RU2556688C2 - Полимеры для очистки от металлов - Google Patents

Полимеры для очистки от металлов Download PDF

Info

Publication number
RU2556688C2
RU2556688C2 RU2012142239/04A RU2012142239A RU2556688C2 RU 2556688 C2 RU2556688 C2 RU 2556688C2 RU 2012142239/04 A RU2012142239/04 A RU 2012142239/04A RU 2012142239 A RU2012142239 A RU 2012142239A RU 2556688 C2 RU2556688 C2 RU 2556688C2
Authority
RU
Russia
Prior art keywords
polymer
alkylamine
acrylic monomer
metals
molecular weight
Prior art date
Application number
RU2012142239/04A
Other languages
English (en)
Other versions
RU2012142239A (ru
Inventor
Пол Дж. ЗИНН
Джитендра Т. ШАХ
Вильям Дж. Эндрюс
Original Assignee
Налко Компани
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Налко Компани filed Critical Налко Компани
Publication of RU2012142239A publication Critical patent/RU2012142239A/ru
Application granted granted Critical
Publication of RU2556688C2 publication Critical patent/RU2556688C2/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/02Polyamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/54Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using organic material
    • C02F1/56Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/58Treatment of water, waste water, or sewage by removing specified dissolved compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/52Amides or imides
    • C08F20/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • C08F20/56Acrylamide; Methacrylamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/02Polyamines
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Hydrology & Water Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Removal Of Specific Substances (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Treating Waste Gases (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Detergent Compositions (AREA)

Abstract

Изобретение относится к полимеру, полученному в результате реакции конденсационной полимеризации. Полимер получают, по меньшей мере, из двух мономеров: акриловый мономер и алкиламин. Указанный полимер модифицирован таким образом, что содержит группу дитиокарбаматной соли, способную очищать одну или несколько композиций, содержащих один или несколько металлов. Молекулярная масса полимера составляет от 500 до 200000. Технический результат - получение полимеров для различных сред в качестве отчищающих от металлов, включая системы сточных вод. 2 н. и 11 з.п. ф-лы, 5 пр., 1 ил.

Description

Область техники, к которой относится изобретение
Изобретение относится к новым полимерам для очистки от металлов.
Уровень техники
Очистка от металлов для различных сред, такая как обработка воды и воздуха, присутствует в различных отраслях промышленности, включая тяжелую и легкую промышленность, такую как электростанции и добыча полезных ископаемых. Кроме того, очистка от металлов для промышленных вод является также объектом бытовых применений.
Проводимые исследования для улучшения технологии очистки от металлов необходимы для различных отраслей промышленности. В настоящем изобретении описаны различные возможности управления обработкой металлов в промышленных и бытовых процессах. Эти химические вещества потенциально могут использоваться для других различных применений, которые требуют очистки от металлов.
Краткое описание фигур
На фигуре 1 показана общая схема части системы очистки сточных вод.
Сущность изобретения
Настоящее изобретение относится к композиции, включающей полимер, полученный, по меньшей мере, из двух мономеров: акрил-х и алкиламин, где указанный акрил-х имеет следующую формулу:
Figure 00000001
где Х=OR, ОН и его соли, или NHR2, и где R1 и R2 представляют собой Н или алкильную или арильную группу, где R представляет собой алкильную или арильную группу, причем молекулярная масса указанного полимера составляет от 500 до 200000, и где указанный полимер модифицирован таким образом, что содержит функциональную группу, способную очищать одну или несколько композиций, содержащих один или несколько металлов.
Настоящее изобретение также относится к способу удаления одного или нескольких металлов из среды, содержащей эти металлы, который включает следующие стадии: (а) обработку указанной среды, содержащей металлы, композицией, включающей полимер, полученный, по меньшей мере, из двух мономеров: акрил-х и алкиламин, где указанный акрил-х имеет следующую формулу:
Figure 00000001
где Х=OR, ОН и его соли, или NHR2, и где R1 и R2 представляют собой Н или алкильную или арильную группу, причем молекулярная масса указанного полимера составляет от 500 до 200000, и где указанный полимер модифицирован таким образом, что содержит функциональную группу, способную очищать одну или несколько композиций, содержащих один или несколько металлов; (б) и сбор указанных удаляемых металлов.
Подробное описание изобретения
А. Композиции
Настоящее изобретение относится к композиции, включающей полимер, полученный, по меньшей мере, из двух мономеров: акрил-х и алкиламин, где указанный акрил-х имеет следующую формулу:
Figure 00000001
где Х=OR, ОН и его соли, или NHR2, и где R1 и R2 представляют собой Н или алкильную или арильную группу, где R представляет собой алкильную или арильную группу, причем молекулярная масса указанного полимера составляет от 500 до 200000, и где указанный полимер модифицирован таким образом, что содержит функциональную группу, способную очищать одну или несколько композиций, содержащих один или несколько металлов.
Металлы могут включать металлы с нулевой валентностью, моновалентные и поливалентные металлы. Металлы могут быть модифицированы органическими или неорганическими соединениями или могут быть немодифицированными. Кроме того, металлы могут быть радиоактивными и нерадиоактивными. Примеры включают, но не ограничиваются ими, переходные металлы и тяжелые металлы. Конкретные металлы могут включать, но не ограничиваются ими: медь, никель, цинк, свинец, ртуть, кадмий, серебро, железо, марганец, палладий, платина, стронций, селен, мышьяк, кобальт и золото.
Молекулярная масса полимеров может варьироваться. Например, целевые виды/применение полимеров могут быть одним рассматриваемым фактором. Другим фактором может быть выбор мономера. Молекулярная масса может рассчитываться различными способами, известными специалисту в данной области техники. Например, может использоваться гель-хроматография, как описано ниже в примерах.
Когда приведена молекулярная масса, она обозначает молекулярную массу немодифицированного полимера, иначе называемого основной цепью полимера. Функциональные группы, которые добавляются к основной цепи, не участвуют в расчете. Таким образом, молекулярная масса полимера с функциональными группами может значительно превышать диапазон молекулярных масс.
В одном варианте осуществления молекулярная масса полимера составляет от 1000 до 16000.
В другом варианте осуществления молекулярная масса указанного полимера составляет от 1500 до 8000.
Различные функциональные группы могут использоваться для очистки от металла. Следующие фразы будут хорошо понятны специалисту в данной области техники: когда указанный полимер модифицирован таким образом, что содержит функциональную группу, способную очищать одну или несколько композиций, содержащих один или несколько металлов. Более конкретно, полимер модифицирован таким образом, что содержит функциональную группу, которая может связывать металлы.
В одном варианте осуществления функциональная группа содержит сульфидсодержащую группу.
В другом варианте осуществления функциональная группа представляет собой группу дитиокарбаматной соли.
В другом варианте осуществления функциональная группа представляет собой по крайней мере одну из следующих групп:
алкиленфосфатные группы, алкиленкарбоновые кислоты и их соли, группы оксима, группы амидооксима, дитиокарбаминовые кислоты и их соли, гидроксамовые кислоты и оксиды азота.
Молярные количества функциональной группы по отношению к общим аминам, содержащимся в немодифицированном полимере, также могут варьироваться. Например, реакция 3,0 молярных эквивалентов дисульфида углерода с 1,0:1,0 мольным соотношением акриловая кислота/сополимер ТЕРА, который содержит 4 молярных эквивалента аминов на повторяющуюся единицу после полимеризации, приводит к получению полимера, который модифицирован таким образом, что содержит 75 мол. % группы дитиокарбаматной соли. Другими словами, 75% общего содержания аминов в немодифицированном полимере превращаются в группы дитиокарбаматной соли.
В одном варианте осуществления полимер содержит от 5 до 100 мол.% группы дитиокарбаматной соли. В еще одном варианте осуществления полимер содержит от 25 до 90 мол.% группы дитиокарбаматной соли. В еще одном варианте осуществления полимер содержит от 55 до 80 мол.% группы дитиокарбаматной соли.
Выбор мономера будет зависеть от целевого полимера, который специалист в данной области техники хочет получить.
Алкиламины могут варьироваться по типу.
В одном варианте осуществления алкиламин представляет собой по крайней мере один из следующих алкиламинов: этиленамин, полиэтиленполиамин, этилендиамин (EDA), диэтилентриамин (DETA), триэтилентетрамин (ТЕТА) и тетраэтиленпентамин (ТЕРА) и пентаэтиленгексамин (РЕНА).
Мономерная группа акрил-х также может варьироваться.
В другом варианте осуществления акрил-х представляет собой по крайней мере одну из следующих групп: метилакрилат, метилметакрилат, этилакрилат и этилметакрилат, пропилакрилат и пропилметакрилат.
В другом варианте осуществления акрил-х представляет собой по крайней мере одну из следующих групп: акриловая кислота и ее соли, метакриловая кислота и их соли, акриламид и метакриламид.
Молярное соотношение между мономерами, которые составляют полимер, особенно акрил-х и алкиламином, может варьироваться и зависит от получаемого конечного полимерного продукта. Используемое молярное соотношение определяют как количество молей акрил-х, разделенное на количество молей алкиламина.
В одном варианте осуществления молярное соотношение между акрил-х и алкиламином составляет от 0,85 до 1,5.
В другом варианте осуществления молярное соотношение между акрил-х и алкиламином составляет от 1,0 до 1.2.
Различные комбинации акрил-х и алкиламинов включены в объем данного изобретения, а также связанная с ними молекулярная масса полимеров.
В одном варианте осуществления акрил-х представляет собой акриловые эфиры, и алкиламин представляет собой РЕНА, или ТЕРА, или DETA, или ТЕТА, или EDA. В еще одном варианте осуществления молярное соотношение между акрил-х и алкиламином составляет от 0,85 до 1,5. В еще одном варианте осуществления молекулярная масса может охватывать диапазон: от 500 до 200000, от 1000 до 16000, или от 1500 до 8000. В еще одном варианте осуществления акриловый эфир может представлять собой по крайней мере один из следующих эфиров: метилакрилат, метилметакрилат, этилакрилат и этилметакрилат, пропилакрилат и пропилметакрилат, который объединен по крайней мере с одним из алкиламинов, который включает РЕНА, или ТЕРА, или DETA, или ТЕТА или EDA. В еще одном варианте осуществления полученный полимер модифицирован таким образом, что он содержит следующие диапазоны групп дитиокарбаматной соли: от 5 до 100 мол.%, от 25 до 90 мол.%, от 55 до 80 мол.%.
В другом варианте осуществления акрил-х представляет собой акриламид, и алкиламин представляет собой ТЕРА или DETA или ТЕТА или EDA. В другом варианте осуществления молярное соотношение акрил-х и алкиламина составляет от 0,85 до 1,5. В другом варианте осуществления молекулярная масса может охватывать диапазон: от 500 до 200000, от 1000 до 16000, или от 1500 до 8000. В другом варианте осуществления акриламид может представлять собой по крайней мере одно соединение или комбинацию акриламида и метакриламида, которые объединены по крайней мере с одним из алкиламинов, которые включают РЕНА или ТЕРА или DETA или ТЕТА или EDA. В еще одном варианте осуществления полученный полимер модифицируют таким образом, что он содержит следующие диапазоны групп дитиокарбаматной соли: от 5 до 100 мол.%, от 25 до 90 мол.%, или от 55 до 80 мол.%.
В другом варианте осуществления акрил-х представляет собой акриловую кислоту и ее соли, и алкиламин представляет собой РЕНА или ТЕРА или DETA или ТЕТА или EDA. В другом варианте осуществления молярное соотношение акрил-х и алкиламина составляет от 0,85 до 1,5. В другом варианте осуществления молекулярная масса может охватывать диапазон: от 500 до 200000, от 1000 до 16000, или от 1500 до 8000. В другом варианте осуществления акриловая кислота может представлять собой по крайней мере одно соединение или комбинацию акриловой кислоты или ее солей и метакриловой кислоты или ее солей, которые объединены по крайней мере с одним из алкиламинов, которые включают ТЕРА или DETA или ТЕТА или EDA. В еще одном варианте осуществления полученный полимер модифицируют таким образом, что он содержит следующие диапазоны групп дитиокарбаматной соли: от 5 до 100 мол.%, от 25 до 90 мол.%, или от 55 до 80 мол.%.
Дополнительные мономеры могут быть интегрированы в основную цепь полимера, состоящую из мономеров акрил-х и алкиламина. Схема реакции конденсации полимера может использоваться для получения основной цепи полимера. Различные другие методы синтеза могут использоваться для функционализации полимера, например, дитиокарбаматными и/или другими функциональными группами для очистки от неметаллов.
Специалист в данной области техники может функционализировать полимер без проведения дополнительных экспериментов.
Кроме того, композиция настоящего изобретения может быть получена с другими полимерами, например, описанными в патенте US 5164095, приведенном здесь в качестве ссылки, в частности, водорастворимый дихлорэтиленаммиачный полимер с молекулярной массой от 500 до 100000, который содержит от 5 до 50 мол.% групп дитиокарбаматной соли. В одном варианте осуществления молекулярная масса полимера составляет от 1500 до 2000 и содержит от 15 до 50 мол.% групп дитиокарбаматной соли. В еще одном варианте осуществления молекулярная масса полимера составляет от 1500 до 2000 и содержит от 25 до 40 мол.% групп дитиокарбаматной соли.
Кроме того, композиция настоящего изобретения может быть получена с другими низкомолекулярными сульфидными осадителями, такими как сульфид натрия, гидросульфид натрия, ТМТ-15 ® (натриевые или кальциевые соли тритримеркапто-3-триазина; Evonik Industries Corporation 17211 Camberwell Green Lane, Houston, TX 77070, USA), диметилдитиокарбамат и диэтилдитиокарбамат.
В. Дозировка
Дозировка описанных полимеров для использования может варьироваться. Расчет дозируемого количества может осуществляться без проведения дополнительных экспериментов.
Качество среды для способа и степень очистки среды для способа являются некоторыми факторами, которые могут учитываться специалистом в данной области при выборе дозировки. Тестовый анализ в сосуде является типичным примером, который используется в качестве основы для определения количества дозировки, необходимой для достижения эффективного удаления металлов в контексте обработки водной среды, например, сточных вод.
В одном варианте осуществления количество модифицированного полимера по изобретению, способное эффективно удалять металлы из загрязненной воды, предпочтительно находится в диапазоне от 0,2 до 2 молей дитиокарбамата на моль металла. Более предпочтительно, дозировка составляет от 1 до 2 молей дитиокарбамата на моль металла, содержащегося в воде. В соответствии с одним вариантом осуществления изобретения дозировка полимера для удаления металла, необходимая для хелатирования и осаждения 100 мл от 18 частей на миллион растворенной меди до около 1 части на миллион или менее составляет 0,011 г (11,0 мг) полимера. Полученные металлполимерные комплексы самофлокулируют и быстро оседают. Эти флокулянты легко отделяются от очищаемой воды.
В контексте применения полимера для газовой системы, такой как дымовые газы, полимер может дозироваться постепенно, и скорость захвата для конкретного металла, например, такого как ртуть, может рассчитываться известными в данной области методиками.
С. Способы применения
Настоящее изобретение также относится к способу удаления одного или нескольких металлов из среды, содержащей эти металлы, который включает следующие стадии: (а) обработку указанной среды, содержащей металлы, композицией, включающей полимер, полученный, по меньшей мере, из двух мономеров: акрил-х и алкиламин, где указанный акрил-х имеет следующую формулу:
Figure 00000001
где Х=OR, ОН и его соли, или NHR2, и где R1 и R2 представляют собой Н или алкильную или арильную группу, где R представляет собой алкильную или арильную группу, причем молекулярная масса указанного полимера составляет от 500 до 200000, и где указанный полимер модифицирован таким образом, что содержит функциональную группу, способную очищать одну или несколько композиций, содержащих один или несколько металлов, и (б) сбор указанных удаляемых металлов.
Описанные выше композиции включены в данный раздел и могут использоваться в заявленных методиках, входящих в объем изобретения.
Целевые металлы зависят от обрабатываемой системы/среды.
Металлы могут включать металлы с нулевой валентностью, моновалентные и поливалентные металлы. Металлы могут быть модифицированы органическими или неорганическими соединениями или могут быть немодифицированными. Кроме того, металлы могут быть радиоактивными и нерадиоактивными. Примеры включают, но не ограничиваются ими, переходные металлы и тяжелые металлы. Конкретные металлы могут включать, но не ограничиваются ими, по крайней мере один из следующих металлов, никель, цинк, свинец, ртуть, кадмий, серебро, железо, марганец, палладий, платина, стронций, селен, мышьяк, кобальт и золото.
В одном варианте осуществления металл представляет собой по крайней мере один металл или комбинацию следующих металлов: медь, никель, цинк, свинец, ртуть, кадмий, серебро, железо, марганец, палладий, платина, стронций, селен, мышьяк, кобальт и золото.
В другом варианте осуществления металлы являются переходными металлами.
В другом варианте осуществления металлы являются тяжелыми металлами.
Среды, содержащие металлы, могут варьироваться и включают, по меньшей мере, одну из следующих сред: потоки сточных вод, жидкие углеводородные потоки, потоки дымового газа, летучая зола>и другие твердые частицы. Различные стадии обработки могут быть связаны с удалением металла, включая, но не ограничиваясь ими, стадии фильтрации и/или устройства для контроля качества воздуха, например, мешочные пылеуловители и электрофильтры и другие устройства для контроля качества воздуха.
Среды, содержащие среду жидкой фазы/среду, содержащую жидкую фазу, являются одной мишенью заявленного изобретения.
В одном варианте осуществления среда представляет собой обрабатываемый поток, содержащий воду, например, сточные воды или сточные воды электростанции или промышленного назначения (электростанция, добыча полезных ископаемых, сжигание отходов и/или технологическая операция).
В другом варианте осуществления среда представляет собой поток жидких углеводородов из процессов нефтепереработки и нефтехимических процессов. Примеры включают потоки этих процессов, которые содержат нефтяные углеводороды, такие как нефтяное углеводородное сырье, включая сырую нефть и ее фракции, такие как нафта, бензин, керосин, дизельное топливо, топливо для реактивных двигателей, мазут, газойль вакуумного остатка и т.д., или олефиновые или нафтеновые технологические потоки, технологические потоки получения этиленгликоля, ароматических углеводородов и их производных.
В другом варианте осуществления дополнительные химические вещества, флокулянты и/или коагулянты могут использоваться в сочетании с химическими веществами, входящими в настоящее изобретение. Химические вещества, используемые для среды, содержащей металлы, могут варьироваться, включая добавление по крайней мере одного из следующих веществ: катионные полимеры, анионные полимеры, амфотерные полимеры и цвиттерионные полимеры.
В другом варианте осуществления способ настоящего изобретения также включает дополнительную обработку технологического потока комплексообразующим количеством растворимого в воде дихлорэтиленаммиачного полимера с молекулярной массой от 500 до 100000, который содержит от 5 до 50 мол.% групп дитиокарбаматной соли, с получением комплекса этих металлов, например, тяжелых металлов. В другом варианте осуществления молекулярная масса полимера составляет от 1500 до 2000, и полимер содержит от 15 до 50 мол. % групп дитиокарбаматной соли. В еще одном варианте осуществления молекулярная масса полимера составляет от 1500 до 2000, и полимер содержит от 25 до 40 мол.% групп дитиокарбаматной соли.
В другом варианте осуществления очищающий полимер и дополнительное очищающее средство добавляют в соотношении 1:1.
Среды, содержащие среду газовой фазы/среду, содержащую газовую фазу, являются еще одной мишенью заявленного изобретения. Кроме того, процессы, содержащие жидкую и/или газовую среду, также входят в объем настоящего изобретения.
В другом варианте осуществления среда является частью системы, генерирующей тепло, например, поток дымовых газов.
В другом варианте осуществления теплогенерирующая система представляет собой по крайней мере одну из следующих систем: система сгорания, система сгорания в электростанции, система сжигания угля, система сжигания отходов, печи, печи для горнодобывающих и цементных процессов, а также система обработки руды.
В другом варианте осуществления способ настоящего изобретения также включает применение окислителя к системе, генерирующей тепло. В другом варианте осуществления окислитель применяется до обработки указанным полимером.
В другом варианте осуществления методика многофазной очистки для процесса включает очистку газа и жидкости, например, один или несколько металлов в газе, таких как ртуть, и один или несколько металлов в жидкости. Они могут включать полимерную очистку и дополнительную очистку, как описано выше.
В еще одном варианте осуществления окислитель представляет собой по крайней мере одно из следующих веществ: термолабильный молекулярный галоген, бромид кальция или галогенсодержащее соединение.
В другом варианте осуществления настоящее изобретение дополнительно включает применение окислителя для дымовых газов, причем необязательно, где указанный окислитель окисляет целевые виды при температуре 500°С или выше или при температуре, при которой окислитель способен окислять молекулярную ртуть, присутствующую в процессе, который протекает с образованием ртути, необязательно где указанные целевые виды представляют собой элементарную ртуть или ее производные, и необязательно где указанный окислитель представляет собой по крайней мере одно из следующих соединений: термолабильный молекулярный галоген, бромид кальция или галогенсодержащее соединение. Методики ртутного окисления описаны в патентах US 6808692 и US 6878358, которые приведены здесь в качестве ссылки.
В другом варианте осуществления обработку полимера проводят при температуре 300°С или ниже, предпочтительно при 250°С или ниже.
Следующие примеры не предназначены для ограничения изобретения.
Примеры
А. Получение полимера
Пример 1
Метилакрилат/тетраэтиленпентаминовая полимерная основная цепь, которую затем модифицировали дитиокарбаматными группами.
а. Синтез метилакрилат/тетраэтиленпентаминовой полимерной основной цепи
Тетраэтиленпентамин (ТЕРА) (18,275 масс.%) загружали в стеклянный реактор, оснащенный механической мешалкой и конденсатором. Насыщая свободное пространство азотом и перемешивая, по каплям в течение 30 мин добавляли метилакрилат (16,636 масс.%), поддерживая температуру в интервале 25-31°С при добавлении и в течение 1 ч после окончания добавления. Затем осуществляли вторую загрузку ТЕРА (18,275 масс.%), и полученную реакционную смесь нагревали при 130°С. Эту температуру поддерживали в течение ~3 ч, собирая конденсат в ловушку Дина-Старка. В это время расплавленный полимер оставляли остывать до 120°С, а затем медленно разбавляли деионизированной (DI) водой (46,814 масс.%), поддерживая температуру выше 90°С в процессе разбавления. Полученный ~50 масс.% полимерный раствор затем охлаждали до комнатной температуры. Средняя молекулярная масса полимера составляла 7500 по данным гель-хроматографии и полисахаридным стандартам.
б. Получение дитиокарбаматного полимера
Вторая стадия заключалась в добавлении полимера метилакрилат/ТЕРА (35,327 масс.%), DI воды (28,262 масс.%) и Dowfax 2A1 (0,120 масс.%), Dow Chemical Company Midland, MI 48674, USA, в круглодонную колбу, оснащенную механической мешалкой. Затем к перемешиваемой реакционной смеси добавляли 50% раствор NaOH (9,556 масс.%). Смесь нагревали и выдерживали при 40°С, по каплям добавляли дисульфид углерода (17,179 масс.%) в течение 2 часов. Через один час после добавления дисульфида углерода загружали дополнительное количество 50% NaOH (9,556 масс.%). Реакционную смесь выдерживали при 40°С в течение 2 часов. Затем реакционную смесь охлаждали до комнатной температуры и отфильтровывали через фильтровальную бумагу с получением ~40 масс.% полимерного дитиокарбаматного продукта.
Пример 2
Акриловая кислота/тетраэтиленпентаминовая полимерная основная цепь, которую затем модифицировали дитиокарбаматными группами
а. Синтез акриловая кислота/тетраэтиленпентаминовой полимерной основной цепи
Тетраэтиленпентамин (ТЕРА) (37,556 масс.%) и серную кислоту (0,199 масс.%) загружали в стеклянный реактор, оснащенный механической мешалкой и конденсатором. Насыщая свободное пространство азотом и перемешивая, по каплям в течение 30 мин добавляли акриловую кислоту (14,304 масс.%), поддерживая температуру в пределах 130-140°С в процессе добавления, позволяя экзотерме кислотно-основной реакции достигать желаемой температуры. Затем полученную реакционную смесь нагревали до 160°С. Эту температуру поддерживали в течение 4,5 ч, собирая конденсат в ловушке Дина-Старка. В это время полимерный расплав оставляли остывать до 120°С, а затем медленно разбавляли DI водой (47,941 масс.%), поддерживая температуру выше 90°С в процессе разбавления. Полученный 50 масс.% полимерный раствор затем охлаждали до комнатной температуры. Средняя молекулярная масса полимера составляла 4700 по данным гель-хроматографии и полисахаридным стандартам.
б. Получение дитиокарбаматного полимера
Вторая стадия заключалась в добавлении полимера акриловая кислота/ТЕРА (31,477 масс.%), DI воды (36,825 масс.%) и Dowfax 2А1 (0,118 масс.%) в круглодонную колбу, оснащенную механической мешалкой. Затем к перемешиваемой реакционной смеси добавляли 50% раствор NaOH (8,393 масс.%). Смесь нагревали и выдерживали при 40°С, по каплям добавляли дисульфид углерода (14,794 масс.%) в течение 2 часов. Через один час после добавления дисульфида углерода загружали дополнительное количество 50% NaOH (8,393 масс.%). Реакционную смесь выдерживали при 40°С в течение 2 часов. Затем реакционную смесь охлаждали до комнатной температуры и отфильтровывали через фильтровальную бумагу с получением ~35 масс.% полимерного дитиокарбаматного продукта.
Пример 3
а. Синтеза акриламид/тетраэтиленпентаминовой полимерной основной цепи
Тетраэтиленпентамин (ТЕРА) (14,581 масс.%) загружали в стеклянный реактор, оснащенный механической мешалкой и конденсатором. Насыщая свободное пространство азотом и перемешивая, по каплям добавляли 48,6% раствор акриламида (30,441 масс.%) в течение 1 часа, в течение которого заданная температура достигала и поддерживалась в интервале 65-75°С. После загрузки акриламида температуру поддерживали еще в течение 1 часа. Затем осуществляли вторую загрузку ТЕРА (14,581 масс.%), и полученную реакционную смесь нагревали до 160°С, собирая дистиллированную воду с помощью ловушки Дина-Старка. Эту температуру поддерживали в течение ~4 ч, продолжая собирать конденсат в ловушку Дина-Старка, и захватывая высвобожденный аммиачный побочный продукт. В это время полимерный расплав оставляли остывать до 120°С, а затем медленно разбавляли DI водой (40,397 масс.%), поддерживая температуру выше 90°С в процессе разбавления. Полученный ~50 масс.% полимерный раствор затем охлаждали до комнатной температуры. Средняя молекулярная масса полимера составляла 4500 по данным гель-хроматографии и полисахаридным стандартам.
б. Получение дитиокарбаматного полимера
Вторая стадия заключалась в добавлении акриламид/ТЕРА полимера (34,004 масс.%), DI воды (36,518 масс.%) и Dowfax 2A1 (0,122 масс.%) в круглодонную колбу, оснащенную механической мешалкой. Затем к перемешиваемой реакционной смеси добавляли 50% раствор NaOH (7,763 масс.%). Смесь нагревали и выдерживали при 40°С, по каплям добавляли дисульфид углерода (13,830 масс.%) в течение 2 часов. Через один час после добавления дисульфид углерода загружали дополнительное количество 50% NaOH (7,763 масс.%). Реакционную смесь выдерживали при 40°С в течение 2 часов. Затем реакционную смесь охлаждали до комнатной температуры и отфильтровывали через фильтровальную бумагу с получением ~35 масс.% полимерного дитиокарбаматного продукта.
В. Анализ сточных вод
Как указано выше, стандартной методикой для определения количества и потенциальной эффективности полимеров собирать металл в процессе очистки воды является анализ в сосуде.
1. Пример использования метода с типичными сточными водами с 20 частей на миллион Cu, используя анализ в сосуде
Обычно все полимеры получали в виде 12 масс.% полимерных растворов в DI воде, и получали свежими в день тестирования. Содержащую медь воду использовали для тестирования.
Шесть образцов по 300 мл (сосуд) сточных вод помещали в стаканы объемом 500 мл и помещали на групповую мешалку. Образцы сточных вод смешивали при 150 оборотах в минуту (об/мин), вводя полимер в образцы. Использовали дозировки 0,50 г, 0,63 г, 0,75 г, 0,88 г и 1,00 г полимерных растворов, полученных, как описано выше. Перемешивание при 150 об/мин продолжали в течение 10 минут. Затем медленно перемешивали (35 об/мин) в течение 10 минут. После окончания перемешивания осадок оставляли осаждаться, не встряхивая, в течение дополнительных 10 минут. Затем образцы воды отфильтровывали через фильтр 0,45 мкм. Затем фильтрат подкисляли до рН=2 с помощью концентрированной азотной кислоты, для остановки дальнейшего осаждения меди. Остаточную растворенную медь определяли в отфильтрованных водных образцах с помощью атомно-абсорбционного анализа с использованием медных ссылочных стандартов. Один набор сосудов использовали для каждого тестируемого полимера. Проводили дубликаты для нескольких полимеров и подтверждали полученные результаты.
Следует отметить, что наблюдаемая скорость фильтрации, как правило, составляла менее 1 минуты для загрязненной воды, обработанной полимером, в то время как скорость фильтрации для воды, обработанной низкомолекулярными осадителями металлов, такими как тримеркапто-S-триазин или диметилдитиокарбамат, составляла обычно более 2 минут.
2. Пример использования метода с типичными сточными водами с Нд, используя анализ в сосуде
Обычно все полимеры получали в виде 5 масс.% растворов полимеров в DI воде и получали свежими в день тестирования. Содержащую ртуть воду использовали для тестирования.
Шесть образцов по 500 мл (сосуды) сточных вод помещали в стаканы объемом 1 л и помещали на групповую мешалку. Образцы сточных вод смешивали при 300 об/мин, вводя полимер в образцы. Использовали дозировки 0,050 г, 0,100 г, 0,150 г и 0,250 г полимерных растворов, полученных, как описано выше. Перемешивание при 300 об/мин продолжали в течение 25 минут. Затем добавляли 5 частей на млн катионного флокулянта, и затем медленно перемешивали (15 об/мин) в течение 5 минут. После окончания перемешивания осадок оставляли осаждаться, не встряхивая, в течение дополнительных 45 минут. Затем образцы воды отфильтровывали через фильтр 0,45 мкм. Остаточное содержание ртути определяли в образцах отфильтрованной воды в соответствии с методом 1631 United States EPA. Один набор сосудов использовали для каждого тестируемого полимера. Проводили дубликаты для нескольких полимеров и подтверждали полученные результаты.
Следует отметить, что наблюдаемая скорость фильтрации обычно была выше, чем для воды, очищенной низкомолекулярными осадителями металлов, такими как тримеркапто-3-триазин или диметилдитиокарбамат.
3. Пример осуществления на типовых сточных водах, содержащих Cu, используя анализ в сосуде
Остаточное содержание меди (частей на миллион) в загрязненной воде
Дозировка полимера (мг)/100 мл сточных вод
Пример 0 6,8 8,5 10,2 11,9
1b 19,1 8,0 4,8 2,1 0,3
Дозировка полимера (мг)/100 мл сточных вод
Пример 0 7,0 8,8 10,5 12,3
2b 18,6 7,8 4,5 2,61 0,2
Дозировка полимера (мг)/100 мл сточных вод
Пример 0 6,8 8,5 10,2 11,9
3b 19,1 7,8 5,2 2,5 0,7
С. Общая методика использования полимеров в системе очистки сточных вод
На фигуре 1 показана общая схема процесса очистки сточных вод. На данной фигуре схема очистки сточных вод основана на обработке дымовых газов обессеривания хлоридной очистки с электростанции. Полимеры настоящего изобретения могут применяться, по крайней мере, для стадий осаждения, коагуляции и флокуляции.
Комбинации компонентов, описанные в заявке на патент
В одном варианте осуществления композиция заявленных веществ включают различные комбинации полимерных компонентов, таких как молекулярная масса, функциональные группы, мономерные компоненты и молярные количества указанных компонентов. В другом варианте осуществления заявленные композиции включают комбинации согласно зависимым пунктам формулы изобретения. В другом варианте осуществления диапазон или эквивалент определенного компонента включает отдельный компонент (компоненты) в пределах или диапазонах этого диапазона.
В другом варианте осуществления заявленный способ применения включает различные комбинации полимерных компонентов, таких как молекулярная масса, функциональные группы, мономерные компоненты и молярные количества указанных компонентов. В другом варианте осуществления заявленные способы применения включают комбинации согласно зависимым пунктам формулы изобретения. В другом варианте осуществления диапазон или эквивалент определенного компонента включает отдельный компонент (компоненты) в пределах или диапазонах этого диапазона.

Claims (13)

1. Полимер, полученный в результате реакции конденсационной полимеризации, по крайней мере, из двух мономеров: акриловый мономер и алкиламин, где указанный акриловый мономер имеет следующую формулу:
Figure 00000002

где X=OR, и где R представляют собой алкильную или арильную группу,
где R1 представляют собой Н или алкильную или арильную группу, причем молекулярная масса указанного полимера составляет от 500 до 200000, и где указанный полимер модифицирован таким образом, что содержит группу дитиокарбаматной соли, способную очищать одну или несколько композиций, содержащих один или несколько металлов.
2. Полимер по п. 1, который содержит от 5 до 100 мол.% группы дитиокарбаматной соли.
3. Полимер по п. 1, в котором алкиламин представляет собой по крайней мере один из следующих алкиламинов: этиленамин, полиэтиленполиамин, этилендиамин (EDA), диэтилентриамин (DETA), триэтилентетрамин (ТЕТА) и тетраэтиленпентамин (ТЕРА) и пентаэтиленгексамин (РЕНА).
4. Полимер по п. 1, в котором акриловый мономер представляет собой по крайней мере одну из следующих групп: метилакрилат, метилметакрилат, этилакрилат и этилметакрилат, пропилакрилат и пропилметакрилат.
5. Полимер по п. 1, в котором акриловый мономер представляет собой акриловые эфиры, и алкиламин представляет собой РЕНА или ТЕРА или DETA или ТЕТА или EDA, и молярное соотношение между акриловый мономер и алкиламином составляет от 0,85 до 1,5.
6. Полимер по п. 5, в котором молекулярная масса указанного полимера может охватывать диапазон: от 1500 до 8000 и где полимер модифицирован таким образом, что содержит более 55 мол.% дитиокарбаминовой кислоты и ее соли.
7. Полимер, полученный в результате реакции конденсационной полимеризации, по крайней мере, из двух мономеров: акриловый мономер и алкиламин, где указанный акриловый мономер имеет следующую формулу:
Figure 00000003

где X=ОН и его соли, или NHR2, и где R1 и R2 представляют собой Н или алкильную или арильную группу, где R представляет собой алкильную или арильную группу, причем молекулярная масса указанного полимера составляет от 500 до 200000, и где указанный полимер модифицирован таким образом, что содержит группу дитиокарбаматной соли, способную очищать одну или несколько композиций, содержащих один или несколько металлов.
8. Полимер по п. 1, который содержит от 5 до 100 мол.% группы дитиокарбаматной соли.
9. Полимер по п. 7, в котором алкиламин представляет собой по крайней мере один из следующих алкиламинов: этиленамин, полиэтиленполиамин, этилендиамин (EDA), диэтилентриамин (DETA), триэтилентетрамин (ТЕТА) и тетраэтиленпентамин (ТЕРА) и пентаэтиленгексамин (РЕНА).
10. Полимер по п. 7, в котором акриловый мономер представляет собой акриловые эфиры, и алкиламин представляет собой РЕНА или ТЕРА или DETA или ТЕТА или EDA, и молярное соотношение между акриловый мономер и алкиламином составляет от 0,85 до 1,5.
11. Полимер по п. 1, в котором молекулярная масса указанного полимера может охватывать диапазон: от 1500 до 8000, и где полимер модифицирован таким образом, что содержит более 55 мол.% дитиокарбаминовой кислоты и ее соли.
12. Полимер по п. 7, в котором акриловый мономер представляет собой акриловые эфиры, и алкиламин представляет собой РЕНА или ТЕРА или DETA или ТЕТА или EDA, и молярное соотношение между акриловый мономер и алкиламином составляет от 0,85 до 1,5.
13. Полимер по п. 12, в котором молекулярная масса указанного полимера может охватывать диапазон: от 1500 до 8000, и где полимер модифицирован таким образом, что содержит более 55 мол.% группы дитиокарбаматной соли.
RU2012142239/04A 2010-04-06 2011-04-05 Полимеры для очистки от металлов RU2556688C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12/754,660 US8747789B2 (en) 2010-04-06 2010-04-06 Metal scavenging polymers
US12/754,660 2010-04-06
PCT/US2011/031153 WO2011127002A2 (en) 2010-04-06 2011-04-05 Metal scavenging polymers

Publications (2)

Publication Number Publication Date
RU2012142239A RU2012142239A (ru) 2014-05-20
RU2556688C2 true RU2556688C2 (ru) 2015-07-20

Family

ID=44710387

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012142239/04A RU2556688C2 (ru) 2010-04-06 2011-04-05 Полимеры для очистки от металлов

Country Status (16)

Country Link
US (1) US8747789B2 (ru)
EP (1) EP2556094B1 (ru)
JP (2) JP5931052B2 (ru)
KR (2) KR20130093474A (ru)
CN (1) CN102892794B (ru)
AR (1) AR081327A1 (ru)
AU (1) AU2011238529B2 (ru)
BR (1) BR112012025456B1 (ru)
CA (1) CA2795693C (ru)
CL (1) CL2012002808A1 (ru)
MY (1) MY158442A (ru)
PL (1) PL2556094T3 (ru)
RU (1) RU2556688C2 (ru)
SG (2) SG184471A1 (ru)
TW (1) TWI519485B (ru)
WO (1) WO2011127002A2 (ru)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9328003B2 (en) 2006-09-07 2016-05-03 Nalco Company Method of heavy metal removal from water streams
US8747789B2 (en) * 2010-04-06 2014-06-10 Nalco Company Metal scavenging polymers
IN2014CN01028A (ru) 2011-07-12 2015-04-10 Gen Electric
TWI583630B (zh) * 2012-06-29 2017-05-21 奈寇公司 金屬清除聚合物及其用途
CN103172159B (zh) * 2013-03-21 2014-05-07 东阳市吉泰环保科技有限公司 一种复合型重金属螯合剂的制备方法
EP3068733B1 (en) * 2013-11-11 2019-10-02 Nalco Company Method of selenium removal from waste water streams
WO2017201140A1 (en) * 2016-05-20 2017-11-23 Ecolab USA, Inc. Method of separating mercury from an ore leachate
CN109790071A (zh) 2016-09-01 2019-05-21 艺康美国股份有限公司 控制汞的石膏添加剂
CN108059972B (zh) * 2017-12-14 2019-10-22 武汉工程大学 利用聚乙烯亚胺从燃油中萃取脱氮的方法
CN109264876B (zh) * 2018-10-12 2021-12-14 山东理工大学 无磷反渗透阻垢剂eda-pamam及其制备方法
CN111995025A (zh) * 2019-11-04 2020-11-27 沈阳化工研究院设计工程有限公司 一种处理含络合镍废水的高分子重金属螯合剂及其制备方法
JPWO2023053803A1 (ru) * 2021-09-28 2023-04-06
CN114230788B (zh) * 2021-12-16 2023-08-29 中国石油大学(华东) 一种多价聚阴离子含油污水净水剂及制备方法
CN114292362B (zh) * 2021-12-28 2023-06-13 张家港凯宝来环保科技有限公司 一种重金属污水处理用高分子聚合物的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4435548A (en) * 1981-04-27 1984-03-06 The Dow Chemical Company Branched polyamidoamines
US4731187A (en) * 1985-08-05 1988-03-15 Miyoshi Yushi Kabushiki Kaisha Removal of heavy metals from waste water
US5395896A (en) * 1992-07-28 1995-03-07 Miyoshi Yushi Kabushiki Kaisha Metal scavengers and processes for the production thereof
RU2040528C1 (ru) * 1988-12-19 1995-07-25 Американ Цианамид Компани Способ получения водорастворимого катионного полимерного флокулянта
US6667384B2 (en) * 2001-12-27 2003-12-23 Hercules Incorporated Methyl acrylate-diamine based polyamide resins and processes for producing the same
RU2290414C1 (ru) * 2005-12-05 2006-12-27 Общество с ограниченной ответственностью "Флок Карбон" Способ получения высокомолекулярного (мет)акрилового анионного флокулянта

Family Cites Families (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4039446A (en) 1972-06-28 1977-08-02 Sumitomo Chemical Company, Limited Heavy metal-binding agent process
JPS5330688A (en) * 1976-09-03 1978-03-23 Agency Of Ind Science & Technol Polymers having metal collecting ability
US4451351A (en) 1980-11-17 1984-05-29 Pentanyl Technologies, Inc. Method of liquefaction of carbonaceous materials
US4670180A (en) 1985-04-26 1987-06-02 Miyoshi Yushi Kabushiki Kaisha Metal scavenger and metal scavenging process
FR2591489B1 (fr) 1985-12-16 1988-03-25 Aerospatiale Prothese cardiaque totale comportant deux modules de pompage relies par une liaison fonctionnelle.
JPH01164492A (ja) * 1987-12-17 1989-06-28 Osaka City 高分子系重金属捕捉剤
JP2561571B2 (ja) 1991-03-29 1996-12-11 オリエンタル技研工業株式会社 排ガス中の水銀の除去方法
US5328626A (en) * 1991-07-19 1994-07-12 Met-Tech Systems, Ltd. N-ethyl hydroxamic acid chelants
US5164095A (en) 1991-10-02 1992-11-17 Nalco Chemical Company Dithiocarbamate polymers
US5346627A (en) 1992-03-03 1994-09-13 Nalco Chemical Company Method for removing metals from a fluid stream
US5510040A (en) 1994-11-21 1996-04-23 Nalco Chemical Company Removal of selenium from water by complexation with polymeric dithiocarbamates
US5759394A (en) 1996-11-27 1998-06-02 Alliedsignal Inc. Elongate fiber filter mechanically securing solid adsorbent particles between adjacent multilobes
US5523002A (en) 1995-02-17 1996-06-04 Betz Laboratories, Inc. Polymeric dithiocarbamic acid salt compositions and methods of use
US5500133A (en) 1995-02-17 1996-03-19 Betz Laboratories, Inc. Polymeric dithiocarbamate acid salt compositions and method of use
US5856418A (en) * 1996-04-16 1999-01-05 Nippon Shokubai Co., Ltd. Water-soluble monomer, water-soluble polymer and their production process and use
US5854173A (en) 1996-05-31 1998-12-29 Electric Power Research Institute, Inc. Flake shaped sorbent particle for removing vapor phase contaminants from a gas stream and method for manufacturing same
JP2000015222A (ja) 1998-06-30 2000-01-18 Miyoshi Oil & Fat Co Ltd 固体状廃棄物の処理方法
JP4029994B2 (ja) * 1998-08-21 2008-01-09 ミヨシ油脂株式会社 金属捕集剤
CN1337923A (zh) * 1999-01-15 2002-02-27 纳尔科化学公司 用于从半导体废水中同时沉淀多种金属离子以提高微滤器工作效率的合成物和方法
US20030104969A1 (en) * 2000-05-11 2003-06-05 Caswell Debra Sue Laundry system having unitized dosing
US6451723B1 (en) 2000-07-07 2002-09-17 Honeywell International Inc. Polymer-bound nitrogen adsorbent and method of making and using it
US6527828B2 (en) 2001-03-19 2003-03-04 Advanced Technology Materials, Inc. Oxygen enhanced CDA modification to a CDO integrated scrubber
US6905534B2 (en) 2001-04-16 2005-06-14 Electric Power Research Institute, Inc. Method and apparatus for removing vapor phase contaminants from a flue gas stream
JP3663437B2 (ja) * 2001-09-04 2005-06-22 独立行政法人産業技術総合研究所 重金属イオン吸着剤及びその製造方法
US6521021B1 (en) 2002-01-09 2003-02-18 The United States Of America As Represented By The United States Department Of Energy Thief process for the removal of mercury from flue gas
US6808692B2 (en) 2002-02-14 2004-10-26 Oehr Klaus H Enhanced mercury control in coal-fired power plants
AU2003232092A1 (en) 2002-05-06 2003-11-17 Sidney G. Nelson Jr. Methods and compositions to sequester combustion-gas mercury in fly ash and concrete
US6878358B2 (en) 2002-07-22 2005-04-12 Bayer Aktiengesellschaft Process for removing mercury from flue gases
US7341618B2 (en) 2002-10-24 2008-03-11 Georgia Tech Research Corporation Filters and methods of making and using the same
US6818043B1 (en) 2003-01-23 2004-11-16 Electric Power Research Institute, Inc. Vapor-phase contaminant removal by injection of fine sorbent slurries
US7514052B2 (en) 2004-01-06 2009-04-07 General Electric Company Method for removal of mercury emissions from coal combustion
GB0413630D0 (en) * 2004-06-18 2004-07-21 Avecia Ltd Process
US7270063B2 (en) 2004-11-16 2007-09-18 Afton Chemical Corporation Methods and apparatuses for removing mercury-containing material from emissions of combustion devices, and flue gas and flyash resulting therefrom
KR20080024195A (ko) 2005-07-11 2008-03-17 허큘레스 인코포레이티드 건조-강도 수지로서 비-열경화성 폴리아미도아민의 용도
US7776780B1 (en) 2005-07-14 2010-08-17 The United States Of America As Represented By The United States Department Of Energy Catalysts for oxidation of mercury in flue gas
JP5249500B2 (ja) * 2005-12-16 2013-07-31 国立大学法人茨城大学 金属イオンの検出方法
US7473303B1 (en) 2006-03-27 2009-01-06 Mobotec Usa, Inc. System and method for improved mercury control
WO2007149867A1 (en) 2006-06-19 2007-12-27 Higgins Brian S Method and apparatus for enhanced mercury removal
US8110163B2 (en) 2007-12-07 2012-02-07 Nalco Company Complexation and removal of heavy metals from flue gas desulfurization systems
US7713503B2 (en) 2006-09-12 2010-05-11 General Electric Company Sorbents and sorbent composition for mercury removal
JP5439691B2 (ja) * 2007-03-06 2014-03-12 日立化成株式会社 高原子価金属イオンの捕集剤
WO2010021234A1 (ja) * 2008-08-19 2010-02-25 財団法人川村理化学研究所 有機ポリマー多孔質体、及びその製造方法
US8747789B2 (en) * 2010-04-06 2014-06-10 Nalco Company Metal scavenging polymers

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4435548A (en) * 1981-04-27 1984-03-06 The Dow Chemical Company Branched polyamidoamines
US4731187A (en) * 1985-08-05 1988-03-15 Miyoshi Yushi Kabushiki Kaisha Removal of heavy metals from waste water
RU2040528C1 (ru) * 1988-12-19 1995-07-25 Американ Цианамид Компани Способ получения водорастворимого катионного полимерного флокулянта
US5395896A (en) * 1992-07-28 1995-03-07 Miyoshi Yushi Kabushiki Kaisha Metal scavengers and processes for the production thereof
US6667384B2 (en) * 2001-12-27 2003-12-23 Hercules Incorporated Methyl acrylate-diamine based polyamide resins and processes for producing the same
RU2290414C1 (ru) * 2005-12-05 2006-12-27 Общество с ограниченной ответственностью "Флок Карбон" Способ получения высокомолекулярного (мет)акрилового анионного флокулянта

Also Published As

Publication number Publication date
KR20170137780A (ko) 2017-12-13
PL2556094T3 (pl) 2019-03-29
US8747789B2 (en) 2014-06-10
US20110245453A1 (en) 2011-10-06
JP2013523975A (ja) 2013-06-17
WO2011127002A2 (en) 2011-10-13
SG10201709928YA (en) 2018-01-30
EP2556094A2 (en) 2013-02-13
EP2556094B1 (en) 2018-10-10
AR081327A1 (es) 2012-08-08
TW201139293A (en) 2011-11-16
RU2012142239A (ru) 2014-05-20
CL2012002808A1 (es) 2013-02-01
CA2795693A1 (en) 2011-10-13
SG184471A1 (en) 2012-11-29
CN102892794A (zh) 2013-01-23
CN102892794B (zh) 2015-06-03
WO2011127002A3 (en) 2012-02-09
TWI519485B (zh) 2016-02-01
JP2013136051A (ja) 2013-07-11
AU2011238529A1 (en) 2012-10-25
KR101970585B1 (ko) 2019-08-13
CA2795693C (en) 2017-11-07
BR112012025456B1 (pt) 2019-12-10
AU2011238529B2 (en) 2015-01-22
BR112012025456A2 (pt) 2016-07-05
MY158442A (en) 2016-10-14
JP5931052B2 (ja) 2016-06-08
EP2556094A4 (en) 2014-08-06
KR20130093474A (ko) 2013-08-22

Similar Documents

Publication Publication Date Title
RU2564811C2 (ru) Полимеры для очистки от металлов и их применения
RU2556688C2 (ru) Полимеры для очистки от металлов
US8927637B2 (en) Metal scavenging polymers and uses thereof
JP6701085B2 (ja) 廃水ストリームからの重金属除去の方法
EP2867172B9 (en) Metal-scavenging polymers and uses thereof