RU2550502C2 - Модифицируемая конфигурация магнитов для электродуговых испарителей - Google Patents
Модифицируемая конфигурация магнитов для электродуговых испарителей Download PDFInfo
- Publication number
- RU2550502C2 RU2550502C2 RU2011137165/07A RU2011137165A RU2550502C2 RU 2550502 C2 RU2550502 C2 RU 2550502C2 RU 2011137165/07 A RU2011137165/07 A RU 2011137165/07A RU 2011137165 A RU2011137165 A RU 2011137165A RU 2550502 C2 RU2550502 C2 RU 2550502C2
- Authority
- RU
- Russia
- Prior art keywords
- target
- permanent magnets
- coil
- magnets
- electric arc
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32431—Constructional details of the reactor
- H01J37/3266—Magnetic control means
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/24—Vacuum evaporation
- C23C14/32—Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
- C23C14/325—Electric arc evaporation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32009—Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
- H01J37/32055—Arc discharge
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32431—Constructional details of the reactor
- H01J37/3266—Magnetic control means
- H01J37/32669—Particular magnets or magnet arrangements for controlling the discharge
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/34—Gas-filled discharge tubes operating with cathodic sputtering
- H01J37/3411—Constructional aspects of the reactor
- H01J37/345—Magnet arrangements in particular for cathodic sputtering apparatus
- H01J37/3455—Movable magnets
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/34—Gas-filled discharge tubes operating with cathodic sputtering
- H01J37/3411—Constructional aspects of the reactor
- H01J37/345—Magnet arrangements in particular for cathodic sputtering apparatus
- H01J37/3458—Electromagnets in particular for cathodic sputtering apparatus
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2237/00—Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
- H01J2237/32—Processing objects by plasma generation
- H01J2237/33—Processing objects by plasma generation characterised by the type of processing
- H01J2237/338—Changing chemical properties of treated surfaces
- H01J2237/3387—Nitriding
Landscapes
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Analytical Chemistry (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Electromagnetism (AREA)
- Physical Vapour Deposition (AREA)
- Magnetic Treatment Devices (AREA)
Abstract
Изобретение относится к области газоразрядной техники, в частности к электродуговому испарителю для получения покрытий из твердых материалов на инструментах. Электродуговой испаритель снабжен предусмотренной на мишени системой магнитных полей для создания магнитных полей на поверхности мишени и над ней. Система магнитных полей включает в себя краевые постоянные магниты и по меньшей мере одну расположенную позади мишени кольцевую катушку, задаваемый витками внутренний диаметр которой предпочтительно меньше или равен, чем диаметр мишени, краевые постоянные магниты являются сдвигаемыми от мишени перпендикулярно поверхности мишени, и проекция краевых постоянных магнитов на поверхность мишени по сравнению с проекцией кольцевой катушки на поверхность мишени дальше удалена от центра поверхности мишени. Краевые постоянные магниты отодвигают от мишени соответственно возрастающей глубине эрозии мишени. Технический результат - повышение стабильности нанесения покрытия. 6 з.п. ф-лы, 18 ил.
Description
Настоящее изобретение относится к системе магнитов для электродугового испарителя для применения в процессах нанесения покрытий с сильно реакционноспособными газами, слабо реакционноспособными газами и нереакционноспособными газами.
Кроме того, настоящее изобретение относится к системе магнитов для электродугового испарителя, которая в течение всего срока службы мишени поддерживает постоянную скорость испарения, а также допускает оптимальное задание скорости и эмиссии капель.
Типичная установка для нанесения покрытий методом PVD (от англ. physical vapor deposition, т.е. физического осаждения из паровой фазы), которая работает с испарением под действием искрового разряда, включает в себя вакуумную камеру, соединенную с насосным стендом, который создает в установке технологический вакуум. Подложкодержатели в вакуумной камере служат для того, чтобы закреплять в них подложки (инструменты или детали, или другие компоненты) и удерживать их во время предварительной обработки и нанесения покрытия. На подложкодержатели и вместе с тем на сами подложки во время обработки и, в частности, во время нанесения покрытия посредством источника питания смещения на подложку может подаваться напряжение с тем, чтобы они подвергались либо бомбардировке ионами (отрицательное напряжение), либо бомбардировке электронами (положительное напряжение). Источник питания смещения на подложке может представлять собой источник подачи на подложку напряжения постоянного тока, переменного тока либо биполярный или, соответственно, униполярный источник.
Нанесение покрытия происходит посредством источников искровых разрядов. Эти источники искровых разрядов включают в себя мишень, материал которой испаряется искрами. Вызываемое магнитными средствами магнитное поле источника определяет, направляется ли искра по определенной траектории (т.н. «steered arc» - управляемая дуга), чтобы, например, уменьшить брызги, или может ли искра более или менее свободно перемещаться по поверхности мишени (т.н. «random arc» - неуправляемая дуга), в результате чего чаще всего улучшается полезное использование мишени и обеспечивается более высокая скорость испарения.
Т.е. для перемещения искры по мишени применяются системы магнитов. Так называемое ARC-Steering (управление дугой) посредством особым образом направленных магнитных полей позволяет как влиять на скорость движения искры, так и задавать траекторию искры на поверхности мишени и достигать как можно лучшего полезного использования объема мишени.
Как указано в «Handbook of vacuum ARC science and technology, Boxman et.al. Chapter 3 Cathode Spots», различаются разные типы активных пятен дуги и их перемещений. В принципе, в зависимости от реакционной способности газа могут быть сделаны следующие наблюдения.
a) Электродуговое испарение в вакууме или в инертном газе, таком как, например, аргон.
Искра движется относительно медленно по заданным магнитным полем траекториям, которые при круглых мишенях преимущественно имеют форму круга. Доля неуправляемого движения скорее мала. Скорости испарения в этом случае относительно высоки. Испарение происходит с испусканием относительно больших капель. Скорость движения искры и «диаметр ее траектории» на мишени могут регулироваться посредством магнитного поля. При таком способе говорят о металлической искре. На фигуре 1 показан пример соответствующей траектории.
b) Электродуговое испарение в слабо реакционноспособных газах, таких как, например, азот.
Азот реагирует на поверхности мишени и образует нитридный слой в несколько атомных слоев. При этом можно констатировать повышение скорости движения искры.
Дополнительное повышение скорости движения искры может быть достигнуто за счет более сильных проходящих параллельно поверхности мишени магнитных полей. Испускаемые капли при этом становятся предпочтительно меньше. В общем случае возможно создание гомогенных условий в отношении реакционной способности поверхности, т.е. стабильное регулирование скорости испарения и скорости реакции азота на поверхности мишени.
Из-за относительно высокой проводимости нитридов искровая эрозия может также происходить на нитрированной поверхности. Поэтому там часто происходит нетто-унос материала, т.е. на поверхности мишени не образуются долговременные покрытые области, приводящие к отравлению мишени. Фигура 2 показывает соответствующий этому ход искры.
c) Электродуговое испарение в сильно реакционноспособных газах, таких как, например, кислород или ацетилен, метан.
При этом происходит сильная реакция реакционноспособного газа с поверхностью мишени. В обычном случае, например, при применении кислорода, это приводит к образованию электрически изолирующих слов. Чтобы получить стабильные условия, важно, чтобы на всей поверхности мишени могло поддерживаться нетто-испарение. Области с меньшей локальной скоростью испарения становятся изолирующими и вместе с тем еще больше исключаются из процесса испарения. Поверхность мишени при этом «отравляется», причем этот процесс обычно является прогрессирующим, и в конце лишь небольшая доля поверхности на мишени несет искровой разряд. Особенно при применении высоких сил магнитных полей с большой радиальной компонентой для повышения скорости движения искры и вместе с тем сокращения размера капли наступает сильная негомогенность локальной скорости испарения и вместе с тем более быстрое отравление других областей мишени.
Как упомянуто в US2008020138A1 (J.Ramm et.al.), например, стабильное испарение оксида AlCr возможно только тогда, когда магнитное поле меньше максимальной силы поля, или же магнитное поле вообще не применяется. При применении сильных магнитных полей естественным образом распределение магнитных полей параллельно поверхности мишени является очень негомогенным, и поэтому на поверхности мишени быстро возникают области, имеющие изолирующий слой. Соответствующий ход искры схематично изображен на фигуре 3.
Как излагалось выше, с помощью одной и той же металлической мишени возможно получение различных слоев, при этом, например, покрытие наносится в среде инертных газов, слабо реакционноспособных газов или сильно реакционноспособных газов. Инертные газы не вступают в соединение с материалом мишени, в то время как реакционноспособные газы приводят к образованию проводящих или изолирующих слоев на поверхности мишени. Чтобы получить стабильный процесс нанесения покрытия, предпочтительно реализовать адаптированное к каждому из этих случаев распределение линий магнитного поля на поверхности мишени и над ней, которое соответственно будет влиять на траекторию искры в отношении ее формы и скорости движения.
Существуют различные известные из уровня техники возможности реализации распределения линий магнитного поля на поверхности мишени и над ней. Это возможно, например, с помощью постоянных магнитов и/или электромагнитов и/или их комбинации.
Кроме того, из уровня техники известны системы магнитных полей, подвижно располагаемые относительно поверхности мишени так, что благодаря достигаемой при этом подвижности траекторий электрической дуги может быть достигнут равномерный унос материала мишени. В DE10127012A1 Curtins описывает соответственно систему магнитных полей, включающую в себя держатель, от которого отходят кольцевая катушка, а также постоянный магнит. Чтобы посредством этой системы магнитных полей, т.е. создаваемых кольцевой катушкой и постоянным магнитом магнитных полей, в области пятна электрической дуги задавать эффективное магнитное поле на поверхности мишени так, чтобы электрическая дуга или, соответственно, пятно по заданным траекториям могло охватить всю поверхность мишени, вследствие чего происходил бы равномерный унос материала мишени, система магнитных полей как единый узел может переставляться относительно мишени, а именно, в плоскости, проходящей параллельно поверхности мишени. Кроме того, этот единый узел может при необходимости в желаемой мере удаляться от мишени, то есть подвергаться сдвигу в направлении Z.
В EP 00459137 B1 описана система магнитных полей с постоянным магнитом центрального полюса и краевым постоянным магнитом, которые оба могут сдвигаться в осевом направлении, т.е. перпендикулярно поверхности мишени. Кроме того, в области мишени предусмотрена электромагнитная кольцевая катушка, управление которой при дуговом разряде может осуществляться так, чтобы она влияла на образующийся след дуги и тем самым способствовала повышению срока службы мишени. В EP 00459137 B1 мишень находится во внутреннем пространстве кольцевой катушки. Поверхность мишени и конец катушки находятся, как показано на фигуре 2 EP 00459137 B1, по существу в одной плоскости (см. фигуру 16 этой заявки).
Соответственно катушка охватывает мишень, а также части стенки, называемой емкостью вакуумной камеры. Благодаря этому достигается то, что создаваемые катушкой магнитные поля по существу не имеют радиальных компонент на поверхности мишени. Такое вертикальное поле катушки не влияет, таким образом, на скорость движения, с которой пятно электрической дуги перемещается по поверхности мишени.
В противоположность этому, было бы предпочтительно иметь систему магнитных полей, которая за счет формы линий поля на краю мишени позволила бы получить более высокую скорость движения и вместе с тем меньшее время выдержки. Это позволило бы получить мишень с интегрированными средствами создания магнитных полей, с помощью которых эффективно обеспечивалась бы возможность искрового испарения как в сильно реакционноспособных, так и в слабо реакционноспособных, а также инертных газах.
В соответствии с изобретением эта задача решается с помощью системы магнитных полей, которая включает в себя краевые постоянные магниты и по меньшей мере одну кольцевую катушку, при этом краевые постоянные магниты являются сдвигаемыми от мишени по существу перпендикулярно поверхности мишени, и проекция краевых постоянных магнитов на поверхность мишени по сравнению с проекцией кольцевой катушки на поверхность мишени дальше удалена от центра поверхности мишени. При этом кольцевая катушка расположена позади мишени и имеет задаваемый витками внутренний диаметр, который несущественно больше, а предпочтительно меньше или равен диаметру мишени.
Изобретатели установили, что при отодвинутых от мишени краевых постоянных магнитах и включенном токе в катушке процесс нанесения покрытия протекает существенно стабильнее, чем с системой катушек согласно фигуре 2 EP 00459137 B1. Это может быть связано с тем, что с помощью такой системы достигается то, что линии магнитного поля, возбуждаемого катушкой, через которую протекает ток, в центральной области поверхности мишени по существу не содержат радиальных компонент, в то время как они содержат радиальные компоненты в краевой области поверхности мишени.
Для пояснения на фигуре 17 схематично изображено создаваемое катушкой магнитное поле (точнее, форма линий магнитного поля), а на фигуре 18 изображены осевая компонента и радиальная компонента как функция расстояния до оси катушки близко над концом катушки.
По другому аспекту настоящего изобретения система магнитных полей включает в себя дополнительно центральный постоянный магнит, причем проекция внутренней части кольцевой катушки на поверхность мишени по сравнению с проекцией центрального постоянного магнита на поверхность мишени дальше удалена от центра поверхности мишени, а центральный постоянный магнит является сдвигаемым от мишени по существу перпендикулярно поверхности мишени.
В заключение изобретение поясняется более подробно на примерах и с помощью фигур. При этом на фигуре 4 показана мишень с системой магнитов по первому варианту исполнения.
Магнитное поле, как показано на фигуре 4, создается неподвижно расположенной катушкой (4) и системой (5, 5a) постоянных магнитов. Система постоянных магнитов с креплением 6 магнитов может сдвигаться от мишени в осевом направлении. Эта сдвигаемость показана на фигуре 5.
Для описанной выше системы магнитов получаются следующие принципиальные регулировки.
Регулировка 1, как схематично показано на фигуре 6
Постоянный магнит занимает положение, при котором его полюса находятся ближе всего к материалу покрытия (положение «впереди»). Предпочтительно один конец катушки и полюса при этой регулировке находятся по существу в одной плоскости. Ток в катушке включен. Он может быть включен как положительным, так и отрицательным (8), и он может быть также модулирован. Эта регулировка создает сильное магнитное поле, составляющее примерно 60-100 Гаусс. Поэтому эта регулировка подходит, например, для испарения нитридных слоев. Благодаря высокой силе магнитного поля и ее радиальной составляющей искра движется быстро. За счет этого получаются гладкие слои. Магнитным полем катушки, которое перекрывается с полем постоянных магнитов, оказывается влияние на форму линий поля и вместе с тем на траекторию искры. Предпочтительно ток в катушке модулируется во времени, и поэтому достигается расширение эрозионной воронки.
При такой регулировке удается получить слои твердых материалов, таких как, например, TiN, TiAlN, AlTiN, AlCrN, TiSiN.
Регулировка 2, как показано на фигуре 7
Постоянный магнит (5, 5a, 6) «отодвинут» на 5-50 мм, т.е. дальше удален от поверхности мишени, чем в регулировке 1. Ток в катушке снова включен и может быть положительным или отрицательным, а также модулированным.
Эта регулировка создает постепенно, в зависимости от сдвигания, магнитное поле в 10-40 Гаусс, включая перекрывающееся поле катушки. С одной стороны, с увеличением сдвигания скорость испарения может быть повышена, причем тогда следует ожидать образования шероховатых слоев каплями большего размера. С другой стороны, при применении газов, таких как, например, кислород и/или ацетилен, при сдвигании системы магнитов (5, 5a, 6) может быть достигнуто равновесие между отравлением мишени и интенсивностью эрозии во многих точках поверхности мишени. Благодаря этому процесс нанесения покрытия может быть значительно стабилизирован.
Эта регулировка подходит как для получения нитридных слоев при высокой скорости нанесения покрытий, таких как TiN, TiAlN, AlTiN, TiSiN, так и для получения карбонитридов или карбидов с применением газов, таких как ацетилен или метан. Но прежде всего она подходит также для получения самых разных оксидных слоев, таких как, например, Al2O3, ZrO, TiO2 или их смесей соответственно исходному материалу мишени.
Регулировка 3, как показано на фигуре 8
При этой регулировке постоянный магнит отодвинут более чем на 50 мм, т.е. совсем отделен от катушки. Поле катушки снова включено, положительное или отрицательное и/или при необходимости модулированное. Но составляющая магнитного поля системы постоянных магнитов становится пренебрежимо малой. В зависимости от силы тока, поле катушки составляет примерно 5-15 Гаусс.
Эта регулировка подходит для осаждения металлических слоев и/или нитридных, карбонитридных, карбидных и/или оксидных слоев. Как уже излагалось выше, для высокореакционноспособных газов требуется, чтобы магнитное поле катушки не было слишком большим (максимум примерно 10 Гаусс). При этом возможна эксплуатация электродугового испарителя без отравления областей мишени.
Регулировка 4, как показано на фигуре 9
Постоянный магнит отодвинут более чем на 50 мм, ток в катушке выключен. В этой регулировке на поверхности мишени нет значительных магнитных полей. Электродуговой испаритель эксплуатируется в так называемом неуправляемом режиме. Это особенно предпочтительно при высокореакционноспособных газах, таких как кислород. Искра электродугового разряда проходит при этом по мишени с очень многочисленными пятнами дуги случайным образом. Разряд происходит очень стабильно, и невозможно возникновение областей с отравлением мишени.
Впрочем, если эта регулировка магнитов применяется для металлов (без реакционноспособного газа или в высоком вакууме) или нитридов, можно наблюдать высокую скорость испарения при очень высокой доле капель.
Как следует из фигур, все положения испарителя могут быть реализованы в вакуумной камере с одной и той же мишенью. Т.е. можно в одном и том же процессе нанесения покрытия путем изменения положения магнита по фиг.6-9 выборочно, для получения металлических, нитридных, карбонитридных, карбидных или оксидных слоев, оптимально адаптировать магнитное поле к этим требованиям. Нет необходимости резервировать положения испарителя особо для каждого типа слоя. Благодаря этому процессы нанесения покрытия могут быть реализованы с высокой производительностью.
Таким образом, с помощью одной и той же мишени из AlCr (70%:30%) была нанесена система слоев, включающая в себя три слоя:
1) металлический адгезионный слой с регулировкой 1. При этом важно, что эрозия мишени была оптимизирована за счет вобуляции катушки;
2) слой AlCrN в качестве первого твердого слоя с регулировкой 2;
3) слой AlCryOx в качестве второго твердого слоя с регулировкой 3.
Во втором примере применяли Ti-ую мишень. Снова первым был нанесен металлический адгезионный слой с регулировкой 1. Дополнительно путем вобуляции катушки была оптимизирована эрозия мишени. Следующим был нанесен слой TiCN с регулировкой 2, а затем слой TiN с регулировкой 3.
По другому аспекту настоящего изобретения описывается система магнитов для электродугового испарителя, с помощью которой скорость испарения поддерживается постоянной на протяжении всего срока службы мишени. Кроме того, это позволяет осуществлять оптимальное регулирование скорости и эмиссии капель.
Скорость испарения электродугового испарителя, помимо прочего, очень сильно определяется магнитным полем, параллельным поверхности мишени. Более сильное магнитное поле повышает скорость движения искры и понижает при этом скорость испарения при одновременном осаждении более гладких слоев. С возрастанием эрозии мишени поверхность мишени все более приближается к лежащей позади нее системе магнитов, это выражается в сильном увеличении силы магнитного поля и падении скорости нанесения покрытия. Предлагаемая изобретением система магнитов может компенсировать изменение расстояния от поверхности мишени до системы магнитов путем сдвигания системы постоянных магнитов и тем самым обеспечивать постоянную скорость испарения в течение всего периода использования мишени.
Расстояние от поверхности мишени до системы магнитов определяет по существу силу магнитного поля и вместе с тем скорость испарения. У новой, не бывшей в употреблении мишени это расстояние является максимальным, и вместе с тем сила магнитного поля является наименьшей. Эрозия во время процесса нанесения покрытия приводит к постепенному уменьшению расстояния от поверхности мишени до системы магнитов, и вместе с тем к повышению силы магнитного поля и уменьшению скорости. Это поясняется с помощью фигуры 10, последовательность данных, обозначенных символами в виде кружочков.
Чтобы компенсировать описанный выше процесс, в соответствии с изобретением система магнитов соответственно глубине эрозии отодвигается от мишени, чтобы создать по существу исходное положение при новой мишени. При этом достигается по существу постоянная скорость в течение всего периода использования мишени (ресурса мишени). Это показано на фигуре 10, последовательность данных, обозначенных символами в виде ромбов. Фигура 12 показывает для пояснения ситуации по сравнению с фигурой 11 также эрозию мишени на глубину D и соответственно этому сдвинутые вниз постоянные магниты.
Как уже упомянуто выше, эмиссия капель (макрочастиц) или, соответственно, величина испускаемых капель зависит, помимо прочего, от скорости движения перемещаемой магнитным полем искры (управление дугой). Путем надлежащего регулирования положения постоянного магнита испаритель можно регулировать между высокой скоростью и шероховатым слоем или, соответственно, более низкой скоростью и гладким слоем. Это поясняется на фигуре 13, на которой показана зависимость шероховатости слоя (Rz, Ra) от скорости нанесения покрытия, установленной посредством системы магнитов.
На фигуре 14 дополнительно изображено также, как изменяется скорость нанесения покрытия в зависимости от положения магнита, и при этом возможно регулирование скорости.
Итак, точное позиционирование постоянных магнитов приводит, с одной стороны, к стабилизации процесса нанесения покрытия за счет постоянной скорости напыления и постоянного напряжения разряда. Кроме того, продолжительность процессов нанесения покрытия вследствие постоянной скорости для одинаковых покрытий практически одинакова, независимо от возраста мишени. Посредством системы магнитов по изобретению возможно также целенаправленно задавать различные скорости для различных требований и удается целенаправленно влиять на свойства слоев, такие как, например, шероховатость и микроструктура.
По другому аспекту настоящего изобретения можно задавать гомогенное распределение толщины слоя по площади покрываемой заготовки. Это достигается посредством системы магнитов по изобретению в одном варианте исполнения таким образом, что внутренний постоянный магнит может отодвигаться относительно мишени на примерно 50 мм независимо от наружного постоянного магнита. Наружный постоянный магнит также может быть сдвинут вертикально относительно мишени, предпочтительно на несколько миллиметров. Это показано на фигуре 15.
Ток в катушку может подаваться как положительный, так и отрицательный, при этом в зависимости от знака тока в катушке может изменяться характеристика напыления электродугового испарителя. То есть, может задаваться характеристика распределения.
Claims (7)
1. Способ эксплуатации электродугового испарителя, причем
электродуговой испаритель снабжен предусмотренной на мишени системой магнитных полей для создания магнитных полей на поверхности мишени и над ней, при этом система магнитных полей включает в себя краевые постоянные магниты и по меньшей мере одну расположенную позади мишени кольцевую катушку, задаваемый витками внутренний диаметр которой предпочтительно меньше или равен, во всяком случае несущественно больше, чем диаметр мишени, краевые постоянные магниты являются сдвигаемыми от мишени по существу перпендикулярно поверхности мишени, и проекция краевых постоянных магнитов на поверхность мишени по сравнению с проекцией кольцевой катушки на поверхность мишени дальше удалена от центра поверхности мишени, отличающийся тем, что краевые постоянные магниты отодвигают от мишени соответственно возрастающей глубине эрозии мишени.
электродуговой испаритель снабжен предусмотренной на мишени системой магнитных полей для создания магнитных полей на поверхности мишени и над ней, при этом система магнитных полей включает в себя краевые постоянные магниты и по меньшей мере одну расположенную позади мишени кольцевую катушку, задаваемый витками внутренний диаметр которой предпочтительно меньше или равен, во всяком случае несущественно больше, чем диаметр мишени, краевые постоянные магниты являются сдвигаемыми от мишени по существу перпендикулярно поверхности мишени, и проекция краевых постоянных магнитов на поверхность мишени по сравнению с проекцией кольцевой катушки на поверхность мишени дальше удалена от центра поверхности мишени, отличающийся тем, что краевые постоянные магниты отодвигают от мишени соответственно возрастающей глубине эрозии мишени.
2. Способ по п. 1, отличающийся тем, что отодвигание краевых постоянных магнитов осуществляют независимо от кольцевой катушки.
3. Способ по п. 1 или 2, отличающийся тем, что полярность краевых постоянных магнитов преимущественно и предпочтительно для всех одна и та же.
4. Способ по п. 3, отличающийся тем, что внутри кольцевой катушки предусмотрен центральный постоянный магнит с полярностью, противоположной преобладающей полярности краевых постоянных магнитов.
5. Способ по п. 4, отличающийся тем, что центральный постоянный магнит является сдвигаемым от мишени по существу перпендикулярно поверхности мишени.
6. Способ по п. 5, отличающийся тем, что центральный постоянный магнит неподвижно соединен с краевыми постоянными магнитами проводящим магнитный поток соединением.
7. Способ по п. 5, отличающийся тем, что центральный постоянный магнит независимо от краевых постоянных магнитов является сдвигаемым перпендикулярно поверхности мишени.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102009008161.5 | 2009-02-09 | ||
DE102009008161A DE102009008161A1 (de) | 2009-02-09 | 2009-02-09 | Modifizierbare Magnetkonfiguration für Arc-Verdampfungsquellen |
PCT/EP2009/009319 WO2010088947A1 (de) | 2009-02-09 | 2009-12-30 | Modifizierbare magnetkonfiguration für arc-verdampungsquellen |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2011137165A RU2011137165A (ru) | 2013-03-20 |
RU2550502C2 true RU2550502C2 (ru) | 2015-05-10 |
Family
ID=41647035
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2011137165/07A RU2550502C2 (ru) | 2009-02-09 | 2009-12-30 | Модифицируемая конфигурация магнитов для электродуговых испарителей |
Country Status (17)
Country | Link |
---|---|
US (2) | US11264216B2 (ru) |
EP (1) | EP2394288B1 (ru) |
JP (1) | JP5608176B2 (ru) |
KR (2) | KR20110135919A (ru) |
CN (1) | CN102308359B (ru) |
AU (1) | AU2009339328B2 (ru) |
BR (1) | BRPI0924299A2 (ru) |
CA (1) | CA2751811C (ru) |
DE (1) | DE102009008161A1 (ru) |
ES (1) | ES2652141T3 (ru) |
HU (1) | HUE034774T2 (ru) |
MX (1) | MX2011008408A (ru) |
PL (1) | PL2394288T3 (ru) |
PT (1) | PT2394288T (ru) |
RU (1) | RU2550502C2 (ru) |
SG (2) | SG2014008999A (ru) |
WO (1) | WO2010088947A1 (ru) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102009008161A1 (de) * | 2009-02-09 | 2010-08-12 | Oerlikon Trading Ag, Trübbach | Modifizierbare Magnetkonfiguration für Arc-Verdampfungsquellen |
JP5035479B2 (ja) | 2011-01-27 | 2012-09-26 | 三菱マテリアル株式会社 | 耐欠損性、耐摩耗性にすぐれた表面被覆切削工具 |
BR112013033654B1 (pt) * | 2011-06-30 | 2020-12-29 | Oerlikon Surface Solutions Ag, Trübbach | método para fabricar um corpo revestido |
WO2014178100A1 (ja) * | 2013-04-30 | 2014-11-06 | 日本アイ・ティ・エフ株式会社 | アーク蒸発源 |
CN103556122B (zh) * | 2013-10-23 | 2017-01-18 | 苏州矩阵光电有限公司 | 一种自适应磁场调整型磁控溅射镀膜设备及其镀膜方法 |
JP6403269B2 (ja) * | 2014-07-30 | 2018-10-10 | 株式会社神戸製鋼所 | アーク蒸発源 |
CN109154061B (zh) * | 2016-04-22 | 2021-07-13 | 欧瑞康表面处理解决方案股份公司普费菲孔 | 借助HIPIMS的具有减少的生长缺陷的TiCN |
CH715878A1 (de) | 2019-02-26 | 2020-08-31 | Oerlikon Surface Solutions Ag Pfaeffikon | Magnetanordnung für eine Plasmaquelle zur Durchführung von Plasmabehandlungen. |
KR102667048B1 (ko) | 2021-07-20 | 2024-05-22 | 한국생산기술연구원 | 중앙부 함몰형 자기장을 가지는 아크 증발원 및 이를 포함하는 아크 이온 플레이팅 장치, 그리고 이를 이용한 금속 및 금속화합물의 증착방법 |
DE102022118927A1 (de) | 2022-07-28 | 2024-02-08 | Rainer Cremer | Verfahren zum Verdampfen einer Kathode in einem Vakuumlichtbogenverdampfer |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0459137B1 (de) * | 1990-05-28 | 2000-07-05 | Hauzer Industries Bv | Vorrichtung zur Beschichtung von Substraten |
WO2004057642A2 (de) * | 2002-12-19 | 2004-07-08 | Unaxis Balzers Aktiengesellschaft | Vacuumarcquelle mit magnetfelderzeugungseinrichtung |
RU2256724C1 (ru) * | 2003-12-10 | 2005-07-20 | Самарский государственный аэрокосмический университет им. акад. С.П. Королева | Способ нанесения композиционных покрытий в вакууме |
WO2007131944A2 (de) * | 2006-05-16 | 2007-11-22 | Oerlikon Trading Ag, Trübbach | Arcquelle und magnetanordnung |
EP1970464A1 (en) * | 2005-12-16 | 2008-09-17 | Fundacion Tekniker | Cathode evaporation machine |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3836451A (en) * | 1968-12-26 | 1974-09-17 | A Snaper | Arc deposition apparatus |
US4309266A (en) * | 1980-07-18 | 1982-01-05 | Murata Manufacturing Co., Ltd. | Magnetron sputtering apparatus |
DE3175623D1 (en) | 1980-08-11 | 1987-01-08 | Siemens Ag | Fingerprint sensor delivering an electric signal corresponding to the topographic relief of a finger to be examined |
US4401539A (en) * | 1981-01-30 | 1983-08-30 | Hitachi, Ltd. | Sputtering cathode structure for sputtering apparatuses, method of controlling magnetic flux generated by said sputtering cathode structure, and method of forming films by use of said sputtering cathode structure |
JPS5994357U (ja) * | 1982-12-14 | 1984-06-27 | 三島製紙株式会社 | 情報記録紙の複写性低下を防止するシ−ト |
US5298136A (en) * | 1987-08-18 | 1994-03-29 | Regents Of The University Of Minnesota | Steered arc coating with thick targets |
JP2912864B2 (ja) * | 1995-11-28 | 1999-06-28 | アプライド マテリアルズ インコーポレイテッド | スパッタリング装置のマグネトロンユニット |
DE19702928C2 (de) * | 1997-01-28 | 2001-06-07 | Eitec Ges Fuer Metallisches Ha | Lichtbogenverdampfer |
GB9722649D0 (en) * | 1997-10-24 | 1997-12-24 | Univ Nanyang | Cathode ARC source for metallic and dielectric coatings |
DE10010448C1 (de) * | 2000-03-03 | 2002-04-25 | Multi Media Machinery Gmbh | Kathode |
DE10127013A1 (de) * | 2001-06-05 | 2002-12-12 | Gabriel Herbert M | Lichtbogen-Verdampfungsvorrichtung |
DE10127012A1 (de) | 2001-06-05 | 2002-12-12 | Gabriel Herbert M | Lichtbogen-Verdampfungsvorrichtung |
US8778144B2 (en) * | 2004-09-28 | 2014-07-15 | Oerlikon Advanced Technologies Ag | Method for manufacturing magnetron coated substrates and magnetron sputter source |
JP4548666B2 (ja) * | 2005-08-26 | 2010-09-22 | 株式会社不二越 | アーク式イオンプレーティング装置用蒸発源 |
GB0608582D0 (en) * | 2006-05-02 | 2006-06-07 | Univ Sheffield Hallam | High power impulse magnetron sputtering vapour deposition |
US7857948B2 (en) | 2006-07-19 | 2010-12-28 | Oerlikon Trading Ag, Trubbach | Method for manufacturing poorly conductive layers |
US10043642B2 (en) * | 2008-02-01 | 2018-08-07 | Oerlikon Surface Solutions Ag, Pfäffikon | Magnetron sputtering source and arrangement with adjustable secondary magnet arrangement |
DE102009008161A1 (de) * | 2009-02-09 | 2010-08-12 | Oerlikon Trading Ag, Trübbach | Modifizierbare Magnetkonfiguration für Arc-Verdampfungsquellen |
-
2009
- 2009-02-09 DE DE102009008161A patent/DE102009008161A1/de not_active Ceased
- 2009-12-30 ES ES09799555.9T patent/ES2652141T3/es active Active
- 2009-12-30 KR KR1020117017524A patent/KR20110135919A/ko active Application Filing
- 2009-12-30 SG SG2014008999A patent/SG2014008999A/en unknown
- 2009-12-30 CN CN200980156427.8A patent/CN102308359B/zh active Active
- 2009-12-30 JP JP2011548538A patent/JP5608176B2/ja active Active
- 2009-12-30 SG SG2011055761A patent/SG173512A1/en unknown
- 2009-12-30 PL PL09799555T patent/PL2394288T3/pl unknown
- 2009-12-30 PT PT97995559T patent/PT2394288T/pt unknown
- 2009-12-30 EP EP09799555.9A patent/EP2394288B1/de active Active
- 2009-12-30 US US13/148,384 patent/US11264216B2/en active Active
- 2009-12-30 CA CA2751811A patent/CA2751811C/en active Active
- 2009-12-30 AU AU2009339328A patent/AU2009339328B2/en not_active Ceased
- 2009-12-30 HU HUE09799555A patent/HUE034774T2/en unknown
- 2009-12-30 WO PCT/EP2009/009319 patent/WO2010088947A1/de active Application Filing
- 2009-12-30 RU RU2011137165/07A patent/RU2550502C2/ru active
- 2009-12-30 MX MX2011008408A patent/MX2011008408A/es active IP Right Grant
- 2009-12-30 KR KR1020167035660A patent/KR101784648B1/ko active IP Right Grant
- 2009-12-30 BR BRPI0924299A patent/BRPI0924299A2/pt not_active Application Discontinuation
-
2020
- 2020-02-05 US US16/782,499 patent/US11535928B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0459137B1 (de) * | 1990-05-28 | 2000-07-05 | Hauzer Industries Bv | Vorrichtung zur Beschichtung von Substraten |
WO2004057642A2 (de) * | 2002-12-19 | 2004-07-08 | Unaxis Balzers Aktiengesellschaft | Vacuumarcquelle mit magnetfelderzeugungseinrichtung |
RU2256724C1 (ru) * | 2003-12-10 | 2005-07-20 | Самарский государственный аэрокосмический университет им. акад. С.П. Королева | Способ нанесения композиционных покрытий в вакууме |
EP1970464A1 (en) * | 2005-12-16 | 2008-09-17 | Fundacion Tekniker | Cathode evaporation machine |
WO2007131944A2 (de) * | 2006-05-16 | 2007-11-22 | Oerlikon Trading Ag, Trübbach | Arcquelle und magnetanordnung |
Also Published As
Publication number | Publication date |
---|---|
HUE034774T2 (en) | 2018-02-28 |
AU2009339328B2 (en) | 2014-05-08 |
RU2011137165A (ru) | 2013-03-20 |
CA2751811C (en) | 2017-08-22 |
DE102009008161A1 (de) | 2010-08-12 |
EP2394288B1 (de) | 2017-10-11 |
SG2014008999A (en) | 2014-04-28 |
SG173512A1 (en) | 2011-09-29 |
CN102308359A (zh) | 2012-01-04 |
US20200176220A1 (en) | 2020-06-04 |
KR101784648B1 (ko) | 2017-11-06 |
AU2009339328A1 (en) | 2011-08-25 |
BRPI0924299A2 (pt) | 2016-01-26 |
US11535928B2 (en) | 2022-12-27 |
WO2010088947A1 (de) | 2010-08-12 |
JP2012517522A (ja) | 2012-08-02 |
JP5608176B2 (ja) | 2014-10-15 |
CA2751811A1 (en) | 2010-08-12 |
MX2011008408A (es) | 2011-09-22 |
CN102308359B (zh) | 2016-06-01 |
KR20160150641A (ko) | 2016-12-30 |
PT2394288T (pt) | 2018-01-03 |
EP2394288A1 (de) | 2011-12-14 |
US11264216B2 (en) | 2022-03-01 |
US20110308941A1 (en) | 2011-12-22 |
KR20110135919A (ko) | 2011-12-20 |
ES2652141T3 (es) | 2018-01-31 |
PL2394288T3 (pl) | 2018-03-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2550502C2 (ru) | Модифицируемая конфигурация магнитов для электродуговых испарителей | |
Deng et al. | Physical vapor deposition technology for coated cutting tools: A review | |
US9127354B2 (en) | Filtered cathodic arc deposition apparatus and method | |
US9257263B2 (en) | Rectangular filtered vapor plasma source and method of controlling vapor plasma flow | |
JP6101238B2 (ja) | 基体を被覆するための被覆装置及び基体を被覆する方法 | |
TWI411696B (zh) | 沉積電絕緣層之方法 | |
US20100276283A1 (en) | Vacuum coating unit for homogeneous PVD coating | |
CA2928389A1 (en) | Remote arc discharge plasma assisted processes | |
KR20040065648A (ko) | 마그네트론 캐소드 및 이를 채용하는 마그네트론 스퍼터링장치 | |
US10811239B2 (en) | Cylindrical evaporation source | |
JPH0548298B2 (ru) | ||
US20020020356A1 (en) | Vacuum arc evaporation source and film formation apparatus using the same | |
US20050040037A1 (en) | Electron beam enhanced large area deposition system | |
KR20140108617A (ko) | 디엘씨 박막 증착용 이온 플레이팅 장치 | |
US10083822B2 (en) | Physical vapour deposition coating device as well as a physical vapour deposition method | |
RU2390580C1 (ru) | Малогабаритное магнетронное распылительное устройство | |
KR20130088604A (ko) | 디엘씨 박막 증착용 이온 플레이팅 장치 | |
IL194400A (en) | An integrated universal source of the filtered plasma stream and neutral atoms |