RU2631686C1 - Способ получения фракционированного лецитина - Google Patents

Способ получения фракционированного лецитина Download PDF

Info

Publication number
RU2631686C1
RU2631686C1 RU2017104506A RU2017104506A RU2631686C1 RU 2631686 C1 RU2631686 C1 RU 2631686C1 RU 2017104506 A RU2017104506 A RU 2017104506A RU 2017104506 A RU2017104506 A RU 2017104506A RU 2631686 C1 RU2631686 C1 RU 2631686C1
Authority
RU
Russia
Prior art keywords
miscella
ethanol
sunflower
phospholipid
temperature
Prior art date
Application number
RU2017104506A
Other languages
English (en)
Inventor
Евгений Олегович Герасименко
Елена Александровна Бутина
Светлана Анатольевна Харченко
Сергей Александрович Сонин
Светлана Александровна Калманович
Анна Борисовна Красавцева
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего образования "Кубанский государственный технологический университет" (ФГБОУ ВО "КубГТУ")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего образования "Кубанский государственный технологический университет" (ФГБОУ ВО "КубГТУ") filed Critical Федеральное государственное бюджетное образовательное учреждение высшего образования "Кубанский государственный технологический университет" (ФГБОУ ВО "КубГТУ")
Priority to RU2017104506A priority Critical patent/RU2631686C1/ru
Application granted granted Critical
Publication of RU2631686C1 publication Critical patent/RU2631686C1/ru

Links

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23DEDIBLE OILS OR FATS, e.g. MARGARINES, SHORTENINGS, COOKING OILS
    • A23D9/00Other edible oils or fats, e.g. shortenings, cooking oils
    • A23D9/02Other edible oils or fats, e.g. shortenings, cooking oils characterised by the production or working-up
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11BPRODUCING, e.g. BY PRESSING RAW MATERIALS OR BY EXTRACTION FROM WASTE MATERIALS, REFINING OR PRESERVING FATS, FATTY SUBSTANCES, e.g. LANOLIN, FATTY OILS OR WAXES; ESSENTIAL OILS; PERFUMES
    • C11B7/00Separation of mixtures of fats or fatty oils into their constituents, e.g. saturated oils from unsaturated oils

Abstract

Изобретение относится к пищевой промышленности, а именно к способам переработки растительного сырья, и может быть использовано для производства фракционированного лецитина. Для получения фракционированного лецитина безлузговое ядро подсолнечника насыщают этанолом концентрацией 99,8% в количестве, обеспечивающем массовую долю влаги и летучих веществ 8-10%. Экструдируют ядро подсолнечника в присутствии этанола, взятого в соотношении с ядром подсолнечника как 1:1, с получением экструдированного ядра подсолнечника и этанольной мисцеллы. Проводят экспозицию этанольной мисцеллы при температуре 0-10°С в течение 6-12 часов, приводящей к разделению мисцеллы на две фазы. Декантируют верхную фазу, состоящую из этанола и спирторастворимой фракции фосфолипидов. Верхнюю фазу обрабатывают электромагнитным полем с магнитной индукцией 0,6-0,8 Тл в течение 3-5 минут. Разделяют вышеуказанную фазу через мембранный фильтр с проницаемостью rр=5,5×10-9 м на фосфолипидную мисцеллу и липидную мисцеллу. Из фосфолипидной мисцеллы удаляют этанол под вакуумом при остаточном давлении 20-30 мБар при температуре 50-60°С. Способ позволяет снизить содержание нейтральных липидов и гликолипидов во фракционированном лецитине. 1 табл., 3 пр.

Description

Изобретение относится к пищевой промышленности, а именно к способам переработки растительного сырья, и может быть использовано для производства фракционированного лецитина.
Известен способ получения пищевых растительных фосфолипидов, включающий смешивание нерафинированного растительного масла с водой или водными растворами электролитов, экспозицию полученной смеси, разделение смеси на гидратированное масло и фосфолипидную эмульсию и сушку фосфолипидной эмульсии, при этом после сушки фосфолипидной эмульсии получаемый фосфатидный концентрат растворяют в органическом растворителе (бензине, нефрасе) при соотношении фосфатидный концентрат - растворитель (1:1)-(1:5) с получением мисцеллы, полученную мисцеллу фильтруют и обрабатывают гидратирующим агентом в количестве 10-40% к массе мисцеллы при температуре 20-40°С, отделяют образовавшуюся фосфолипидную эмульсию и сушат при температуре 70-90°С под вакуумом (Патент №2377785, опубл. 10.01.2010 г. Бюл. №1).
Недостатком данного способа является низкое качество конечного продукта.
Известен способ получения пищевого лецитина из фосфолипидов подсолнечного масла, включающий обработку подсолнечных фосфатидов растворителем (ацетоном) при организации обезжиривания в 5 ступеней, при температуре 55°С и соотношении ацетон:фосфатиды 3:1-7:1 соответственно с получением обезжиренных фосфатидов. Полученные обезжиренные фосфатиды фракционируют этиловым спиртом при проведении процесса в 4 ступени при соотношении «обезжиренные фосфатиды: этиловый спирт» 1:4, температуре - 45°С и времени фракционирования на каждой ступени 7 минут. На первой ступени в этиловый спирт добавляют лимонную кислоту 0,05-0,1% к массе этилового спирта с последующим разделением фаз на спирторастворимую и спиртонерастворимую фракции, с последующей сушкой фракционированных фосфатидов (патент №30514 KZ, опубл. 16.11.2015 г. Бюл. №11).
Недостатком данного способа является то, что вследствие многостадийности процесса и воздействии на фосфолипидный комплекс большого числа неблагоприятных технологических факторов, таких как жесткие температурные режимы, воздействие углеводородных растворителей, интенсивная гидродинамика, взаимодействие с кислородом воздуха и т.п., фосфолипидный комплекс претерпевает существенные изменения, в том числе связанные с взаимодействием фосфолипидных молекул с углеводами, неомыляемыми липидами, ионами поливалентных металлов, кислородом, термической модификацией, окислением. В результате образуется большое число побочных продуктов, снижающих пищевую ценность и затрудняющих осуществление процессов фракционирования. Фракционирование осуществляется с использованием селективного растворителя - этанола.
Следует отметить, что получаемые такими способами фракционированные лецитины характеризуются содержанием нейтральных липидов не менее 2%, гликолипидов не менее 5% и фосфатидилхолинов не менее 60%.
Задачей изобретения является разработка способа получения фракционированного лецитина, обеспечивающего высокие показатели его качества.
Техническим результатом изобретения является снижение содержания нейтральных липидов и гликолипидов во фракционированном лецитине.
Технический результат достигается тем, что способ получения фракционированного лецитина включает насыщение безлузгового ядра подсолнечника этанолом концентрацией 99,8%, в количестве, обеспечивающем массовую долю влаги и летучих веществ 8-10%, экструдирование ядра подсолнечника в присутствии этанола, взятого в соотношении с ядром подсолнечника как 1:1, с получением экструдированного ядра подсолнечника и этанольной мисцеллы, экспозицию этанольной мисцеллы при температуре 0-10°С в течение 6-12 часов, приводящей к разделению мисцеллы на две фазы, декантацию верхней фазы, состоящей из этанола и спирторастворимой фракции фосфолипидов, обработку верхней фазы электромагнитным полем с магнитной индукцией 0,6-0,8 Тл в течение 3-5 минут, с последующим ее разделением через мембранный фильтр с проницаемостью rр=5,5×10-9 м на фосфолипидную мисцеллу и липидную мисцеллу, удаление из фосфолипидной мисцеллы этанола под вакуумом при остаточном давлении 20-30 мБар при температуре 50-60°С.
Экструдирование ядра подсолнечника в присутствии этанола способствует переходу в мисцеллу спирторастворимых фракций фосфолипидов, преимущественно фосфатидилхолина. При температуре 60°С мисцелла представляет собой однородную жидкость, состоящую из этанола, масла и фосфолипидов. При понижении температуры растворимость масла в спирте снижается, что приводит к разделению системы на две фазы: нижняя фаза - масло с небольшим количеством этанола; верхняя - этанол с фосфолипидами, преимущественно с фосфатидилхолином.
Обработка верхней фазы электромагнитным полем с магнитной индукцией 0,6-0,8 Тл в течение 3-5 минут, перед ее разделением на две части (фосфолипидную мисцеллу и липидную мисцеллу) на мембранном фильтре с проницаемостью rр=5,5×10-9 м, позволяет повысить селективность и эффективность процесса разделения, что выражается в полном удалении гликолипидов и снижении содержания нейтральных липидов из фосфолипидной мисцеллы.
При удалении этанола из фосфолипидной мисцеллы под вакуумом при остаточном давлении 20-30 мБар при температуре 50-60°С получается продукт, представляющий собой спирторастворимую фракцию фосфолипидов с преимущественным содержанием фосфатидилхолина, остаточным содержанием нейтральных липидов не более 0,05% и отсутствием гликолипидов. Заявляемый способ позволяет получить фракционированный лецитин из безлузговых семян подсолнечника, характеризующийся содержанием фосфолипдов не менее 95%, в том числе фосфатидилхолинов не менее 65%, нейтральных липидов не более 0,05% и отсутствием гликолипидов.
Способ реализуется следующим образом. Безлузговое ядро подсолнечника (содержание лузги не более 0,1%) насыщают этанолом концентрацией 99,8% при температуре 40-70°С в течение 10-15 минут. При этом количество этанола должно обеспечивать массовую долю влаги и летучих веществ 8-10%. После этого безлузговое ядро подсолнечника загружают в экструдер, куда дополнительно подают этанол в количестве, обеспечивающем соотношение безлузговое ядро подсолнечника:этанол равное 1:1.
В экструдере осуществляют процессы измельчения безлузгового ядра подсолнечника при температуре 50-70°С в течение 15-60 минут с получением экструдированного ядра подсолнечника и этанольной мисцеллы. Отделяют образовавшуюся этанольную мисцеллу и направляют в накопитель мисцеллы, где ее охлаждают до температуры 0-10°С, проводят экспозицию охлажденной мисцеллы в течение 6-12 часов, что приводит к разделению мисцеллы на две фазы. Затем верхнюю фазу декантируют, обрабатывают в электромагнитном поле с магнитной индукцией 0,6-0,8 Тл в течение 3-5 минут и отправляют на разделение, путем фильтрации через мембранный фильтр с проницаемостью rр=5,5×10-9 м, где происходит разделение мисцеллы на две части: липидную и фосфолипидную мисцеллы. Удаление из фосфолипидной мисцеллы этанола под вакуумом при остаточном давление 20-30 мБар и температуре 50-60°С. Фракционированный лецитин, полученный предлагаемым способом, характеризуется высоким качеством с содержанием фосфолипидов не менее 95%, в том числе фосфатидилхолинов 67-70%, нейтральных липидов не более 0,05% и отсутствием гликолипидов.
Примеры конкретного выполнения.
Пример 1. Безлузговое ядро подсолнечника (содержание лузги не более 0,1%) насыщают этанолом концентрацией 99,8% при температуре 40-70°С в течение 10-15 минут. При этом количество этанола должно обеспечивать массовую долю влаги и летучих веществ 8-10%. После этого безлузговое ядро подсолнечника загружают в экструдер, куда дополнительно подают этанол в количестве, обеспечивающем соотношение безлузговое ядро подсолнечника:этанол, равное 1:1.
В экструдере осуществляют процессы измельчения безлузгового ядра подсолнечника при температуре 50-70°С в течение 15-60 минут с получением экструдированного ядра подсолнечника и этанольной мисцеллы. Отделяют образовавшуюся этанольную мисцеллу и направляют в накопитель мисцеллы, где ее охлаждают до температуры 0-10°С, проводят экспозицию охлажденной мисцеллы в течение 6-12 часов, что приводит к разделению мисцеллы на две фазы. Затем верхнюю фазу декантируют, обрабатывают в электромагнитном поле с магнитной индукцией 0,6 Тл в течение 5 минут и отправляют на разделение, путем фильтрации через мембранный фильтр с проницаемостью rр=5,5×10-9 м, где происходит разделение мисцеллы на две части: липидную и фосфолипидную мисцеллы. Из фосфолипидной мисцеллы удаляют этанол под вакуумом при остаточном давлении 20 мБар и температуре 60°С, при этом образуется фракционированный лецитин высокого качества.
Пример 2. Безлузговое ядро подсолнечника (содержание лузги не более 0,1%) насыщают этанолом концентрацией 99,8% при температуре 40-70°С в течение 10-15 минут. При этом количество этанола должно обеспечивать массовую долю влаги и летучих веществ 8-10%. После этого безлузговое ядро подсолнечника загружают в экструдер, куда дополнительно подают этанол в количестве, обеспечивающем соотношение безлузговое ядро подсолнечника:этанол, равное 1:1.
В экструдере осуществляют процессы измельчения безлузгового ядра подсолнечника при температуре 50-70°С в течение 15-60 минут с получением экструдированного ядра подсолнечника и этанольной мисцеллы. Отделяют образовавшуюся этанольную мисцеллу и направляют в накопитель мисцеллы, где ее охлаждают до температуры 0-10°С, проводят экспозицию охлажденной мисцеллы в течение 6-12 часов, что приводит к разделению мисцеллы на две фазы. Затем верхнюю фазу декантируют, обрабатывают в электромагнитном поле с магнитной индукцией 0,8 Тл в течение 3 минут и отправляют на разделение, путем фильтрации через мембранный фильтр с проницаемостью rр=5,5×10-9 м, где происходит разделение мисцеллы на две части: липидную и фосфолипидную мисцеллы. Из фосфолипидной мисцеллы удаляют этанол под вакуумом при остаточном давление 30 мБар и температуре 50°С, при этом образуется фракционированный лецитин высокого качества.
Пример 3. Безлузговое ядро подсолнечника (содержание лузги не более 0,1%) насыщают этанолом концентрацией 99,8% при температуре 40-70°С в течение 10-15 минут. При этом количество этанола должно обеспечивать массовую долю влаги и летучих веществ 8-10%. После этого безлузговое ядро подсолнечника загружают в экструдер, куда дополнительно подают этанол в количестве, обеспечивающем соотношение безлузговое ядро подсолнечника:этанол, равное 1:1.
В экструдере осуществляют процессы измельчения безлузгового ядра подсолнечника при температуре 50-70°С в течение 15-60 минут с получением экструдированного ядра подсолнечника и этанольной мисцеллы. Отделяют образовавшуюся этанольную мисцеллу и направляют в накопитель мисцеллы, где ее охлаждают до температуры 0-10°С, проводят экспозицию охлажденной мисцеллы в течение 6-12 часов, что приводит к разделению мисцеллы на две фазы. Затем верхнюю фазу декантируют, обрабатывают в электромагнитном поле с магнитной индукцией 0,7 Тл в течение 4 минут и отправляют на фильтрацию через мембранный фильтр с проницаемостью rр=5,5×10-9 м, где происходит разделение мисцеллы на две части: липидную и фосфолипидную мисцеллы. Из фосфолипидной мисцеллы удаляют этанол под вакуумом при остаточном давление 25 мБар и температуре 55°С, при этом образуется фракционированный лецитин высокого качества.
В таблице 1 приведены характеристики фракционированного лецитина, полученного предлагаемым способом и по прототипу.
Figure 00000001
Таким образом, предложенный способ получения фракционированного лецитина позволяет получить продукт высокого качества с повышенным содержанием фосфатидилхолинов свободных от нейтральных липидов и гликолипидов.

Claims (1)

  1. Способ получения фракционированного лецитина, характеризующийся насыщением безлузгового ядра подсолнечника этанолом концентрацией 99,8% в количестве, обеспечивающем массовую долю влаги и летучих веществ 8-10%, экструдированием ядра подсолнечника в присутствии этанола, взятого в соотношении с ядром подсолнечника как 1:1, с получением экструдированного ядра подсолнечника и этанольной мисцеллы, экспозицией этанольной мисцеллы при температуре 0-10°С в течение 6-12 часов, приводящей к разделению мисцеллы на две фазы, декантацией верхней фазы, состоящей из этанола и спирторастворимой фракции фосфолипидов, обработкой верхней фазы электромагнитным полем с магнитной индукцией 0,6-0,8 Тл в течение 3-5 минут, разделение через мембранный фильтр с проницаемостью rp=5,5×10-9 м на фосфолипидную мисцеллу и липидную мисцеллу, удаление из фосфолипидной мисцеллы этанола под вакуумом при остаточном давлении 20-30 мБар при температуре 50-60°С.
RU2017104506A 2017-02-13 2017-02-13 Способ получения фракционированного лецитина RU2631686C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2017104506A RU2631686C1 (ru) 2017-02-13 2017-02-13 Способ получения фракционированного лецитина

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2017104506A RU2631686C1 (ru) 2017-02-13 2017-02-13 Способ получения фракционированного лецитина

Publications (1)

Publication Number Publication Date
RU2631686C1 true RU2631686C1 (ru) 2017-09-26

Family

ID=59931276

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017104506A RU2631686C1 (ru) 2017-02-13 2017-02-13 Способ получения фракционированного лецитина

Country Status (1)

Country Link
RU (1) RU2631686C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2735255C1 (ru) * 2020-04-03 2020-10-29 Федеральное государственное бюджетное образовательное учреждение высшего образования "Кубанский государственный технологический университет" (ФГБОУ ВО "КубГТУ") Способ получения гидратированного растительного масла и лецитина
RU2735256C1 (ru) * 2020-04-03 2020-10-29 Федеральное государственное бюджетное образовательное учреждение высшего образования "Кубанский государственный технологический университет" (ФГБОУ ВО "КубГТУ") Способ получения гидратированного растительного масла и лецитина

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2134985C1 (ru) * 1998-01-05 1999-08-27 Общество с ограниченной ответственностью Учебно-научно-производственная фирма "Липиды" Фосфолипидный пищевой продукт "витол-холин" и способ его получения
RU2377785C1 (ru) * 2008-03-31 2010-01-10 Общество с ограниченной ответственностью "Научно-производственное предприятие "Базис А" (ООО НПП "Базис А") Способ получения пищевых растительных фосфолипидов

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2134985C1 (ru) * 1998-01-05 1999-08-27 Общество с ограниченной ответственностью Учебно-научно-производственная фирма "Липиды" Фосфолипидный пищевой продукт "витол-холин" и способ его получения
RU2377785C1 (ru) * 2008-03-31 2010-01-10 Общество с ограниченной ответственностью "Научно-производственное предприятие "Базис А" (ООО НПП "Базис А") Способ получения пищевых растительных фосфолипидов

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2735255C1 (ru) * 2020-04-03 2020-10-29 Федеральное государственное бюджетное образовательное учреждение высшего образования "Кубанский государственный технологический университет" (ФГБОУ ВО "КубГТУ") Способ получения гидратированного растительного масла и лецитина
RU2735256C1 (ru) * 2020-04-03 2020-10-29 Федеральное государственное бюджетное образовательное учреждение высшего образования "Кубанский государственный технологический университет" (ФГБОУ ВО "КубГТУ") Способ получения гидратированного растительного масла и лецитина

Similar Documents

Publication Publication Date Title
CN106164233B (zh) 从天然油制备富含维生素e、特别是富含生育三烯酚的组合物的方法
RU2014123063A (ru) Мембранный способ снижения по меньшей мере одной примеси и получения концентрата, содержащего по меньшей мере один природный компонент из смеси масел неморских жирных кислот, и получаемые композиции
HRP20160548T1 (hr) Postupak za izolaciju fosfolipida
EP0054769B1 (de) Verfahren zur Abtrennung von Öl und/oder Phosphatidylethanolamin aus diese enthaltenden alkohollöslichen Phosphatidylcholin-Produkten
RU2631686C1 (ru) Способ получения фракционированного лецитина
JP2003530448A (ja) 油と極性脂質を含有する天然物質の分画方法
CN114058438A (zh) 磷虾油制备方法及磷虾油组合物
WO2016148282A1 (ja) 脂質組成物及びその製造方法
Penha et al. Evaluation of permeation of macauba oil and n-hexane mixtures through polymeric commercial membranes subjected to different pre-treatments
RU2632944C1 (ru) Способ получения фракционированного лецитина
Saravanan et al. Processing hexane–oil miscella using a nonporous polymeric composite membrane
CN113710784A (zh) 氯丙醇去除工艺
EP0187931B1 (de) Verfahren zur Isolierung eines Begleitphospholipid-freien Phosphatidylcholins
RU2632947C1 (ru) Способ получения подсолнечного масла
JP2000060432A (ja) 高度不飽和脂肪酸を多量に含有する高品質リン脂質の製造法
Kovalcuks Purification of egg yolk oil obtained by solvent extraction from liquid egg yolk
Gupta et al. A novel approach to process crude oil membrane concentrate using a centrifuge
CN104611128B (zh) 一种脱腥鱼油及其制备方法
TWI696628B (zh) 卵磷脂之萃取方法
RU2634430C1 (ru) Способ получения яичного масла
RU2813994C1 (ru) Способ получения пищевого фосфолипидного продукта
Gold et al. Oil palm fruit calyx as a resource for phospholipids extraction
RU2812352C1 (ru) Способ получения фракционного лецитина
RU2787387C1 (ru) Способ получения пищевого фосфолипидного продукта
US11091720B2 (en) Method for producing phospholipid concentrate

Legal Events

Date Code Title Description
QB4A Licence on use of patent

Free format text: LICENCE FORMERLY AGREED ON 20180319

Effective date: 20180319