RU2542959C2 - Трубчатая установка риформинга с переменной толщиной стенок и соответствующий способ получения - Google Patents

Трубчатая установка риформинга с переменной толщиной стенок и соответствующий способ получения Download PDF

Info

Publication number
RU2542959C2
RU2542959C2 RU2013125779/02A RU2013125779A RU2542959C2 RU 2542959 C2 RU2542959 C2 RU 2542959C2 RU 2013125779/02 A RU2013125779/02 A RU 2013125779/02A RU 2013125779 A RU2013125779 A RU 2013125779A RU 2542959 C2 RU2542959 C2 RU 2542959C2
Authority
RU
Russia
Prior art keywords
section
tubular structure
reforming
wall thickness
axially aligned
Prior art date
Application number
RU2013125779/02A
Other languages
English (en)
Other versions
RU2013125779A (ru
Inventor
Филип КРАУЧ
Джералд ГАПИНСКИ
Роберт СМИКЛИ
Брайан В. ВОЛКЕР
Джилберт И. УИТТЕН
Original Assignee
Мидрекс Текнолоджиз, Инк.
Металтек Интернэшнл, Инк.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Мидрекс Текнолоджиз, Инк., Металтек Интернэшнл, Инк. filed Critical Мидрекс Текнолоджиз, Инк.
Publication of RU2013125779A publication Critical patent/RU2013125779A/ru
Application granted granted Critical
Publication of RU2542959C2 publication Critical patent/RU2542959C2/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B11/00Making pig-iron other than in blast furnaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/06Making pig-iron in the blast furnace using top gas in the blast furnace process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/02Apparatus characterised by being constructed of material selected for its chemically-resistant properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/008Details of the reactor or of the particulate material; Processes to increase or to retard the rate of reaction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/06Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds in tube reactors; the solid particles being arranged in tubes
    • B01J8/062Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds in tube reactors; the solid particles being arranged in tubes being installed in a furnace
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/384Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts the catalyst being continuously externally heated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/02Apparatus characterised by their chemically-resistant properties
    • B01J2219/025Apparatus characterised by their chemically-resistant properties characterised by the construction materials of the reactor vessel proper
    • B01J2219/0277Metal based
    • B01J2219/0286Steel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0244Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being an autothermal reforming step, e.g. secondary reforming processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0811Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel
    • C01B2203/0827Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel at least part of the fuel being a recycle stream
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/14Details of the flowsheet
    • C01B2203/148Details of the flowsheet involving a recycle stream to the feed of the process for making hydrogen or synthesis gas
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2100/00Handling of exhaust gases produced during the manufacture of iron or steel
    • C21B2100/20Increasing the gas reduction potential of recycled exhaust gases
    • C21B2100/22Increasing the gas reduction potential of recycled exhaust gases by reforming
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2100/00Handling of exhaust gases produced during the manufacture of iron or steel
    • C21B2100/20Increasing the gas reduction potential of recycled exhaust gases
    • C21B2100/26Increasing the gas reduction potential of recycled exhaust gases by adding additional fuel in recirculation pipes
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2100/00Handling of exhaust gases produced during the manufacture of iron or steel
    • C21B2100/40Gas purification of exhaust gases to be recirculated or used in other metallurgical processes
    • C21B2100/44Removing particles, e.g. by scrubbing, dedusting
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Manufacture Of Iron (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

Изобретение относится к трубе риформинга с переменной толщиной стен, предназначенной для риформинга газа в процессе прямого восстановления железа. Труба содержит аксиально выровненную трубчатую конструкцию, выполненную из металлического материала. Аксиально выровненная трубчатая конструкция содержит фланцевую секцию, верхнюю секцию, среднюю секцию и нижнюю секцию. Верхняя секция содержит первый участок, имеющий первую толщину стены, второй участок, имеющий вторую толщину стены и третий участок, имеющий переходную толщину стены, который соединяет первый участок со вторым участком. Причем первый участок, второй участок и третий участок имеют постоянный внутренний диаметр. Изобретение обеспечивает более продолжительную работу при текущих требованиях к температуре или равную продолжительность работы в условиях повышенных температур. 2 н. и 16 з.п. ф-лы, 3 ил.

Description

ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ
Изобретение относится в целом к реактору риформинга, который применяется для риформинга газа, например, в процессе прямого восстановления (DR). Более конкретно, настоящее изобретение относится к трубчатой установке риформинга с переменной толщиной стены. Факультативно, трубчатая установка риформинга изготовлена из нового металлургического сплава.
ПРЕДПОСЫЛКИ ИЗОБРЕТЕНИЯ
Способы получения конвертированных газов разного типа широко используются во всем мире и имеют особое применение в связи с установками для получения железа прямого восстановления (DRI). В DR-процессе риформер применяется для конверсии природного газа (CH4) окислителями CO2 и H2O из рециркулирующего технологического газа, получаемого в восстановительной печи, называемой также, например, шахтной печью. Восстановители CO и H2 образуются в реакции риформинга и используются затем при повышенной температуре для восстановления оксида железа (Fe2O3), т.е. железной руды в металлическое железо (Fe) в восстановительной печи. Затем металлическое железо обрабатывают с получением различных сортов стали для получения конечных продуктов.
Этот DR-способ проиллюстрирован в общих чертах на фиг.1 и включает три основных этапа: восстановление, риформинг и рекуперацию тепла. На стадии восстановления оксид железа, в форме гранул или кусковой формы, вводят сверху восстановительной печи 10 через дозирующий бункер 12. По мере опускания оксида железа в восстановительной печи 10 под действием силы тяжести он нагревается, и из железа удаляется кислород, т.е. оксид железа восстанавливается противоточным потоком газов, которые имеют высокое содержание восстановителей CO и H2. Эти газы реагируют с Fe2O3 в железной руде и превращают ее в металлическое железо, оставляя окислители CO2 и H2O. Соответственно, восстановительная печь 10 имеет три разных зоны, в которых протекает процесс DR: зону восстановления, переходную зону и зону охлаждения. Для получения холодного DRI металлическое железо охлаждают и науглероживают посредством противоточно текущих охлаждающих газов в нижней части восстановительной печи 10. DRI можно также выгружать горячим и подавать на брикетировочную машину для получения горячебрикетированного железа (HBI) или подавать горячим как горячее железо прямого восстановления (HDRI) сразу в электродуговую печь (EAF), и т.д.
На этапе риформинга, чтобы максимально повысить эффективность риформинга, рециркулирующий технологический газ из восстановительной печи 10 смешивают со свежим природным газом и подают в риформер 14, причем печь с огнеупорной футеровкой включает одну или более трубчатых установок риформинга 16 из металлургического сплава, наполненных катализатором, например никелевым или алюмоникелевым. Газ нагревается и конвертируется при прохождении через трубчатые установки риформинга 16. Новый конвертированный газ, содержащий 90-92% CO и H2, подают затем горячим прямо в восстановительную печь 10 как восстановительный газ.
На этапе рекуперации тепла тепловой кпд риформера 14 максимальный. Тепло отбирается из дымовых газов риформера и используется для предварительного нагрева подаваемой в риформер газовой смеси, воздуха для горения в горелках и подачи природного газа. Факультативно, подогреваются также дымовые газы риформера.
Так как присутствие окислителей в конвертированном газе затрудняло бы реакцию восстановления, подаваемая в риформер газовая смесь должна содержать достаточно окислителей, чтобы реагировать с природным газом, плюс достаточный избыток окислителей, чтобы защитить катализатор. Это называется стехиометрическим риформингом. Отношение восстановителя к окислителю в газе риформинга типично составляет примерно 11 к 1. Реакция риформинга является эндотермической. Таким образом, для реакции необходим подвод тепла. Реакция риформинга имеет место в присутствии катализатора, чтобы повысить скорость реакции. Так как одним из окислителей является CO2, риформер 14 должен работать при более высоких температурах, чем обычные реакторы парового риформинга.
Обычные трубчатые установки риформинга 16 делают из различных металлургических сплавов, чтобы отвечать техническим нормам на проектирование, что дает срок службы 7-10 лет при контролируемых рабочих температурах. Например, комплект сменных труб 16 может стоить свыше 10 млн долларов, что означает значительные расходы для владельцев установки DRI. Таким образом, было бы выгодно, если трубы 16 могли работать при применяемых уровнях температуры в течение более длительного времени. Аналогично, было бы выгодным, если трубы 16 могли работать при повышенных уровнях температуры в течение того же периода времени. Оба случая привели бы к повышению производительности риформера 14, тем самым обеспечивая повышение производительности установки DRI и, в конечном счете, прибыли.
Большинство традиционных труб 16 со временем разрушаются в их верхней секции, около крыши риформера. Эта локализованная секция постепенно оползает и увеличивается в диаметре, образуя выпучивание. Это зона нежелательной деформации и утончения стенок. Обычные подходы к решению этой проблемы включают увеличение толщины стены всей трубы 16, что приводит к повышению полного веса, менее эффективному теплопереносу, проблемам с опорами и повышенное побочное растягивание труб, а это в совокупности дает значительные дополнительные расходы. Решение этой проблемы необходимо, но не было найдено специалистами среднего уровня.
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
В различных иллюстративных вариантах осуществления настоящее изобретение обеспечивает трубчатую установку риформинга, имеющую переменную толщину стены и сделанную из нового металлургического сплава. Эта комбинация конструкции и материала приводит в результате к более продолжительной работе при текущих требованиях к температуре или к равной продолжительности работы в условиях повышенных температур. Толщина стены увеличена только в локальных секциях трубчатой установки риформинга, где требуется сопротивление деформации. Обеспечиваются переходы к обычным толщинам, являющиеся постепенными, так что напряжения минимизированы по сравнению со сварными соединениями. Ожидается, что срок службы труб будет увеличен на 4-6 лет или что можно будет соответственно повысить температуры труб и суммарную производительность процесса DR.
В одном иллюстративном варианте осуществления настоящее изобретение дает трубчатую установку риформинга, содержащую: аксиально выровненную трубчатую конструкцию; причем аксиально выровненная трубчатая конструкция включает первый участок, имеющий первую толщину стены; причем аксиально выровненная трубчатая конструкция включает второй участок, имеющий вторую толщину стены; и причем аксиально выровненная трубчатая конструкция включает третий участок, имеющий переходную толщину стены, который соединяет первый участок со вторым участком. Кроме того, аксиально выровненная трубчатая конструкция содержит фланцевую секцию, причем фланцевая секция включает концентрический фланец, расположенный вокруг ее верхней части. Аксиально выровненная трубчатая конструкция включает, кроме того, верхнюю секцию, причем первый участок и второй участок аксиально выровненной трубчатой конструкции являются частями верхней секции. Кроме того, аксиально выровненная трубчатая конструкция включает среднюю секцию. Аксиально выровненная трубчатая конструкция включает, кроме того, нижнюю секцию. Нижняя секция трубчатой конструкции содержит множество концентрических клиновидных структур, расположенных по ее внутренней части. Нижняя секция трубчатой конструкции имеет также углубление, идущее вдоль ее наружной части. Аксиально выровненная трубчатая конструкция содержит, кроме того, вспомогательную фланцевую секцию, причем вспомогательная фланцевая секция включает концентрический фланец, расположенный вокруг ее верхней части. Факультативно трубчатая установка риформинга размещена в риформере, применяемом в процессе прямого восстановления.
В другом иллюстративном варианте осуществления настоящее изобретение дает трубчатую установку риформинга, содержащую: аксиально выровненную трубчатую конструкцию, включающую фланцевую секцию, верхнюю секцию, среднюю секцию и нижнюю секцию; причем верхняя секция аксиально выровненной трубчатой конструкции включает первый участок, имеющий первую толщину стены; причем верхняя секция аксиально выровненной трубчатой конструкции включает второй участок, имеющий вторую толщину стены; и причем верхняя секция аксиально выровненной трубчатой конструкции включает третий участок, имеющий переходную толщину стены, который соединяет первый участок со вторым участком. Фланцевая секция включает концентрический фланец, расположенный вокруг ее верхней части. Факультативно первая толщина стены больше, чем вторая толщина стены. Нижняя секция трубчатой конструкции включает множество концентрических клиновидных структур, расположенных по ее внутренней части. Нижняя секция трубчатой конструкции также имеет углубление, идущее вдоль ее наружной части. Аксиально выровненная трубчатая конструкция включает, кроме того, вспомогательную фланцевую секцию, соединенную с фланцевой секцией, причем вспомогательная фланцевая секция содержит концентрический фланец, расположенный вокруг ее верхней части. Факультативно трубчатая установка риформинга размещена в риформере, применяющемся в процессе прямого восстановления.
В следующем иллюстративном варианте осуществления настоящее изобретение дает способ получения трубчатой установки риформинга, включающий в себя: получение аксиально выровненной трубчатой конструкции, содержащей фланцевую секцию, верхнюю секцию, среднюю секцию и нижнюю секцию; причем верхняя секция аксиально выровненной трубчатой конструкции содержит первый участок, имеющий первую толщину стены; причем верхняя секция аксиально выровненной трубчатой конструкции содержит второй участок, имеющий вторую толщину стены; и причем верхняя секция аксиально выровненной трубчатой конструкции содержит третий участок, имеющий переходную толщину стены, который соединяет первый участок со вторым участком. Фланцевая секция включает концентрический фланец, расположенный вокруг ее верхней части. Факультативно, первая толщина стены больше, чем вторая толщина стены. Нижняя секция трубчатой конструкции имеет множество концентрических клиновидных структур, расположенных по ее внутренней части. Нижняя секция трубчатой конструкции также имеет углубление, идущее вдоль ее наружной части. Аксиально выровненная трубчатая конструкция включает, кроме того, вспомогательную фланцевую секцию, соединенную с фланцевой секцией, причем вспомогательная фланцевая секция включает концентрический фланец, расположенный вокруг ее верхней части.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
Изобретение проиллюстрировано и описано здесь с обращением к различным чертежам, на которых одинаковые позиции используются для обозначения соответствующих сходных деталей устройства/технологических этапов и на которых:
фиг.1 является схематическим представлением, показывающим один иллюстративный вариант осуществления процесса DR, в котором может применяться трубчатая установка риформинга по настоящему изобретению;
фиг.2 является схематическим представлением, показывающим один иллюстративный вариант осуществления риформера, в котором может использоваться трубчатая установка риформинга по настоящему изобретению, и
фиг.3 является видом сбоку в разрезе, показывающим один иллюстративный вариант осуществления трубчатой установки риформинга по настоящему изобретению.
ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ
Согласно фиг.2 в риформере 14, чтобы максимально повысить эффективность риформинга, рециркулирующий технологический газ из восстановительной печи 10 (фиг.1) смешивается со свежим природным газом и подается в риформер 14 как конвертированный сырьевой газ 18. Риформер 14 включает футерованную огнеупорами печь 20, содержащую одну или несколько трубчатых установок 16 риформинга из металлургического сплава, наполненных катализатором 22. Огнеупорный материал 24 содержит, например, защитное покрытие из керамического волокна. В проиллюстрированном варианте осуществления показаны две трубчатые установки 16 риформинга, однако, специалистам среднего уровня в данной области должно быть очевидным, что может использоваться любое число трубчатых установок 16 риформинга. В риформере 14 сырьевой газ 18 риформинга нагревается и конвертируется по мере прохождения через трубчатую установку 16 риформинга. Затем новый конвертированный газ, содержащий 90-92% CO и H2, вводится горячим напрямую в восстановительную печь 10 как восстановительный газ 26.
Далее, на стадии восстановления сверху восстановительной печи 10 через дозирующий бункер 12 (фиг.1) вводится оксид железа в форме гранул или кусковой форме. По мере опускания оксида железа по восстановительной печи 10 под действием силы тяжести он нагревается, и из железа удаляется кислород, т.е. оксид железа восстанавливается текущими в противотоке газами, которые имеют высокие содержания восстановителей CO и H2. Эти газы реагируют с Fe2O3 в железной руде и превращают его в металлическое железо, оставляя окислители CO2 и H2O. Соответственно, восстановительная печь 10 имеет три разных зоны, в которых протекает процесс DR: зону восстановления, переходную зону и зону охлаждения. Для получения холодного DRI металлическое железо охлаждают и науглероживают с помощью текущих в противотоке охлаждающих газов в нижней части восстановительной печи 10. DRI можно также выгружать горячим и подавать на брикетировочную машину для получения HBI или подавать горячим как HDRI сразу в электродуговую печь, и т.д.
В частности, согласно фиг.3 в одном иллюстративном варианте осуществления настоящего изобретения каждая трубчатая установка 16 риформинга включает обычно аксиально выровненную трубчатую конструкцию 28, содержащую множество компонентов. Эти компоненты включают фланцевую секцию 30, верхнюю секцию 32, среднюю секцию 34 и нижнюю секцию 36. С фланцевой секцией 30 соединяется вспомогательная фланцевая секция 38. Ниже каждый из компонентов описан подробнее. Как используется здесь, термин "трубчатый" относится обычно к поперечному сечению в целом круглой формы, хотя допустимы также другие формы сечения.
Фланцевая секция 30 включает трубчатую конструкцию 40, имеющую внутренний диаметр примерно 260-300 мм, наружный диаметр примерно 290-330 мм, толщину стены примерно 12-15 мм и полную длину примерно 90 мм, хотя можно использовать другие подходящие размеры. Фланцевая секция 30 может быть сделана из сплава HP-MA, жаропрочного сплава, включающего Cr, Ni и Fe плюс другие элементы, характерные для семейства суперсплавов, или из другого нового материала, и ее поверхности предпочтительно обработаны дробеструйной очисткой или подобным, чтобы удалить посторонние вещества. Выступающий наружу концентрический фланец 42 расположен вокруг верхней части фланцевой секции 30 и имеет наружный диаметр примерно 432 мм и толщину примерно 16 мм.
Верхняя секция 32 включает трубчатую конструкцию 44, имеющую внутренний диаметр примерно 260-300 мм, переменный наружный диаметр и полную длину примерно 3500 мм, хотя могут использоваться и другие подходящие размеры. В частности, трубчатая конструкция 44 верхней секции 32 включает участок 46 постоянной толщины, имеющий наружный диаметр примерно 290-330 мм, толщину стены примерно 12-15 мм и полную длину примерно 2000 мм, хотя могут использоваться и другие подходящие размеры. Трубчатая конструкция 44 верхней секции 32 включает также участок 48 переменной толщины, наружный диаметр которого постепенно конически сужается с примерно 290-330 мм до примерно 280-320 мм сверху вниз, а толщина стены постепенно уменьшается с примерно 15 мм до примерно 10 мм сверху вниз, и полная длина составляет примерно 1500 мм, хотя могут использоваться и другие подходящие размеры. Верхняя секция 32 может быть сделана из сплава HV, жаропрочного сплава, содержащего Cr, Ni и Fe плюс другие элементы, характерные для семейства суперсплавов, или из другого нового материала, и ее поверхности предпочтительно обработаны дробеструйной очисткой или подобным для удаления посторонних веществ. Следует отметить, что любые подходящие конически сужающиеся сечения (и любое подходящее их число) может быть введено в верхнюю секцию 32 или любую другую секцию трубчатой установки риформинга 16, хотя предпочтителен гладкий переход диаметров (наружного и/или внутреннего), чтобы минимизировать напряжения в материале. Верхняя секция 32 соединена с фланцевой секцией 30 сварным соединением 50 или другим подходящим механизмом крепления.
Средняя секция 34 содержит трубчатую конструкцию 52, имеющую внутренний диаметр примерно 260-300 мм, наружный диаметр примерно 280-320 мм, толщину стены примерно 8-10 мм и полную длину примерно 4900 мм, хотя могут использоваться и другие подходящие размеры. Средняя секция 34 может быть выполнена из сплава HP-MA, жаропрочного сплава, включающего Cr, Ni и Fe плюс другие элементы, характерные для семейства суперсплавов, или из другого нового материала, и ее поверхности предпочтительно обработаны дробеструйной очисткой или подобным, чтобы удалить посторонние вещества. Средняя секция 34 соединяется с верхней секцией 32 сварным соединением 50, причем такое сварное соединение 50 выполнено с надлежащим J-образным скосом сварного шва и произведено с использованием присадочного материала из совместимого сплава, или соединение получено другим подходящим механизмом крепления.
Нижняя секция 36 включает трубчатую конструкцию 54, имеющую внутренний диаметр примерно 260-300 мм, наружный диаметр (который может быть переменным/конически сужающимся) примерно 280-320 мм, толщину стены (которая может быть переменной/конически сужающейся) примерно 8-10 мм и полную длину примерно 1060 мм, хотя могут использоваться и другие подходящие размеры. Нижняя секция 36 может быть сделана из сплава HK-MA, жаропрочного сплава, включающего Cr, Ni и Fe плюс другие элементы, характерные для семейства суперсплавов, или из другого нового материала, и ее поверхности предпочтительно обработаны дробеструйной очисткой или подобным, чтобы удалить посторонние вещества. Нижняя секция 36 соединяется со средней секцией 34 сварным соединением 50, причем такое сварное соединение 50 выполнено с надлежащим J-образным скосом сварного шва или прямым V-образным швом со скосом кромок и произведено с использованием присадочного материала из совместимого сплава, или соединение получено другим подходящим механизмом крепления. Кроме того, множество клиновидных структур 56 из никелевого сплава или подобных структур расположены концентрически кругом и приварены вдоль внутренней части трубчатой конструкции 54 нижней секции 36 для поддержки внутренней опорной пластины катализатора (не показана). Аналогично, канал 58 или подобное проходит концентрически кругом и сделан в наружной части трубчатой конструкции 54 нижней секции 36 для установки нижнего газонепроницаемого фланца (не показан).
Наконец, вспомогательная фланцевая секция 38 включает трубчатую конструкцию 60, имеющую внутренний диаметр примерно 394 мм, наружный диаметр примерно 406 мм, толщину стены примерно 6 мм и полную длину примерно 71 мм, хотя могут использоваться и другие подходящие размеры. Вспомогательная фланцевая секция 38 может быть сделана из углеродистой стали или другого подходящего сплава, или из другого нового материала, и ее поверхности предпочтительно обработаны дробеструйной очисткой или подобным, чтобы удалить посторонние вещества. Выступающий наружу концентрический вспомогательный фланец 62 расположен вокруг верхней части вспомогательной фланцевой секции 38 и имеет наружный диаметр примерно 485 мм и толщину примерно 6 мм. Вспомогательная фланцевая секция 38 соединена с фланцевой секцией 30 сварным соединением 50, причем такое сварное соединение 50 выполнено с надлежащим J-образным скосом сварного шва или прямым V-образным швом со скосом кромок и произведено с использованием присадочного материала из совместимого сплава, или соединение получено другим подходящим механизмом крепления. Вспомогательная фланцевая секция 38 используется для соединения системы труб риформера с коллектором конвертированного газа (не показан), например, с помощью сварки. Конечно, все компоненты трубной системы 16 риформера могут быть также сформированы как одно целое. Трубчатые компоненты и фланцы из жаропрочного сплава предпочтительно получают способом центробежного литья.
Таким образом, в различных показанных для примера вариантах осуществления настоящее изобретение дает трубчатую установку риформинга 16, имеющую переменную толщину стены и сделанную из нового металлургического сплава. Эта комбинация конструкции и материала дает в результате более продолжительную работу при текущих требованиях к температуре или равную продолжительность работы в условиях повышенной температуры. Толщина стены увеличена только в локальных секциях трубчатой установки 16 риформинга, где требуется сопротивление деформации. Обеспечиваются переходы к обычным толщинам, и они являются постепенными, так что напряжения уменьшены по сравнению со сварными соединениями. Ожидается, что трубы прослужит на 4-6 лет дольше или что можно будет соответственно повысить температуры труб и суммарную производительность процесса DR.
Хотя настоящее изобретение было проиллюстрировано и описано здесь в отношении предпочтительных вариантов осуществления и их частных примеров, специалистам в данной области должно быть очевидным, что другие варианты осуществления и примеры могут выполнять близкие функции и/или достигать близких результатов. Все такие эквивалентные варианты осуществления и примеры охватываются сущностью и объемом настоящего изобретения и, тем самым, считаются предусмотренными; подразумевается, что все они охватываются следующей формулой изобретения. В этой связи настоящее описание следует рассматривать как неограничивающее и всеобъемлющее.

Claims (18)

1. Труба риформинга с переменной толщиной стен, предназначенная для риформинга газа в процессе прямого восстановления железа, содержащая:
- аксиально выровненную трубчатую конструкцию, выполненную из металлического материала;
- причем аксиально выровненная трубчатая конструкция содержит первый участок, имеющий первую толщину стены;
- причем аксиально выровненная трубчатая конструкция содержит второй участок, имеющий вторую толщину стены;
- причем аксиально выровненная трубчатая конструкция содержит третий участок, имеющий переходную толщину стены, который соединяет первый участок со вторым участком, и
причем первый участок, второй участок и третий участок имеют постоянный внутренний диаметр.
2. Труба риформинга по п. 1, причем трубчатая установка риформинга выполнена из жаропрочного сплава, содержащего Cr, Ni и Fe.
3. Труба риформинга по п. 1, причем аксиально выровненная трубчатая конструкция дополнительно содержит фланцевую секцию, причем фланцевая секция содержит концентрический фланец, расположенный вокруг ее верхней части.
4. Труба риформинга по п. 1, причем аксиально выровненная трубчатая конструкция дополнительно содержит верхнюю секцию, причем первый участок и второй участок аксиально выровненной трубчатой конструкции являются частями верхней секции.
5. Труба риформинга по п. 1, причем аксиально выровненная трубчатая конструкция дополнительно содержит среднюю секцию.
6. Труба риформинга по п. 1, причем аксиально выровненная трубчатая конструкция дополнительно содержит нижнюю секцию.
7. Труба риформинга по п. 6, причем нижняя секция трубчатой конструкции содержит множество концентрических клиновидных структур, расположенных по ее внутренней части.
8. Труба риформинга по п. 6, причем нижняя секция трубчатой конструкции содержит углубление, проходящее вдоль ее наружной части.
9. Труба риформинга по п. 1, причем аксиально выровненная трубчатая конструкция дополнительно содержит вспомогательную фланцевую секцию, причем вспомогательная фланцевая секция содержит концентрический фланец, расположенный вокруг ее верхней части.
10. Труба риформинга по п. 1, причем трубчатая установка риформинга размещена в риформере, применяющемся в упомянутом процессе прямого восстановления.
11. Труба риформинга с переменной толщиной стен, предназначенная для риформинга газа в процессе прямого восстановления железа, содержащая:
- аксиально выровненную трубчатую конструкцию, выполненную из металлического материала и содержащую фланцевую секцию, верхнюю секцию, среднюю секцию и нижнюю секцию;
- причем верхняя секция аксиально выровненной трубчатой конструкции содержит первый участок, имеющий первую толщину стены;
- причем верхняя секция аксиально выровненной трубчатой конструкции содержит второй участок, имеющий вторую толщину стены; и
- причем верхняя секция аксиально выровненной трубчатой конструкции содержит третий участок, имеющий переходную толщину стены, который соединяет первый участок со вторым участком; и
причем первый участок, второй участок и третий участок имеют постоянный внутренний диаметр.
12. Труба риформинга по п. 11, причем трубчатая установка риформинга выполнена из жаропрочного сплава, содержащего Cr, Ni и Fe.
13. Труба риформинга по п. 11, причем фланцевая секция содержит концентрический фланец, расположенный вокруг ее верхней части.
14. Труба риформинга по п. 11, причем первая толщина стены больше, чем вторая толщина стены.
15. Труба риформинга по п. 11, причем нижняя секция трубчатой конструкции содержит множество концентрических клиновидных структур, расположенных по ее внутренней части.
16. Труба риформинга по п. 11, причем нижняя секция трубчатой конструкции содержит углубление, проходящее вдоль ее наружной части.
17. Труба риформинга по п. 11, причем аксиально выровненная трубчатая конструкция дополнительно содержит вспомогательную фланцевую секцию, соединенную с фланцевой секцией, причем вспомогательная фланцевая секция содержит концентрический фланец, расположенный вокруг ее верхней части.
18. Труба риформинга по п. 11, причем трубчатая установка риформинга размещена в риформере, применяющемся в упомянутом процессе прямого восстановления.
RU2013125779/02A 2010-11-05 2010-11-05 Трубчатая установка риформинга с переменной толщиной стенок и соответствующий способ получения RU2542959C2 (ru)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2010/055541 WO2012060838A1 (en) 2010-11-05 2010-11-05 Reformer tube apparatus having variable wall thickness and associated method of manufacture

Publications (2)

Publication Number Publication Date
RU2013125779A RU2013125779A (ru) 2014-12-10
RU2542959C2 true RU2542959C2 (ru) 2015-02-27

Family

ID=46024742

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013125779/02A RU2542959C2 (ru) 2010-11-05 2010-11-05 Трубчатая установка риформинга с переменной толщиной стенок и соответствующий способ получения

Country Status (10)

Country Link
EP (1) EP2635714B1 (ru)
JP (1) JP5781620B2 (ru)
KR (1) KR101478821B1 (ru)
CN (1) CN103180465B (ru)
BR (1) BR112013007729B1 (ru)
CA (1) CA2810832C (ru)
ES (1) ES2654579T3 (ru)
PL (1) PL2635714T3 (ru)
RU (1) RU2542959C2 (ru)
WO (1) WO2012060838A1 (ru)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016199291A1 (ja) * 2015-06-12 2016-12-15 株式会社神戸製鋼所 還元鉄の製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2136360C1 (ru) * 1993-06-16 1999-09-10 Дзе Стэндард Оил Компани Устройство и способ проведения эндотермической реакции
US5958364A (en) * 1995-08-07 1999-09-28 Imperial Chemical Industries Plc Heat exchange apparatus and process
RU2234458C1 (ru) * 2003-04-21 2004-08-20 Открытое акционерное общество "Акрон" Процесс риформинга природного газа в производстве аммиака
RU2357919C1 (ru) * 2008-01-09 2009-06-10 Открытое акционерное общество "Тольяттиазот" Способ получения синтез-газа, обогащенного водородом и монооксидом углерода, путем каталитического риформинга углеводородсодержащего сырья

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3348923A (en) * 1965-10-01 1967-10-24 Foster Wheeler Corp Tube design for terrace wall furnace
DE2317893C3 (de) * 1973-04-10 1980-08-28 Uhde Gmbh, 4600 Dortmund Vorrichtung zur Durchführung katalytischer endothermer Reaktionen
FR2315478A1 (fr) * 1975-06-25 1977-01-21 Azote & Prod Chim Perfectionnement a un four de reformage a la vapeur d'hydrocarbures
US4493636A (en) * 1981-03-05 1985-01-15 The United States Of America As Represented By The United States Department Of Energy Gasification system
JPS59207802A (ja) 1983-05-10 1984-11-26 Tokyo Gas Co Ltd 炭化水素改質反応器への原料の供給方法及びその装置
DK44684D0 (da) * 1984-02-01 1984-02-01 Topsoee H A S Fremgangsmaade til fremstilling af en reducerende fremgangsmade til fremstilling af en reducerende ggas as
JPS6365057A (ja) * 1986-09-05 1988-03-23 Kubota Ltd 炭化水素類の熱分解・改質反応用管
JPH05186201A (ja) * 1992-01-09 1993-07-27 Fuji Electric Co Ltd 燃料改質器
JPH07257901A (ja) * 1994-03-16 1995-10-09 Chiyoda Corp 熱交換器型改質器
JPH09255754A (ja) 1996-03-22 1997-09-30 Toray Thiokol Co Ltd 硬化型組成物
US5997596A (en) 1997-09-05 1999-12-07 Spectrum Design & Consulting International, Inc. Oxygen-fuel boost reformer process and apparatus
JPH11106811A (ja) * 1997-10-07 1999-04-20 Nkk Corp 還元鉄の製造方法および装置
EP1063008A3 (en) * 1999-05-28 2001-03-28 Haldor Topsoe A/S Reactor for carrying out a non-adiabatic process
AT407879B (de) * 1999-10-28 2001-07-25 Voest Alpine Ind Anlagen Verfahren zur direktreduktion eisenoxidhältigen materials
GB9927817D0 (en) 1999-11-26 2000-01-26 Ici Plc Steam reforming apparatus
US20090100752A1 (en) * 2004-06-26 2009-04-23 Sessa John P Device for converting carbonaceous matter into synthesis gas and associated methods
JP2006206383A (ja) * 2005-01-28 2006-08-10 Air Water Inc 炭化水素系ガスの改質器
JP4731943B2 (ja) * 2005-02-16 2011-07-27 東京瓦斯株式会社 環状反応器、その作製方法及びシール方法
CN101466914B (zh) * 2006-04-21 2014-10-01 国际壳牌研究有限公司 用于处理含有碳氢化合物的地层的方法
AU2007240367B2 (en) 2006-04-21 2011-04-07 Shell Internationale Research Maatschappij B.V. High strength alloys
JP2008024566A (ja) * 2006-07-24 2008-02-07 Toshiba Corp 水素製造方法及び水素製造装置
US20080286159A1 (en) 2006-09-15 2008-11-20 Grover Bhadra S Variable Tube Diameter For SMR
KR100971743B1 (ko) * 2007-12-27 2010-07-21 삼성에스디아이 주식회사 연료 전지 시스템 및 연료 전지 시스템용 개질기

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2136360C1 (ru) * 1993-06-16 1999-09-10 Дзе Стэндард Оил Компани Устройство и способ проведения эндотермической реакции
US5958364A (en) * 1995-08-07 1999-09-28 Imperial Chemical Industries Plc Heat exchange apparatus and process
RU2234458C1 (ru) * 2003-04-21 2004-08-20 Открытое акционерное общество "Акрон" Процесс риформинга природного газа в производстве аммиака
RU2357919C1 (ru) * 2008-01-09 2009-06-10 Открытое акционерное общество "Тольяттиазот" Способ получения синтез-газа, обогащенного водородом и монооксидом углерода, путем каталитического риформинга углеводородсодержащего сырья

Also Published As

Publication number Publication date
KR20130052023A (ko) 2013-05-21
EP2635714B1 (en) 2017-10-18
KR101478821B1 (ko) 2015-02-04
CA2810832C (en) 2017-10-31
PL2635714T3 (pl) 2018-02-28
EP2635714A1 (en) 2013-09-11
CN103180465A (zh) 2013-06-26
JP2014501679A (ja) 2014-01-23
CN103180465B (zh) 2015-05-20
BR112013007729A2 (pt) 2016-06-07
CA2810832A1 (en) 2012-05-10
WO2012060838A1 (en) 2012-05-10
EP2635714A4 (en) 2014-08-27
BR112013007729B1 (pt) 2018-05-08
ES2654579T3 (es) 2018-02-14
JP5781620B2 (ja) 2015-09-24
RU2013125779A (ru) 2014-12-10

Similar Documents

Publication Publication Date Title
RU2096483C1 (ru) Способ восстановления металлических руд
TW567227B (en) An metallurgical lance and a vessel comprising the same
EP2719777A1 (en) Blast-furnace process with coke-oven gas injection and production plant for same
US8613790B2 (en) Lance for injecting solid material into a vessel
AU2015367250A1 (en) Metallurgical furnace for producing metal alloys
US9039794B2 (en) Reformer tube apparatus having variable wall thickness and associated method of manufacture
RU2542959C2 (ru) Трубчатая установка риформинга с переменной толщиной стенок и соответствующий способ получения
US3897048A (en) Metallurgical vessel and method of operating same
CN105980800B (zh) 冶金炉
JP2006283065A (ja) ガス吹き込み羽口
JP5860064B2 (ja) 溶鉄及び鋼を製造する方法及び装置
JP3629740B2 (ja) 溶銑の製造方法
MXPA03008526A (es) Horno modular.
AU2002255780A1 (en) Modular shaft for reduction smelting
JPH02200713A (ja) 溶銑の製造装置および製造方法
JPS58130210A (ja) 転炉に於ける屑鉄・合金鉄の加熱方法
US4123259A (en) Method for supplying thermal energy to steel melts
CN108823354B (zh) 一种组合式转炉炉口
JP3104593B2 (ja) クロム含有溶銑のニッケル汚染軽減方法
RU2342441C2 (ru) Способ прямого получения железоуглеродистых сплавов и установка для его осуществления
JP2022117935A (ja) 溶鉄の精錬方法
TW530090B (en) Method for producing a metal melt and multi-functional lance for use in that method
JPH0310010A (ja) 転炉の屑鉄及び合金鉄の加熱方法
AU2005224287B2 (en) Direct smelting plant
JP4843165B2 (ja) 転化器の出側に配設されるダクト