RU2552431C1 - Способ и система водоподготовки - Google Patents
Способ и система водоподготовки Download PDFInfo
- Publication number
- RU2552431C1 RU2552431C1 RU2014114296/05A RU2014114296A RU2552431C1 RU 2552431 C1 RU2552431 C1 RU 2552431C1 RU 2014114296/05 A RU2014114296/05 A RU 2014114296/05A RU 2014114296 A RU2014114296 A RU 2014114296A RU 2552431 C1 RU2552431 C1 RU 2552431C1
- Authority
- RU
- Russia
- Prior art keywords
- permanent magnets
- water
- channels
- water treatment
- microchannel plate
- Prior art date
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 147
- 238000000034 method Methods 0.000 title claims abstract description 22
- 239000000126 substance Substances 0.000 claims abstract description 17
- 239000001257 hydrogen Substances 0.000 claims abstract description 15
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 15
- 230000000694 effects Effects 0.000 claims abstract description 13
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 11
- 239000000956 alloy Substances 0.000 claims abstract description 11
- 229910052761 rare earth metal Inorganic materials 0.000 claims abstract description 7
- 150000002910 rare earth metals Chemical class 0.000 claims abstract description 7
- 229910000982 rare earth metal group alloy Inorganic materials 0.000 claims description 8
- 230000006378 damage Effects 0.000 claims description 7
- 239000011159 matrix material Substances 0.000 claims description 7
- 238000009825 accumulation Methods 0.000 abstract description 2
- 238000010276 construction Methods 0.000 abstract 1
- 239000013049 sediment Substances 0.000 abstract 1
- 230000015572 biosynthetic process Effects 0.000 description 8
- 238000005755 formation reaction Methods 0.000 description 8
- 230000005684 electric field Effects 0.000 description 7
- 230000008569 process Effects 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 4
- 230000005284 excitation Effects 0.000 description 4
- 239000011777 magnesium Substances 0.000 description 4
- 238000000746 purification Methods 0.000 description 4
- 235000017166 Bambusa arundinacea Nutrition 0.000 description 3
- 235000017491 Bambusa tulda Nutrition 0.000 description 3
- 241001330002 Bambuseae Species 0.000 description 3
- 235000015334 Phyllostachys viridis Nutrition 0.000 description 3
- 239000011425 bamboo Substances 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 125000004430 oxygen atom Chemical group O* 0.000 description 3
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- 239000002585 base Substances 0.000 description 2
- 239000003245 coal Substances 0.000 description 2
- 239000000356 contaminant Substances 0.000 description 2
- 230000005281 excited state Effects 0.000 description 2
- 230000005283 ground state Effects 0.000 description 2
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 2
- 239000010842 industrial wastewater Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 241000894006 Bacteria Species 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 229910001018 Cast iron Inorganic materials 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- 241000589248 Legionella Species 0.000 description 1
- 208000007764 Legionnaires' Disease Diseases 0.000 description 1
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- 229910052777 Praseodymium Inorganic materials 0.000 description 1
- 229910052772 Samarium Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 150000001340 alkali metals Chemical group 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 239000010840 domestic wastewater Substances 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 1
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000035772 mutation Effects 0.000 description 1
- 239000008239 natural water Substances 0.000 description 1
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- PUDIUYLPXJFUGB-UHFFFAOYSA-N praseodymium atom Chemical compound [Pr] PUDIUYLPXJFUGB-UHFFFAOYSA-N 0.000 description 1
- 230000005180 public health Effects 0.000 description 1
- 239000008213 purified water Substances 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- KZUNJOHGWZRPMI-UHFFFAOYSA-N samarium atom Chemical compound [Sm] KZUNJOHGWZRPMI-UHFFFAOYSA-N 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910001415 sodium ion Inorganic materials 0.000 description 1
- 238000011064 split stream procedure Methods 0.000 description 1
- JBQYATWDVHIOAR-UHFFFAOYSA-N tellanylidenegermanium Chemical compound [Te]=[Ge] JBQYATWDVHIOAR-UHFFFAOYSA-N 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/48—Treatment of water, waste water, or sewage with magnetic or electric fields
- C02F1/481—Treatment of water, waste water, or sewage with magnetic or electric fields using permanent magnets
- C02F1/482—Treatment of water, waste water, or sewage with magnetic or electric fields using permanent magnets located on the outer wall of the treatment device, i.e. not in contact with the liquid to be treated, e.g. detachable
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/48—Treatment of water, waste water, or sewage with magnetic or electric fields
- C02F1/484—Treatment of water, waste water, or sewage with magnetic or electric fields using electromagnets
- C02F1/485—Treatment of water, waste water, or sewage with magnetic or electric fields using electromagnets located on the outer wall of the treatment device, i.e. not in contact with the liquid to be treated, e.g. detachable
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2103/00—Nature of the water, waste water, sewage or sludge to be treated
- C02F2103/02—Non-contaminated water, e.g. for industrial water supply
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2303/00—Specific treatment goals
- C02F2303/22—Eliminating or preventing deposits, scale removal, scale prevention
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Water Treatment By Electricity Or Magnetism (AREA)
Abstract
Изобретение относится к водоподготовке. Способ водоподготовки включает: прохождение воды через систему каналов в направлении потока воды, каждый из которых встроен в поверхность магнитопроницаемой микроканальной пластины 7, 8, изготовленной из сплава редкоземельного металла; и создание магнитного поля расположением системы постоянных магнитов 10 так, чтобы сформировать по крайней мере один слой постоянных магнитов 10, прилегающий к внешней стороне по крайней мере одной магнитопроницаемой микроканальной пластины 7, 8, чтобы магнитное поле имело направление, перпендикулярное направлению указанного потока воды, и разрушить магнитным полем по крайней мере некоторые водородные связи. Изобретение позволяет разрушить водородные связи в воде, снизить накопление отложений накипи в паровых колах и удалить образовавшуюся накипь. 2 н. и 12 з.п. ф-лы, 10 ил.
Description
ОБЛАСТЬ ПРИМЕНЕНИЯ ИЗОБРЕТЕНИЯ
[02] Изобретение относится к устройствам водоподготовки в общем случае и к устройствам водоподготовки, основанным на использовании электрического и магнитного полей, в частности.
НЕДОСТАТКИ СУЩЕСТВУЮЩИХ РЕШЕНИЙ
[03] Процессы водоподготовки, направленные на то, чтобы сделать воду более приемлемой для желаемого конечного использования, хорошо известны и используются во многих областях, таких как водоподготовка бытовых сточных вод, водоподготовка сельскохозяйственных сточных вод и водоподготовка промышленных сточных вод. В общем случае, цель процесса водоподготовки заключается в удалении загрязняющих примесей или, по крайней мере, уменьшении концентрации загрязняющих примесей, содержащихся в воде, делая ее пригодной для желаемого конечного использования, такого как, например, возврат воды в природу, не вызывая неблагоприятного экологического воздействия.
[04] Водоподготовка промышленных сточных вод включает два основных типа процессов: водоподготовка котловой воды и водоподготовка охлаждающей воды. Тщательная водоподготовка очень критична, недостаточно тщательная водоподготовка может оказывать воздействие на различные аспекты водоподготовки и использования, начиная от проблем общественного здравоохранения (например, некачественная грязная вода может являться благоприятной средой для развития бактерия, таких как Legionella), заканчивая проблемами эффективности и безопасности промышленного оборудования.
[05] В частности, паровые котлы могут страдать от отложений накипи, оседающих на стенках парового котла/или трубах, ввиду отсутствия конкретных требований к качеству воды, используемой в таких паровых котлах. Коэффициент теплопроводности накипи в сто раз меньше, чем у металлов, и термостойкость подобных отложений очень высока. Высокая термостойкость и малый коэффициент теплопроводности являются причиной потери тепла, что приводит к перерасходу топлива. С другой стороны металлические стенки, на которых оседает накипь, перегреваются, что может привести к деформации или даже их прорыву труб.
[06] Обычно, удаление отложений накипи требует прекращения работы паровых котлов и связанных с ними систем. Кроме того, отложения накипи удаляются с помощью острых металлических инструментов. В результате удаление отложений накипи предполагает трудовые и материальные затраты, а порой приводит к механическим повреждениям и/или химической эрозии паровых котлов и труб.
[07] Хотя состав отложений сложен и зависит от загрязняющих веществ, содержащихся в воде, зачастую по меньшей мере часть накипи образуется из карбонатных материалов, оседающих на стенках котла, таких как карбонат кальция (CaCO3) и карбонат магния (MgCO3). Также отложения накипи часто формируются из остатков щелочных металлов, присущих существующим отложениям. Образование отложений накипи может быть описано с помощью следующих химических уравнений:
[08] Са(HCO3)2→CaCO3(s)+H2O(1)+CO2(g)
[09] Mg(HCO3)2→MgCO3(s)+H2O(1)+CO2(g)
[010] MgHCO3(s)+H2O(1)→Mg(ОН)2(s)+CO2(g)
[011] Как видно из уравнений, уровень химической активности молекул воды оказывает влияние на химическое равновесие реакции. Таким образом, высокохимически активная вода может предотвратить образование накипи и даже может вызывать удаление существующих отложений накипи со стенок парового котла. Однако природная вода не слишком химически активна.
[012] Кластеры молекул воды образуются из-за неполной нейтрализации отрицательных зарядов в атомах кислорода при соединении с атомами водорода в процессе формировани молекулы воды. В результате, молекулы воды в данном образце будут включать себя определенное количество атомов кислорода, несущих отрицательный заряд. Такие отрицательно заряженные атомы кислорода притягивают атомы водорода соседних молекул воды, образуя водородные связи с ними. Молекулы воды, связанные при помощи водородных связей, образуют кластеры молекул воды и определяются химической формулой (H2O)n. Как правило, кластеры молекул воды, инерциальные по своим физическим свойствам и химической активности, обычно не разрушаются даже при взаимодействии с высокоактивными веществами в природе. Эта особенность воды сохраняет ее стабильной в окружающей среде. Кроме того, разрушение водородных связей - это высокоэндотермический процесс, требующий большого количества тепла, которое должно быть передано воде перед тем, как водородные связи начнут разрушаться, и вода станет более химически активной.
[013] В результате, существует необходимость в более энергоэффективных методах разрушения кластеров воды, особенно для использования в водоочистных сооружениях, таких как водоочистные паровые котлы. Хотя предпринято множество попыток разработать способы повышения химической активности молекул воды, все они по прежнему требуют большого количества энергии из внешнего источника и больших энергозатрат.
[014] Известен способ и система водоподготовки (CN 201660473 U, опубл. 01.12.2010, выбраны в качестве прототипов). Способ включает прохождение воды через систему каналов и пластин, изготовленных из сплава редкоземельных металлов; и создание магнитного поля расположением системы постоянных магнитов таким образом, чтобы сформировать по крайней мере один слой постоянных магнитов, прилегающий к внешней стороне по крайней мере одной пластины. Система водоподготовки содержит: системы каналов, по крайней мере одну пластину, изготовленную из сплава редкоземельных металлов, и системы постоянных магнитов, образующих по крайней мере один слой постоянных магнитов, который прилегает к внешней стороне по крайней мере одной указанной пластины.
ЦЕЛЬ ИЗОБРЕТЕНИЯ И КРАТКОЕ ОПИСАНИЕ
[015] Изобретение относится к устройствам водоподготовки в общем случае и к устройствам водоподготовки, основанным на использовании электрического и магнитного полей, в частности.
[016] В частности, описываемое здесь изобретение предлагает техническое решение для снижения накопления отложений накипи в паровых котлах и удаления отложений накипи из паровых котлов без использования агрессивных химикатов. Кроме того, описываемое здесь изобретение предлагает способ разрушения водородных связей в котловой воде, тем самым снижая энергозатраты для работы паровых котлов.
[017] В соответствии с аспектами описываемого здесь способа, предлагаемая система водоподготовки включает в себя систему труб, каждая из которых изготовлена из сплава редкоземельных металлов. Возбуждение электронов сплава редкоземельных металлов по крайней мере одной трубы порождает электрическое поле вдоль всей поверхности трубы, направленное перпендикулярно направлению потока воды в этой трубе.
[018] Кроме того, систему постоянных магнитов, расположенных таким образом, чтобы создаваемое вдоль всей поверхности трубы магнитное поле имело направление, перпендикулярное направлению, в котором вода течет через трубу.
[019] Результатом присутствия электрического поля и магнитного поля является разрушение по крайней мере некоторых водородных связей между молекулами воды, протекающей по трубе.
[020] В некоторых вариантах осуществления по крайней мере две трубы из системы труб должны быть параллельны друг другу.
[021] В некоторых вариантах осуществления по крайней мере одна труба из системы труб включает в себя систему продольных сегментов, имеющих первый диаметр. Сегменты присоединяются друг к другу при помощи системы перемычек второго диаметра. Второй диаметр (диаметр перемычек) больше первого диаметра (диаметр сегментов). Таким образом по крайней мере одна труба из системы труб имеет форму бамбукового стебля.
[022] В некоторых вариантах осуществления, возбуждение электронов в сплаве редкоземельных металлов вызывается магнитным полем и силой, приложенной к сплаву редкоземельных металлов. В некоторых модификациях не требуется использование внешнего источника энергии для возбуждения электронов в сплаве редкоземельных металлов.
[023] В некоторых вариантах осуществления по крайней мере некоторые молекулы воды сгруппированы в водные кластеры, имеющие первый размер перед попаданием в систему труб. Разрушение по крайней мере некоторых водородных связей, происходящих внутри системы труб, приводит к тому, что по крайней мере некоторые молекулы воды на выходе из системы труб будут сгруппированы в водные кластеры, имеющие второй размер, который меньше, чем первый размер. Иными словами, электрические и магнитные силы, прикладываемые к молекулам воды при протекании через систему труб, разрушают водные кластеры таким образом, что вода на выходе из системы труб, после воздействия электрического и магнитного полей, имеет более мелкие кластеры по сравнению с кластерами на входе в систему труб.
[024] В некоторых вариантах осуществления, воздействие электрического и магнитного полей на воду, при прохождении через систему труб, увеличивает химическую активность по крайней мере некоторых молекул воды. В некоторых вариантах осуществления увеличение химической активности некоторых молекул воды приводит к снижению осаждения накипи в паровых котлах, в которых протекает вода из системы труб. В некоторых вариантах осуществления увеличение химической активности некоторых молекул воды приводит к удалению осаждения накипи в паровых котлах, в которых протекает вода из системы труб.
[025] В некоторых вариантах осуществления, постоянные магниты расположены таким образом, что образуют постоянный магнитный слой вокруг каждой из системы труб.
[026] В некоторых вариантах осуществления, постоянные магниты расположены по крайней мере в два слоя постоянных магнитов, образуя матрицу. Каждый из слоев постоянных магнитов матрицы определяет магнитное поле, такое, что магнитные поля матрицы прикладывают силу в противоположных направлениях. Иными словами, магнитные поля, создаваемые каждой парой смежных слоев постоянных магнитов матрицы, прикладывают силу в противоположных направлениях.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
[027] На фиг. 1 представлено схематичное изображение одного из вариантов осуществления устройства водоподготовки, сконструированное и работающее в соответствии с одним из излагаемых здесь принципов.
[028] На Фиг. 2 представлено увеличенное изображение области А Фиг. 1.
[029] На Фиг. 3 представлено изображение разреза, выполненного вдоль линии F-F на Фиг. 2.
[030] На Фиг. 4 представлено уменьшенное изображение разреза, выполненного вдоль линии В-В на Фиг. 1.
[031] На Фиг. 5 представлено изображение разреза, выполненного вдоль линии D-D на Фиг. 4.
[032] На Фиг. 6 представлено уменьшенное изображение разреза, выполненного вдоль линии С-С на Фиг. 1.
[033] На Фиг. 7 представлено изображение разреза, выполненного вдоль линии Е-Е на Фиг. 6.
[034] На Фиг. 8 представлено схематичное изображение в разрезе одного из вариантов осуществления основания системы водоподготовки, используемой в устройстве водоподготовки, представленных на Фиг. 1-7, сконструированного и работающего в соответствии с одним из излагаемых здесь принципом.
[035] На Фиг. 9-10 представлено схематичное изображение одного из вариантов осуществления устройства водоподготовки, основанного на трехмерной магнитной пластине, сконструированного и работающего в соответствии с другим из излагаемых здесь принципов.
ВАРИАНТ ОСУЩЕСТВЛЕНИЯ ИЗОБРЕТЕНИЯ
[036] Вариант осуществления изобретения, используемого в устройстве водоподготовки, использующем электрическое и магнитное поля
[037] В соответствии с аспектами излагаемых здесь принципов предлагаемая система водоподготовки включает:
[038] системы труб, каждая система труб изготовлена из сплава редкоземельных металлов и имеет структуру для прохождения потока воды, в котором возбуждение электронов в сплаве редкоземельных металлов по крайней мере одной трубы из системы труб образует электрическое поле вдоль всей поверхности трубы, имеющее направление, перпендикулярное направлению потока воды по крайней мере в одной трубе, и
[039] системы постоянных магнитов, скомпонованных для создания магнитного поля вдоль всей поверхности по крайней мере одной трубы, имеющего направление, перпендикулярное направлению потока воды по крайней мере одной трубы,
[040] в которых, электрическое и магнитное поля имеют структуру для разрушения по крайней мере некоторых водородных связей между молекулами воды, протекающей в по крайней мере одной трубе.
[041] В соответствии с аспектами излагаемых здесь принципов, предлагается способ водоподготовки, основанный на:
[042] прохождении воды сквозь системы труб, каждая из систем труб изготовлена из сплава редкоземельных металлов;
[043] образовании электрического поля вдоль всей поверхности по крайней мере одной трубы из системы труб, вызывающего возбуждение электронов в сплаве редкоземельных металлов по крайней мере одной трубы, электрическое поле имеет направление, перпендикулярное направлению потока воды по крайней мере одной трубы; и
[044] создании магнитного поля расположением системы постоянных магнитов вдоль всей поверхности по крайней мере одной трубы, имеющего направление, перпендикулярное направлению потока воды по крайней мере одной трубы;
[045] в которой электрическое и магнитное поля скомпонованы для разрушения по крайней мере некоторых водородных связей между молекулами воды, протекающей в по крайней мере одной трубе.
[046] Обратимся к Фиг. 1, которая представляет собой схематичное изображение одного из варианта осуществления устройства водоподготовки, сконструированное и работающее в соответствии с одним из излагаемых здесь принципом, и Фиг. 2, которая представляет собой увеличенное изображение области А Фиг. 1.
[047] Как показано на Фиг. 1, устройство водоподготовки 4 содержит компоненты для очистки воды 6, которые собраны вместе при помощи разъемов. Каждый компонент водоподготовки 6 содержит пару одиночных магнитопроницаемых микроканальных пластин 7, расположенных соответственно в верхней и нижней частях компонента водоподготовки 6. Пластины 7 присоединены к соответствующим концам двух разделительных плат 5, каждая включает отверстие 14. Понятно, что при сборке края компонентов водоподготовки 6 отверстия 14 разделительных плат 5 находятся на одном уровне.
[048] Как видно из Фиг. 2, каждая пара пластин 7 имеет систему двойных магнитопроницаемых микроканальных пластин 8, расположенных в них. Число двойных магнитопроницаемых микроканальных пластин 8 может быть любым подходящим числом, определяемым размером устройства очистки воды 4. Как видно, вариант осуществления, показанный на Фиг.1, содержит пять двойных магнитопроницаемых микроканальных пластин.
[049] Одиночные магнитопроницаемые микроканальные пластины 7 и двойные магнитопроницаемые микроканальные пластины, сделанные из сплава редкоземельных металлов, как правило включают чугун, который имеет превосходную магнитную проводимость. В некоторых примерах вариантов осуществления сплав формируется добавлением на каждые 100 килограмм железа (Fe) 24.52 грамма лантана (La), 0,96 грамма иттрия (Y), 58,16 грамм церия (Се), 5,07 грамм празеодима (Pr), 11,85 грамм неодима (Nd), 1,63 грамма самария (Sm), 0,12 грамма титана (Ti), и 0,5 грамма цинка (Zn).
[050] Следует понимать, что одиночные магнитопроницаемые микроканальные пластины 7 и двойные магнитопроницаемые микроканальные пластины 8 находятся в бескислородной среде, поэтому сплав, используемый для пластин 7 и 8, не будет покрываться ржавчиной, как описано ниже.
[051] Как видно на Фиг. 1, 2 и 3, между каждой парой пластин 8, а также между концом микроканальных пластин 8 и соседних микроканальных пластин 7 расположен пластиковый желобок 9 с заключенными в него постоянными магнитами. В частности, каждая пластиковая клепка на самом деле образована из трех одинаковых жаростойких пластиковых пластин, которые соединены вместе для образования желобка 9. Центральные пластиковые пластины имеют полости для размещения постоянных магнитов 10 так, что постоянные магниты зажаты между двумя пластиковыми пластинами и окружены пластиком со всех сторон. Промежутки между постоянными магнитами 10 и желобом 9 обычно небольшие, приблизительно в диапазоне от 10 до 12 мм.
[052] Обратимся теперь к Фиг. 4, на которой представлено уменьшенное изображение разреза, выполненного вдоль линии В-В на Фиг. 1, к Фиг. 5, на которой представлено изображение разреза, выполненного вдоль линии D-D на Фиг. 4, к Фиг. 6, на которой представлено уменьшенное изображение разреза, выполненного вдоль линии С-С на Фиг. 1, к Фиг. 7, на которой представлено изображение разреза, выполненного вдоль линии Е-Е на Фиг. 6.
[053] Как показано на Фиг. 2, 4 и 5, система труб или продольные водные каналы 11 встроены во внутреннею поверхность каждой одиночной магнитопроницаемой микроканальной пластины 7. Кроме того, как видно из Фиг. 2, 6 и 7, система труб или продольные водные каналы 12 встроены в каждую из поверхностей каждой двойной магнитопроницаемой микроканальной пластины 8. Вместе водные каналы 11, 12 и пластины 7, 8 образуют магнитопроницаемое ядро сплит-потока установки водоподготовки.
[054] Число водных каналов 11 в каждой одиночной магнитопроницаемой микроканальной пластине 7 может быть любым подходящим числом и может меняться для разных пластин 7. Аналогичным образом, число водных каналов 12 в каждой двойной магнитопроницаемой микроканальной пластине 8 может быть любым подходящим числом и может меняться для разных пластин 8. В некоторых вариантах осуществления, число водных каналов 11 или 12, расположенных в поверхности пластины 7 или 8 зависит от объема очищаемой воды. Как видно из Фиг. 4 - 7, в представленном варианте осуществления двенадцать водных каналов расположены в поверхности каждой платы.
[055] Водные каналы 11 и 12 могут иметь любую подходящую форму. Тем не менее, в некоторых вариантах осуществления, водные каналы 11 и/или 12 образованы из продольных сегментов, имеющих первый диаметр, соединенных при помощи перемычек, имеющих второй диаметр, намного больший, чем первый диаметр, тем самым образуя форму, аналогичную бамбуковому стеблю. Формирование водных каналов 11 и/или 12 в форме бамбукового стебля является выгодным, поскольку бамбукообразные (изогнутые) каналы задают пусковую функцию (скорость и ускорение) воды в канале. Более медленный поток воды способствует более эффективному очищению, чем при протекании в прямом канале при тех же условиях при постоянном потоке воды.
[056] Как показано на Фиг. 2, расположение постоянных магнитов 10 в пластиковых желобах 9 соответствует расположению водных каналов 11 и 12. В частности, в некоторых вариантах осуществления, постоянные магниты 10 расположены в полостях 13 вдоль водных каналов 11 и 12. В некоторых вариантах осуществления, постоянные магниты 10 выстроены в продольном направлении таким образом, что их направления чередуются в парах, например N-S, S-N, N-S, S-N, и т.д.
[057] Как показано на Фиг. 1, одиночные магнитопроницаемые микроканальные пластины 7, двойные магнитопроницаемые микроканальные пластины 8 и пластиковые желоба 9 плотно скрепляются между собой с помощью болтов 20, проходящих сквозь монтажные отверстия 22, расположенные по краям устройства очистки воды 4, и гаек 24.
[058] Обратимся к Фиг. 8, на которой представлено схематичное изображение в разрезе одного из вариантов осуществления плоской пластины системы водоподготовки, используемой в устройстве водоподготовки, представленных на Фиг. 1-7, сконструированного и работающего в соответствии с одним из излагаемых здесь принципом.
[059] Устройство водоподготовки 4, как описано выше со ссылкой на Фиг. 1-7, составляет основание системы водоподготовки. Как видно, устройство очистки воды 4 установлено внутри корпуса резервуара 32, как показано на Фиг. 8. Резервуар 32 дополнительно включает в себя водоприемник 1, предназначенный для подачи воды в систему водоподготовки, водосброс, предназначенный для отвода воды из системы водоподготовки 30, и опору 3.
[060] Следует понимать, что резервуар 32 может включать одно или более устройств водоподготовки 4 и что каждое из этих устройств водоподготовки может включать один или более компонентов водоподготовки 6. Тем не менее, в качестве примера, на фиг. представлен вариант осуществления с одним устройством водоподготовки 4, включающим две разделительные платы 5 и два компонента водоподготовки 6.
[061] Как показано на Фиг. 1-8, в процессе работы вода поступает в резервуар 32 через водоприемник 1. Вода течет через каждый из водных каналов 11 и 12 в пластинах 7 и 8, а затем вытекает из резервуара 32 через водосброс 2. Как правило, вода вытекает из резервуара 32, поступая в паровой котел через трубки, соединяющие резервуар с паровым котлом.
[062] Магнитные силы постоянных магнитов 10 воздействуют на внешнюю оболочку электронов сплава, образующего магнитопроницаемые микроканальные пластины 7 и 8 и водные каналы 11 и 12 в нем. Таким образом, внешняя оболочка электронов постоянно переходит из возбужденного состояния в основное и обратно, тем самым высвобождая энергию, используемую в процессе водоподготовки.
[063] Как было упомянуто выше, постоянные магниты 10 расположены в полостях 13 желобов 9 таким образом, что их расположение соответствует водным каналам 11 и 12, и образуют магнитное поле в резервуаре в направлении, перпендикулярном направлению потока воды. Кроме того, как упоминалось выше, пластины 7 и 8 и водные каналы 11 и 12, изготовленные из сплава, имеют превосходную магнитную проницаемость в результате высвобождения энергии при переходе электронов из возбужденного состояния в основное состояния и обратно. Таким образом, электрическое поле, образованное в водных каналах 11 и 12, самовозбуждается, и создание электрического поля не требует внешнего источника энергии.
[064] Энергия, высвобождаемая магнитным полем и образующаяся в результате перехода электронов между состояниями, воздействует на кластеры воды в потоке воды, протекающем через каналы 11 и 12, и разрушает по крайней мере некоторые водородные связи в кластерах воды, там самым уменьшая размер кластеров воды. Разрушенные кластеры воды не рекомбинируют из-за поляризации магнитного поля, образуемого постоянными магнитами 10.
[065] Уменьшение размера кластеров воды и количества водородных связей в каждом кластере воды повышает физико-химическую активность кластеров воды. Увеличение энергии в системе вызывает увеличение резонанса внутренней энергии молекул воды, протекающей через систему, в результате чего молекулы воды начинают течь быстрее (увеличение теплового движения) и имеют более высокую химическую активность. Таким образом, вода, вытекающая из резервуара 32 и поступающая в паровой котел, имеет высокую химическую активность и меньшее количество кластеров воды.
[066] При рассмотрении химических реакций, протекающих в воде, в процессе образования накипи:
[067] Mg(HCO3)2→MgCO3(s)+H2O(1)+CO2(g)
[068] MgHCO3(s)+H2O(1)→Mg(OH)2(s)+CO2(g)
[069] Вода с повышенной химической активностью вызывает более быстрое протекание реакции в прямом направлении, чем в обратном, тем самым сдвигая химическое равновесие и вызывая уменьшение образований накипи и, возможно, разрушение по крайней мере некоторых образований накипи. Кроме того, в некоторых вариантах осуществления, уменьшается концентрация ионов натрия в очищенной воде.
[070] В результате, вода и пар, обработанные с помощью системы и способа, изложенного здесь, очищаются, тем самым уменьшая отложения накипи и/или расход в паровых котлах. Снижение отложений накипи значительно снижает затраты на обслуживание паровых котлов, так как нет никакой необходимости в удалении старых отложений накипи в паровых котлах, которые могут нанести вред паровым котлам, нет необходимости в химической чистке парового котла, предотвращаются поломки, которые могут вызывать отложения накипи, рабочее давление парового котла уменьшается, тем самым увеличивая рациональность использования угля.
[071] Кроме того, результаты экспериментов показывают, что использование описываемой здесь системы очистки воды улучшает работу и производительность парового котла. Например, потребление угля может быть уменьшено примерно на 3 г/кВт×ч или 3%, производительность парового котла может быть улучшена примерно на 7%, расход пара может быть уменьшен на 3-8%, а потребление энергии может быть уменьшено на 1%. Улучшения также могут быть найдены во многих других параметрах работы парового котла.
[072] Обратимся теперь к Фиг. 9-10, на которых представлено схематичное изображение варианта осуществления устройства водоподготовки, основанного на трехмерной магнитной пластине, сконструированного и работающего в соответствии с одним из излагаемых здесь принципов.
[073] Как видно, магнитный массив 100 содержит систему магнитных пластин 102, каждая из магнитных пластин содержит массив постоянных магнитов 104. Магниты 104 в каждой пластине 102 расположены в чередующемся N-S порядке в строках и столбцах матрицы. Таким образом, магнитный массив 100 создает переменное трехмерное магнитное поле.
[074] Когда молекулы воды проходят через магнитный массив 100, как правило, вокруг массива или между магнитами 104, образующими массив 100, они испытывают мутации и/или химические реакции, как это происходит с другими молекулами, проходящими через этот тип магнитной среды. Эта особенность магнитного массива делает его полезным для создания магнитного поля в установках очистки воды, описанных выше со ссылками на Фиг. 1-8.
[075] В то время пока описанное изобретение применимо с оговорками к описанным выше вариантам осуществления, специалист, имеющий достаточную квалификацию в этой области, может внести изменения в варианты осуществления без отступления от описываемого изобретения. Описываемые варианты осуществления приведены в качестве примера и не являются конечными. Все изменения, попадающие в диапазон эквивалентности формуле изобретения, должны быть включены в ее объем. Комбинации различных вышеописанных способов, систем и устройств также рассматриваются в пределах описываемого изобретения.
Claims (14)
1. Способ водоподготовки, включающий:
прохождение воды через систему каналов в направлении потока воды, каждый из каналов встроен в поверхность по крайней мере одной магнитопроницаемой микроканальной пластины, изготовленной из сплава редкоземельного металла; и
создание магнитного поля расположением системы постоянных магнитов таким образом, чтобы сформировать по крайней мере один слой постоянных магнитов, прилегающий к внешней стороне по крайней мере одной магнитопроницаемой микроканальной пластины таким образом, что магнитное поле имеет направление, перпендикулярное направлению указанного потока воды, протекающего по крайней мере через один из указанных каналов, указанной системы каналов;
разрушение магнитным полем по крайней мере некоторых водородных связей между молекулами воды, проходящей по крайней мере через один из указанных каналов, указанной системы каналов.
прохождение воды через систему каналов в направлении потока воды, каждый из каналов встроен в поверхность по крайней мере одной магнитопроницаемой микроканальной пластины, изготовленной из сплава редкоземельного металла; и
создание магнитного поля расположением системы постоянных магнитов таким образом, чтобы сформировать по крайней мере один слой постоянных магнитов, прилегающий к внешней стороне по крайней мере одной магнитопроницаемой микроканальной пластины таким образом, что магнитное поле имеет направление, перпендикулярное направлению указанного потока воды, протекающего по крайней мере через один из указанных каналов, указанной системы каналов;
разрушение магнитным полем по крайней мере некоторых водородных связей между молекулами воды, проходящей по крайней мере через один из указанных каналов, указанной системы каналов.
2. Способ по п. 1, также включающий в себя перед указанным прохождением потока воды встраивание по крайней мере двух каналов указанной системы каналов параллельно друг другу в одной указанной магнитопроницаемой микроканальной пластине.
3. Способ по п. 1, характеризующийся тем, что по меньшей мере один из каналов указанной системы каналов содержит систему продольных сегментов, имеющих первый диаметр, указанные сегменты соединены посредством системы перемычек, имеющих второй диаметр, причем указанный второй диаметр больше, чем первый диаметр.
4. Способ по п. 1, также включающий в себя увеличение химической активности по крайней мере некоторых молекул воды, проходящей по крайней мере через один из указанных каналов, указанной системы каналов.
5. Способ по п. 1, характеризующийся тем, что размещение по меньшей мере одного указанного слоя постоянных магнитов формируется на наружной поверхности каждого из указанных каналов, указанной системы каналов.
6. Способ по п. 5, характеризующийся тем, что упомянутое размещение указанных систем постоянных магнитов выполнено таким образом, чтобы сформировать по меньшей мере один слой постоянных магнитов, который включает указанные постоянные магниты, размещенные в магнитных полостях внутри пластикового желоба, и размещением указанного пластикового желоба параллельно по крайней мере одной магнитопроницаемой микроканальной пластине.
7. Способ по п. 1, также содержащий указанную систему постоянных магнитов по крайней мере в виде двух слоев постоянных магнитов, образующих матрицу, каждый из указанных по крайней мере двух слоев постоянных магнитов включает некоторые из указанных систем постоянных магнитов с расположением строк и столбцов в чередующемся N-S порядке, в которых указанные по меньшей мере два слоя постоянных магнитов скомпонованы для создания магнитных полей между указанными слоями постоянных магнитов, и где магнитные поля, создаваемые по крайней мере двумя слоями постоянных магнитов, прикладывают силы в противоположных направлениях.
8. Система водоподготовки, содержащая: системы каналов, каждая из указанных систем каналов встроена в поверхность по крайней мере одной магнитопроницаемой микроканальной пластины, изготовленной из сплава редкоземельных металлов, и скомпонована для прохождения воды в направлении основного потока; и системы постоянных магнитов, образующих по крайней мере один слой постоянных магнитов, указанный слой постоянных магнитов прилегает к внешней стороне по крайней мере одной указанной магнитопроницаемой микроканальной пластины, указанная система постоянных магнитов создает магнитное поле, имеющее направление, перпендикулярное направлению указанного потока воды, протекающего по крайней мере через один из указанных каналов, указанной системы каналов;
указанное магнитное поле разрушает по крайней мере некоторые водородные связи между молекулами воды, проходящей по крайней мере через один из указанных каналов, указанной системы каналов.
указанное магнитное поле разрушает по крайней мере некоторые водородные связи между молекулами воды, проходящей по крайней мере через один из указанных каналов, указанной системы каналов.
9. Система водоподготовки по п. 8, характеризующаяся тем, что по крайней мере два канала в указанной системе каналов встроены в одну указанную магнитопроницаемую микроканальную пластину и проходят в ней параллельно друг другу.
10. Система водоподготовки по п. 8, характеризующаяся тем, что по крайней мере одна из указанных систем каналов содержит систему продольных сегментов, имеющих первый диаметр, указанные сегменты соединены посредством системы перемычек, имеющих второй диаметр, причем второй диаметр больше, чем первый диаметр.
11. Система водоподготовки по п. 8, характеризующаяся тем, что указанное магнитное поле увеличивает химическую активность по крайней мере некоторых молекул воды, проходящих по крайней мере через один из указанных каналов, указанной системы каналов
12. Система водоподготовки по п. 8, характеризующаяся тем, что по меньшей мере один указанный слой постоянных магнитов формируется на наружной поверхности каждого из указанных каналов, указанной системы каналов.
13. Система водоподготовки по п. 12, характеризующаяся тем, что указанные системы постоянных магнитов размещены в магнитных полостях внутри пластикового желоба для формирования по крайней мере одной указанной магнитопроницаемой микроканальной пластины, и размещением указанного пластикового желоба параллельно по крайней мере одной магнитопроницаемой микроканальной пластине.
14. Система водоподготовки по п. 8, характеризующаяся тем, что указанная система постоянных магнитов размещена в виде по крайней мере двух слоев постоянных магнитов, образующих матрицу, каждый из указанных по меньшей мере двух слоев постоянных магнитов включает некоторые из указанных систем постоянных магнитов с расположением строк и столбцов в чередующемся N-S порядке, в которых указанные по меньшей мере два слоя постоянных магнитов скомпонованы для создания магнитных полей между указанными слоями постоянных магнитов, и где магнитные поля, создаваемые по крайней мере двумя слоями постоянных магнитов, прикладывают силы в противоположных направлениях.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/655,569 US8658015B2 (en) | 2012-10-19 | 2012-10-19 | Water treatment device and method |
US13/655,569 | 2012-10-19 | ||
PCT/IB2013/003042 WO2014064540A2 (en) | 2012-10-19 | 2013-10-17 | Water treatment device and method |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2552431C1 true RU2552431C1 (ru) | 2015-06-10 |
Family
ID=47752285
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2014114296/05A RU2552431C1 (ru) | 2012-10-19 | 2013-10-17 | Способ и система водоподготовки |
Country Status (16)
Country | Link |
---|---|
US (1) | US8658015B2 (ru) |
EP (1) | EP2751033A4 (ru) |
JP (1) | JP5749408B2 (ru) |
KR (1) | KR101477698B1 (ru) |
AU (1) | AU2013320685B2 (ru) |
BR (1) | BR112014011281A2 (ru) |
CA (1) | CA2849365A1 (ru) |
CL (1) | CL2014001094A1 (ru) |
IL (1) | IL232033A0 (ru) |
IN (1) | IN2014CN03022A (ru) |
MX (1) | MX337383B (ru) |
PE (1) | PE20142382A1 (ru) |
RU (1) | RU2552431C1 (ru) |
SG (1) | SG11201401651XA (ru) |
WO (1) | WO2014064540A2 (ru) |
ZA (1) | ZA201404067B (ru) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8658015B2 (en) * | 2012-10-19 | 2014-02-25 | Hongji Hou | Water treatment device and method |
CN103256587A (zh) * | 2013-05-20 | 2013-08-21 | 裴渐强 | 一种稀土型锅炉节能器 |
US9907896B2 (en) | 2013-06-21 | 2018-03-06 | Taipei Medical University | Apparatus and process for preparation of small water cluster and small molecular cluster water prepared therefrom |
WO2016201585A1 (en) | 2015-06-19 | 2016-12-22 | Bio-H2-Gen Inc. | Method for producing hydrogen gas from aqueous hydrogen sulphide |
CN115571991B (zh) * | 2022-09-13 | 2024-10-15 | 浙江炬昇新材料有限公司 | 一种应用有磁场增强的阻垢器 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5573664A (en) * | 1995-06-05 | 1996-11-12 | Kuo; Dai-Ming | Water magnetization apparatus having insertable magnetizing unit |
RU2264854C2 (ru) * | 2001-01-30 | 2005-11-27 | Хонда Гикен Когио Кабусики Кайся | Активирующая структура, аппарат для активации вещества и способ активации вещества |
RU2321550C2 (ru) * | 2005-05-25 | 2008-04-10 | Мориоки Сангио Кампэни Лимитид | Устройство обработки текучей среды магнитным полем сверхвысокой напряженности |
RU86563U1 (ru) * | 2009-05-08 | 2009-09-10 | Общество с ограниченной ответственностью "КомКор" | Ролик для подвижной опоры |
RU2389586C2 (ru) * | 2006-04-07 | 2010-05-20 | Сова Денко К.К. | Аппарат для производства сплава и сплава с редкоземельными элементами |
CN201660473U (zh) * | 2009-12-17 | 2010-12-01 | 广州格瑞凯迪电力热能设备有限公司 | 水质处理节能器 |
Family Cites Families (40)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4216092A (en) * | 1978-07-24 | 1980-08-05 | Hydromagnetics, Inc. | Coaxial hydromagnetic device for hydraulic circuits containing calcium and magnesium ions |
US4407719A (en) | 1981-10-30 | 1983-10-04 | Gorp Donald J Van | Magnetic water treatment apparatus and method of treating water |
US4455229A (en) * | 1982-07-21 | 1984-06-19 | Kemtune, Inc. | Fully shielded multiple core water conditioner |
US4485012A (en) | 1982-08-16 | 1984-11-27 | Ewald Ehresmann | Adjustable magnetic water treatment system |
US4662314A (en) * | 1985-09-25 | 1987-05-05 | Mor-Flo Industries, Inc. | Magnetic water conditioning device |
JPH01174095U (ru) * | 1988-05-25 | 1989-12-11 | ||
JPH02131186A (ja) | 1988-11-10 | 1990-05-18 | Fuji Keiki:Kk | 簡易型水処理装置 |
US4946590A (en) | 1989-04-12 | 1990-08-07 | Fluid Care Industries, Inc. | Clamp-on magnetic water treatment device |
JPH0383692U (ru) * | 1989-12-12 | 1991-08-26 | ||
JPH0533832U (ja) * | 1991-10-15 | 1993-05-07 | エムシージヤパン株式会社 | 気泡発生装置 |
DE69412500T2 (de) | 1993-10-06 | 1999-04-15 | Water Recovery Plc, Bicester, Oxon | Uv-gerät zur behandlung einer flüssigkeit |
US5466425A (en) | 1994-07-08 | 1995-11-14 | Amphion International, Limited | Biological decontamination system |
DE19509925A1 (de) * | 1995-03-18 | 1996-10-10 | Volker Proestler | Vorrichtung zur magnetischen Beeinflussung kristallbildender Reaktanden in wäßrigen Lösungen |
DE29522016U1 (de) * | 1995-03-18 | 1999-05-20 | Pröstler, Volker, 68647 Biblis | Vorrichtung zur magnetischen Beeinflussung kristallbildender Reaktanden in wässrigen Lösungen |
JP3027115U (ja) * | 1996-01-23 | 1996-07-30 | 愛潔實業股▲ふん▼有限公司 | 挿入可能な磁化ユニットを有する水磁化装置 |
JPH10128339A (ja) * | 1996-10-29 | 1998-05-19 | Yoshimi Fujiwara | 水質管理用マグネット及び水質管理用マグネット取付体 |
JPH10263547A (ja) * | 1997-03-25 | 1998-10-06 | Japan Steel Works Ltd:The | 電場水処理方法およびその装置 |
JPH11207356A (ja) * | 1998-01-28 | 1999-08-03 | Senjirou Matsuyama | 磁気照射水処理装置 |
JP2000070952A (ja) * | 1998-09-03 | 2000-03-07 | Aakutekku:Kk | 多極式磁場を利用した水処理装置 |
JP3060046U (ja) * | 1998-12-22 | 1999-07-21 | 和田 裕 | 小型イオン活性化整水器 |
US6203710B1 (en) | 1999-02-22 | 2001-03-20 | David D. Woodbridge | Liquid decontamination method and apparatus |
JP2001079554A (ja) * | 1999-09-13 | 2001-03-27 | Yuji Kawazu | 流体浄化装置 |
US6812707B2 (en) * | 2001-11-27 | 2004-11-02 | Mitsubishi Materials Corporation | Detection element for objects and detection device using the same |
JP2003269268A (ja) * | 2002-03-11 | 2003-09-25 | Toshiaki Tsunematsu | 液体燃料磁気処理装置 |
AU2003242139A1 (en) | 2002-05-28 | 2003-12-12 | Guangzhou Shi Zhong Nan P. Ltd. | A kind of nano-material for water treatment and its use |
JP2004197985A (ja) * | 2002-12-17 | 2004-07-15 | Japan Steel Works Ltd:The | ボイラー配管 |
CN2589463Y (zh) | 2002-12-27 | 2003-12-03 | 侯志纬 | 一种多功能活性水制备器 |
DE20220077U1 (de) * | 2002-12-30 | 2003-03-06 | Chang, Hung-Cheng, Taipeh/T'ai-pei | Flüssigkeitsmagnetisierer |
JP3095237U (ja) * | 2003-01-14 | 2003-07-25 | 宏成 張 | 流体磁化器 |
CN1621358A (zh) * | 2003-11-29 | 2005-06-01 | 王科峰 | 一种电磁合力的溶液处理方法 |
JP4799006B2 (ja) * | 2004-03-01 | 2011-10-19 | 株式会社小松製作所 | Fe系シール摺動部材およびその製造方法 |
JP4327847B2 (ja) * | 2004-04-27 | 2009-09-09 | 勲 古沢 | 流体の活性化装置 |
JP2007069192A (ja) * | 2005-09-02 | 2007-03-22 | Koji Soga | 水の磁気処理装置 |
KR101093944B1 (ko) * | 2006-05-29 | 2011-12-13 | 가부시키가이샤 시가 기노우수이 겐큐쇼 | 물의 전자장 처리 방법과 전자장 처리 장치 |
KR100882934B1 (ko) | 2007-06-01 | 2009-02-10 | 한대천 | 자화수 처리장치 및 광물필터 제조방법 |
CN201276445Y (zh) * | 2008-06-26 | 2009-07-22 | 广州格瑞凯迪电力热能设备有限公司 | 家用水垢净化处理器 |
US8252178B2 (en) * | 2009-01-12 | 2012-08-28 | James Oshana | Magnetic treatment of fluids |
US8444186B2 (en) * | 2009-04-20 | 2013-05-21 | S & B Technical Products, Inc. | Seal and restraint system for plastic pipe with low friction coating |
JP2011025231A (ja) * | 2009-06-23 | 2011-02-10 | Hitoshi Arai | 液体磁気処理具及び液体磁気処理装置。 |
US8658015B2 (en) * | 2012-10-19 | 2014-02-25 | Hongji Hou | Water treatment device and method |
-
2012
- 2012-10-19 US US13/655,569 patent/US8658015B2/en active Active
-
2013
- 2013-10-17 CA CA2849365A patent/CA2849365A1/en not_active Abandoned
- 2013-10-17 AU AU2013320685A patent/AU2013320685B2/en not_active Ceased
- 2013-10-17 EP EP13840180.7A patent/EP2751033A4/en not_active Withdrawn
- 2013-10-17 PE PE2014000719A patent/PE20142382A1/es not_active Application Discontinuation
- 2013-10-17 JP JP2014544042A patent/JP5749408B2/ja not_active Expired - Fee Related
- 2013-10-17 RU RU2014114296/05A patent/RU2552431C1/ru not_active IP Right Cessation
- 2013-10-17 BR BR112014011281A patent/BR112014011281A2/pt not_active IP Right Cessation
- 2013-10-17 WO PCT/IB2013/003042 patent/WO2014064540A2/en active Application Filing
- 2013-10-17 KR KR1020147009677A patent/KR101477698B1/ko not_active IP Right Cessation
- 2013-10-17 MX MX2014004133A patent/MX337383B/es active IP Right Grant
- 2013-10-17 SG SG11201401651XA patent/SG11201401651XA/en unknown
-
2014
- 2014-04-09 IL IL232033A patent/IL232033A0/en unknown
- 2014-04-22 IN IN3022CHN2014 patent/IN2014CN03022A/en unknown
- 2014-04-28 CL CL2014001094A patent/CL2014001094A1/es unknown
- 2014-06-04 ZA ZA2014/04067A patent/ZA201404067B/en unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5573664A (en) * | 1995-06-05 | 1996-11-12 | Kuo; Dai-Ming | Water magnetization apparatus having insertable magnetizing unit |
RU2264854C2 (ru) * | 2001-01-30 | 2005-11-27 | Хонда Гикен Когио Кабусики Кайся | Активирующая структура, аппарат для активации вещества и способ активации вещества |
RU2321550C2 (ru) * | 2005-05-25 | 2008-04-10 | Мориоки Сангио Кампэни Лимитид | Устройство обработки текучей среды магнитным полем сверхвысокой напряженности |
RU2389586C2 (ru) * | 2006-04-07 | 2010-05-20 | Сова Денко К.К. | Аппарат для производства сплава и сплава с редкоземельными элементами |
RU86563U1 (ru) * | 2009-05-08 | 2009-09-10 | Общество с ограниченной ответственностью "КомКор" | Ролик для подвижной опоры |
CN201660473U (zh) * | 2009-12-17 | 2010-12-01 | 广州格瑞凯迪电力热能设备有限公司 | 水质处理节能器 |
Also Published As
Publication number | Publication date |
---|---|
KR101477698B1 (ko) | 2014-12-30 |
AU2013320685B2 (en) | 2014-05-15 |
PE20142382A1 (es) | 2015-01-10 |
CL2014001094A1 (es) | 2014-10-03 |
BR112014011281A2 (pt) | 2017-05-02 |
ZA201404067B (en) | 2015-08-26 |
KR20140079777A (ko) | 2014-06-27 |
JP5749408B2 (ja) | 2015-07-15 |
MX337383B (es) | 2016-03-02 |
US8658015B2 (en) | 2014-02-25 |
US20130056355A1 (en) | 2013-03-07 |
EP2751033A2 (en) | 2014-07-09 |
MX2014004133A (es) | 2014-08-07 |
WO2014064540A2 (en) | 2014-05-01 |
JP2015502850A (ja) | 2015-01-29 |
AU2013320685A1 (en) | 2014-05-08 |
IN2014CN03022A (ru) | 2015-07-03 |
IL232033A0 (en) | 2014-08-31 |
WO2014064540A3 (en) | 2014-10-30 |
SG11201401651XA (en) | 2015-05-28 |
EP2751033A4 (en) | 2015-04-22 |
CA2849365A1 (en) | 2014-04-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2552431C1 (ru) | Способ и система водоподготовки | |
JP2009515675A (ja) | 磁化濾過装置 | |
WO1999031016A1 (en) | Method and system for removing solutes from a fluid using magnetically conditioned coagulation | |
KR101304121B1 (ko) | 수처리 및 가온 장치 | |
EP3636598B1 (en) | Liquid treatment apparatus | |
KR100340679B1 (ko) | 초고자기유체처리장치 | |
KR101746135B1 (ko) | 마그네타이트를 이용한 수처리장치 및 이를 이용한 수처리방법 | |
CN215049447U (zh) | 一种洗碗机水处理装置 | |
JP2003326191A (ja) | 磁性体を用いた分離浄化装置 | |
US20190194038A1 (en) | Reverse diffusion desalination | |
JP4038279B2 (ja) | 多極式磁場を利用した水処理装置 | |
JP6293996B2 (ja) | 汚染水浄化装置、汚染水浄化方法および汚染水浄化システム | |
KR20130065400A (ko) | 초전도 자기분리기를 이용한 발전소 복수의 부식생성물 제거장치 | |
JP2007313478A (ja) | リンの浄化回収方法、リンの浄化回収装置および回収リンの再利用方法 | |
JP2014008488A (ja) | 濾過装置および水質浄化システム | |
JP3917083B2 (ja) | 液体処理装置 | |
WO2011035715A1 (zh) | 一种磁场除铁净化装置及其在发电厂凝结水和给水中的应用 | |
RU2242433C1 (ru) | Устройство для магнитной обработки жидкости | |
CN2143132Y (zh) | 饮用水过滤装置 | |
RU2403950C2 (ru) | Электромагнитный фильтр с пространственно-периодичной структурой фильтрующих элементов | |
JP2006142268A (ja) | 水処理装置及び水処理システム | |
SU1263305A1 (ru) | Магнитный фильтр-осадитель | |
KR200273300Y1 (ko) | 자화 정수장치 | |
JP2000070952A (ja) | 多極式磁場を利用した水処理装置 | |
JPS624416A (ja) | 磁気利用による流体濾過装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20161018 |