RU2573275C2 - Керамический термокомпенсированный резонатор - Google Patents

Керамический термокомпенсированный резонатор Download PDF

Info

Publication number
RU2573275C2
RU2573275C2 RU2014122532/08A RU2014122532A RU2573275C2 RU 2573275 C2 RU2573275 C2 RU 2573275C2 RU 2014122532/08 A RU2014122532/08 A RU 2014122532/08A RU 2014122532 A RU2014122532 A RU 2014122532A RU 2573275 C2 RU2573275 C2 RU 2573275C2
Authority
RU
Russia
Prior art keywords
resonator
coating
inner part
change
glass
Prior art date
Application number
RU2014122532/08A
Other languages
English (en)
Other versions
RU2014122532A (ru
Inventor
Тьерри ХЕССЛЕР
Филипп ДЮБУА
Тьерри КОНЮ
Original Assignee
Те Свотч Груп Рисерч Энд Дивелопмент Лтд
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Те Свотч Груп Рисерч Энд Дивелопмент Лтд filed Critical Те Свотч Груп Рисерч Энд Дивелопмент Лтд
Publication of RU2014122532A publication Critical patent/RU2014122532A/ru
Application granted granted Critical
Publication of RU2573275C2 publication Critical patent/RU2573275C2/ru

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/13Driving means, e.g. electrodes, coils for networks consisting of piezoelectric or electrostrictive materials
    • H03H9/131Driving means, e.g. electrodes, coils for networks consisting of piezoelectric or electrostrictive materials consisting of a multilayered structure
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/20Compensation of mechanisms for stabilising frequency
    • G04B17/22Compensation of mechanisms for stabilising frequency for the effect of variations of temperature
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/20Compensation of mechanisms for stabilising frequency
    • G04B17/22Compensation of mechanisms for stabilising frequency for the effect of variations of temperature
    • G04B17/227Compensation of mechanisms for stabilising frequency for the effect of variations of temperature composition and manufacture of the material used
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/20Compensation of mechanisms for stabilising frequency
    • G04B17/24Compensation of mechanisms for stabilising frequency for the effect of variations of atmospheric pressure
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/0072Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks of microelectro-mechanical resonators or networks
    • H03H3/0075Arrangements or methods specially adapted for testing microelecro-mechanical resonators or networks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/0072Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks of microelectro-mechanical resonators or networks
    • H03H3/0076Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks of microelectro-mechanical resonators or networks for obtaining desired frequency or temperature coefficients
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • H03H3/04Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks for obtaining desired frequency or temperature coefficient
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02244Details of microelectro-mechanical resonators
    • H03H9/02433Means for compensation or elimination of undesired effects
    • H03H9/02448Means for compensation or elimination of undesired effects of temperature influence
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/21Crystal tuning forks
    • H03H9/215Crystal tuning forks consisting of quartz
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/24Constructional features of resonators of material which is not piezoelectric, electrostrictive, or magnetostrictive
    • H03H9/2405Constructional features of resonators of material which is not piezoelectric, electrostrictive, or magnetostrictive of microelectro-mechanical resonators
    • H03H9/2468Tuning fork resonators
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • H03H2003/027Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks the resonators or networks being of the microelectro-mechanical [MEMS] type
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • H03H3/04Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks for obtaining desired frequency or temperature coefficient
    • H03H2003/0407Temperature coefficient

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Acoustics & Sound (AREA)
  • General Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Atmospheric Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Micromachines (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

Изобретение относится к термокомпенсированному резонатору и может использоваться в генераторе опорной частоты, в хронометре. Достигаемый технический результат - осуществление термокомпенсации по меньшей мере первого порядка. Термокомпенсированный резонатор содержит тело в деформированном виде, внутренняя часть которого выполнена из керамики, при этом по меньшей мере одна часть тела содержит покрытие, у которого изменение модуля Юнга при изменении температуры и низком термическом коэффициенте упругости (TEC) противоположно по знаку по сравнению с ТЕС керамики, использованной для изготовления внутренней части, так что изменение частоты резонатора при изменении температуры по существу равно нулю по меньшей мере в первом порядке. 2 н. и 23 з.п. ф-лы, 7 ил.

Description

Область техники, к которой относится изобретение
Изобретение относится к термокомпенсированному резонатору пружинно-балансного, камертонного типа или в более общем смысле типа к микроэлектромеханическим системам (MEMS), для изготовления опорного генератора или генератора опорной частоты, у которого термические коэффициенты первого и, возможно, второго порядков по существу равны нулю.
Уровень техники
В ЕР 1422436 описана пружина баланса, выполненная из кремния и покрытая двуокисью кремния для обеспечения термического коэффициента, по существу равного нулю в диапазоне температур сертификации, принятом в Швейцарском институте официального тестирования хронометров, т.е. между +8 и +38°C. Аналогично этому в WO 2008043727 описан MEMS резонатор, обладающий такими же свойствами небольшого изменения модуля Юнга в этом же диапазоне температур.
Однако изменение частоты в вышеназванных описаниях может потребовать выполнения сложных корректировок в зависимости от применения. Например, для электронных кварцевых часов для прохождения сертификации в Швейцарском институте официального тестирования хронометров необходимо осуществление электронной коррекции исходя из измеренной температуры.
Сущность изобретения
Задача настоящего изобретения заключается в устранении всех или части вышеупомянутых недостатков путем создания керамического резонатора с термокомпенсацией по меньшей мере в первом порядке.
Вследствие этого настоящее изобретение относится к термокомпенсированному резонатору, содержащему тело в деформированном виде, внутренняя часть которого выполнена из керамики, характеризующемуся тем, что по меньшей мере одна часть тела имеет по меньшей мере одно покрытие, у которого изменение модуля Юнга при изменении температуры имеет противоположней знак по отношению к керамике, использованной для изготовления внутренней части тела, так что изменение частоты резонатора с изменением температуры по существу равно нулю по меньшей мере в первом порядке.
Согласно изобретению тело резонатора, используемое в деформированном виде, предпочтительно может иметь одно покрытие для компенсации в одном или в двух порядках. Таким образом, в зависимости от величины и знака для материала покрытия в каждом порядке толщина покрытия вычисляется таким образом, чтобы компенсировать по меньшей мере первый порядок.
В соответствии с прочими предпочтительными признаками настоящего изобретения:
- внутренняя часть тела выполнена из стекла, металлического стекла, технической керамики или керамического стекла;
- тело имеет по существу четырехугольное сечение с идентичными парами сторон;
- тело имеет по существу четырехугольное сечение со сплошным покрытием сторон;
- упомянутое по меньшей мере одно покрытие предотвращает проникновение влаги;
- упомянутое по меньшей мере одно покрытие является электропроводным;
- тело имеет первичный слой, расположенный между внутренней частью и упомянутым по меньшей мере одним покрытием;
- тело представляет собой стержень, скрученный в виде пружины баланса и соединенный с инерционным маховиком;
- тело имеет по меньшей мере два симметрично расположенных стержня, образующих камертон;
- тело представляет собой MEMS резонатор.
И наконец, настоящее изобретение относится к часовому или частотному устройству, такому как, например, хронометр, характеризующемуся тем, что содержит по меньшей мере один резонатор согласно любому из ранее представленных вариантов.
Краткое описание чертежей
Другие признаки и преимущества очевидны из нижеследующего описания, приведенного в качестве не имеющего ограничительного характера примера, проиллюстрированного прилагаемыми к описанию чертежами, на которых показано:
фиг. 1 - вид в перспективе части резонатора пружина-баланс;
фиг. 2 - типовое сечение показанной на фиг. 1 спиральной пружины;
фиг. 3 и 4 - альтернативные варианты сечения резонатора по изобретению;
фиг. 5 - общий вид в перспективе камертонного резонатора;
фиг. 6 и 7 - альтернативные варианты сечения резонатора по изобретению.
Подробное описание предпочтительных вариантов осуществления изобретения
Как пояснено выше, настоящее изобретение относится к хронометру, включающему в себя резонатор, который может быть пружинно-балансного или камертонного типа или, в более общем смысле, типа микроэлектромеханической системы (MEMS). Для упрощения пояснения ниже представлены только исполнения в виде пружина-баланс и камертон. Однако специалист в данной области техники может без труда предложить другие варианты выполнения резонатора на основе изложенной ниже идеи.
В качестве определения, относительное изменение частоты резонатора вытекает из следующего отношения:
Figure 00000001
где
- Δ f f 0
Figure 00000002
- относительное изменение частоты (миллионные доли или 10-6);
- А - постоянная, зависящая от эталонной точки (миллионные доли);
- Т0 - опорная температура (°C);
- α - термический коэффициент первого порядка (миллионные доли на градус Цельсия);
- β - термический коэффициент второго порядка (миллионные доли на градус Цельсия);
- γ - термический коэффициент третьего порядка (миллионные доли на градус Цельсия).
При этом термический коэффициент упругости (ТЕС) представляет собой относительное изменение модуля Юнга при изменении температуры. Используемые ниже коэффициенты "α" и "β", таким образом, соответственно представляют собой термические коэффициенты первого и второго порядка, т.е. относительное изменение частоты резонатора в зависимости от температуры. Коэффициенты "α" и "β" зависят от термического коэффициента упругости тела резонатора и коэффициентов теплового расширения тела. Более того, коэффициенты "α" и "β" также учитывают коэффициенты, характерные для любого отдельного инерционного тела, такого как, например, баланс (образующий инерционный маховик) в случае резонатора пружина-баланс.
Ввиду того, что необходимо поддерживать колебания резонатора, предназначенного для часового или частотного устройства, зависимость от температуры может включать в себя вклад от такой системы поддержки.
Вследствие этого самым важным параметром является термический коэффициент упругости (ТЕС), который не следует путать с постоянной "СТЕ", т.е. с постоянной теплового расширения, относящейся к коэффициенту теплового расширения.
Термический коэффициент упругости (ТЕС) большинства металлов является отрицательным и имеет порядок -1000 миллионных долей на градус Цельсия. Вследствие этого невозможно использовать металлы для создания пружины баланса. Соответственно для решения этой проблемы разработаны сложные сплавы, такие как Nivarox СТ. Однако с ними трудно иметь дело, прежде всего при их производстве.
Настоящее изобретение преимущественно касается альтернативных керамических материалов для изготовления упомянутых резонаторов. Керамика может рассматриваться в качестве продукта, имеющего стекловидное или не стекловидное тело, кристаллическую или частично кристаллическую структуру или изготавливаемого из стекла, тело которого выполняется главным образом из неорганических и металлических или не металлических материалов и который выполнен из отвердевающей при охлаждении расплавленной массы или которому под воздействием тепла одновременно или последовательно придана и закреплена форма.
Предлагаемая в изобретении керамика, таким образом, включает в себя простые стекла, металлические стекла, техническую керамику, такую как карбид кремния, или керамические стекла. Соответственно согласно изобретению предпочтительно, керамический резонатор может иметь по меньшей мере одно покрытие, изменение модуля Юнга которого с изменением температуры имеет противоположный знак изменению модуля Юнга керамики, использованной для изготовления внутренней части, так что по меньшей мере изменение частоты первого порядка упомянутого резонатора по существу равно нулю.
Предпочтительно покрытие должно быть электропроводным для предотвращения возникновения электростатических сил, способных воздействовать на траекторию движения тела. И, наконец, также предпочтительно, чтобы покрытие имело проницаемость, способную сформировать барьер, предотвращающий проникновение влаги, например, чтобы покрытие было выполнено из нитрида кремния.
В примере, показанном на фиг. 1 и 2, видна пружина 1 баланса, тело 5 которой выполнено интегрально с муфтой 3, и термический коэффициент первого α или второго β порядка которой компенсируются использованием двух материалов для внутренней части 8 и покрытия 6 соответственно. На фиг. 2 более наглядно показано имеющее форму четырехугольника сечение тела 5 пружины 1 баланса. Таким образом, тело 5 может определяться его длиной l, высотой h и толщиной e.
На фиг. 2 показан пример, в котором внутренняя часть 8 имеет сплошное покрытие. Разумеется, показанный на фиг. 2 пример не носит ограничительный характер. Так, пружина 1 баланса может иметь покрытие 2, 4, 6 по меньшей мере на одной части, такой как одна или несколько сторон или на всей наружной поверхности тела 5, как показано в примерах, изображенных на фиг. 3 и 4. Для справки, покрытия 2, 4, 6 изображены не в масштабе относительно размеров внутренней части 8, чтобы более наглядно показать расположение каждой части.
Вследствие этого понятно, что предлагаемое в изобретении тело в не имеющем ограничительного характера исполнении может иметь по существу четырехугольное сечение, только одна сторона которого или идентичные стороны которого, или все стороны которого имеют идентичное или не идентичное покрытие.
Аналогично этому, на фиг. 5 показан камертонный резонатор 11, выполненный согласно настоящему изобретению. Тело 15 резонатора образовано основанием 13, которое соединено с двумя ветвями 17, 19, которые должны колебаться. В приведенном примере камертон 11 является камертоном инверсного типа, т.е. основание 13 продолжается между двумя «ластовыми» ветвями 17, 19, т.е. две ветви 17, 19 имеют на своих концах «ласты» 20, 22, и пазового типа, т.е. две ветви имеют пазы 24, 26. Однако понятно, что имеется большое количество возможных вариантов исполнения камертона, который в неисчерпывающей мере может быть инверсного, и/или пазового, и/или конического, и/или «ластового» типа.
Предпочтительно выполненный согласно настоящему изобретению камертон 11 имеет термические коэффициенты первого α или второго β порядка, которые компенсируются нанесением слоев 12, 14, 16 на внутреннюю часть 18 тела 15. На фиг. 6 и 7 представлены два неисчерпывающих примера сечений в плоскости А-А тела 15 камертона 11. Пазовые четырехугольные сечения демонстрируют внутреннюю часть 18 тела 15, по меньшей мере на часть которого, такую как одна или несколько сторон или вся наружная поверхность тела 15, нанесен по меньшей мере один слой покрытия 12, 14, 16. Как и в первом примере, покрытия 12, 14, 16 изображены не в масштабе относительно размеров внутренней части 18, чтобы более понятно показать расположение каждой части.
Внутренняя часть 8, 18 резонатора 1, 11 выполнена из керамики. В то же время имеется огромное разнообразие керамик. Вот почему предпочтение отдается керамике с низким термическим коэффициентом упругости (ТЕС) и низким коэффициентом теплового расширения (αspi).
По этой причине возможно использование кварцевого стекла, также известного как плавленый кварц. В отличие от того, что может подразумеваться под словом "кварц", - это не кристаллический материал, а аморфный кремний.
В зависимости от способа производства плавленого кварца, получаемый термический коэффициент упругости (ТЕС) является, как правило, низким и положительным, т.е. попадающим в диапазон от 50 до 250 миллионных долей на градус Цельсия. Кроме того, коэффициент теплового расширения (αspi) плавленого кварца составляет приблизительно 0,5 миллионных долей на градус Цельсия, что является очень низким показателем. Для примера использования плавленого кварца это означает, что покрытие 2, 4, 6, 12, 14 предпочтительно имеет отрицательный термический коэффициент упругости (ТЕС). Как указано выше, такое покрытие может при этом выполняться из металла или металлического сплава или другой керамики, такой как карбид кремния.
Разумеется, вполне возможно предусмотреть использование других стекол из семейства силикатов щелочных металлов, боросиликатов, алюмосиликатов.
Figure 00000003
Например, могут использоваться стекла Pyrex® или Schott® BF33, AF45:
Figure 00000004
где
- αspi - коэффициент теплового расширения материала (м.д. °C-1);
- ТЕС - термический коэффициент упругости материала (м.д. °C-1).
Могут быть также предусмотрены фотоструктурируемые стекла, подобные описанным в WO 2007059876 (включенному в настоящую патентную заявку путем ссылки). В самом деле, фотолитографический способ изготовления очень точен с точки зрения подстройки термического коэффициента упругости (TEC). И, наконец, могут быть также предусмотрены керамические стекла, такие как церодур.
Как поясняется ниже, понятно, что керамика может иметь положительные или отрицательные термические коэффициенты упругости (ТЕС) первого и второго прядка. Вот почему покрытия 2, 4, 6, 12, 14, 16, используемые для внутренней части 8, 18, могут, в частности, иметь положительные или отрицательные термические коэффициенты упругости (ТЕС) первого и второго прядка. Таким образом, понятно, что резонатор 1, 11 может быть выполнен, например, с керамической внутренней частью, полностью или частично покрытой слоем, также выполненным из керамики.
Таким образом, в зависимости от метода осаждения покрытия 2, 4, 6, 12, 14, 16 предпочтительно выбирать материал с хорошей адгезией к керамике, такой как хром и титан. Вместе с тем в качестве альтернативы перед нанесением основного покрытия 2, 4, 6, 12, 14, 16 возможно нанесение первичного слоя, подобного слою хрома или титана, для улучшения адгезии и/или проницаемости упомянутого покрытия.
И наконец, в случае, если внутренняя часть 8, 18 имеет отрицательный термический коэффициент упругости (ТЕС) первого или второго прядка, то в качестве покрытия могут использоваться предпочтительно двуокись германия (GeO2) и/или окиси циркония или гафния.
Поиск примеров проводился для 4 Гц резонатора с балансом, имеющим момент инерции 16 мг·см2. Коэффициент теплового расширения αбаланса влияет на зависимость частоты резонатора от температуры.
Для пружины баланса высота h и длина l спирали фиксированы, для получения правильного момента подстраивается только ее толщина e. Толщина d покрытия при условии покрытия всех сторон выбирается такой, чтобы по меньшей мере обеспечивалась термическая компенсация частоты резонатора первого порядка α.
Свойства материалов, используемых для внутренней части или покрытия пружины баланса, сведены в приведенную ниже таблицу:
Figure 00000005
Первый пример заключается в покрытии металлом (в данном случае слоем алюминия) спиральной пружины из церодура, поставляемой компанией Schott®, с практически нулевым коэффициентом теплового расширения.
Такое стекло может быть также покрыто слоем химически осажденного из паровой фазы (CVD) карбида кремния SiC. Химически осажденный из паровой фазы карбид кремния является поликристаллическим материалом, считающимся механически и химически стойким. SiC существует также в форме кристалла, например, в гексагональной форме, под наименованием 6H-SiC. Свойства последнего отличаются от свойств поликристаллического карбида кремния. В приведенном ниже примере это компенсируется двуокисью кремния SiO2.
И, наконец, в последнем примере металлическое стекло компенсировано слоем TeO2.
В приведенной ниже таблице различные примеры сведены воедино:
Figure 00000006

Claims (25)

1. Термокомпенсированный резонатор (1, 11), содержащий тело (5, 15) в деформированном виде, внутренняя часть (8, 18) которого выполнена из керамики, отличающийся тем, что по меньшей мере одна часть тела (5, 15) содержит покрытие (2, 4, 6, 12, 14, 16), у которого изменение модуля Юнга при изменении температуры (ТЕС) противоположно по знаку по сравнению с ТЕС керамики, использованной для внутренней части (8, 18), так что изменение частоты при изменении температуры резонатора по существу равно нулю по меньшей мере в первом порядке (α, β).
2. Резонатор (1, 11) по п. 1, отличающийся тем, что внутренняя часть (8, 18) тела (5, 15) содержит стекло.
3. Резонатор (1, 11) по п. 2, отличающийся тем, что внутренняя часть (8, 18) тела (5, 15) выполнена из плавленого кварца.
4. Резонатор (1, 11) по п. 3, отличающийся тем, что покрытие (2, 4, 6, 12, 14, 16) содержит металл, металлический сплав или карбид кремния.
5. Резонатор (1, 11) по п. 2, отличающийся тем, что внутренняя часть (8, 18) тела (5, 15) выполнена из боросиликатного или алюмосиликатного стекла.
6. Резонатор (1, 11) по любому из пп. 2-5, отличающийся тем, что покрытие (2, 4, 6, 12, 14, 16) содержит хром или титан.
7. Резонатор (1, 11) по п. 2, отличающийся тем, что внутренняя часть (8, 18) тела (5, 15) выполнена из фотоструктурированного стекла.
8. Резонатор (1, 11) по п. 1, отличающийся тем, что внутренняя часть (8, 18) тела (5, 15) содержит керамическое стекло.
9. Резонатор (1, 11) по п. 8, отличающийся тем, что внутренняя часть (8, 18) тела (5, 15) выполнена из церодура.
10. Резонатор (1, 11) по п. 9, отличающийся тем, что покрытие (2, 4, 6, 12, 14, 16) содержит металл или карбид кремния.
11. Резонатор (1, 11) по п. 8, отличающийся тем, что покрытие (2, 4, 6, 12, 14, 16) содержит хром, алюминий или титан.
12. Резонатор (1, 11) по п. 1, отличающийся тем, что внутренняя часть (8, 18) тела (5, 15) содержит техническую керамику.
13. Резонатор (1, 11) по п. 12, отличающийся тем, что внутренняя часть (8, 18) тела (5, 15) выполнена из карбида кремния в кристаллической форме.
14. Резонатор (1, 11) по п. 13, отличающийся тем, что покрытие (2, 4, 6, 12, 14, 16) содержит диоксид кремния.
15. Резонатор (1, 11) по п. 12 или 13, отличающийся тем, что покрытие (2, 4, 6, 12, 14, 16) содержит хром или титан.
16. Резонатор (1, 11) по п. 1, отличающийся тем, что внутренняя часть (8, 18) тела (5, 15) содержит металлическое стекло.
17. Резонатор (1, 11) по п. 16, отличающийся тем, что покрытие (2, 4, 6, 12, 14, 16) содержит диоксид теллура.
18. Резонатор (1, 11) по п. 16, отличающийся тем, что покрытие (2, 4, 6, 12, 14, 16) содержит хром или титан.
19. Резонатор (1, 11) по п. 1, отличающийся тем, что тело (5, 15) имеет по существу четырехугольное сечение с попарно идентичными сторонами.
20. Резонатор (1, 11) по п. 1, отличающийся тем, что тело (5, 15) имеет по существу четырехугольное сечение, при этом стороны тела полностью закрыты покрытием.
21. Резонатор (1, 11) по п. 1, отличающийся тем, что тело (5, 15) содержит первичный слой между внутренней частью (8, 18) и покрытием (2, 4, 6, 12, 14, 16).
22. Резонатор (1) по п. 1, отличающийся тем, что тело является стержнем, скрученным с образованием пружины баланса и соединенным с инерционным маховиком.
23. Резонатор (11) по п. 1, отличающийся тем, что тело (15) содержит по меньшей мере два симметрично установленных стержня (17, 19) для образования камертона.
24. Резонатор (1, 11) по п. 1, отличающийся тем, что тело представляет собой резонатор микроэлектромеханической системы.
25. Хронометр, характеризующийся тем, что он содержит по меньшей мере один резонатор (1, 11) по любому из пп. 1-24.
RU2014122532/08A 2011-11-04 2012-10-11 Керамический термокомпенсированный резонатор RU2573275C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP11187854.2A EP2590325A1 (fr) 2011-11-04 2011-11-04 Résonateur thermocompensé en céramique
EP11187854.2 2011-11-04
PCT/EP2012/070129 WO2013064351A1 (fr) 2011-11-04 2012-10-11 Résonateur thermocompensé en céramique

Publications (2)

Publication Number Publication Date
RU2014122532A RU2014122532A (ru) 2015-12-10
RU2573275C2 true RU2573275C2 (ru) 2016-01-20

Family

ID=47008611

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2014122532/08A RU2573275C2 (ru) 2011-11-04 2012-10-11 Керамический термокомпенсированный резонатор

Country Status (7)

Country Link
US (1) US10310451B2 (ru)
EP (2) EP2590325A1 (ru)
JP (3) JP2015501591A (ru)
CN (3) CN104025453A (ru)
HK (2) HK1201645A1 (ru)
RU (1) RU2573275C2 (ru)
WO (1) WO2013064351A1 (ru)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2781968A1 (fr) * 2013-03-19 2014-09-24 Nivarox-FAR S.A. Résonateur moins sensible aux variations climatiques
CN106104393A (zh) * 2014-01-29 2016-11-09 卡地亚国际股份公司 由在其组成中包含硅的陶瓷制成的热补偿的游丝和用于调节游丝的方法
EP2916177B1 (fr) * 2014-03-05 2018-11-07 Nivarox-FAR S.A. Spiral destiné à être serré par une rondelle élastique
EP2952979B1 (fr) * 2014-06-03 2017-03-01 Nivarox-FAR S.A. Composant horloger à base de verre photostructurable
EP2952972B1 (fr) * 2014-06-03 2017-01-25 The Swatch Group Research and Development Ltd. Procédé de fabrication d'un spiral compensateur composite
EP3002638B1 (fr) 2014-09-08 2021-08-18 Richemont International S.A. Procédé de fabrication d'un ressort spiral thermocompensé
WO2016051023A1 (en) * 2014-10-03 2016-04-07 Teknologian Tutkimuskeskus Vtt Oy Temperature compensated compound resonator
CN107005223B (zh) * 2014-10-03 2021-06-04 芬兰国家技术研究中心股份公司 温度补偿梁谐振器
WO2016199039A1 (fr) 2015-06-08 2016-12-15 Richemont International Sa Résonateur horloger thermocompensé et méthode pour réaliser un tel résonateur
EP3106931A1 (fr) * 2015-06-16 2016-12-21 Nivarox-FAR S.A. Pièce à surface de soudage découplée
EP3181940B2 (fr) 2015-12-18 2023-07-05 CSEM Centre Suisse d'Electronique et de Microtechnique SA - Recherche et Développement Procede de fabrication d'un spiral d'une raideur predeterminee par retrait localise de matiere
EP3181939B1 (fr) 2015-12-18 2019-02-20 CSEM Centre Suisse d'Electronique et de Microtechnique SA - Recherche et Développement Procede de fabrication d'un spiral d'une raideur predeterminee par ajout de matiere
EP3181938B1 (fr) 2015-12-18 2019-02-20 CSEM Centre Suisse d'Electronique et de Microtechnique SA - Recherche et Développement Procede de fabrication d'un spiral d'une raideur predeterminee par retrait de matiere
EP3190095B1 (fr) 2016-01-08 2023-08-02 Richemont International SA Résonateur thermocompensé comprenant un verre
WO2019202967A1 (ja) * 2018-04-19 2019-10-24 シチズン時計株式会社 ひげぜんまいおよび調速機
EP3667433B1 (fr) * 2018-12-12 2023-02-01 Nivarox-FAR S.A. Spiral et son procede de fabrication
EP3839644A1 (fr) * 2019-12-20 2021-06-23 Nivarox-FAR S.A. Composant horloger flexible, notamment pour mecanisme oscillateur, et mouvement d'horlogerie comportant un tel composant

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2127484C1 (ru) * 1993-03-04 1999-03-10 АВЛ Гезельшафт фюр Фербреннунгскрафтмашинен унд Месстехник МБХ.Проф.Др.Др.Х.Ц.Ханс Лист Пьезоэлектрический кристаллический элемент
WO2008043727A1 (fr) * 2006-10-09 2008-04-17 Csem Centre Suisse D'electronique Et De Microtechnique Sa Recherche Et Développement Resonateur en silicium de type diapason
WO2011072960A1 (fr) * 2009-12-15 2011-06-23 The Swatch Group Research And Development Ltd Résonateur thermocompense au moins aux premier et second ordres

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4456898A (en) * 1982-02-11 1984-06-26 General Electric Company Thermal compensators for magnetic circuits
JPS61195013A (ja) * 1985-02-25 1986-08-29 Yasuhiko Nakagawa 零温度係数をもつ弾性表面波材料
CH693049A5 (fr) * 1998-02-27 2003-01-31 Rado Montres Sa Procédé de réalisation d'étanchéité dans une montre.
US6351056B1 (en) * 1999-10-01 2002-02-26 Ngk Insulators, Ltd. Piezoelectric/electrostrictive device having mutually opposing thin plate portions
EP1239588A2 (en) * 2001-03-04 2002-09-11 Kazuhiko Yamanouchi Surface acoustic wave substrate and surface acoustic wave functional element
JP3961267B2 (ja) * 2001-11-13 2007-08-22 京セラ株式会社 水晶デバイス
FR2842313B1 (fr) * 2002-07-12 2004-10-22 Gideon Levingston Oscilliateur mecanique (systeme balancier et ressort spiral) en materiaux permettant d'atteindre un niveau superieur de precision, applique a un mouvement d'horlogerie ou autre instrument de precision
ATE307990T1 (de) * 2002-11-25 2005-11-15 Suisse Electronique Microtech Spiraluhrwerkfeder und verfahren zu deren herstellung
US7768179B2 (en) * 2003-06-30 2010-08-03 Piedek Technical Laboratory Quartz crystal unit, quartz crystal oscillator having quartz crystal unit and electronic apparatus having quartz crystal oscillator
US8358053B2 (en) * 2003-06-30 2013-01-22 Piedek Technical Laboratory Unit, oscillator having unit and electronic apparatus having oscillator
GB0324439D0 (en) * 2003-10-20 2003-11-19 Levingston Gideon R Minimal thermal variation and temperature compensating non-magnetic balance wheels and methods of production of these and their associated balance springs
US7068125B2 (en) * 2004-03-04 2006-06-27 Robert Bosch Gmbh Temperature controlled MEMS resonator and method for controlling resonator frequency
JP5057644B2 (ja) * 2004-03-22 2012-10-24 京セラ株式会社 ガラスセラミック組成物およびガラスセラミック焼結体の製造方法
JP2005318366A (ja) * 2004-04-30 2005-11-10 Seiko Epson Corp 圧電薄膜共振子、フィルタ及び圧電薄膜共振子の製造方法
DE602004027471D1 (de) * 2004-06-08 2010-07-15 Suisse Electronique Microtech Unruh-Spiralfeder-Oszillator mit Temperaturkompensation
JP4843611B2 (ja) * 2004-10-01 2011-12-21 デ,ロシェモント,エル.,ピエール セラミックアンテナモジュール及びその製造方法
FR2889374A1 (fr) * 2005-07-29 2007-02-02 Michelin Soc Tech Structure resonnante hybride pour verifier des parametres d'un pneumatique
JP2007123371A (ja) * 2005-10-26 2007-05-17 Kyocera Corp 多数個取り電子装置およびその製造方法
EP1791039A1 (fr) * 2005-11-25 2007-05-30 The Swatch Group Research and Development Ltd. Spiral en verre athermique pour mouvement d'horlogerie et son procédé de fabrication
US7847649B2 (en) * 2005-12-23 2010-12-07 Nxp B.V. MEMS resonator, a method of manufacturing thereof, and a MEMS oscillator
EP1857891A1 (fr) * 2006-05-17 2007-11-21 Patek Philippe Sa Ensemble spiral-virole pour mouvement d'horlogerie
JP2008155333A (ja) * 2006-12-25 2008-07-10 Japan Science & Technology Agency 金属ガラスを用いたマイクロマシン及びそれを用いたセンサ並びにその製造方法
CH714952B1 (fr) * 2007-05-08 2019-10-31 Patek Philippe Sa Geneve Composant horloger, son procédé de fabrication et application de ce procédé.
JP5122888B2 (ja) * 2007-08-27 2013-01-16 セイコーインスツル株式会社 発振子、発振子の製造方法、及び発振器
JP4539708B2 (ja) * 2007-11-02 2010-09-08 エプソントヨコム株式会社 圧電振動片、圧電振動子および加速度センサ
US8414185B2 (en) 2007-11-28 2013-04-09 Manufacture Et Fabrique De Montres Et Chronometres Ulysse Nardin Le Locle S.A. Mechanical oscillator having an optimized thermoelastic coefficient
CH698962B1 (fr) * 2008-06-10 2014-10-31 Rolex Sa Ressort de barillet et procédé pour sa mise en forme.
CH699780B1 (fr) * 2008-10-22 2014-02-14 Richemont Int Sa Ressort spiral de montre autocompensé.
JP2010219992A (ja) * 2009-03-18 2010-09-30 Seiko Epson Corp 振動片および振動子
CN101551283B (zh) * 2009-05-14 2010-10-20 上海交通大学 表面横波压力和温度传感器
EP2264553B1 (fr) * 2009-06-19 2016-10-26 Nivarox-FAR S.A. Ressort thermocompensé et son procédé de fabrication
EP2284629A1 (fr) * 2009-08-13 2011-02-16 ETA SA Manufacture Horlogère Suisse Résonateur mécanique thermocompensé
CH702151A1 (fr) * 2009-11-10 2011-05-13 Cartier Creation Studio Sa Procede de realisation de pieces micromecaniques, notamment en verre ceramique.
TWI398097B (zh) * 2009-11-18 2013-06-01 Wafer Mems Co Ltd 音叉型石英晶體諧振器
US8283835B2 (en) * 2010-04-30 2012-10-09 Epcos Ag Guided bulk acoustic wave device having reduced height and method for manufacturing
EP2395661A1 (fr) * 2010-06-10 2011-12-14 The Swatch Group Research and Development Ltd. Résonateur thermocompensé aux premier et second ordres

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2127484C1 (ru) * 1993-03-04 1999-03-10 АВЛ Гезельшафт фюр Фербреннунгскрафтмашинен унд Месстехник МБХ.Проф.Др.Др.Х.Ц.Ханс Лист Пьезоэлектрический кристаллический элемент
WO2008043727A1 (fr) * 2006-10-09 2008-04-17 Csem Centre Suisse D'electronique Et De Microtechnique Sa Recherche Et Développement Resonateur en silicium de type diapason
WO2011072960A1 (fr) * 2009-12-15 2011-06-23 The Swatch Group Research And Development Ltd Résonateur thermocompense au moins aux premier et second ordres

Also Published As

Publication number Publication date
CN104025453A (zh) 2014-09-03
US20140313866A1 (en) 2014-10-23
JP2019124699A (ja) 2019-07-25
EP2590325A1 (fr) 2013-05-08
EP2774268B1 (fr) 2019-01-23
CN110474615A (zh) 2019-11-19
EP2774268A1 (fr) 2014-09-10
CN107276557A (zh) 2017-10-20
JP2016191711A (ja) 2016-11-10
RU2014122532A (ru) 2015-12-10
HK1244359A1 (zh) 2018-08-03
JP6893525B2 (ja) 2021-06-23
US10310451B2 (en) 2019-06-04
JP2015501591A (ja) 2015-01-15
WO2013064351A1 (fr) 2013-05-10
HK1201645A1 (en) 2015-09-04

Similar Documents

Publication Publication Date Title
RU2573275C2 (ru) Керамический термокомпенсированный резонатор
RU2536389C2 (ru) Резонатор с температурной компенсацией по меньшей мере первого и втрого порядка
RU2636132C2 (ru) Резонатор, термокомпенсированный с помощью металла с памятью формы
JP5400093B2 (ja) 1次係数および2次係数の温度補償型共振子
JP5613056B2 (ja) 最適化された熱弾性係数を有する機械振動子
JP5474432B2 (ja) テン輪/ひげぜんまい振動子用のひげぜんまい
US8502624B2 (en) Thermocompensated mechanical resonator
US10324418B2 (en) Method for fabrication of a balance spring of predetermined thickness through the addition of material
JP2021518537A (ja) 正確な剛性の計時器の温度補償ひげぜんまいを製造する方法
RU2643195C2 (ru) Резонатор с согласованными пружиной баланса и балансом
JP7253405B2 (ja) 熱補償振動体の製造方法
JP2013210386A (ja) 最適化された熱弾性係数を有する機械振動子
CN210742683U (zh) 角度复位弹簧、振荡器以及计时器

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20181012