиг. 4a-4b показывают СИДом зеленого 510 нм свечения, слева (a) цветовой график (диаграмма цветности CIE) и справа (b) спектр излучения блока подсветки.
Фиг. 5a-5b показывают СИДом зеленого 520 нм свечения, слева (a) цветовой график (диаграмма цветности CIE) и справа (b) спектр излучения блока подсветки.
Фиг. 6a-6b показывают СИДом зеленого 530 нм свечения, слева (a) цветовой график (диаграмма цветности CIE) и справа (b) спектр излучения блока подсветки.
Фиг. 7a-7b показывают СИДом зеленого 540 нм свечения, слева (a) цветовой график (диаграмма цветности CIE) и справа (b) спектр излучения блока подсветки.
Из этого следует, что осветительный блок в соответствии с изобретением дает высокое значение NTSC, а также имеет очень хорошее перекрытие с цветовым пространством NTSC, более чем на 5 процентов лучше, чем все сравнительные примеры.
Суммируя, получили следующие результаты, см. табл. 4:
Таблица 4
Область цветовой палитры FOS относительно определений sRGB и NTSC и световой эквивалент FOS для СИДа синего 450 нм свечения и различных СИДов зеленого свечения
Зеленый
пик
[нм]
sRGB NTSC СЭ
[лм/Вт]
pr_redbroad pr_green pr_redKSiF pr_blue
510 108,19% 76,63% 241 40,69% 24,19% 5,64% 29,47%
520 113,99% 80,74% 255 39,11% 22,62% 5,43% 32,84%
530 114,18% 80,87% 269 36,64% 22,99% 4,99% 35,38%
540 110,12% 77,99% 282 32,81% 25,30% 4,30% 37,60%
Сравнительный пример 4
Оценивали следующее сочетание:
Зеленый: СИД непосредственного свечения
Красный люминофор: люминофор с квантовыми точками с пиковым излучением на 630 нм
СИД синего свечения: пиковое излучение 460 нм
Оценивали цветовую палитру FOS с блоками подсветки, использующими различные СИДы непосредственного зеленого свечения с пиками 510, 520, 530 и 540 нм соответственно. В приведенной ниже таблице 5 представлены область цветовой палитры FOS по отношению к определениям sRGB и NTSC и световой эквивалент FOS для СИДа синего 450 нм свечения и различных СИДов зеленого свечения.
Таблица 5
Область цветовой палитры FOS относительно определений sRGB и NTSC и световой эквивалент FOS для СИДа синего 450 нм свечения и различных СИДов зеленого свечения
Зеленый
пик [нм]
sRGB NTSC СЭ
[лм/Вт]
pr_redbroad pr_green pr_redKSiF pr_blue
510 137,73% 97,55% 224 10,27% 32,08% 20,80% 36,85%
520 142,29% 100,78% 238 10,07% 28,68% 19,82% 41,44%
530 138,20% 97,88% 252 9,94% 27,64% 17,80% 44,62%
540 128,57% 91,06% 266 9,83% 28,58% 14,58% 47,01%
Пример 3
Дополнительно оценивали сочетание в соответствии с изобретением:
Зеленый: СИД непосредственного свечения
Красный люминофор: квантовая точка с пиковым излучением на 630 нм+красный люминофор CASN, пиковое излучение 620 нм
СИД синего свечения: пиковое излучение 460 нм
Оценивали цветовую палитру FOS с блоками подсветки, использующими различные СИДы непосредственного зеленого свечения с пиками 510, 520, 530 и 540 нм соответственно. В приведенной ниже таблице 6 представлены область цветовой палитры FOS по отношению к определениям sRGB и NTSC и световой эквивалент FOS для СИДа синего 450 нм свечения и различных СИДов зеленого свечения.
Таблица 6
область цветовой палитры FOS относительно определений sRGB и NTSC и световой эквивалент FOS для СИДа синего 450 нм свечения и различных СИДов зеленого свечения
Зеленый пик [нм] sRGB NTSC СЭ
[лм/Вт]
pr_redbroad pr_green pr_redQD pr_blue
510 118,52% 83,94% 237 9,86% 27,38% 23,71% 39,05%
520 122,76% 86,95% 249 9,68% 24,62% 22,79% 42,91%
530 121,73% 86,22% 260 9,54% 24,08% 20,88% 45,49%
540 117,08% 82,93% 270 9,42% 25,53% 17,71% 47,34%
Также из этого следует, что осветительный блок в соответствии с изобретением дает высокое значение NTSC, а также имеет очень хорошее перекрытие с цветовым пространством NTSC, более чем на 5 процентов лучше, чем все сравнительные примеры.

Claims (15)

1. Осветительный блок, включающий в себя источник синего света, источник зеленого света, первый источник красного света, содержащий первый люминесцирующий красным материал, выполненный с возможностью выдавать красный свет с широкополосным спектральным распределением света, и второй источник красного света, содержащий второй люминесцирующий красным материал, выполненный с возможностью выдавать красный свет со спектральным распределением света, содержащим одну или более красных линий излучения.
2. Осветительный блок по п. 1, в котором первый источник красного света выполнен с возможностью выдавать красный свет с широкополосным спектральным распределением света, имеющим центроидную длину волны излучения ≥ 590 нм и полную ширину на половине максимума (ПШПМ) ≥ 70 нм.
3. Осветительный блок по п. 1, в котором первый источник красного света включает в себя упомянутый первый люминесцирующий красным материал, выбранный из группы, состоящей из содержащего двухвалентный европий сульфида, содержащего двухвалентный европий нитрида и содержащего двухвалентный европий оксинитрида.
4. Осветительный блок по п. 1, в котором первый источник красного света включает в себя упомянутый первый люминесцирующий красным материал, выбранный из группы, состоящей из (Mg,Ca,Sr,Ba)AlSiN3:Eu и (Ba,Sr,Ca)2Si5-xAlxOxN8-x:Eu, при этом 0≤x≤4.
5. Осветительный блок по п. 1, в котором второй источник красного света выполнен с возможностью выдавать красный свет со спектральным распределением света, содержащим одну или более красных линий излучения, имеющих центроидную длину волны излучения ≥ 610 нм, и с одной или более красными линиями излучения, имеющими полную ширину на половине максимума (ПШПМ) ≤ 50 нм.
6. Осветительный блок по п. 1, в котором второй источник красного света включает в себя упомянутый второй люминесцирующий красным материал, выбранный из группы, состоящей из M2AX6, допированного четырехвалентным марганцем, при этом M содержит одновалентные катионы, выбранные из группы, состоящей из Li, Na, K, Rb, Cs, NH4, при этом A содержит четырехвалентный катион, выбранный из группы, состоящей из Si, Ti, Ge, Sn и Zr, и при этом X содержит одновалентный анион, выбранный из группы, состоящей из F, Cl, Br и I, но по меньшей мере содержит F.
7. Осветительный блок по п. 1, в котором второй источник красного света включает в себя упомянутый второй люминесцирующий красным материал, содержащий K2SiF6:Mn.
8. Осветительный блок по п. 1, в котором второй источник красного света включает в себя упомянутый второй люминесцирующий красным материал, содержащий материал из светопреобразующих наночастиц.
9. Осветительный блок по п. 1, в котором источник синего света содержит светоизлучающий диод синего свечения.
10. Осветительный блок по п. 1, в котором источник зеленого света включает в себя люминесцентный материал, который выполнен с возможностью преобразования по меньшей мере части синего света источника синего света и преобразования упомянутого синего света в зеленый свет.
11. Осветительный блок по п. 1, в котором источник зеленого света включает в себя люминесцентный материал, содержащий M3A5O12:Ce3+, при этом M выбран из группы, состоящей из Sc, Y, Tb, Gd и Lu, и при этом A выбран из группы, состоящей из Al и Ga.
12. Осветительный блок по п. 1, в котором источник зеленого света содержит СИД с центроидной длиной волны излучения в диапазоне 510-540 нм.
13. Осветительный блок по п. 1, в котором источник синего света содержит светоизлучающий диод синего свечения, при этом источник зеленого света содержит СИД с центроидной длиной волны излучения в диапазоне 510-540 нм, при этом первый источник красного света включает в себя упомянутый первый люминесцирующий красным материал, выбранный из группы, состоящей из (Mg,Ca,Sr,Ba)AlSiN3:Eu и (Ba,Sr,Ca)2Si5-xAlxOxN8-x:Eu, при этом 0≤x≤4, и при этом второй источник красного света включает в себя упомянутый второй люминесцирующий красным материал, содержащий K2SiF6:Mn.
14. Устройство отображения на основе ЖКИ, содержащее осветительный блок по любому из предыдущих пунктов, выполненный в качестве блока подсветки.
15. Сочетание люминофоров, включающее в себя люминесцирующий зеленым материал, выбранный из группы, состоящей из содержащего двухвалентный европий оксинитрида, содержащего двухвалентный европий тиогаллата, содержащего трехвалентный церий нитрида, содержащего трехвалентный церий оксинитрида и содержащего трехвалентный церий граната, первый люминесцирующий красным материал, выбранный из группы, состоящей из (Mg,Ca,Sr,Ba)AlSiN3:Eu и (Ba,Sr,Ca)2Si5-xAlxOxN8-x:Eu, при этом 0≤x≤4, и второй люминесцирующий красным материал, выбранный из группы, состоящей из M2AQ6, допированного четырехвалентным марганцем, при этом M содержит одновалентные катионы, выбранные из группы, состоящей из Li, Na, K, Rb, Cs, NH4, при этом A содержит четырехвалентный катион, выбранный из группы, состоящей из Si, Ti, Ge, Sn и Zr, и при этом Q содержит одновалентный анион, выбранный из группы, состоящей из F, Cl, Br и I, но по меньшей мере содержит F.
RU2015120339A 2012-11-01 2013-10-22 Устройство с широкой цветовой палитрой на основе сид RU2639733C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201261721284P 2012-11-01 2012-11-01
US61/721,284 2012-11-01
PCT/IB2013/059535 WO2014068440A1 (en) 2012-11-01 2013-10-22 Led-based device with wide color gamut

Publications (2)

Publication Number Publication Date
RU2015120339A RU2015120339A (ru) 2016-12-20
RU2639733C2 true RU2639733C2 (ru) 2017-12-22

Family

ID=49998600

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015120339A RU2639733C2 (ru) 2012-11-01 2013-10-22 Устройство с широкой цветовой палитрой на основе сид

Country Status (7)

Country Link
US (2) US9564557B2 (ru)
EP (1) EP2915197B1 (ru)
JP (1) JP2016503579A (ru)
KR (1) KR20150082426A (ru)
CN (1) CN104781942B (ru)
RU (1) RU2639733C2 (ru)
WO (1) WO2014068440A1 (ru)

Families Citing this family (321)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10240749B2 (en) * 2013-01-29 2019-03-26 Philips Lighting Holding B.V. Light source, luminaire and surgical illumination unit
US9565782B2 (en) 2013-02-15 2017-02-07 Ecosense Lighting Inc. Field replaceable power supply cartridge
US10154626B2 (en) * 2013-03-07 2018-12-18 Xiamen Sanan Optoelectronics Technology Co., Ltd. LED for plant illumination
US9698314B2 (en) 2013-03-15 2017-07-04 General Electric Company Color stable red-emitting phosphors
US9580648B2 (en) 2013-03-15 2017-02-28 General Electric Company Color stable red-emitting phosphors
TWM458672U (zh) * 2013-04-10 2013-08-01 Genesis Photonics Inc 光源模組
DE102013106573B4 (de) * 2013-06-24 2021-12-09 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Strahlungsemittierendes optoelektronisches Bauelement, Gassensor mit strahlungsemittierenden optoelektronischen Bauelement und Verfahren zur Herstellung eines strahlungsemittierenden optoelektronischen Bauelements
US9399732B2 (en) 2013-08-22 2016-07-26 General Electric Company Processes for preparing color stable manganese-doped phosphors
US10381527B2 (en) * 2014-02-10 2019-08-13 Consumer Lighting, Llc Enhanced color-preference LED light sources using yag, nitride, and PFS phosphors
JP6201665B2 (ja) * 2013-11-13 2017-09-27 日亜化学工業株式会社 画像表示装置の製造方法並びに発光装置及びカラーフィルターの選択方法
US9493113B2 (en) 2013-11-21 2016-11-15 Ford Global Technologies, Llc Photoluminescent cargo area illumination
US9487135B2 (en) 2013-11-21 2016-11-08 Ford Global Technologies, Llc Dome light assembly
US9393903B2 (en) 2013-11-21 2016-07-19 Ford Global Technologies, Llc Photoluminescent engine compartment lighting
US9688192B2 (en) 2013-11-21 2017-06-27 Ford Global Technologies, Llc Vehicle having interior and exterior lighting on tailgate
US9481297B2 (en) 2013-11-21 2016-11-01 Ford Global Technologies, Llc Illuminated steering assembly
US9371033B2 (en) 2013-11-21 2016-06-21 Ford Global Technologies, Llc Vehicle sunshade assembly
US9464776B2 (en) 2013-11-21 2016-10-11 Ford Global Technologies, Llc Vehicle light system with illuminating exhaust
US9376058B2 (en) 2013-11-21 2016-06-28 Ford Global Technologies, Llc Fluid level indicator using photoluminescent illumination
US9538874B2 (en) 2013-11-21 2017-01-10 Ford Global Technologies, Llc Photoluminescent cupholder illumination
US9810401B2 (en) 2013-11-21 2017-11-07 Ford Global Technologies, Llc Luminescent trim light assembly
US10041650B2 (en) 2013-11-21 2018-08-07 Ford Global Technologies, Llc Illuminated instrument panel storage compartment
US9487127B2 (en) 2013-11-21 2016-11-08 Ford Global Technologies, Llc Photoluminescent vehicle step lamp
US9902320B2 (en) 2013-11-21 2018-02-27 Ford Global Technologies, Llc Photoluminescent color changing dome map lamp
US9583968B2 (en) 2013-11-21 2017-02-28 Ford Global Technologies, Llc Photoluminescent disinfecting and charging bin
US9969323B2 (en) 2013-11-21 2018-05-15 Ford Global Technologies, Llc Vehicle lighting system employing a light strip
US9533613B2 (en) 2013-11-21 2017-01-03 Ford Global Technologies, Llc Photoluminescent fuel filler door
US9821708B2 (en) 2013-11-21 2017-11-21 Ford Global Technologies, Llc Illuminated exterior strip
US9464887B2 (en) 2013-11-21 2016-10-11 Ford Global Technologies, Llc Illuminated hitch angle detection component
US9539939B2 (en) 2013-11-21 2017-01-10 Ford Global Technologies, Llc Photoluminescent logo for vehicle trim and fabric
US9789810B2 (en) 2013-11-21 2017-10-17 Ford Global Technologies, Llc Photoluminescent vehicle panel
US9409515B2 (en) 2013-11-21 2016-08-09 Ford Global Technologies, Llc Luminescent seating assembly
US9459453B2 (en) 2013-11-21 2016-10-04 Ford Global Technologies, Llc Windshield display system
US9950658B2 (en) 2013-11-21 2018-04-24 Ford Global Technologies, Llc Privacy window system
US9625115B2 (en) 2013-11-21 2017-04-18 Ford Global Technologies, Llc Photoluminescent vehicle graphics
US9649877B2 (en) 2013-11-21 2017-05-16 Ford Global Technologies, Llc Vehicle light system with illuminating wheel assembly
US9782504B2 (en) 2013-11-21 2017-10-10 Ford Global Technologies, Inc. Self-disinfecting surface with printed LEDs for a surface of a vehicle
US9573516B2 (en) 2013-11-21 2017-02-21 Ford Global Technologies, Llc Rear vehicle lighting system
US9440579B2 (en) 2013-11-21 2016-09-13 Ford Global Technologies, Llc Photoluminescent step handle
US9393905B2 (en) 2013-11-21 2016-07-19 Ford Global Technologies, Llc Photoluminescent vehicle compartment light
US9849831B2 (en) 2013-11-21 2017-12-26 Ford Global Technologies, Llc Printed LED storage compartment
US9393904B2 (en) 2013-11-21 2016-07-19 Ford Global Technologies, Llc Photoluminescent engine compartment lighting
US9499096B2 (en) 2013-11-21 2016-11-22 Ford Global Technologies, Llc Photoluminescent vehicle reading lamp
US9212809B2 (en) 2013-11-21 2015-12-15 Ford Global Technologies, Llc Photoluminescent dynamic lighting
US9586523B2 (en) 2013-11-21 2017-03-07 Ford Global Technologies, Llc Vehicle lighting assembly
US9327643B2 (en) 2013-11-21 2016-05-03 Ford Global Technologies, Llc Photoluminescent lift gate lamp
US9682649B2 (en) 2013-11-21 2017-06-20 Ford Global Technologies, Inc. Photoluminescent winch apparatus
US10400978B2 (en) 2013-11-21 2019-09-03 Ford Global Technologies, Llc Photoluminescent lighting apparatus for vehicles
US9434301B2 (en) 2013-11-21 2016-09-06 Ford Global Technologies, Llc Hidden photoluminescent vehicle user interface
US9463739B2 (en) 2013-11-21 2016-10-11 Ford Global Technologies, Llc Sun visor with photoluminescent structure
US9452708B2 (en) 2013-11-21 2016-09-27 Ford Global Technologies, Llc Vehicle badge
US9290123B2 (en) 2013-11-21 2016-03-22 Ford Global Technologies, Llc Vehicle light system with illuminating roof rack
US9607534B2 (en) 2013-11-21 2017-03-28 Ford Global Technologies, Llc Illuminating prismatic badge for a vehicle
US9868387B2 (en) 2013-11-21 2018-01-16 Ford Global Technologies, Llc Photoluminescent printed LED molding
US9487128B2 (en) 2013-11-21 2016-11-08 Ford Global Technologies, Llc Illuminating running board
US9440584B2 (en) 2013-11-21 2016-09-13 Ford Global Technologies, Llc Photoluminescent vehicle console
US9688186B2 (en) 2013-11-21 2017-06-27 Ford Global Technologies, Llc Illuminating decal for a vehicle
US9315145B2 (en) 2013-11-21 2016-04-19 Ford Global Technologies, Llc Photoluminescent tailgate and step
US9499092B2 (en) 2013-11-21 2016-11-22 Ford Global Technologies, Llc Illuminating molding for a vehicle
US9527438B2 (en) 2013-11-21 2016-12-27 Ford Global Technologies, Llc Photoluminescent blind spot warning indicator
US9797575B2 (en) 2013-11-21 2017-10-24 Ford Global Technologies, Llc Light-producing assembly for a vehicle
US9613549B2 (en) 2013-11-21 2017-04-04 Ford Global Technologies, Llc Illuminating badge for a vehicle
US9464886B2 (en) 2013-11-21 2016-10-11 Ford Global Technologies, Llc Luminescent hitch angle detection component
US9499113B2 (en) 2013-11-21 2016-11-22 Ford Global Technologies, Llc Luminescent grille bar assembly
US10064256B2 (en) 2013-11-21 2018-08-28 Ford Global Technologies, Llc System and method for remote activation of vehicle lighting
US9931991B2 (en) 2013-11-21 2018-04-03 Ford Global Technologies, Llc Rotating garment hook
US9989216B2 (en) 2013-11-21 2018-06-05 Ford Global Technologies, Llc Interior exterior moving designs
US9499090B2 (en) 2013-11-21 2016-11-22 Ford Global Technologies, Llc Spoiler using photoluminescent illumination
US9446709B2 (en) 2013-11-21 2016-09-20 Ford Global Technologies, Llc Vehicle backlit assembly with photoluminescent structure
US9399427B2 (en) 2013-11-21 2016-07-26 Ford Global Technologies, Llc Photoluminescent device holder
US9764686B2 (en) 2013-11-21 2017-09-19 Ford Global Technologies, Llc Light-producing assembly for a vehicle
US9469244B2 (en) 2013-11-21 2016-10-18 Ford Global Technologies, Llc Luminescent vehicle seal
US9387802B2 (en) 2013-11-21 2016-07-12 Ford Global Technologies, Llc Photoluminescent power distribution box
US9492575B2 (en) 2013-11-21 2016-11-15 Ford Global Technologies, Llc Color changing and disinfecting surfaces
US9463737B2 (en) 2013-11-21 2016-10-11 Ford Global Technologies, Llc Illuminated seatbelt assembly
US9539941B2 (en) 2013-11-21 2017-01-10 Ford Global Technologies, Llc Photoluminescent cupholder illumination
US9434297B2 (en) 2013-11-21 2016-09-06 Ford Global Technologies, Llc Photoluminescent vehicle graphics
US9464803B2 (en) 2013-11-21 2016-10-11 Ford Global Technologies, Llc Illuminated speaker
US9682651B2 (en) 2013-11-21 2017-06-20 Ford Global Technologies, Llc Vehicle lighting system with improved substrate
US9434294B2 (en) 2013-11-21 2016-09-06 Ford Global Technologies, Llc Photoluminescent vehicle badge
US9573517B2 (en) 2013-11-21 2017-02-21 Ford Global Technologies, Llc Door illumination and warning system
US9961745B2 (en) 2013-11-21 2018-05-01 Ford Global Technologies, Llc Printed LED rylene dye welcome/farewell lighting
US9809160B2 (en) 2013-11-21 2017-11-07 Ford Global Technologies, Llc Tailgate illumination system
US9463734B2 (en) 2013-11-21 2016-10-11 Ford Global Technologies, Llc Illuminated seatbelt assembly
US9598632B2 (en) 2013-11-21 2017-03-21 Ford Global Technologies, Llc Method for depositing photoluminescent material
US9839098B2 (en) 2013-11-21 2017-12-05 Ford Global Technologies, Llc Light assembly operable as a dome lamp
US9457712B2 (en) 2013-11-21 2016-10-04 Ford Global Technologies, Llc Vehicle sun visor providing luminescent lighting
US9586518B2 (en) 2013-11-21 2017-03-07 Ford Global Technologies, Llc Luminescent grille bar assembly
US10363867B2 (en) 2013-11-21 2019-07-30 Ford Global Technologies, Llc Printed LED trim panel lamp
US9905743B2 (en) 2013-11-21 2018-02-27 Ford Global Technologies, Llc Printed LED heat sink double lock
US9495040B2 (en) 2013-11-21 2016-11-15 Ford Global Technologies, Llc Selectively visible user interface
US9463738B2 (en) 2013-11-21 2016-10-11 Ford Global Technologies, Llc Seatbelt lighting system
US9587800B2 (en) 2013-11-21 2017-03-07 Ford Global Technologies, Llc Luminescent vehicle molding
US9434302B2 (en) 2013-11-21 2016-09-06 Ford Global Technologies,Llc Photoluminescent bin lamp
US9487126B2 (en) 2013-11-21 2016-11-08 Ford Global Technologies, Llc Photoluminescent puddle lamp
US9796325B2 (en) 2013-11-21 2017-10-24 Ford Global Technologies, Llc Exterior light system for a vehicle
US9487136B2 (en) 2013-11-21 2016-11-08 Ford Global Technologies, Llc System and method to locate vehicle equipment
US9771019B2 (en) 2013-11-21 2017-09-26 Ford Global Technologies, Inc. Photoluminescent vehicle illumination
US9776557B2 (en) 2013-11-21 2017-10-03 Ford Global Technologies, Llc Dual direction light producing assembly
US9539940B2 (en) 2013-11-21 2017-01-10 Ford Global Technologies, Llc Illuminated indicator
US9434304B2 (en) 2013-11-21 2016-09-06 Ford Global Technologies, Llc Illuminated vehicle compartment
US9796304B2 (en) 2013-11-21 2017-10-24 Ford Global Technologies, Llc Vehicle floor lighting system having a pivotable base with light-producing assembly coupled to base
US9539937B2 (en) 2013-11-21 2017-01-10 Ford Global Technologies, Llc Vehicle step lamp
US9694743B2 (en) 2013-11-21 2017-07-04 Ford Global Technologies, Llc Dual purpose lighting assembly
US9440583B2 (en) 2013-11-21 2016-09-13 Ford Global Technologies, Llc Vehicle dome lighting system with photoluminescent structure
US9463736B2 (en) 2013-11-21 2016-10-11 Ford Global Technologies, Llc Illuminated steering assembly
TWI633171B (zh) 2013-12-13 2018-08-21 奇異電器公司 製備色彩穩定之摻雜錳的錯合氟化物磷光體的方法
US9804316B2 (en) * 2013-12-20 2017-10-31 Apple Inc. Display having backlight with narrowband collimated light sources
CN105849920B (zh) * 2013-12-27 2020-11-06 西铁城电子株式会社 发光装置和发光装置的设计方法
US10230022B2 (en) 2014-03-13 2019-03-12 General Electric Company Lighting apparatus including color stable red emitting phosphors and quantum dots
US9302616B2 (en) 2014-04-21 2016-04-05 Ford Global Technologies, Llc Vehicle lighting apparatus with multizone proximity control
JP6390998B2 (ja) * 2014-05-30 2018-09-19 パナソニックIpマネジメント株式会社 照明器具及びそれを用いた医療器具
US9376615B2 (en) 2014-06-12 2016-06-28 General Electric Company Color stable red-emitting phosphors
US9385282B2 (en) 2014-06-12 2016-07-05 General Electric Company Color stable red-emitting phosphors
US9371481B2 (en) 2014-06-12 2016-06-21 General Electric Company Color stable red-emitting phosphors
US9567516B2 (en) 2014-06-12 2017-02-14 General Electric Company Red-emitting phosphors and associated devices
US9929319B2 (en) 2014-06-13 2018-03-27 General Electric Company LED package with red-emitting phosphors
US9335011B2 (en) * 2014-07-02 2016-05-10 General Electric Company Oxyfluoride phosphor compositions and lighting apparatus thereof
JP2016058586A (ja) * 2014-09-10 2016-04-21 シャープ株式会社 表示装置及びテレビ受信装置
RU2648080C1 (ru) * 2014-09-11 2018-03-22 Филипс Лайтинг Холдинг Б.В. Сид-модуль с преобразованием люминофором с улучшенными передачей белого цвета и эффективностью преобразования
TWI509844B (zh) * 2014-09-19 2015-11-21 Unity Opto Technology Co Ltd Applied to the backlight of the LED light-emitting structure
KR20160035672A (ko) * 2014-09-23 2016-04-01 엘지디스플레이 주식회사 발광다이오드 패키지 및 액정표시장치
WO2016049507A1 (en) * 2014-09-26 2016-03-31 Glo Ab Monolithic image chip for near-to-eye display
US10811572B2 (en) 2014-10-08 2020-10-20 Seoul Semiconductor Co., Ltd. Light emitting device
US10047286B2 (en) 2014-10-27 2018-08-14 General Electric Company Color stable red-emitting phosphors
JP2016088950A (ja) * 2014-10-30 2016-05-23 信越化学工業株式会社 赤色蛍光体
CN105633253A (zh) * 2014-11-21 2016-06-01 有研稀土新材料股份有限公司 白光led、背光源及液晶显示装置
KR20160069724A (ko) * 2014-12-09 2016-06-17 엘지이노텍 주식회사 형광체 조성물, 이를 포함하는 발광 소자 패키지 및 조명 장치
JP6376225B2 (ja) * 2014-12-09 2018-08-22 信越化学工業株式会社 波長変換部材及び発光装置
US9869450B2 (en) 2015-02-09 2018-01-16 Ecosense Lighting Inc. Lighting systems having a truncated parabolic- or hyperbolic-conical light reflector, or a total internal reflection lens; and having another light reflector
US11306897B2 (en) 2015-02-09 2022-04-19 Ecosense Lighting Inc. Lighting systems generating partially-collimated light emissions
KR102408618B1 (ko) * 2015-02-16 2022-06-14 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 발광 소자 패키지 및 이를 포함하는 조명 장치
US9982190B2 (en) 2015-02-20 2018-05-29 General Electric Company Color stable red-emitting phosphors
US9568665B2 (en) 2015-03-03 2017-02-14 Ecosense Lighting Inc. Lighting systems including lens modules for selectable light distribution
US9746159B1 (en) 2015-03-03 2017-08-29 Ecosense Lighting Inc. Lighting system having a sealing system
US9651216B2 (en) 2015-03-03 2017-05-16 Ecosense Lighting Inc. Lighting systems including asymmetric lens modules for selectable light distribution
US9651227B2 (en) 2015-03-03 2017-05-16 Ecosense Lighting Inc. Low-profile lighting system having pivotable lighting enclosure
WO2016158728A1 (ja) * 2015-04-01 2016-10-06 シャープ株式会社 照明装置、表示装置、及びテレビ受信装置
US9689544B2 (en) 2015-05-05 2017-06-27 MJ Products, Inc. Light engine for and method of simulating a flame
EP3305020B1 (en) * 2015-05-26 2020-11-18 Signify Holding B.V. Switchable high color contrast lighting
WO2016198348A1 (en) 2015-06-12 2016-12-15 Philips Lighting Holding B.V. Ac-led with hybrid led channels
US9871173B2 (en) 2015-06-18 2018-01-16 Cree, Inc. Light emitting devices having closely-spaced broad-spectrum and narrow-spectrum luminescent materials and related methods
RU2018103898A (ru) * 2015-07-02 2019-08-05 Филипс Лайтинг Холдинг Б.В. Светодиодная лампа с люминофором красного свечения с медленным затуханием, приводящим к изменению сст светового выхода
USD785218S1 (en) 2015-07-06 2017-04-25 Ecosense Lighting Inc. LED luminaire having a mounting system
USD782093S1 (en) 2015-07-20 2017-03-21 Ecosense Lighting Inc. LED luminaire having a mounting system
USD782094S1 (en) 2015-07-20 2017-03-21 Ecosense Lighting Inc. LED luminaire having a mounting system
US9651232B1 (en) 2015-08-03 2017-05-16 Ecosense Lighting Inc. Lighting system having a mounting device
JP6472728B2 (ja) 2015-08-04 2019-02-20 日亜化学工業株式会社 発光装置および発光装置を備えたバックライト
CN105096749B (zh) * 2015-08-04 2017-07-04 京东方科技集团股份有限公司 一种显示装置及其制备方法
KR102490444B1 (ko) * 2015-08-07 2023-01-20 삼성디스플레이 주식회사 표면 개질된 형광체 및 이를 포함하는 발광 장치
US10168039B2 (en) 2015-08-10 2019-01-01 Ford Global Technologies, Llc Illuminated badge for a vehicle
JP6875377B2 (ja) * 2015-09-01 2021-05-26 シグニファイ ホールディング ビー ヴィSignify Holding B.V. 効率及び赤色過飽和度が向上された食肉照明システム
US9663967B2 (en) 2015-09-11 2017-05-30 Ford Global Technologies, Llc Illuminated latch system
KR102530835B1 (ko) * 2015-09-14 2023-05-10 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 발광 소자 패키지
US9463735B1 (en) 2015-10-06 2016-10-11 Ford Global Technologies, Llc Vehicle visor assembly with illuminating check assembly
US10081295B2 (en) 2015-10-13 2018-09-25 Ford Global Technologies, Llc Illuminated badge for a vehicle
WO2017071954A1 (en) 2015-10-29 2017-05-04 Philips Lighting Holding B.V. Improved white lighting device for retail illumination
US20170125650A1 (en) 2015-11-02 2017-05-04 Nanoco Technologies Ltd. Display devices comprising green-emitting quantum dots and red KSF phosphor
US9889791B2 (en) 2015-12-01 2018-02-13 Ford Global Technologies, Llc Illuminated badge for a vehicle
US10023100B2 (en) 2015-12-14 2018-07-17 Ford Global Technologies, Llc Illuminated trim assembly
US9500333B1 (en) 2015-12-18 2016-11-22 Ford Global Technologies, Llc Phosphorescent lighting assembly
KR20170082187A (ko) * 2016-01-05 2017-07-14 삼성전자주식회사 백색 발광장치 및 디스플레이 장치
US9855799B2 (en) 2016-02-09 2018-01-02 Ford Global Technologies, Llc Fuel level indicator
US10501007B2 (en) 2016-01-12 2019-12-10 Ford Global Technologies, Llc Fuel port illumination device
US10300843B2 (en) 2016-01-12 2019-05-28 Ford Global Technologies, Llc Vehicle illumination assembly
US10235911B2 (en) 2016-01-12 2019-03-19 Ford Global Technologies, Llc Illuminating badge for a vehicle
US10011219B2 (en) 2016-01-18 2018-07-03 Ford Global Technologies, Llc Illuminated badge
US9517723B1 (en) 2016-01-21 2016-12-13 Ford Global Technologies, Llc Illuminated tie-down cleat
US9927114B2 (en) 2016-01-21 2018-03-27 Ford Global Technologies, Llc Illumination apparatus utilizing conductive polymers
US9586519B1 (en) 2016-01-27 2017-03-07 Ford Global Technologies, Llc Vehicle rear illumination
CN109315037B (zh) 2016-01-28 2022-07-01 生态照明公司 用于提供具有高显色性的可调白光的系统
US10555397B2 (en) 2016-01-28 2020-02-04 Ecosense Lighting Inc. Systems and methods for providing tunable warm white light
CN111511066A (zh) 2016-01-28 2020-08-07 生态照明公司 用于产生具有高显色性的可调白光的方法
WO2017131693A1 (en) * 2016-01-28 2017-08-03 Ecosense Lighting Inc Compositions for led light conversions
US10492264B2 (en) 2016-01-28 2019-11-26 EcoSense Lighting, Inc. Lighting systems for providing tunable white light with functional diode emissions
US9623797B1 (en) 2016-02-04 2017-04-18 Ford Global Technologies, Llc Lift gate lamp
US9499093B1 (en) 2016-02-08 2016-11-22 Ford Global Technologies, Llc Retractable running board with long-persistance phosphor lighting
US9499094B1 (en) 2016-02-08 2016-11-22 Ford Global Technologies, Llc Retractable running board with long-persistence phosphor lighting
EP3203811A1 (en) 2016-02-08 2017-08-09 Nxp B.V. Controller for a lamp
US10189401B2 (en) 2016-02-09 2019-01-29 Ford Global Technologies, Llc Vehicle light strip with optical element
US9664354B1 (en) 2016-02-11 2017-05-30 Ford Global Technologies, Llc Illumination assembly
CN105609599B (zh) * 2016-02-17 2018-06-29 中国计量学院 一种用于蓝光芯片的封装材料及其白光led封装方法
US9656598B1 (en) 2016-02-23 2017-05-23 Ford Global Technologies, Llc Vehicle badge
US9751458B1 (en) 2016-02-26 2017-09-05 Ford Global Technologies, Llc Vehicle illumination system
JP6955502B2 (ja) * 2016-02-26 2021-10-27 ナノシス・インク. 低カドミウム含有量のナノ構造体組成物およびその使用
US10501025B2 (en) 2016-03-04 2019-12-10 Ford Global Technologies, Llc Vehicle badge
US10118568B2 (en) 2016-03-09 2018-11-06 Ford Global Technologies, Llc Vehicle badge having discretely illuminated portions
US9688189B1 (en) 2016-03-09 2017-06-27 Ford Global Technologies, Llc Illuminated license plate
US9656592B1 (en) 2016-03-11 2017-05-23 Ford Global Technologies, Llc System and method of calibrating a vehicle badge having a number of light sources
US9688190B1 (en) 2016-03-15 2017-06-27 Ford Global Technologies, Llc License plate illumination system
US9963001B2 (en) 2016-03-24 2018-05-08 Ford Global Technologies, Llc Vehicle wheel illumination assembly using photoluminescent material
KR101937456B1 (ko) * 2016-04-01 2019-01-11 에스케이씨하이테크앤마케팅(주) K-Si-F계 형광체 및 색순도 향상 필름을 포함하는 액정표시장치
US10081296B2 (en) 2016-04-06 2018-09-25 Ford Global Technologies, Llc Illuminated exterior strip with photoluminescent structure and retroreflective layer
US9758088B1 (en) 2016-05-10 2017-09-12 Ford Global Technologies, Llc Auxiliary lighting roof rack
US9714749B1 (en) 2016-05-10 2017-07-25 Ford Global Technologies, Llc Illuminated vehicle grille assembly
US9688215B1 (en) 2016-05-11 2017-06-27 Ford Global Technologies, Llc Iridescent vehicle applique
US10420189B2 (en) 2016-05-11 2019-09-17 Ford Global Technologies, Llc Vehicle lighting assembly
US9738219B1 (en) 2016-05-11 2017-08-22 Ford Global Technologies, Llc Illuminated vehicle trim
US10064259B2 (en) 2016-05-11 2018-08-28 Ford Global Technologies, Llc Illuminated vehicle badge
US9821710B1 (en) 2016-05-12 2017-11-21 Ford Global Technologies, Llc Lighting apparatus for vehicle decklid
US10631373B2 (en) 2016-05-12 2020-04-21 Ford Global Technologies, Llc Heated windshield indicator
US9586527B1 (en) 2016-05-18 2017-03-07 Ford Global Technologies, Llc Wheel well step assembly of vehicle
US9821717B1 (en) 2016-05-18 2017-11-21 Ford Global Technologies, Llc Box step with release button that illuminates
US9994144B2 (en) 2016-05-23 2018-06-12 Ford Global Technologies, Llc Illuminated automotive glazings
US9896020B2 (en) 2016-05-23 2018-02-20 Ford Global Technologies, Llc Vehicle lighting assembly
US9925917B2 (en) 2016-05-26 2018-03-27 Ford Global Technologies, Llc Concealed lighting for vehicles
US9937855B2 (en) 2016-06-02 2018-04-10 Ford Global Technologies, Llc Automotive window glazings
US9803822B1 (en) 2016-06-03 2017-10-31 Ford Global Technologies, Llc Vehicle illumination assembly
US10343622B2 (en) 2016-06-09 2019-07-09 Ford Global Technologies, Llc Interior and exterior iridescent vehicle appliques
US10205338B2 (en) 2016-06-13 2019-02-12 Ford Global Technologies, Llc Illuminated vehicle charging assembly
US9604567B1 (en) 2016-06-15 2017-03-28 Ford Global Technologies, Llc Luminescent trailer hitch plug
US10131237B2 (en) 2016-06-22 2018-11-20 Ford Global Technologies, Llc Illuminated vehicle charging system
US9855888B1 (en) 2016-06-29 2018-01-02 Ford Global Technologies, Llc Photoluminescent vehicle appliques
US9840191B1 (en) 2016-07-12 2017-12-12 Ford Global Technologies, Llc Vehicle lamp assembly
US9855797B1 (en) 2016-07-13 2018-01-02 Ford Global Technologies, Llc Illuminated system for a vehicle
US9889801B2 (en) 2016-07-14 2018-02-13 Ford Global Technologies, Llc Vehicle lighting assembly
US9840193B1 (en) 2016-07-15 2017-12-12 Ford Global Technologies, Llc Vehicle lighting assembly
US9573518B1 (en) 2016-07-15 2017-02-21 Ford Global Technologies, Llc Floor console IR bin light
US9604569B1 (en) 2016-07-19 2017-03-28 Ford Global Technologies, Llc Window lighting system of a vehicle
US9587967B1 (en) 2016-08-04 2017-03-07 Ford Global Technologies, Llc Vehicle container illumination
US9845047B1 (en) 2016-08-08 2017-12-19 Ford Global Technologies, Llc Light system
US9573519B1 (en) 2016-08-08 2017-02-21 Ford Global Technologies, Llc Engine compartment lighting to moving parts
US9573520B1 (en) 2016-08-09 2017-02-21 Ford Global Technologies, Llc Luminescent console storage bin
US9827903B1 (en) 2016-08-18 2017-11-28 Ford Global Technologies, Llc Illuminated trim panel
US9616823B1 (en) 2016-08-22 2017-04-11 Ford Global Technologies, Llc Illuminated badge for a vehicle
US10173604B2 (en) 2016-08-24 2019-01-08 Ford Global Technologies, Llc Illuminated vehicle console
US10047911B2 (en) 2016-08-31 2018-08-14 Ford Global Technologies, Llc Photoluminescent emission system
US10047659B2 (en) 2016-08-31 2018-08-14 Ford Global Technologies, Llc Photoluminescent engine indicium
US9604568B1 (en) 2016-09-01 2017-03-28 Ford Global Technologies, Llc Vehicle light system
US10308175B2 (en) 2016-09-08 2019-06-04 Ford Global Technologies, Llc Illumination apparatus for vehicle accessory
US10075013B2 (en) 2016-09-08 2018-09-11 Ford Global Technologies, Llc Vehicle apparatus for charging photoluminescent utilities
US10065555B2 (en) 2016-09-08 2018-09-04 Ford Global Technologies, Llc Directional approach lighting
US10043396B2 (en) 2016-09-13 2018-08-07 Ford Global Technologies, Llc Passenger pickup system and method using autonomous shuttle vehicle
KR20180032063A (ko) * 2016-09-21 2018-03-29 서울반도체 주식회사 발광 다이오드 패키지 및 발광 다이오드 모듈
US9593820B1 (en) 2016-09-28 2017-03-14 Ford Global Technologies, Llc Vehicle illumination system
US9863171B1 (en) 2016-09-28 2018-01-09 Ford Global Technologies, Llc Vehicle compartment
JP6583203B2 (ja) 2016-09-30 2019-10-02 日亜化学工業株式会社 発光装置及び発光装置の製造方法
US10137829B2 (en) 2016-10-06 2018-11-27 Ford Global Technologies, Llc Smart drop off lighting system
US10046688B2 (en) 2016-10-06 2018-08-14 Ford Global Technologies, Llc Vehicle containing sales bins
US9707887B1 (en) 2016-10-19 2017-07-18 Ford Global Technologies, Llc Vehicle mirror assembly
US9914390B1 (en) 2016-10-19 2018-03-13 Ford Global Technologies, Llc Vehicle shade assembly
US10086700B2 (en) 2016-10-20 2018-10-02 Ford Global Technologies, Llc Illuminated switch
US9802534B1 (en) 2016-10-21 2017-10-31 Ford Global Technologies, Llc Illuminated vehicle compartment
US10035473B2 (en) 2016-11-04 2018-07-31 Ford Global Technologies, Llc Vehicle trim components
US9902314B1 (en) 2016-11-17 2018-02-27 Ford Global Technologies, Llc Vehicle light system
US9994089B1 (en) 2016-11-29 2018-06-12 Ford Global Technologies, Llc Vehicle curtain
US10220784B2 (en) 2016-11-29 2019-03-05 Ford Global Technologies, Llc Luminescent windshield display
US10118538B2 (en) 2016-12-07 2018-11-06 Ford Global Technologies, Llc Illuminated rack
US10106074B2 (en) 2016-12-07 2018-10-23 Ford Global Technologies, Llc Vehicle lamp system
DE102016123971B4 (de) * 2016-12-09 2024-03-28 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Optoelektronisches Bauelement
US10422501B2 (en) 2016-12-14 2019-09-24 Ford Global Technologies, Llc Vehicle lighting assembly
TWI622638B (zh) 2016-12-29 2018-05-01 瑞軒科技股份有限公司 螢光體及其應用之發光裝置與背光模組
CN108269904B (zh) * 2017-01-03 2019-12-27 瑞轩科技股份有限公司 荧光体及其应用的发光装置与背光模块
US10144365B2 (en) 2017-01-10 2018-12-04 Ford Global Technologies, Llc Vehicle badge
US9815402B1 (en) 2017-01-16 2017-11-14 Ford Global Technologies, Llc Tailgate and cargo box illumination
US10173582B2 (en) 2017-01-26 2019-01-08 Ford Global Technologies, Llc Light system
US10053006B1 (en) 2017-01-31 2018-08-21 Ford Global Technologies, Llc Illuminated assembly
US9849830B1 (en) 2017-02-01 2017-12-26 Ford Global Technologies, Llc Tailgate illumination
US9896023B1 (en) 2017-02-09 2018-02-20 Ford Global Technologies, Llc Vehicle rear lighting assembly
WO2018145288A1 (zh) * 2017-02-09 2018-08-16 有研稀土新材料股份有限公司 发光材料组合物以及发光装置
US10427593B2 (en) 2017-02-09 2019-10-01 Ford Global Technologies, Llc Vehicle light assembly
CN108410452B (zh) * 2017-02-09 2021-03-19 有研稀土新材料股份有限公司 发光材料组合物以及发光装置
US9849829B1 (en) 2017-03-02 2017-12-26 Ford Global Technologies, Llc Vehicle light system
US9758090B1 (en) 2017-03-03 2017-09-12 Ford Global Technologies, Llc Interior side marker
US10240737B2 (en) 2017-03-06 2019-03-26 Ford Global Technologies, Llc Vehicle light assembly
US10399483B2 (en) 2017-03-08 2019-09-03 Ford Global Technologies, Llc Vehicle illumination assembly
US10195985B2 (en) 2017-03-08 2019-02-05 Ford Global Technologies, Llc Vehicle light system
US10150396B2 (en) * 2017-03-08 2018-12-11 Ford Global Technologies, Llc Vehicle cup holder assembly with photoluminescent accessory for increasing the number of available cup holders
US10611298B2 (en) 2017-03-13 2020-04-07 Ford Global Technologies, Llc Illuminated cargo carrier
US10166913B2 (en) 2017-03-15 2019-01-01 Ford Global Technologies, Llc Side marker illumination
US10465879B2 (en) 2017-03-27 2019-11-05 Ford Global Technologies, Llc Vehicular light assemblies with LED-excited photoluminescent lightguide
US10483678B2 (en) 2017-03-29 2019-11-19 Ford Global Technologies, Llc Vehicle electrical connector
US10569696B2 (en) 2017-04-03 2020-02-25 Ford Global Technologies, Llc Vehicle illuminated airflow control device
US10023110B1 (en) 2017-04-21 2018-07-17 Ford Global Technologies, Llc Vehicle badge sensor assembly
US10399486B2 (en) 2017-05-10 2019-09-03 Ford Global Technologies, Llc Vehicle door removal and storage
US10035463B1 (en) 2017-05-10 2018-07-31 Ford Global Technologies, Llc Door retention system
US9963066B1 (en) 2017-05-15 2018-05-08 Ford Global Technologies, Llc Vehicle running board that provides light excitation
US10059238B1 (en) 2017-05-30 2018-08-28 Ford Global Technologies, Llc Vehicle seating assembly
US10144337B1 (en) 2017-06-02 2018-12-04 Ford Global Technologies, Llc Vehicle light assembly
US10493904B2 (en) 2017-07-17 2019-12-03 Ford Global Technologies, Llc Vehicle light assembly
US10502690B2 (en) 2017-07-18 2019-12-10 Ford Global Technologies, Llc Indicator system for vehicle wear components
US10137831B1 (en) 2017-07-19 2018-11-27 Ford Global Technologies, Llc Vehicle seal assembly
KR102421222B1 (ko) * 2017-07-21 2022-07-15 엘지디스플레이 주식회사 엘이디 패키지 및 엘이디 패키지를 포함하는 백라이트 유닛
DE112018004067A5 (de) * 2017-08-10 2020-04-23 Osram Oled Gmbh Dimmbare Lichtquelle
KR102452484B1 (ko) * 2017-08-11 2022-10-11 삼성전자주식회사 발광소자 패키지 및 발광소자 패키지 모듈
US10160405B1 (en) 2017-08-22 2018-12-25 Ford Global Technologies, Llc Vehicle decal assembly
US10186177B1 (en) 2017-09-13 2019-01-22 Ford Global Technologies, Llc Vehicle windshield lighting assembly
CN109523908A (zh) * 2017-09-19 2019-03-26 群创光电股份有限公司 显示装置
US10137825B1 (en) 2017-10-02 2018-11-27 Ford Global Technologies, Llc Vehicle lamp assembly
US10391943B2 (en) 2017-10-09 2019-08-27 Ford Global Technologies, Llc Vehicle lamp assembly
US10207636B1 (en) 2017-10-18 2019-02-19 Ford Global Technologies, Llc Seatbelt stowage assembly
US10189414B1 (en) 2017-10-26 2019-01-29 Ford Global Technologies, Llc Vehicle storage assembly
US10541353B2 (en) 2017-11-10 2020-01-21 Cree, Inc. Light emitting devices including narrowband converters for outdoor lighting applications
CN108048079A (zh) * 2017-11-27 2018-05-18 广东晶科电子股份有限公司 一种红色荧光粉、白光发光二极管及背光模组
US10723258B2 (en) 2018-01-04 2020-07-28 Ford Global Technologies, Llc Vehicle lamp assembly
EP3738412A4 (en) 2018-01-11 2022-02-09 Ecosense Lighting Inc. MULTI-CHANNEL SYSTEMS TO PROVIDE TUNABLE LIGHT WITH HIGH COLOR RENDERING AND BIOLOGICAL EFFECTS
EP3737469A4 (en) 2018-01-11 2021-11-10 Ecosense Lighting Inc. CIRCADIAN EFFECT DISPLAY LIGHTING SYSTEMS
WO2019140309A1 (en) 2018-01-11 2019-07-18 Ecosense Lighting Inc. Switchable systems for white light with high color rendering and biological effects
US10723257B2 (en) 2018-02-14 2020-07-28 Ford Global Technologies, Llc Multi-color luminescent grille for a vehicle
US10281113B1 (en) 2018-03-05 2019-05-07 Ford Global Technologies, Llc Vehicle grille
US10627092B2 (en) 2018-03-05 2020-04-21 Ford Global Technologies, Llc Vehicle grille assembly
US10457196B1 (en) 2018-04-11 2019-10-29 Ford Global Technologies, Llc Vehicle light assembly
US10703263B2 (en) 2018-04-11 2020-07-07 Ford Global Technologies, Llc Vehicle light system
US10778223B2 (en) 2018-04-23 2020-09-15 Ford Global Technologies, Llc Hidden switch assembly
CN108461603B (zh) * 2018-05-03 2020-03-31 重庆文理学院 一种植物栽培用的led灯珠
CN109681807B (zh) * 2018-07-03 2022-01-14 全亿大科技(佛山)有限公司 灯具
CN112752827A (zh) 2018-09-26 2021-05-04 松下知识产权经营株式会社 暖色复合荧光体、波长转换体以及发光装置
KR102206453B1 (ko) * 2018-09-27 2021-01-25 세종대학교 산학협력단 빠른 감쇠 속도를 갖는 불화물계 형광체와 이 형광체를 포함하는 발광장치
US10576893B1 (en) 2018-10-08 2020-03-03 Ford Global Technologies, Llc Vehicle light assembly
US20220001200A1 (en) 2018-11-08 2022-01-06 Ecosense Lighting Inc. Switchable bioactive lighting
US10720551B1 (en) 2019-01-03 2020-07-21 Ford Global Technologies, Llc Vehicle lamps
US11342311B2 (en) * 2019-03-18 2022-05-24 Intematix Corporation LED-filaments and LED-filament lamps utilizing manganese-activated fluoride red photoluminescence material
WO2020203053A1 (ja) * 2019-03-29 2020-10-08 ソニー株式会社 発光装置、表示装置および電子機器
CN111755584A (zh) 2019-03-29 2020-10-09 日亚化学工业株式会社 发光装置
US11404610B2 (en) 2019-05-22 2022-08-02 Electronic Theatre Controls, Inc. Light fixture with broadband and narrow band emitters
CN110294597B (zh) * 2019-05-28 2021-01-19 华南农业大学 一种宽色域显示用铯铅溴钙钛矿量子点荧光玻璃及其制备方法和应用
US11953194B2 (en) * 2019-08-20 2024-04-09 Signify Holding, B.V. High quality white laser-based light source by indirect pumping of red phosphor
WO2021042386A1 (zh) * 2019-09-06 2021-03-11 重庆康佳光电技术研究院有限公司 一种led模块及led阵列模组
CN114747005B (zh) * 2019-12-13 2023-08-08 亮锐有限责任公司 Led和多色磷光体
CN113444524B (zh) * 2020-03-25 2024-03-15 亮锐有限责任公司 发射ir的辉石磷光体,和使用同一发射ir的辉石磷光体的发光器件
EP4130196A4 (en) * 2020-03-31 2024-05-01 Nichia Corp LIGHT EMISSION DEVICE AND LAMP THEREFORE
US11680692B1 (en) 2022-07-20 2023-06-20 CS Tech Holdings LLC Light engine and method of simulating a burning wax candle

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2246409A1 (en) * 2008-01-21 2010-11-03 Nichia Corporation Light emitting device
US20110211336A1 (en) * 2010-02-26 2011-09-01 Panasonic Corporation Light emitting device, and illumination light source, display unit and electronic apparatus including the light emitting device
US20120056224A1 (en) * 2010-09-08 2012-03-08 Kabushiki Kaisha Toshiba Light emitting device
US20120112626A1 (en) * 2009-08-26 2012-05-10 Mitsubishi Chemical Corporation White light-emitting semiconductor devices

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6322901B1 (en) 1997-11-13 2001-11-27 Massachusetts Institute Of Technology Highly luminescent color-selective nano-crystalline materials
US6252254B1 (en) 1998-02-06 2001-06-26 General Electric Company Light emitting device with phosphor composition
US6513949B1 (en) * 1999-12-02 2003-02-04 Koninklijke Philips Electronics N.V. LED/phosphor-LED hybrid lighting systems
EP1413618A1 (en) 2002-09-24 2004-04-28 Osram Opto Semiconductors GmbH Luminescent material, especially for LED application
EP1554914B1 (en) 2002-10-14 2006-06-07 Philips Intellectual Property & Standards GmbH Light-emitting device comprising an eu(ii)-activated phosphor
US6827877B2 (en) 2003-01-28 2004-12-07 Osram Sylvania Inc. Red-emitting phosphor blend for plasma display panels
JP4976857B2 (ja) * 2004-02-20 2012-07-18 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 放射線源および蛍光材料を有する照明システム
US7497973B2 (en) 2005-02-02 2009-03-03 Lumination Llc Red line emitting phosphor materials for use in LED applications
US7648649B2 (en) * 2005-02-02 2010-01-19 Lumination Llc Red line emitting phosphors for use in led applications
JP5057998B2 (ja) * 2005-02-17 2012-10-24 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 緑色放射性セラミック発光コンバータを含む光源システム
CN100571478C (zh) 2005-06-30 2009-12-16 皇家飞利浦电子股份有限公司 包括黄绿发光材料的照明系统
JP4805026B2 (ja) * 2006-05-29 2011-11-02 シャープ株式会社 発光装置、表示装置及び発光装置の制御方法
BRPI0808495A2 (pt) * 2007-03-08 2014-07-22 Albireo Ab Derivados de ácido 2-substituído-3-fenilpropiônico e seu uso no tratamento de doença inflamatória intestinal
US7847309B2 (en) * 2007-07-16 2010-12-07 GE Lighting Solutions, LLC Red line emitting complex fluoride phosphors activated with Mn4+
US20090231832A1 (en) 2008-03-15 2009-09-17 Arturas Zukauskas Solid-state lamps with complete conversion in phosphors for rendering an enhanced number of colors
WO2011102339A1 (ja) * 2010-02-16 2011-08-25 株式会社東芝 フルカラー液晶表示装置のバックライト用の白色led、フルカラー液晶表示装置用のバックライト、およびフルカラー液晶表示装置
JP4930649B1 (ja) 2011-02-25 2012-05-16 三菱化学株式会社 ハロリン酸塩蛍光体、及び白色発光装置
KR101039994B1 (ko) * 2010-05-24 2011-06-09 엘지이노텍 주식회사 발광소자 및 이를 구비한 라이트 유닛
US20120155076A1 (en) * 2010-06-24 2012-06-21 Intematix Corporation Led-based light emitting systems and devices
EP2428543B1 (en) * 2010-09-08 2013-05-08 Kabushiki Kaisha Toshiba Light emitting device
WO2012050199A1 (ja) 2010-10-15 2012-04-19 三菱化学株式会社 白色発光装置及び照明器具
KR20120052447A (ko) * 2010-11-15 2012-05-24 삼성엘이디 주식회사 색 조절이 가능한 발광소자 패키지 및 상기 발광소자 패키지의 동작 방법
JP5864851B2 (ja) 2010-12-09 2016-02-17 シャープ株式会社 発光装置
DE102010055265A1 (de) * 2010-12-20 2012-06-21 Osram Opto Semiconductors Gmbh Optoelektronisches Halbleiterbauteil
US20120161170A1 (en) * 2010-12-27 2012-06-28 GE Lighting Solutions, LLC Generation of radiation conducive to plant growth using a combination of leds and phosphors
WO2012135744A2 (en) * 2011-04-01 2012-10-04 Kai Su White light-emitting device
US9349797B2 (en) * 2011-05-16 2016-05-24 Cree, Inc. SiC devices with high blocking voltage terminated by a negative bevel

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2246409A1 (en) * 2008-01-21 2010-11-03 Nichia Corporation Light emitting device
US20120112626A1 (en) * 2009-08-26 2012-05-10 Mitsubishi Chemical Corporation White light-emitting semiconductor devices
US20110211336A1 (en) * 2010-02-26 2011-09-01 Panasonic Corporation Light emitting device, and illumination light source, display unit and electronic apparatus including the light emitting device
US20120056224A1 (en) * 2010-09-08 2012-03-08 Kabushiki Kaisha Toshiba Light emitting device

Also Published As

Publication number Publication date
EP2915197A1 (en) 2015-09-09
CN104781942B (zh) 2017-08-08
CN104781942A (zh) 2015-07-15
US10158052B2 (en) 2018-12-18
JP2016503579A (ja) 2016-02-04
RU2015120339A (ru) 2016-12-20
KR20150082426A (ko) 2015-07-15
US20150295144A1 (en) 2015-10-15
US9564557B2 (en) 2017-02-07
US20170162758A1 (en) 2017-06-08
WO2014068440A1 (en) 2014-05-08
EP2915197B1 (en) 2020-02-05

Similar Documents

Publication Publication Date Title
RU2639733C2 (ru) Устройство с широкой цветовой палитрой на основе сид
US9825241B2 (en) Green emitting phosphors combined with broad band organic red emitters with a sharp near IR cut off
RU2672567C2 (ru) Лампа и осветительный прибор с перестраиваемым индексом цветопередачи
US10230022B2 (en) Lighting apparatus including color stable red emitting phosphors and quantum dots
US8502441B2 (en) Light emitting device having a coated nano-crystalline phosphor and method for producing the same
US9868898B2 (en) Processes for preparing color stable red-emitting phosphors
KR102533942B1 (ko) 코팅된 적색선 방출 인광체
JP2013182975A (ja) 発光装置及びこれを用いたバックライトシステム
KR20120140052A (ko) 발광 디바이스
US10615316B2 (en) Manganese-doped phosphor materials for high power density applications
KR20130057354A (ko) 백색 발광 다이오드 및 이를 포함하는 조명장치
JP7361602B2 (ja) 赤色放出蛍光体を有する複合材料
US10072206B2 (en) Processes for preparing color stable red-emitting phosphors
WO2023215670A1 (en) Phosphor compositions and devices thereof
WO2024041986A1 (en) Direct red led for white light with high user preference
WO2024033217A1 (en) Led&#39;s with improved efficiency and filled spectral power distribution

Legal Events

Date Code Title Description
HZ9A Changing address for correspondence with an applicant