RU2623434C1 - Катализатор низкотемпературного дегидрирования нафтеновых углеводородов для процесса риформинга гидроочищенных бензиновых фракций и способ его получения - Google Patents

Катализатор низкотемпературного дегидрирования нафтеновых углеводородов для процесса риформинга гидроочищенных бензиновых фракций и способ его получения Download PDF

Info

Publication number
RU2623434C1
RU2623434C1 RU2016109561A RU2016109561A RU2623434C1 RU 2623434 C1 RU2623434 C1 RU 2623434C1 RU 2016109561 A RU2016109561 A RU 2016109561A RU 2016109561 A RU2016109561 A RU 2016109561A RU 2623434 C1 RU2623434 C1 RU 2623434C1
Authority
RU
Russia
Prior art keywords
catalyst
zeolite
temperature
hours
platinum
Prior art date
Application number
RU2016109561A
Other languages
English (en)
Inventor
Вадим Владимирович Фадеев
Анна Николаевна Логинова
Анна Всеволодовна Абрамова
Денис Николаевич Герасимов
Левон Львович Хемчян
Денис Владимирович Лямин
Екатерина Григорьевна Петрова
Надежда Юрьевна Уварова
Роман Алексеевич Смолин
Original Assignee
Открытое акционерное общество "Нефтяная компания "Роснефть"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Открытое акционерное общество "Нефтяная компания "Роснефть" filed Critical Открытое акционерное общество "Нефтяная компания "Роснефть"
Priority to RU2016109561A priority Critical patent/RU2623434C1/ru
Application granted granted Critical
Publication of RU2623434C1 publication Critical patent/RU2623434C1/ru

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/82Phosphates
    • B01J29/83Aluminophosphates [APO compounds]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/82Phosphates
    • B01J29/84Aluminophosphates containing other elements, e.g. metals, boron
    • B01J29/85Silicoaluminophosphates [SAPO compounds]

Landscapes

  • Catalysts (AREA)

Abstract

Изобретение относится к области катализа и нефтепереработки, в частности к катализатору, на основе алюмофосфатного цеолита АРО-11 или силикоалюмофосфатного цеолита SAPO-11 с иерархической пористой структурой. Готовый катализатор содержит, мас.%: 0,1-0,3 Pt, 0-0,2 Sn, 10,0-80,0 алюмофосфатного цеолита АРО-11 или силикоалюмофосфатного цеолита SAPO-11 с иерархической пористой структурой, Al2O3 - остальное. Изобретение обеспечивает снижение рабочего интервала температур проведения реакций дегидрирования циклических насыщенных углеводородов в процессе риформинга гидроочищенных бензиновых фракций, с использованием катализатора, обеспечивающего относительное остаточное содержание С5+ нафтеновых углеводородов в стабилизированном катализате не более 0,45 при температурах не более 480°С по сравнению с сырьем. 2 з.п. ф-лы, 5 табл., 12 пр.

Description

Изобретение относится к области катализа и нефтепереработки, в частности к катализатору на основе алюмофосфатного или силикоалюмофосфатного цеолитов структуры AEL с иерархической системой пор, эффективно обеспечивающего дегидрирование нафтеновых углеводородов с получением высокооктановых бензинов в процессе риформинга гидроочищенных бензиновых фракций и способу его приготовления.
На сегодняшний день одной из первоочередных задач в целях совершенствования существующих технологий является снижение температуры проведения процесса риформинга. Низкая температура позволит подавить побочные реакции крекинга и тем самым избежать нежелательных потерь углеводородов на образование С14 газов, понизит коксообразование на катализаторе, что положительным образом скажется на продолжительности его межрегенерационного периода эксплуатации. Эффективным инструментом для решения этой задачи является оптимизация состава катализатора, который позволит получать риформат с необходимыми характеристиками (детонационная стойкость, фракционный состав и т.д.), при более низких реакционных температурах без потерь в выходе. Однако разработка оптимального состава катализатора затруднена сложным химизмом процесса риформинга. В связи с чем представляется целесообразным использование не одного катализатора, а каталитической системы, состоящей из нескольких катализаторов, каждый из которых направлен на преимущественное проведение тех или иных реакций (дегидрирование, изомеризация, дегидроциклизация и др.). Причем катализаторы разной направленности могут быть загружены как в один реактор послойно, так и в отдельные реакторы установок риформинга с периодической регенерацией в определенной последовательности, обеспечивающей эффективную работу каталитической системы.
Известны примеры цеолитсодержащих катализаторов на основе ZSM-5/M и ZSM-11/М, где М=Pt, Pd. Способ приготовления катализатора представляет собой последовательность: прокаливание цеолита, нанесение металла известным способом (например, ионный обмен с Pt(NH3)4Cl2), термическая обработка, модификация катионами металлов IA группы (например, обработка водным раствором CsCl) с целью подавления кислотности. Были проведены сравнительные испытания катализаторов Cs-ZSM-5 / Pt (1,7 масс %) и Al2O3 / Pt (0,5 масс %) на эквимолярной модельной смеси 1,2-диметилциклогексана и 1,4-диметилциклогексана в качестве сырья. Катализатор на основе Cs-ZSM-5 / Pt продемонстрировал заметно лучшие результаты по сравнению с Al2O3 / Pt, позволив достигнуть большей степени конверсии при меньшей температуре, показал высокую селективность по отношению к структуре исходных нафтенов, приводя преимущественно к образованию р-ксилола, в то время как система Al2O3 / Pt не обладала таким свойством, катализируя дегидрирование нафтенов с образованием смеси изомерных ксилолов близкой по составу к эквимолярной. ЕР 0186479 В1, 23.08.1989.
Следует отметить нежелательно высокое (1,7 масс %) содержание платины в системе Cs-ZSM-5 / Pt как главный недостаток данного катализатора.
Подробно описано изучение эффективности катализаторов ZSM-12 / Pt и ZSM-12 / Al2O3 / Pt в сравнении с Al2O3 / Pt в процессе риформинга богатого нафтенами сырья. Zhang W., Smirniotis P.G. Dealuminated zeolite-based composite catalysts for reforming an industrial naphthene-rich feedstock. Appl. Catal. A. General, 1998, v. 168, n. 1, p. 113-130. Из экспериментальных данных отчетливо видно преимущество катализатора ZSM-12 / Pt перед Al2O3 / Pt с точки зрения степени конверсии сырья при одинаковой температуре (420°C) процесса, при этом содержание ароматических углеводородов и остаточное содержание нафтенов в катализате соизмеримо. Однако, даже при такой невысокой температуре как 420°C катализатор ZSM-12 / Pt сильно уступает системе Al2O3 / Pt по величине выхода целевых жидких продуктов С5+. С увеличением температуры до 470°C в случае ZSM-12 / Pt степень конверсии сырья приближается к 100%, степень ароматизации возрастает более чем в два раза, остаточное содержание нафтенов в катализате снижается до 0%, но выход жидких С5+ продуктов при этом также ощутимо снижается с 28,45 до 15,32%. Катализаторы состава ZSM-12 / Al2O3 / Pt независимо от процентного содержания цеолита выгодно превосходят систему Al2O3 / Pt при температуре 470°C по трем параметрам: степени конверсии сырья, степени ароматизации и остаточному содержанию нафтенов в катализате. Тем не менее, даже минимальное содержание (1%) цеолита в катализаторе приводит к потере около 30 масс % в выходе жидких С5+ продуктов риформинга по сравнению с Al2O3 / Pt.
Известен катализатор Mg-KL / Pt (0,4-0,8 масс %), дегидрирующая активность которого была протестирована в ходе процесса ароматизации с использованием смеси С67 углеводородов нафты в качестве сырья. Максимальная производительность (степень ароматизации) данного катализатора отмечена при следующих параметрах: содержание платины 0,6 масс %, температура 510°C, давление 9,3 атм, при этом достигался лишь умеренно высокий суммарный выход - 75-80 масс % ароматических углеводородов. US 6740228 В1, 25.05.2004.
Недостатками описанной каталитической системы, безусловно, являются высокая рабочая температура процесса (510°C) и нежелательно завышенное процентное содержание платины (минимальное значение превышает 0,4 масс %, оптимальное составляет 0,6 масс %).
Несмотря на более чем 60-летнюю историю испытаний цеолитов в промышленных каталитических процессах переработки нефти, не всем типам цеолитов было уделено одинаково большое внимание. Так, в отличие от алюмосиликатов, силикоалюмофосфаты (SAPO) и алюмофосфаты (АРО), относительно мало исследованы на предмет активности и селективности в каталитическом дегидрировании углеводородов.
Наиболее близким по технической сущности и достигаемому техническому результату к предлагаемому катализатору дегидрирования является катализатор, содержащий силикоалюмофосфатный цеолит структуры AEL, общего состава: SAPO-11 (40%) / SiO2 / Al2O3 / Pt. Приведены испытания каталитических систем SiO2 / Al2O3 / Pt и SAPO-11(40%) / SiO2 / Al2O3 / Pt с целью сравнительной оценки эффективности в процессе риформинга модельной смеси углеводородов. В качестве сырья использована смесь следующего состава, масс %: н-гексан (86,357), метилциклопентан (9,694), 3-метилпентан (3,741), 2-метилпентан (0,207); ОЧИ=29,27. Ключевые результаты, в полной мере отражающие преимущества цеолитсодержащего катализатора по сравнению с системой SiO2 / Al2O3 / Pt, представлены в Таблице 1. US 5520796 А, 28.05.1996.
Figure 00000001
Figure 00000002
Из приведенных результатов следует, что, несмотря на меньшее содержание платины в составе, система SAPO-11 (40%) / SiO2 / Al2O3 / Pt позволяет достичь заметно большего значения соотношения W (бензол) / W (С15) по сравнению с системой SiO2 / Al2O3 / Pt независимо от температуры процесса риформинга. Более того, в случае цеолитсодержащего катализатора, при снижении температуры с 484 до 460°C соотношение W (бензол) / W (С15) изменяется в пользу бензола, в то время как для катализатора SiO2 / Al2O3 / Pt - в пользу побочных С15 продуктов. Величина октанового числа (ОЧИ) риформата несколько уменьшается при снижении температуры процесса для обоих катализаторов, но при этом значения ОЧИ, достигаемые в случае цеолитсодержащей системы, значительно превосходят соответствующие значения ОЧИ в случае системы SiO2 / Al2O3 / Pt при обеих температурах.
Недостатком данного катализатора является высокое остаточное содержание нафтенов (а именно, метилциклопентана) в катализате относительно сырья (0,46 при 484°C), а также некоторое уменьшение степени конверсии метилциклопентана при снижении температуры: остаточное содержание метилциклопентана в катализате возрастает с 4,47 масс % при 484°C до 5,65 масс % при 460°C. Тогда как для системы SiO2 / Al2O3 / Pt наблюдается обратная зависимость. Таким образом, катализатор SAPO-11 (40%) / SiO2 / Al2O3 / Pt, имея ряд очевидных вышеупомянутых преимуществ перед системой SiO2 / Al2O3 / Pt, тем не менее, нуждается в дальнейшей оптимизации.
Техническая задача предлагаемого изобретения заключается в разработке катализатора для низкотемпературного дегидрирования нафтеновых углеводородов, содержащего не более 0,3 масс % платины, и способа его получения, позволяющего эффективно проводить дегидрирование нафтеновых углеводородов в процессе риформинга гидроочищенных бензиновых фракций при температуре 410-480°C.
Технический результат от реализации заявленной группы изобретений заключается в снижении рабочего интервала температур проведения реакций дегидрирования циклических насыщенных углеводородов в процессе риформинга гидроочищенных бензиновых фракций, с использованием катализатора, обеспечивающего относительное остаточное содержание С5+ нафтеновых углеводородов в стабилизированном катализате не более 0,45 по сравнению с сырьем.
Технический результат по катализатору достигается тем, что катализатор для низкотемпературного дегидрирования нафтеновых углеводородов содержит платину и носитель, состав которого включает алюмофосфатный цеолит АРО-11 или силикоалюмофосфатный цеолит SAPO-11 с иерархической пористой структурой и оксид алюминия, при следующем содержании компонентов, масс %:
платина 0,1-0,3
алюмофосфатный цеолит АРО-11 или
силикоалюмофосфатный цеолит SAPO-11
с иерархической пористой структурой 10,0-80,0
оксид алюминия остальное
Причем силикоалюмофосфатный цеолит SAPO-11 с иерархической пористой структурой имеет соотношение
Figure 00000003
в диапазоне 0,3-0,5, где SМП и SBH - удельная площадь поверхности микропор, м2/г и удельная площадь внешней поверхности цеолита, м2/г. Катализатор дополнительно содержит олово в количестве 0,1-0,2 масс %.
В приведенном изобретении термином «цеолит с иерархической пористой структурой» обозначается цеолит, который кроме упорядоченной микропористой структуры, характерной для цеолитов, содержит, дополнительно, систему мезо- или мезо- и макропор. Создание в структуре цеолитов системы мезопор позволяет значительно увеличить доступность активных центров цеолитов и повысить скорость диффузии реагентов и продуктов. Кроме того, на поверхности мезопор могут происходить химические превращения объемных молекул, которые не способны проникнуть в микропоры цеолита.
В соответствии с поставленной задачей разработан способ приготовления катализатора, содержащего цеолит структуры AEL: алюмофосфатный цеолит АРО-11 или силикоалюмофосфатный цеолит SAPO-11 с иерархической пористой структурой, не более 0,3 масс % платины, обеспечивающего снижение остаточного содержания С5+ нафтенов в стабилизированном катализате относительно сырья не более 0,45 и проведение дегидрирования нафтеновых углеводородов при температурах не более 480°C.
Способ осуществляют следующим образом.
Для приготовления катализатора синтезируют носитель, содержащий: алюмофосфатный цеолит АРО-11 или силикоалюмофосфатный цеолит SAPO-11 с иерархической пористой структурой и оксид алюминия. На полученный носитель наносят платину методом пропитки из водного раствора гексахлорплатиновой кислоты (H2PtCl6) или методом катионного обмена из водного раствора аммиаката платины (Pt(NH3)4Cl2). В частном случае, на катализатор после нанесения платины вводят олово методом пропитки из раствора SnCl4×5H2O. Готовый катализатор содержит, масс %: 0,1-0,3 Pt, 0-0,2 Sn, 10,0-80,0 алюмофосфатного цеолита АРО-11 или силикоалюмофосфатного цеолита SAPO-11 с иерархической пористой структурой, Al2O3 - остальное.
Изобретение иллюстрируется, но не лимитируется нижеприведенными примерами.
Пример 1.
Приготовление катализатора №1 осуществляют посредством синтеза носителя, включающего 60 масс % алюмофосфатного цеолита АРО-11 состава Al2O3: Р2О5=1,0:1,0 (моль: моль) и оксид алюминия, и последующего нанесения на носитель 0,3 масс % платины методом пропитки из водного раствора H2PtCl6.
Приготовление катализатора №1 включает следующие стадии:
1. В фарфоровой ступке смешивают 19,5 г порошка алюмофосфатного цеолита АРО-11 и 15,5 г псевдобемита, растирая полученную смесь до однородности.
2. К полученной смеси при постоянном перемешивании небольшими порциями приливают 29,4 мл раствора, состоящего из 0,5 мл концентрированной (65 масс %) азотной кислоты и 1,9 мл триэтиленгликоля, остальное - дистиллированная вода. Перемешивание продолжают до достижения состояния однородной пасты.
3. Полученную пасту формуют с использованием поршневого экструдера с фильерой диаметром 1,5 мм.
4. Полученные экструдаты провяливают при комнатной температуре в течение 15 ч, сушат при ступенчатом подъеме температуры 60, 80, 110°C и выдержке при каждой температуре в течение 3, 3 и 2 ч, соответственно. Высушенные экструдаты затем измельчают до гранул длиной 1,5-2,5 мм.
5. Полученные гранулы носителя постепенно в течение 10 ч нагревают в муфельной печи до температуры 550°C и выдерживают при данной температуре в течение 37 ч при постоянной подаче воздуха.
6. Готовят пропиточный раствор посредством смешения 29,7 мл дистиллированной воды, 3,03 мл водного раствора H2PtCl6 с концентрацией 11,3 мг Pt/мл, 0,13 мл концентрированной (36 масс %) соляной кислоты и 0,16 мл «ледяной» уксусной кислоты.
7. Взвешивают 12,6 г прокаленных при температуре 550°C гранул носителя, которые затем заливают приготовленным пропиточным раствором и выдерживают при комнатной температуре в течение 18 ч.
8. После окончания стадии пропитки, пропиточный раствор декантируют, а полученный катализатор высушивают при ступенчатом подъеме температуры 60, 80, 110°C и выдержке при каждой температуре в течение 3, 3 и 2 ч, соответственно.
Пример 2.
Приготовление катализатора №2 осуществляют посредством синтеза носителя, включающего 60 масс % алюмофосфатного цеолита АРО-11 состава Al2O32О5=1,0:1,0 (моль: моль) и оксид алюминия, и последующим нанесением на данный носитель 0,3 масс % платины методом катионного обмена из водного раствора Pt(NH3)4Cl2.
Приготовление катализатора №2 включает следующие стадии:
1. В фарфоровой ступке смешивают 19,5 г порошка алюмофосфатного цеолита АРО-11 и 15,5 г псевдобемита, растирая полученную смесь пестиком до однородности.
2. К полученной смеси, при постоянном перемешивании пестиком, небольшими порциями приливают 29,4 мл раствора, состоящего из 0,5 мл концентрированной (65%) азотной кислоты и 1,9 мл триэтиленгликоля, остальное - дистиллированная вода. Перемешивание продолжают до достижения состояния однородной пасты.
3. Полученную пасту формуют с использованием лабораторного поршневого экструдера с фильерой диаметром 1,5 мм.
4. Полученные экструдаты провяливают при комнатной температуре в течение 15 ч, сушат при ступенчатом подъеме температуры 60, 80, 110°C и выдержке при каждой температуре в течение 3, 3 и 2 ч, соответственно. Высушенные экструдаты измельчают до гранул длиной 1,5-2,5 мм.
5. Полученные гранулы носителя постепенно в течение 10 ч нагревают в муфельной печи до температуры 550°C и выдерживают при данной температуре в течение 37 ч при постоянной подаче воздуха.
6. Для нанесения платины методом катионного обмена готовят раствор посредством смешения 11,1 мл дистиллированной воды, 15,95 мл водного раствора Pt(NH3)4Cl2 с концентрацией 2,23 мг Pt/мл и 0,46 мл водного (25%) NH4OH.
7. Взвешивают 12,2 г прокаленных при температуре 550°C гранул носителя, заливают приготовленным раствором для нанесения платины и выдерживают на термостатируемой водяной бане с обратным холодильником при температуре 95°C в течение 6 ч, после чего охлаждают до комнатной температуры и дополнительно выдерживают 18 ч при комнатной температуре.
8. После окончания стадии нанесения платины, раствор декантируют, а полученный катализатор высушивают при ступенчатом подъеме температуры 60, 80, 110°C и выдержке при каждой температуре в течение 3, 3 и 2 ч, соответственно.
9. Высушенные гранулы катализатора постепенно в течение 24 ч нагревают в муфельной печи до температуры 500°C и выдерживают при данной температуре в течение 5 ч при постоянной подаче воздуха.
Пример 3.
Приготовление катализатора №3 осуществляют посредством синтеза носителя, включающего 40 масс % алюмофосфатного цеолита АРО-11 состава Al2O3: Р2О5=1,0:1,0 (моль : моль) и оксид алюминия, и последующим нанесением на носитель 0,3 масс % платины методом пропитки из водного раствора H2PtCl6.
Приготовление катализатора №3 включает следующие стадии:
1. В фарфоровой ступке смешивают 16,0 г порошка алюмофосфатного цеолита АРО-11 и 28,6 г псевдобемита, растирая полученную смесь пестиком до однородности.
2. К полученной смеси, при постоянном перемешивании пестиком, небольшими порциями приливают 36,0 мл раствора, состоящего из 0,9 мл концентрированной (65%) азотной кислоты и 2,4 мл триэтиленгликоля, остальное - дистиллированная вода. Перемешивание продолжают до достижения состояния однородной пасты.
3. Полученную пасту формуют с использованием лабораторного поршневого экструдера с фильерой диаметром 1,5 мм.
4. Полученные экструдаты провяливают при комнатной температуре в течение 15 ч, сушат при ступенчатом подъеме температуры 60, 80, 110°C и выдержке при каждой температуре в течение 3, 3 и 2 ч, соответственно. Высушенные экструдаты затем измельчают до гранул длиной 1,5-2,5 мм.
5. Полученные гранулы носителя постепенно в течение 10 ч нагревают в муфельной печи до температуры 550°C и выдерживают при данной температуре в течение 37 ч при постоянной подаче воздуха.
6. Готовят пропиточный раствор посредством смешения 44,9 мл дистиллированной воды, 4,69 мл водного раствора H2PtCl6 с концентрацией 11,3 мг Pt/мл, 0,21 мл концентрированной (36%) соляной кислоты и 0,25 мл «ледяной» уксусной кислоты.
7. Взвешивают 19,6 г прокаленных при температуре 550°C гранул носителя, которые затем заливают приготовленным пропиточным раствором и выдерживают при комнатной температуре в течение 18 ч.
8. После окончания стадии пропитки, пропиточный раствор декантируют, а полученный катализатор высушивают при ступенчатом подъеме температуры 60, 80, 110°C и выдержке при каждой температуре в течение 3, 3 и 2 ч, соответственно.
Пример 4.
Приготовление катализатора №4 осуществляют посредством синтеза носителя, включающего 40 масс % алюмофосфатного цеолита АРО-11 состава Al2O32О5=1,0: 1,0 (моль : моль) и оксид алюминия, с последовательным нанесением на носитель 0,3 масс % платины методом пропитки из водного раствора H2PtCl6 и 0,1 масс % олова методом пропитки по влагопоглощению из раствора SnCl4×5H2O в смеси концентрированной соляной кислоты (36%) и дистиллированной воды.
Приготовление катализатора №4 включает следующие стадии:
1. В фарфоровой ступке смешивают 16,0 г порошка алюмофосфатного цеолита АРО-11 и 28,6 г псевдобемита, растирая полученную смесь пестиком до однородности.
2. К полученной смеси, при постоянном перемешивании пестиком, небольшими порциями приливают 36,0 мл раствора, состоящего из 0,9 мл концентрированной (65%) азотной кислоты и 2,4 мл триэтиленгликоля, остальное - дистиллированная вода. Перемешивание продолжают до достижения состояния однородной пасты.
3. Полученную пасту формуют с использованием лабораторного поршневого экструдера с фильерой диаметром 1,5 мм.
4. Полученные экструдаты провяливают при комнатной температуре в течение 15 ч, сушат при ступенчатом подъеме температуры 60, 80, 110°C и выдержке при каждой температуре в течение 3, 3 и 2 ч, соответственно. Высушенные экструдаты измельчают до гранул длиной 1,5-2,5 мм.
5. Полученные гранулы носителя постепенно в течение 10 ч нагревают в муфельной печи до температуры 550°C и выдерживают при данной температуре в течение 37 ч при постоянной подаче воздуха.
6. Готовят пропиточный раствор посредством смешения 44,9 мл дистиллированной воды, 4,69 мл водного раствора H2PtCl6 с концентрацией 11,3 мг Pt/мл, 0,21 мл концентрированной (36%) соляной кислоты и 0,25 мл «ледяной» уксусной кислоты.
7. Взвешивают 19,6 г прокаленных гранул носителя, которые заливают приготовленным пропиточным раствором и выдерживают при комнатной температуре в течение 18 ч.
8. После окончания стадии пропитки, пропиточный раствор декантируют, а полученный катализатор высушивают при ступенчатом подъеме температуры 60, 80, 110°C и выдержке при каждой температуре в течение 3, 3 и 2 ч, соответственно.
9. Готовят пропиточный раствор посредством полного растворения 0,024 г SnCl4×5H2O в смеси, состоящей из 0,023 мл концентрированной (36%) соляной кислоты и дистиллированной воды, общего объема 6,7 мл.
10. Взвешивают 8,9 г высушенного катализатора, который затем заливают приготовленным пропиточным раствором и выдерживают при комнатной температуре в течение 6,5 ч.
11. После окончания стадии пропитки, полученный катализатор высушивают при ступенчатом подъеме температуры 60, 80, 110°C и выдержке при каждой температуре в течение 3, 3 и 2 ч, соответственно.
Пример 5.
Приготовление катализатора №5 осуществляют посредством синтеза носителя, включающего 40 масс % алюмофосфатного цеолита АРО-11 и оксид алюминия, и последующим нанесением на носитель 0,3 масс % платины методом катионного обмена из водного раствора Pt(NH3)4Cl2.
Приготовление катализатора №5 включает следующие стадии:
1. В фарфоровой ступке смешивают 16,0 г порошка алюмофосфатного цеолита АРО-11 состава Al2O32О5=1,0:1,0 (моль : моль) и 28,6 г псевдобемита, растирая полученную смесь пестиком до однородности.
2. К полученной смеси, при постоянном перемешивании пестиком, небольшими порциями приливают 36,0 мл раствора, состоящего из 0,9 мл концентрированной (65%) азотной кислоты и 2,4 мл триэтиленгликоля, остальное - дистиллированная вода. Перемешивание продолжают до достижения состояния однородной пасты.
3. Полученную пасту формуют с использованием лабораторного поршневого экструдера с фильерой диаметром 1,5 мм.
4. Полученные экструдаты провяливают при комнатной температуре в течение 15 ч, сушат при ступенчатом подъеме температуры 60, 80, 110°C и выдержке при каждой температуре в течение 3, 3 и 2 ч, соответственно. Высушенные экструдаты затем измельчают до гранул длиной 1,5-2,5 мм.
5. Полученные гранулы носителя постепенно в течение 10 ч нагревают в муфельной печи до температуры 550°C и выдерживают при данной температуре в течение 37 ч при постоянной подаче воздуха.
6. Для нанесения платины методом катионного обмена готовят раствор посредством смешения 10,2 мл дистиллированной воды, 14,62 мл водного раствора Pt(NH3)4Cl2 с концентрацией 2,23 мг Pt/мл и 0,42 мл водного (25%) NH4OH.
7. Взвешивают 11,2 г прокаленных гранул носителя, которые затем заливают приготовленным раствором для нанесения платины методом катионного обмена и выдерживают на термостатируемой водяной бане с обратным холодильником при температуре 95°C в течение 6 ч, после чего охлаждают до комнатной температуры и дополнительно выдерживают 18 ч при комнатной температуре.
8. После окончания стадии нанесения платины, раствор декантируют, а полученный катализатор высушивают при ступенчатом подъеме температуры 60, 80, 110°C и выдержке при каждой температуре в течение 3, 3 и 2 ч, соответственно.
9. Высушенные гранулы катализатора постепенно в течение 24 ч нагревают в муфельной печи до температуры 500°C и выдерживают при данной температуре в течение 5 ч при постоянной подаче воздуха.
Пример 6.
Приготовление катализатора №6 осуществляют посредством синтеза носителя, включающего 40 масс % силикоалюмофосфатного цеолита SAPO-11 с иерархической пористой структурой состава Al2O32О5:SiO2=1,0:0,8:0,7 (моль: моль: моль) с соотношением
Figure 00000004
, равным 0,3 и оксид алюминия, с последующим нанесением на данный носитель 0,3 масс % платины методом катионного обмена из водного раствора Pt(NH3)4Cl2. SМП и SBH - удельная площадь поверхности микропор цеолита, м2/г и удельная площадь внешней поверхности цеолита, м2/г, соответственно, определенные методом азотной порометрии. Общая площадь поверхности цеолита определена по методу БЭТ, удельная площадь поверхности микропор цеолита (SМП) и удельная площадь внешней поверхности цеолита (SBH) определены с использованием t-графика.
Приготовление катализатора №6 включает следующие стадии:
1. В фарфоровой ступке смешивают 14,4 г порошка силикоалюмофосфатного цеолита SAPO-11 с иерархической пористой структурой и 21,4 г псевдобемита, растирая полученную смесь пестиком до однородности.
2. К полученной смеси, при постоянном перемешивании пестиком, небольшими порциями приливают 25,0 мл раствора, состоящего из 0,7 мл концентрированной (65%) азотной кислоты и 1,9 мл триэтиленгликоля, остальное - дистиллированная вода. Перемешивание продолжают до достижения состояния однородной пасты.
3. Полученную пасту формуют с использованием лабораторного поршневого экструдера с фильерой диаметром 1,5 мм.
4. Полученные экструдаты провяливают при комнатной температуре в течение 15 ч, сушат при ступенчатом подъеме температуры 60, 80, 110°C и выдержке при каждой температуре в течение 3, 3 и 2 ч, соответственно. Высушенные экструдаты затем измельчают до гранул длиной 1,5-2,5 мм.
5. Полученные гранулы носителя постепенно в течение 10 ч нагревают в муфельной печи до температуры 550°C и выдерживают при данной температуре в течение 10 ч при постоянной подаче воздуха.
6. Для нанесения платины методом катионного обмена готовят раствор посредством смешения 8,4 мл дистиллированной воды, 13,46 мл водного раствора Pt(NH3)4Cl2 с концентрацией 2,23 мг Pt/мл и 8,90 мл водного (25%) NH4OH.
7. Взвешивают 10,9 г прокаленных гранул носителя, которые заливают приготовленным раствором для нанесения платины методом катионного обмена и выдерживают на термостатируемой водяной бане с обратным холодильником при температуре 95°C в течение 6 ч, после чего охлаждают до комнатной температуры и дополнительно выдерживают в течение 18 ч при комнатной температуре.
8. После окончания стадии нанесения платины, раствор декантируют, а полученный катализатор высушивают при ступенчатом подъеме температуры 60, 80, 110°C и выдержке при каждой температуре в течение 3, 3 и 2 ч, соответственно.
9. Высушенные гранулы катализатора постепенно в течение 3 ч нагревают в муфельной печи до температуры 300°C и выдерживают при данной температуре в течение 3 ч при постоянной подаче воздуха.
Пример 7.
Приготовление катализатора №7 осуществляют посредством синтеза носителя, включающего 40 масс % силикоалюмофосфатного цеолита SAPO-11 с иерархической пористой структурой Al2O32О5:SiO2=1,0:0,8:0,4 (моль: моль: моль) с соотношением
Figure 00000004
, равным 0,5 и оксид алюминия, и последующим нанесением на данный носитель 0,3 масс % платины методом катионного обмена из водного раствора Pt(NH3)4Cl2. Общая площадь поверхности цеолита определена по методу БЭТ, удельная площадь поверхности микропор цеолита (SМП) и удельная площадь внешней поверхности цеолита (SBH) определены с использованием t-графика.
Приготовление катализатора №7 включает следующие стадии:
1. В фарфоровой ступке смешивают 58,2 г порошка силикоалюмофосфатного цеолита SAPO-11 и 94,9 г псевдобемита, растирая полученную смесь пестиком до однородности.
2. К полученной смеси, при постоянном перемешивании пестиком, небольшими порциями приливают 130,0 мл раствора, состоящего из 3,1 мл концентрированной (65%) азотной кислоты и 8,2 мл триэтиленгликоля, остальное - дистиллированная вода. Перемешивание продолжают до достижения состояния однородной пасты.
3. Полученную пасту формуют с использованием лабораторного поршневого экструдера с фильерой диаметром 1,5 мм.
4. Полученные экструдаты провяливают при комнатной температуре в течение 15 ч, сушат при ступенчатом подъеме температуры 60, 80, 110°C и выдержке при каждой температуре в течение 3, 3 и 2 ч, соответственно. Высушенные экструдаты затем измельчают до гранул длиной 1,5-2,5 мм.
5. Полученные гранулы носителя в течение 15 ч нагревают в муфельной печи до температуры 550°C и выдерживают при данной температуре в течение 15 ч при постоянной подаче воздуха.
6. Для нанесения платины методом катионного обмена готовят раствор посредством смешения 18,3 мл дистиллированной воды, 29,3 мл водного раствора Pt(NH3)4Cl2 с концентрацией 2,23 мг Pt/мл и 19,40 мл водного 25%-го NH4OH.
7. Взвешивают 23,6 г прокаленных гранул носителя, которые затем заливают приготовленным раствором для нанесения платины методом катионного обмена и выдерживают на термостатируемой водяной бане с обратным холодильником при температуре 95°C в течение 6 ч, после чего охлаждают до комнатной температуры и дополнительно выдерживают 18 ч при комнатной температуре.
8. После окончания стадии нанесения платины, раствор декантируют, а полученный катализатор высушивают при ступенчатом подъеме температуры 60, 80, 110°C и выдержке при каждой температуре в течение 3, 3 и 2 ч, соответственно.
9. Высушенные гранулы катализатора постепенно в течение 3 ч нагревают в муфельной печи до температуры 300°C и выдерживают при данной температуре в течение 3 ч при постоянной подаче воздуха.
Пример 8.
Приготовление катализатора №8 осуществляют аналогично катализатору №7, приготовление которого описано в Примере 7, за исключением того, что на носитель наносят 0,1 масс % платины.
Пример 9.
Приготовление катализатора №9 осуществляют аналогично катализатору №4, приготовление которого описано в Примере 4, за исключением того, что на носитель наносят 0,2 масс % олова.
Пример 10.
Приготовление катализатора №10 осуществляют аналогично катализатору №1, приготовление которого описано в Примере 1, за исключением того, что содержание алюмофосфатного цеолита АРО-11 составляет 10 масс %.
Пример 11.
Приготовление катализатора №11 осуществляют аналогично катализатору №6, приготовление которого описано в Примере 6, за исключением того, что содержание силикоалюмофосфатного цеолита SAPO-11 с иерархической пористой структурой с соотношением
Figure 00000004
, равным 0,3 составляет 80 масс %.
Состав катализатора, приготовленного способом, описанным в Примерах 1-11, представлен в Таблице 2. Для сравнительной экспериментальной оценки эффективности катализатора выбран катализатор сравнения - современный коммерчески доступный платино-рениевый катализатор риформинга, представленный в Таблице 2.
Figure 00000005
Figure 00000006
Пример 12.
Катализаторы №1-11, приготовленные способом, описанным в Примерах 1-11, и катализатор сравнения были испытаны в процессе низкотемпературного риформинга, проводимого на проточной каталитической установке. Данная установка оборудована обогреваемым кожухом, в который помещены газовые и жидкостные линии, смеситель, реактор. Обогреваемый кожух способствует стабильному термостатированию реактора и позволяет подогревать реагенты перед подачей в реактор. Внутренний диаметр реактора составляет 13 мм, загрузка катализатора - 10 см3.
В ходе проведения испытаний сырье из емкости, находящейся на электронных весах, подают в систему насосом высокого давления. Точное количество подаваемого сырья регистрируют на основании показаний электронных весов. Сырье поступает в смеситель, где смешивается с водородом, результирующая смесь поступает в реактор. Образовавшиеся продукты выводят из нижней части реактора, направляют в сепаратор, где происходит отделение газовой фазы (водородсодержащего газа) от жидкого катализата. Жидкий катализат из сепаратора поступает в холодильник-пробосборник, в котором реализовано охлаждение посредством термостатируемого тосола, непрерывно циркулирующего через «рубашку» аппарата. Из холодильника-пробосборника производят периодический отбор проб жидкого катализата для количественного анализа состава.
Полученный катализат подвергают стабилизации для удаления углеводородов С4-, таким образом получают стабилизированный продукт, содержащий только углеводороды С5+.
Процесс риформинга проводят при следующих условиях: температура 410-480°C, давление 1,0-2,0 МПа, объемная скорость подачи сырья 1,0-2,0 ч1, соотношение водород / сырье = 1300:1 нл/л.
В качестве сырья была использована гидроочищенная бензиновая фракция с нижеприведенными характеристиками:
- содержание С5+ нафтеновых углеводородов, масс %: 26,98;
- содержание С5+ ароматических углеводородов, масс %: 12,05;
- ОЧИ (рассчитанное значение для смеси С5+углеводородов в составе сырья): 62,51.
Мерой количественной оценки эффективности катализатора в реакции дегидрирования нафтеновых углеводородов в процессе низкотемпературного риформинга служат следующие два параметра, представленные в Таблице 3 и 4:
1) относительное остаточное содержание С5+ нафтеновых углеводородов в стабилизированном катализате;
2) относительный прирост содержания С5+ ароматических углеводородов в стабилизированном катализате.
В полном соответствии с технической задачей, разработанный катализатор на основе цеолита структуры AEL характеризуется:
- содержанием платины не более 0,3 масс %,
- обеспечивает относительное остаточное содержание С5+ нафтеновых углеводородов в стабилизированном катализате не более 0,45 при температурах процесса не более 480°C.
Полученный катализатор на основе цеолита структуры AEL значительно более эффективен, чем платино-рениевый катализатор сравнения в рамках обоих вышеуказанных параметров при температурах процесса не более 480°C, Таблица 3. Кроме того, для платино-рениевого катализатора сравнения суммарное содержание дорогостоящих активных металлов (платина и рений) составляет 0,7 масс %, что более чем в 2 раза превышает соответствующее значение для заявленного катализатора.
Figure 00000007
Figure 00000008
Figure 00000009
Figure 00000010
Заявленный катализатор более эффективен не только в рамках достигаемых значений относительного остаточного содержания нафтеновых углеводородов и относительного прироста содержания ароматических углеводородов в стабилизированном катализате, но и, как следствие, в рамках значений ОЧИ стабилизированного катализата. Репрезентативные примеры значений ОЧИ, достигаемых в процессе низкотемпературного риформинга гидроочищенной бензиновой фракции вместе с соответствующими значениями для катализатора сравнения приведены в Таблице 5.
Figure 00000011
Figure 00000012

Claims (4)

1. Катализатор низкотемпературного дегидрирования, обеспечивающий относительное остаточное содержание С5+ нафтеновых углеводородов в стабилизированном катализате не более 0,45 (мас.%/мас.%) при температурах не более 480°С в процессе риформинга гидроочищенных бензиновых фракций, содержащий платину и носитель, состав которого включает алюмофосфатный цеолит АРО-11 или силикоалюмофосфатный цеолит SAPO-11 с иерархической пористой структурой и оксид алюминия, при следующем содержании компонентов, мас.%:
платина 0,1-0,3 алюмофосфатный цеолит АРО-11 или силикоалюмофосфатный цеолит SAPO-11 с иерархической пористой структурой 10,0-80,0 оксид алюминия остальное
2. Катализатор по п. 1, отличающийся тем, что силикоалюмофосфатный цеолит SAPO-11 с иерархической пористой структурой имеет соотношение
Figure 00000013
в диапазоне 0,3-0,5, где S и SBH - удельная площадь поверхности микропор, м2/г и удельная площадь внешней поверхности цеолита, м2/г.
3. Катализатор по п. 1, отличающийся тем, что дополнительно содержит олово в количестве 0,1-0,2 мас.%.
RU2016109561A 2016-03-17 2016-03-17 Катализатор низкотемпературного дегидрирования нафтеновых углеводородов для процесса риформинга гидроочищенных бензиновых фракций и способ его получения RU2623434C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016109561A RU2623434C1 (ru) 2016-03-17 2016-03-17 Катализатор низкотемпературного дегидрирования нафтеновых углеводородов для процесса риформинга гидроочищенных бензиновых фракций и способ его получения

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016109561A RU2623434C1 (ru) 2016-03-17 2016-03-17 Катализатор низкотемпературного дегидрирования нафтеновых углеводородов для процесса риформинга гидроочищенных бензиновых фракций и способ его получения

Publications (1)

Publication Number Publication Date
RU2623434C1 true RU2623434C1 (ru) 2017-06-26

Family

ID=59241509

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016109561A RU2623434C1 (ru) 2016-03-17 2016-03-17 Катализатор низкотемпературного дегидрирования нафтеновых углеводородов для процесса риформинга гидроочищенных бензиновых фракций и способ его получения

Country Status (1)

Country Link
RU (1) RU2623434C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110152723A (zh) * 2018-02-13 2019-08-23 中国石油天然气集团有限公司 一种加氢精制催化剂及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4741820A (en) * 1986-03-27 1988-05-03 Union Carbide Corporation Reforming/dehydrocyclization catalysts and processes
US5135638A (en) * 1989-02-17 1992-08-04 Chevron Research And Technology Company Wax isomerization using catalyst of specific pore geometry
RU2351394C2 (ru) * 2003-11-27 2009-04-10 Несте Ойл Ойй Способ получения катализатора на основе благородного металла и его применение
US20120024754A1 (en) * 2010-07-28 2012-02-02 Chevron U.S.A. Inc. Multi-stage reforming process with final stage catalyst regeneration
RU2575172C1 (ru) * 2014-10-15 2016-02-20 Открытое акционерное общество "Нефтяная компания "Роснефть" Катализатор для совместного получения низкозастывающих топлив и изопарафиновых масел и способ совместного получения низкозастывающих топлив и изопарафиновых масел в процессе изомеризации/гидрокрекинга высокопарафинистого сырья с его использованием

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4741820A (en) * 1986-03-27 1988-05-03 Union Carbide Corporation Reforming/dehydrocyclization catalysts and processes
US5135638A (en) * 1989-02-17 1992-08-04 Chevron Research And Technology Company Wax isomerization using catalyst of specific pore geometry
RU2351394C2 (ru) * 2003-11-27 2009-04-10 Несте Ойл Ойй Способ получения катализатора на основе благородного металла и его применение
US20120024754A1 (en) * 2010-07-28 2012-02-02 Chevron U.S.A. Inc. Multi-stage reforming process with final stage catalyst regeneration
RU2575172C1 (ru) * 2014-10-15 2016-02-20 Открытое акционерное общество "Нефтяная компания "Роснефть" Катализатор для совместного получения низкозастывающих топлив и изопарафиновых масел и способ совместного получения низкозастывающих топлив и изопарафиновых масел в процессе изомеризации/гидрокрекинга высокопарафинистого сырья с его использованием

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110152723A (zh) * 2018-02-13 2019-08-23 中国石油天然气集团有限公司 一种加氢精制催化剂及其制备方法和应用
CN110152723B (zh) * 2018-02-13 2022-07-05 中国石油天然气集团有限公司 一种加氢精制催化剂及其制备方法和应用

Similar Documents

Publication Publication Date Title
EP1805281B1 (en) Xylenes isomerization catalyst system and use thereof
US9242233B2 (en) Catalyst for light naphtha aromatization
PL98293B1 (pl) Sposob wytwarzania mieszaniny ksylenow
US10596558B2 (en) Naphtha reforming catalyst and processes thereof
CN101945841A (zh) 用于乙烷转化成芳烃的方法
Tsai et al. Zeolite supported platinum catalysts for benzene hydrogenation and naphthene isomerization
JPS63119853A (ja) 白金担持触媒の製造方法
JPH01213238A (ja) パラフィンの転化方法
RU2765750C2 (ru) Композиция катализатора
US9199894B2 (en) Isomerisation catalyst preparation process
RU2623434C1 (ru) Катализатор низкотемпературного дегидрирования нафтеновых углеводородов для процесса риформинга гидроочищенных бензиновых фракций и способ его получения
CN110961143A (zh) 分子筛催化剂、其制备方法及其在乙苯脱烷基反应和二甲苯异构化反应中的应用
EA030888B1 (ru) Способ и применение катализатора для повышения качества синтетического бензина
RU2739566C1 (ru) Способ получения катализатора изодепарафинизации дизельных фракций для использования в каталитической системе, состоящей из катализаторов гидроочистки и изодепарафинизации и катализатор, полученный этим способом
EP4328212A1 (en) Method for producing light aromatic hydrocarbons
RU2626747C1 (ru) Катализатор изомеризации н-алканов в процессе риформинга гидроочищенных бензиновых фракций (варианты)
RU2616003C1 (ru) Способ получения низкосернистого низкозастывающего дизельного топлива
RU2560157C1 (ru) Катализатор изодепарафинизации дизельных фракций и способ его получения
WO2013095762A1 (en) Isomerization of light paraffins
RU2471854C1 (ru) Катализатор для риформинга бензиновых фракций и способ его приготовления
RU2617684C1 (ru) Цеолитный катализатор депарафинизации и способ депарафинизации
US9604203B2 (en) Reforming catalyst compositions
RU2670108C1 (ru) Каталитическая система для низкотемпературного риформинга бензиновых фракций и способ его осуществления с применением каталитической системы
RU2658018C1 (ru) Катализатор и способ гидроизомеризации нормальных углеводородов с5-с8 с его использованием
WO2020027696A1 (ru) Катализатор для риформинга бензиновых фракций, способ его получения и применение катализатора

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20200318

NF4A Reinstatement of patent

Effective date: 20210401