RU2542172C2 - Система генерации электроэнергии - Google Patents

Система генерации электроэнергии Download PDF

Info

Publication number
RU2542172C2
RU2542172C2 RU2012119787/06A RU2012119787A RU2542172C2 RU 2542172 C2 RU2542172 C2 RU 2542172C2 RU 2012119787/06 A RU2012119787/06 A RU 2012119787/06A RU 2012119787 A RU2012119787 A RU 2012119787A RU 2542172 C2 RU2542172 C2 RU 2542172C2
Authority
RU
Russia
Prior art keywords
heat
conductor
magnetic field
power generation
generation system
Prior art date
Application number
RU2012119787/06A
Other languages
English (en)
Other versions
RU2012119787A (ru
Inventor
Тору ОКАЗАКИ
Original Assignee
Сумитомо Электрик Индастриз, Лтд.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Сумитомо Электрик Индастриз, Лтд. filed Critical Сумитомо Электрик Индастриз, Лтд.
Publication of RU2012119787A publication Critical patent/RU2012119787A/ru
Application granted granted Critical
Publication of RU2542172C2 publication Critical patent/RU2542172C2/ru

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D15/00Transmission of mechanical power
    • F03D15/20Gearless transmission, i.e. direct-drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D13/00Combinations of two or more machines or engines
    • F01D13/02Working-fluid interconnection of machines or engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D15/00Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
    • F01D15/10Adaptations for driving, or combinations with, electric generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K3/00Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein
    • F01K3/18Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein having heaters
    • F01K3/186Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein having heaters using electric heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • F03D80/80Arrangement of components within nacelles or towers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • F03D80/80Arrangement of components within nacelles or towers
    • F03D80/82Arrangement of components within nacelles or towers of electrical components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/10Combinations of wind motors with apparatus storing energy
    • F03D9/13Combinations of wind motors with apparatus storing energy storing gravitational potential energy
    • F03D9/14Combinations of wind motors with apparatus storing energy storing gravitational potential energy using liquids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/10Combinations of wind motors with apparatus storing energy
    • F03D9/18Combinations of wind motors with apparatus storing energy storing heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/22Wind motors characterised by the driven apparatus the apparatus producing heat
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/18Structural association of electric generators with mechanical driving motors, e.g. with turbines
    • H02K7/1807Rotary generators
    • H02K7/1823Rotary generators structurally associated with turbines or similar engines
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/10Induction heating apparatus, other than furnaces, for specific applications
    • H05B6/105Induction heating apparatus, other than furnaces, for specific applications using a susceptor
    • H05B6/108Induction heating apparatus, other than furnaces, for specific applications using a susceptor for heating a fluid
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/10Induction heating apparatus, other than furnaces, for specific applications
    • H05B6/105Induction heating apparatus, other than furnaces, for specific applications using a susceptor
    • H05B6/109Induction heating apparatus, other than furnaces, for specific applications using a susceptor using magnets rotating with respect to a susceptor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2220/00Application
    • F05B2220/30Application in turbines
    • F05B2220/301Application in turbines in steam turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2220/00Application
    • F05B2220/60Application making use of surplus or waste energy
    • F05B2220/602Application making use of surplus or waste energy with energy recovery turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2220/00Application
    • F05B2220/70Application in combination with
    • F05B2220/702Application in combination with the other apparatus being a steam turbine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/30Wind power
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/16Mechanical energy storage, e.g. flywheels or pressurised fluids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Wind Motors (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Abstract

Предложена система генерации электроэнергии, использующая энергию ветра, являющаяся превосходной в ремонтопригодности и способная уменьшать размер и вес гондолы, обеспеченной на верхнем участке столба. Система генерации электроэнергии включает в себя ветряную турбину, проводник, вращающийся с вращением ветряной турбины, контейнер теплопередающей среды, генератор магнитного поля, тепловой аккумулятор и блок генерации электроэнергии. Ветряная турбина прикреплена к гондоле, обеспеченной на верхнем участке столба, а проводник, контейнер теплопередающей среды и генератор магнитного поля расположены в гондоле. Кроме того, тепловой аккумулятор и блок генерации электроэнергии обеспечены в сооружении, установленном на нижнем участке столба. Генератор магнитного поля управляется, чтобы генерировать магнитное поле, в котором вращается проводник, и, таким образом, нагревается посредством индукции, а тепло проводника передается воде в контейнере теплопередающей среды, чтобы генерировать пар, который в свою очередь подается в паровую турбину и, таким образом, приводит в действие генератор электроэнергии, чтобы генерировать электроэнергию. 7 з.п. ф-лы, 3 ил.

Description

ОБЛАСТЬ ТЕХНИКИ
Изобретение относится к системе генерации электроэнергии, которая использует энергию ветра, чтобы вращать проводник, и прикладывает магнитное поле к вращающемуся проводнику, чтобы нагревать проводник посредством индукции, чтобы нагревать теплопроводящую среду, и преобразует тепло теплопроводящей среды в электроэнергию, чтобы генерировать электроэнергию.
ПРЕДШЕСТВУЮЩИЙ УРОВЕНЬ ТЕХНИКИ
В последние годы системы генерации электроэнергии, использующие возобновляемую энергию, такую как энергия ветра и солнечный свет, привлекают внимание ввиду снижения количества парниковых газов.
Например, непатентная литература 1-3 описывает технологию, относящуюся к генерации, использующей энергию ветра. Генерация, использующая энергию ветра, вращает ветряную турбину с помощью ветра, чтобы привести в действие генератор электроэнергии, чтобы генерировать электроэнергию. Другими словами, она преобразует энергию ветра в энергию вращения и извлекает ее в виде электроэнергии. Система генерации, использующая энергию ветра, как правило сконструирована таким образом, что столб имеет верхний участок, снабженный гондолой, содержащей прикрепленную к ней ветряную турбину с горизонтальной осью (ветряную турбину, имеющую вращающийся вал, как правило, параллельный направлению ветра). Гондола содержит расположенную в ней ускоряющую передачу, которая ускоряет и, таким образом, выдает скорость вращения вала ветряной турбины, и генератор электроэнергии приводится в действие выходной мощностью ускоряющей передачи. Ускоряющая передача повышает скорость вращения ветряной турбины до скорости вращения генератора электроэнергии (например, 1:100) и содержит встроенную в нее коробку передач.
В настоящее время для уменьшения стоимости генерации электроэнергии существует тенденция к увеличению размера ветряной турбины (или системы генерации, использующей энергию ветра), и в практическое использование введена система генерации, использующая энергию ветра, в 5 МВт с ветряной турбиной, имеющей диаметр в 120 м или более. Имеющая такой крупный размер система генерации, использующая энергию ветра, является большой и тяжелой и, соответственно, во многих случаях, по конструктивным причинам, строится в море.
Более того, генерация, использующая энергию ветра, обеспечивает переменную выходную мощность генерации энергии (или генерирует электроэнергию в разном количестве) по мере того, как энергия ветра меняется, и, соответственно, система накопления электроэнергии также предоставляется для системы генерации, использующей энергию ветра, чтобы накапливать нестабильную электроэнергию в аккумуляторной батарее, чтобы сглаживать выходную мощность.
С другой стороны, например, непатентная литература 4 описывает технологию, относящуюся к генерации, использующей солнечную тепловую энергию. Генерация, использующая солнечную тепловую энергию, накапливает солнечное тепло, преобразует его в тепловую энергию и использует тепловую энергию для генерации пара для вращения турбины, чтобы приводить в действие генератор электроэнергии для генерации электроэнергии. Другими словами, она преобразует солнечную энергию в тепловую энергию и извлекает ее в виде электроэнергии. Система генерации, использующая солнечную тепловую энергию, которая введена в практическое использование, является системой в виде столба, например. Это система, которая накапливает солнечный свет в солнечный коллектор, обеспеченный на верхнем участке столба, и использует его тепло, чтобы генерировать пар, который в свою очередь доставляется к турбине, обеспеченной на нижнем участке столба, чтобы вращать турбину, чтобы приводить в действие генератор электроэнергии для генерации электроэнергии (смотрите непатентную литературу 4, фиг.3).
Генерация, использующая солнечную тепловую энергию, также обеспечивает выходную мощность, изменяющуюся с погодой, временем и тому подобным, и, соответственно, для стабильной генерации электроэнергии для системы генерации, использующей солнечную тепловую энергию, обеспечивается система накопления тепла, способная накапливать тепло в тепловом аккумуляторе и извлекать тепло, требуемое для генерации электроэнергии.
СПИСОК ССЫЛОК
NPL 1: "Генерация, использующая энергию ветра (Wind Power Generation) (01-05-01-05)" [онлайн] энциклопедия атомной энергии ATOMICA [поиск производился 13 октября 2009 года], Интернет <URL:http://www.rist.or.jp/atomica/>
NPL 2: "2000-киловаттная крупноразмерная система генерации, использующая энергию ветра (2000-kW Large-Sized Wind Power Generation System) SUBARU80/2.0 PROTOTYPE", [онлайн], Fuji Heavy Industries, Ltd. [поиск производился 13 октября 2009 года], Интернет <URL:http://www.subaru-windturbine.jp/home/index.html>
NPL 3: "Лекция об энергии ветра (Wind Power Lecture)" [онлайн], Mitsubishi Heavy Industries, Ltd. [поиск производился 13 октября 2009 года], Интернет <URL: http://www.mhi.co.jp/products/expand/wind_kouza_0101.html>
NPL 4: "Система генерации, использующая солнечную тепловую энергию (Solar Thermal Power Generation System) (01-05-01-02)" [онлайн] энциклопедия атомной энергии ATOMICA [поиск производился 13 октября 2009 года], Интернет <URL:http://www.rist.or.jp/atomica/>
NPL 5: "Удвоение эффективности с помощью сверхпроводимости (Doubling the Efficiency with Superconductivity)" [онлайн], промышленное нагревание [поиск производился 13 октября 2009 года], Интернет <URL: http://www.industrialheating.com/Articles/Feature_Article/BNP_GUID_9-5-2006_A_10000000000000416320>
КРАТКОЕ ИЗЛОЖЕНИЕ СУЩЕСТВА ИЗОБРЕТЕНИЯ
Система генерации, использующая энергию ветра, снабжена системой накопления электроэнергии, и этой системе накопления электроэнергии требуются компоненты, такие как преобразователь и подобное, чтобы накапливать электроэнергию в аккумуляторной батарее, и, таким образом, она вызывает усложнение системы и увеличение потерь электроэнергии. Более того, крупноразмерная система генерации, использующая энергию ветра, требует аккумуляторную батарею большой емкости, соответствующей количеству генерируемой электроэнергии, и, таким образом, вызывает увеличение стоимости всей системы.
С другой стороны, система генерации, использующая солнечную тепловую энергию, снабжена теплоаккумулирующей системой, которая проще системы накопления электроэнергии, и тепловой аккумулятор к тому же дешевле аккумуляторной батареи. Однако в то время как генерация, использующая энергию ветра, может также генерировать электроэнергию ночью, только если есть ветер, генерация, использующая солнечную тепловую энергию, не может генерировать электроэнергию ночью. Соответственно, последней требуется крупномасштабный тепловой аккумулятор, чтобы также продолжать поставлять электроэнергию ночью.
Более того, когда система генерации, использующая энергию ветра, имеет неисправности, они часто относятся к неисправностям ускоряющей передачи, более конкретно, к коробке передач. Если коробка передач имеет дефект, этот дефект обычно можно исправить посредством замены коробки передач на другую. Однако если гондола снабжена ей на верхнем участке столба, закрепление и удаление коробки передач требует большого количества времени и усилий. Конечно, в наши дни существует безредукторный тип изменения скорости, который не требует ускоряющую передачу.
Однако система генерации энергии типа безредукторной системы, в частности, использует генератор электроэнергии с увеличенным количеством полюсов (или многополюсный генератор электроэнергии), и если ее сравнивать с системой генерации энергии, использующей ускоряющую передачу, то первая использует генератор электроэнергии увеличенного размера и веса. В частности, считается, что крупноразмерная система генерации, использующая энергию ветра, класса 5 МВт содержит генератор электроэнергии, имеющий вес, превышающий 300 т (300000 кг), и установить его в гондолу очень сложно.
Настоящее изобретение было сделано ввиду вышеупомянутых обстоятельств, и одной из его задач является предоставление системы генерации электроэнергии, использующей энергию ветра, являющейся превосходной в ремонтопригодности, и способной уменьшать размер и вес гондолы, обеспеченной на верхнем участке столба.
Настоящая система генерации электроэнергии включает в себя: ветряную турбину; проводник, вращающийся с вращением ветряной турбины; генератор магнитного поля, генерирующий магнитное поле, пересекающее проводник; теплопередающую среду, принимающую тепло от проводника, вращаемого в магнитном поле и, таким образом, нагреваемого посредством индукции; и блок генератора электроэнергии, преобразующий тепло теплопередающей среды в электроэнергию.
Настоящая система генерации электроэнергии преобразует энергию ветра в энергию вращения, а затем в тепловую энергию, извлекает ее в виде электроэнергии и, таким образом, является нетрадиционной, новаторской системой генерации электроэнергии. Настоящая система генерации электроэнергии имеет следующие эффекты: (1) она использует энергию ветра и, соответственно, может генерировать электроэнергию ночью и, если она снабжается тепловым аккумулятором, может иметь тепловой аккумулятор меньшего размера, чем может иметь система генерации, использующая солнечную тепловую энергию; (2) она использует энергию вращения ветряной турбины, чтобы генерировать тепло, и использует тепло, чтобы генерировать электроэнергию, что исключает необходимость предоставления системы накопления электроэнергии; и (3) она может обходится без ускоряющей передачи и, таким образом, свободна от неисправностей, вызванных коробкой передач.
Таким образом, энергия вращения может использоваться, чтобы генерировать теплоту трения. Однако в этом случае компонент, который генерирует теплоту трения, изнашивается по мере использования, и, соответственно, компонент необходимо периодически менять, что является недостатком с точки зрения ремонтопригодности. Напротив, настоящее изобретение использует энергию вращения, чтобы вращать проводник, генерирует тепло посредством индукционного нагревания и, таким образом, является более выгодным, чем нагревание трением, с точки зрения ремонтопригодности.
Настоящая система генерации электроэнергии в одном из вариантов осуществления включает в себя: столб, проходящий выше, чем местоположение блока генерации электроэнергии; и гондолу, обеспеченную на верхнем участке столба и снабженную ветряной турбиной, проводником и генератором магнитного поля. Более того, настоящая система генерации электроэнергии в одном из вариантов осуществления включает в себя: контейнер теплопередающей среды, расположенный в гондоле и вмещающий теплопередающую среду, принимающую тепло проводника; и транспортную трубу, доставляющую тепло теплопередающей среды в контейнере теплопередающей среды блоку генерации электроэнергии.
Ветряная турбина, прикрепленная к гондоле, обеспеченной на верхнем участке столба, позволяет использовать энергию ветра с высокой скоростью ветра высоко в небе. Более того, транспортная труба, которая подает теплопередающую среду в блок генерации электроэнергии, обеспеченный на нижнем участке столба (или основании), например, может исключить необходимость снабжения гондолы блоком генерации электроэнергии и делает возможным обеспечение на верхнем участке столба уменьшенной и облегченной гондолы.
Более того, настоящая система генерации электроэнергии в конкретных формах может включать в себя следующее:
форму, в которой блок генерации электроэнергии содержит турбину, вращаемую теплом теплопередающей среды, и генератор электроэнергии, приводимый в действие турбиной;
форму, оборудованную тепловым аккумулятором, накапливающим тепло теплопередающей среды;
форму с проводником, имеющим участок, снабженный магнитным материалом;
форму с генератором магнитного поля, содержащим катушку, генерирующую магнитное поле, форму, содержащую эту катушку в виде сверхпроводящей катушки, в частности; и
форму с генератором магнитного поля, генерирующим вращающееся магнитное поле, вращающееся в направлении, противоположном направлению вращения проводника.
Настоящая система генерации электроэнергии имеет следующие преимущества: (1) она использует энергию ветра и, соответственно, может генерировать электроэнергию ночью и, если она снабжается тепловым аккумулятором, может иметь тепловой аккумулятор меньшего размера, чем может иметь система генерации, использующая солнечную тепловую энергию; (2) она использует энергию вращения ветряной турбины, чтобы генерировать тепло, и использует тепло, чтобы генерировать электроэнергию, что исключает необходимость предоставления системы накопления электроэнергии; и (3) она может обходиться без ускоряющей передачи и, таким образом, свободна от неисправностей, вызванных коробкой передач.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
В дальнейшем изобретение поясняется описанием предпочтительных вариантов воплощения изобретения со ссылками на сопроводительные чертежи, на которых:
фиг.1 изображает схематическую диаграмму для иллюстрации примера системы генерации, использующей энергию ветра, согласно настоящему изобретению;
фиг.2 изображает схематическую диаграмму для иллюстрации примера генератора магнитного поля, содержащего сверхпроводящую катушку;
фиг.3(A) изображает чертеж для иллюстрации того, как протекает магнитный поток, когда два магнита расположены напротив друг друга с расположенным между ними проводником;
фиг.3(B) изображает чертеж для иллюстрации того, как протекает магнитный поток, когда четыре магнита расположены вдоль направления по окружности проводника равномерно, когда их магнитные полюса расположены поочередно.
ОПИСАНИЕ ПРЕДПОЧТИТЕЛЬНЫХ ВАРИАНТОВ ОСУЩЕСТВЛЕНИЯ ИЗОБРЕТЕНИЯ
Настоящее изобретение в варианте осуществления будет описано в дальнейшем в материалах настоящей заявки со ссылкой на чертежи. Отметим, что на чертежах одинаковые компоненты обозначены одинаково.
Первый вариант осуществления
Фиг.1 изображает систему W генерации электроэнергии, включающую в себя ветряную турбину 10, проводник 20, контейнер 30 теплопередающей среды, генератор 40 магнитного поля, тепловой аккумулятор 50 и блок 60 генерации электроэнергии. Ветряная турбина 10 прикреплена к гондоле 102, обеспеченной на верхнем участке столба 101, а проводник 20, контейнер 30 теплопередающей среды и генератор 40 магнитного поля расположены в гондоле 102. Кроме того, тепловой аккумулятор 50 и блок 60 генерации электроэнергии обеспечены в сооружении 103, расположенном на нижнем участке (или основании) столба 101. Система W генерации электроэнергии сконфигурирована, как будет более подробно описано ниже в материалах настоящей заявки.
Ветряная турбина 10 составлена проходящим горизонтально вращающимся валом 15 и тремя лопастями 11, прикрепленными к вращающемуся валу 15 радиально. Для системы генерации, использующей энергию ветра, с выходной мощностью, превышающей 5 МВт, она имеет диаметр в 120 м или более и скорость вращения примерно 10-20 об/мин.
Проводник 20 непосредственно соединен с вращающимся валом 15, и вращается с вращением ветряной турбины 10. Проводник 20 выполнен из материала, нагреваемого посредством индукции, так как вихревой ток генерируется, когда материал вращается в магнитном поле. Проводник 20 может, например, быть выполнен из такого металла, как алюминий, медь, железо и подобное. Если проводник 20 выполнен из алюминия, его вес может быть уменьшен. Если проводник 20 выполнен из железа или подобного магнитного материала, он позволяет увеличить плотность магнитного потока и, следовательно, увеличить вихревой ток (или энергию нагревания). Соответственно, проводник может иметь участок, снабженный магнитным материалом, и, например, колоннообразный (цилиндрический) проводник (например, алюминий) может иметь центр, снабженный магнитным материалом (например, железом).
Более того, проводник 20 может быть циркулярно колоннообразным, циркулярно цилиндрическим, многоугольным колоннообразным, многоугольным цилиндрическим или подобным, имеющим различные формы.
Контейнер 30 теплопередающей среды содержит встроенный в него проводник 20, а также содержит расположенную в нем теплопередающую среду, чтобы принимать тепло от нагреваемого проводника 20. Теплопередающая среда может являться жидкостью, такой как вода, масло, расплавленная соль, например. В материалах настоящей заявки будет описан пример с теплопередающей средой в виде воды.
Генератор 40 магнитного поля имеет структуру, имеющую пару магнитов 41 и 42, расположенных напротив друг друга с расположенным между ними проводником 20. В материалах настоящей заявки магниты 41 и 42 реализованы как постоянные магниты и генерируют магнитное поле постоянного тока, позволяющее магнитному потоку протекать от магнита 41 к магниту 42 (см. фиг.3(A)). Генератор 40 магнитного поля может не являться постоянным магнитом и может вместо этого использовать катушку с обычной проводимостью, или сверхпроводящую катушку, или что-либо подобное, возбуждаемое, чтобы генерировать магнитное поле.
В системе W генерации электроэнергии генератор 40 магнитного поля управляется, чтобы генерировать магнитное поле, и проводник 20 вращается в нем и, таким образом, нагревается посредством индукции, и тепло проводника передается воде (или теплопередающей среде) в контейнере 30 теплопередающей среды, чтобы вызвать высокую температуру и пар под высоким давлением. Генерируемый пар доставляется к тепловому аккумулятору 50 через транспортную трубу 51, которая соединяет контейнер 30 теплопередающей среды и тепловой аккумулятор 50.
Тепловой аккумулятор 50 принимает пар через транспортную трубу 51 и накапливает его тепло, а также снабжает блок 60 генерации электроэнергии паром, требуемым для генерации электроэнергии.
Блок 60 генерации электроэнергии имеет структуру, сформированную сочетанием паровой турбины 61 и генератора 62 электроэнергии, и использует пар, подаваемый из теплового аккумулятора 50, чтобы вращать паровую турбину 61, и, таким образом, приводит в действие генератор 62 электроэнергии, чтобы генерировать электроэнергию.
Тепловой аккумулятор 50 и блок 60 генерации электроэнергии могут использовать технологию генерации, использующую солнечную тепловую энергию. Тепловой аккумулятор 50, например, может являться аккумулятором пара, накапливающим пар в форме воды под давлением, или тепловым аккумулятором типа сухого тепла, использующим расплавленную соль, масло и подобное, или тепловым аккумулятором типа скрытого тепла, использующим изменение фаз расплавленной соли, имеющей точку плавления. Система накопления тепла типа скрытого тепла накапливает тепло в соответствии с температурой изменения фазы теплоаккумулирующего вещества, и, таким образом, имеет более узкий диапазон температур накопления тепла и большую плотность накопления тепла, чем аккумулятор типа сухого тепла. Более того, тепловой аккумулятор 50 может быть оборудован теплообменником, и тепло, накопленное в тепловом аккумуляторе 50, может использоваться, чтобы использовать теплообменник для генерации пара, требуемого для генерации электроэнергии.
Пар, доставляемый тепловому аккумулятору 50, накапливает тепло в тепловом аккумуляторе 50 или вращает турбину 61, после этого охлаждается конденсатором 71 пара, и, таким образом, конденсируется в воду. Впоследствии вода доставляется в насос 72, а затем, в свою очередь, под высоким давлением доставляется через трубу 73 подачи воды в контейнер 30 теплопередающей среды и, таким образом, циркулирует.
Теперь будет обсуждена спецификация настоящей системы генерации электроэнергии. В материалах настоящей заявки предполагается система генерации электроэнергии, обеспечивающая выходную мощность, превышающую 5 МВт. Конкретно, выполнен пробный расчет размера проводника, который требуется, чтобы сгенерировать тепловую энергию в 7,2 МВт, когда проводник вращается со скоростью 15 об/мин.
NPL 5 раскрывает, что постоянный ток пропускается через сверхпроводящую катушку, чтобы сгенерировать магнитное поле, и в нем вращается проводящая электричество болванка, и таким образом нагревается посредством индукции. Эта литература описывает спецификацию устройства индукционного нагрева, нагревающего циркулярно колоннообразную алюминиевую болванку, следующим образом: входная мощность: 360 кВт, скорость вращения: 240-600 об/мин, размер болванки: диаметр 178 мм, длина 690 мм.
Кроме того, индукционный нагрев обеспечивает мощность P, представленную следующим выражением (см. справочник электрической инженерии (опубликованный Институтом электрических инженеров Японии, дата издания: 28 февраля 1988 (первое издание)), стр. 1739):
P = 2.5fH2rAQ10-8 (в системе единиц СГС).
Figure 00000001
(1)
В данном выражении f представляет частоту (1/с) и может быть получена из скорости вращения проводника. H представляет напряженность магнитного поля (Э) и в материалах настоящей заявки установлена постоянной. L представляет осевую длину проводника (в см), A представляет поперечное сечение проводника (в см2), а L×A представляет объем проводника. μr представляет относительную магнитную проницаемость проводника, а Q представляет корректирующий коэффициент, зависящий от геометрии проводника. В материалах значение Q также фиксировано, чтобы представлять проводник, геометрически схожий с вышеупомянутой циркулярно колоннообразной болванкой. Из выражения (1) можно видеть, что мощность P (Вт) пропорциональна частоте f и объему (длина L × площадь A).
Когда предполагаемая система генерации электроэнергии сравнивается с вышеупомянутым устройством индукционного нагрева, система генерации электроэнергии имеет скорости вращения, составляющие примерно 1/20 от скорости устройства индукционного нагрева, и, с другой стороны, генерирует тепловую энергию, примерно в 20 раз превышающую входную мощность электроэнергии на устройстве индукционного нагрева. Соответственно, предполагаемая система генерации электроэнергии требует проводник, имеющий примерно в 400 раз больший объем, как оценено.
Как результат пробного расчета, если проводник является циркулярно колоннообразной алюминиевой болванкой, он, например, будет иметь размер, эквивалентный 1320 мм в диаметре × 5110 мм в длине, объем примерно 7 м3 и вес примерно 21 т (21000 кг, преобразованный с плотностью 3 г/см3). Кроме того, вместе с другим оборудованием, расположенным в гондоле, ожидается, что гондола будет иметь вес примерно в 50 т. Для системы генерации, использующей энергию ветра, обеспечивающей выходную мощность в 5 МВт, безредукторный тип включает в себя гондолу, имеющую вес, превышающий 300 т. Можно видеть, что настоящая система генерации электроэнергии может иметь эквивалентные или лучшие способности, а также значительно уменьшать вес гондолы.
Первое примерное изменение
Первый вариант осуществления был описан со ссылкой на пример с генератором магнитного поля в виде постоянного магнита. В качестве альтернативы, может использоваться катушка с обычной проводимостью или сверхпроводящая катушка, снабжаться энергией и таким образом возбуждаться, чтобы генерировать магнитное поле. Пример генератора магнитного поля, который использует сверхпроводящую катушку в качестве средства для генерации магнитного поля, будет описан со ссылкой на фиг.2.
Со ссылкой на фиг.2, генератор 40 магнитного поля содержит сверхпроводящие катушки 45 и 46, расположенные напротив друг друга с проводником 20, расположенным между ними. Сверхпроводящая катушка 45 (46) расположена в охлаждающем контейнере 80, прикреплена к холодильной машине 81 у охлаждающей головки 82 и, таким образом, охлаждается посредством конденсации. Сверхпроводящая катушка, по сравнению с катушкой с обычной проводимостью, делает возможной генерацию более сильного магнитного поля и, таким образом, может помочь достичь меньшего размера и веса. Более того, когда используется сверхпроводящая катушка, обходящаяся без железного сердечника, можно исключить магнитное насыщение и, так как железный сердечник отсутствует, может быть достигнуто дополнительное уменьшение веса.
Кроме того, когда используется сверхпроводящая катушка, охлаждающая жидкость (жидкий азот, например) может вводиться в охлаждающий контейнер и сверхпроводящая катушка может быть погружена в охлаждающую жидкость, в то время как охлаждающая жидкость может циркулировать и, таким образом, охлаждаться холодильной машиной. В этом случае циркуляционный механизм, такой как насос, который качает охладитель, может располагаться в гондоле или может располагаться в сооружении, расположенном на нижнем участке столба.
Второй примерный вариант воплощения
Первый вариант осуществления был описан с помощью примера с генератором магнитного поля, содержащим два магнита напротив друг друга. В качестве альтернативы, могут использоваться три или более магнита. Например, множество магнитов расположены вдоль направления по окружности проводника с магнитными полюсами, расположенными поочередно. Например, как показано на фиг.3(B), если используется четыре магнита 41-44, магнитное поле генерируется, чтобы вызывать протекание магнитного потока от магнитов 41 и 43 к магнитам 42 и 44.
Третий примерный вариант воплощения
Первый вариант осуществления был описан с помощью примера, включающего в себя генератор магнитного поля, генерирующий магнитное поле постоянного тока, обеспечивающий магнитное поле, которое не меняется со временем. В качестве альтернативы, может использоваться множество катушек, чтобы генерировать вращающееся магнитное поле. Например, множество катушек могут быть расположены вдоль направления по окружности проводника, с тем чтобы катушки возбуждались последовательно, чтобы генерировать вращающееся магнитное поле вдоль направления по окружности проводника. Более конкретно, парные катушки могут располагаться вдоль направления по окружности проводника радиально напротив друг друга, и три таких пары могут располагаться вдоль направления по окружности проводника на равном расстоянии. Отметим, что установка направления вращающегося магнитного поля противоположно направлению, в котором вращается проводник, может увеличить мнимую скорость вращения проводника и, следовательно, генерируемую тепловую энергию. Когда генерируется вращающееся магнитное поле, каждая пара катушек может возбуждаться током, соответствующим фазе 3-фазного переменного тока, например.
Четвертый примерный вариант воплощения
Первый вариант осуществления был описан с помощью примера, использующего теплопередающую среду в виде воды. В качестве альтернативы, жидкий металл, имеющий более высокую тепловую проводимость по сравнению с водой, может использоваться в качестве теплопередающей среды. Такой жидкий металл является жидким натрием, например. Если в качестве теплопередающей среды используется жидкий металл, тогда, например, жидкий металл может использоваться в качестве первичной теплопередающей среды, принимающей тепло от проводника, и тепло жидкого металла, подаваемого через транспортную трубу, может использоваться, чтобы нагревать вторичную теплопередающую среду (или воду) через теплообменник, чтобы генерировать пар.
Заметим, что настоящее изобретение не ограничено вышеописанными вариантами осуществления и может подходящим образом быть изменено в рамках, которые не отступают от сути настоящего изобретения. Например, проводник, теплопередающая среда и подобное может изменяться подходящим образом, а генератор магнитного поля может реализовываться с катушкой с обычной проводимостью.
ПРОМЫШЛЕННАЯ ПРИМЕНИМОСТЬ
Настоящая система генерации электроэнергии подходит для применения в области генерации электроэнергии, использующей энергию ветра.
СПИСОК УСЛОВНЫХ ОБОЗНАЧЕНИЙ
W: система генерации электроэнергии;
10: ветряная турбина; 11: лопасть; 15: вращающийся вал;
20: проводник;
30: контейнер теплопередающей среды;
40: генератор магнитного поля; 41, 42, 43, 44: магнит; 45, 46: сверхпроводящая катушка;
50: тепловой аккумулятор; 51: транспортная труба;
60: блок генерации электроэнергии; 61: паровая турбина; 62: генератор электроэнергии;
71: конденсатор пара; 72: насос; 73: труба подачи воды;
80: охлаждающий контейнер; 81: холодильная машина; 82: охлаждающая головка;
101: столб; 102: гондола; 103: сооружение.

Claims (8)

1. Система генерации электроэнергии, содержащая:
ветряную турбину;
проводник, вращающийся с вращением ветряной турбины;
генератор магнитного поля, генерирующий магнитное поле, пересекающее проводник;
теплопередающую среду, принимающую тепло от проводника, вращаемого в магнитном поле и, таким образом, нагреваемого посредством индукции; и
блок генерации электроэнергии, преобразующий тепло теплопередающей среды в электрическую энергию, причем
блок генерации электроэнергии содержит паровую турбину.
2. Система генерации электроэнергии по п.1, содержащая:
столб, проходящий выше, чем местоположение блока генерации электроэнергии;
гондолу, обеспеченную на верхнем участке столба и снабженную ветряной турбиной, проводником и генератором магнитного поля;
контейнер теплопередающей среды, расположенный в гондоле и вмещающий теплопередающую среду, принимающую тепло от проводника; и
транспортную трубу, доставляющую тепло теплопередающей среды в контейнере теплопередающей среды к блоку генерации электроэнергии.
3. Система генерации электроэнергии по п.1, в которой блок генерации электроэнергии содержит турбину, вращаемую теплом теплопередающей среды, и генератор электроэнергии, приводимый в действие турбиной.
4. Система генерации электроэнергии по п.1, содержащая тепловой аккумулятор, накапливающий тепло теплопередающей среды.
5. Система генерации электроэнергии по п.1, в которой проводник содержит участок, снабженный магнитным материалом.
6. Система генерации электроэнергии по п.1, в которой генератор магнитного поля содержит катушку, генерирующую магнитное поле.
7. Система генерации электроэнергии по п.6, в которой катушка является сверхпроводящей катушкой.
8. Система генерации электроэнергии по п.1, в которой генератор магнитного поля генерирует вращающееся магнитное поле, вращающееся в направлении, противоположном направлению вращения проводника.
RU2012119787/06A 2009-10-15 2010-09-13 Система генерации электроэнергии RU2542172C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009238618 2009-10-15
JP2009-238618 2009-10-15
PCT/JP2010/065745 WO2011045999A1 (ja) 2009-10-15 2010-09-13 発電システム

Publications (2)

Publication Number Publication Date
RU2012119787A RU2012119787A (ru) 2013-11-20
RU2542172C2 true RU2542172C2 (ru) 2015-02-20

Family

ID=43876053

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012119787/06A RU2542172C2 (ru) 2009-10-15 2010-09-13 Система генерации электроэнергии

Country Status (15)

Country Link
US (2) US9370050B2 (ru)
EP (1) EP2489874B1 (ru)
JP (2) JP5024736B2 (ru)
KR (1) KR101647175B1 (ru)
CN (1) CN106907297A (ru)
AU (1) AU2010307867B2 (ru)
BR (1) BR112012008949A2 (ru)
CA (1) CA2774416C (ru)
DK (1) DK2489874T3 (ru)
ES (1) ES2556378T3 (ru)
IN (1) IN2012DN03181A (ru)
MX (1) MX2012003382A (ru)
RU (1) RU2542172C2 (ru)
TW (1) TWI587746B (ru)
WO (1) WO2011045999A1 (ru)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5739737B2 (ja) 2011-06-08 2015-06-24 住友電気工業株式会社 誘導加熱装置、及びそれを備える発電システム
CN103291556A (zh) * 2012-02-22 2013-09-11 中国科学院过程工程研究所 一种风电利用系统
JP6038525B2 (ja) * 2012-07-26 2016-12-07 住友電気工業株式会社 風力熱発電システム
JP5868809B2 (ja) * 2012-08-06 2016-02-24 株式会社東芝 発電プラントおよび熱供給方法
KR101240395B1 (ko) * 2012-10-17 2013-03-11 한국지질자원연구원 작동유체와 용융염의 열 교환을 이용한 지열 발전 시스템 및 방법
US9240681B2 (en) * 2012-12-27 2016-01-19 General Electric Company Superconducting coil system and methods of assembling the same
JP6257960B2 (ja) * 2013-08-27 2018-01-10 住友電気工業株式会社 風力発電システム
CN103912452B (zh) * 2014-03-19 2016-09-21 首钢京唐钢铁联合有限责任公司 一种电、热、水联产方法及系统
JP6001033B2 (ja) * 2014-10-29 2016-10-05 中国電力株式会社 加温装置
CN107251387B (zh) * 2015-02-24 2020-06-16 日本制铁株式会社 涡流式发热装置
JP6465457B2 (ja) * 2015-06-18 2019-02-06 住友電気工業株式会社 誘導加熱装置、及び発電システム
CN105221347B (zh) * 2015-09-25 2017-10-13 江苏乐科节能科技股份有限公司 自适应风力驱动机械蒸汽再压缩系统及工作方法
JP6560588B2 (ja) * 2015-10-08 2019-08-14 住友電気工業株式会社 誘導加熱装置、及び発電システム
JP6651880B2 (ja) * 2016-02-04 2020-02-19 日本製鉄株式会社 渦電流式発熱装置
KR20190016095A (ko) * 2016-06-08 2019-02-15 아돌포 곤잘레스 페레스 자율 풍력 터빈, 다중 블레이드 로터, 축 압기 및 에너지 변환 장치 및 응용
KR101703817B1 (ko) * 2016-09-13 2017-02-07 김태진 영구자석을 이용한 발열장치
US11336150B2 (en) 2017-01-24 2022-05-17 Sumitomo Electric Industries, Ltd. Energy storage system and system enabling stable utilization of variable electric power
GB2559779B (en) * 2017-02-17 2021-10-13 Anthony Richardson Nicholas System and method of supplying steam
CN109424498A (zh) * 2017-09-04 2019-03-05 李启飞 回转支承型极大负荷可调风热器
CN108799000A (zh) * 2018-05-07 2018-11-13 西北农林科技大学 一种磁粉致热型风力致热装置及其致热方法
CN109274214B (zh) * 2018-11-19 2020-09-04 山东理工大学 一种电磁阵列微型风力发电机
US10876424B2 (en) * 2019-04-14 2020-12-29 Hamilton Sunstrand Corporation Energy recovery modules, generator arrangements, and methods of recovering energy in generator arrangements
CN112234541B (zh) * 2020-09-21 2021-11-30 国网黑龙江省电力有限公司黑河供电公司 一种电信传输用电缆桥架防潮结构
CN112797655A (zh) * 2021-02-22 2021-05-14 西安热工研究院有限公司 一种基于搅拌制热的垂直轴式风力机供蓄热系统
EP4064790B1 (en) * 2021-03-22 2023-08-16 Karlsruher Institut für Technologie Heating system, use of a heating system, turbine, and method for heating
WO2022225483A1 (en) * 2021-04-20 2022-10-27 Phase Muhendislik Danismanlik Sanayi Ve Ticaret Anonim Sirketi A generator
TR2021012294A2 (tr) * 2021-08-03 2022-10-21 Repg Enerji Sistemleri Sanayi Ve Ticaret Anonim Sirketi Bi̇r isi transfer si̇stemi̇

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1710824A1 (ru) * 1989-09-15 1992-02-07 Днепропетровский государственный университет им.300-летия воссоединения Украины с Россией Ветроэнергетическа установка
JP2000280728A (ja) * 1999-03-31 2000-10-10 Usui Internatl Ind Co Ltd マグネット式ヒーター
JP2006063854A (ja) * 2004-08-26 2006-03-09 Haruo Uehara 発電装置
JP5479332B2 (ja) * 2007-06-15 2014-04-23 ユニヴァーシティ オブ サウス フロリダ 癌の診断方法および治療方法

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5836839B2 (ja) * 1976-05-18 1983-08-11 特殊電機株式会社 発熱回転筒による加熱装置
JPS548240A (en) * 1977-06-21 1979-01-22 Shiyuuichi Ogawa Hot water generation and power generating device by friction
JPS5479332U (ru) 1977-11-16 1979-06-05
JPS5479332A (en) * 1977-12-06 1979-06-25 Seiichi Awano Apparatus for heating liquid with wind force
JPS5950873B2 (ja) 1979-07-16 1984-12-11 鈴木総業株式会社 熱発生装置
JPS57131875A (en) * 1981-02-09 1982-08-14 Hitachi Ltd Energy converting device
JPS5950874B2 (ja) * 1981-02-21 1984-12-11 有限会社九州スカイアロ− 風力エネルギ−を利用した熱変換装置
JPH0410379A (ja) 1990-04-25 1992-01-14 Berumateitsuku:Kk 磁気利用の回転式金属加熱方法並びにその装置
NZ233841A (en) 1990-05-29 1993-01-27 Transflux Holdings Ltd Continuous flow transformer water heater
US5537813A (en) * 1992-12-08 1996-07-23 Carolina Power & Light Company Gas turbine inlet air combined pressure boost and cooling method and apparatus
US5384489A (en) * 1994-02-07 1995-01-24 Bellac; Alphonse H. Wind-powered electricity generating system including wind energy storage
AU694985B2 (en) 1994-03-16 1998-08-06 Larkden Pty Limited Apparatus for eddy current heating heat storage electricity generati on and lens moulding process
DE4429386A1 (de) 1994-08-15 1996-02-22 Bernd Pfeiffer Wirbelstromheizung mit Windenergie
US5832728A (en) * 1997-04-29 1998-11-10 Buck; Erik S. Process for transmitting and storing energy
TW460635B (en) 1997-05-30 2001-10-21 Toshiba Corp Superconducting magnet apparatus
KR100287760B1 (ko) 1998-11-24 2001-05-02 조성호 풍력온수장치
DE10004342A1 (de) 2000-01-27 2001-08-16 Cta Anlagenbau Gmbh Vorrichtung zum gekoppelten Erzeugen von Strom und/oder Wärmeenergie durch Windräder oder Wasserturbinen
JP2003120505A (ja) * 2001-10-12 2003-04-23 Mitsubishi Heavy Ind Ltd 風力発電装置
EP1577548A1 (en) * 2004-03-16 2005-09-21 Abb Research Ltd. Apparatus and method for storing thermal energy and generating electricity
EP1799971B1 (en) * 2004-07-23 2012-12-12 New World Generation Inc. Electric power plant with thermal storage medium
KR100624816B1 (ko) 2004-08-17 2006-09-20 엘지전자 주식회사 열병합 발전 시스템
CN101388626A (zh) * 2007-09-11 2009-03-18 张东胜 一种太阳能发电装置
US7971437B2 (en) * 2008-07-14 2011-07-05 Bell Independent Power Corporation Thermal energy storage systems and methods
JP5592097B2 (ja) 2009-10-23 2014-09-17 株式会社日本エコソリューションズ 風力発電装置
US20120001436A1 (en) * 2010-07-01 2012-01-05 Twin Disc, Inc. Power generator using a wind turbine, a hydrodynamic retarder and an organic rankine cycle drive

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1710824A1 (ru) * 1989-09-15 1992-02-07 Днепропетровский государственный университет им.300-летия воссоединения Украины с Россией Ветроэнергетическа установка
JP2000280728A (ja) * 1999-03-31 2000-10-10 Usui Internatl Ind Co Ltd マグネット式ヒーター
JP2006063854A (ja) * 2004-08-26 2006-03-09 Haruo Uehara 発電装置
JP5479332B2 (ja) * 2007-06-15 2014-04-23 ユニヴァーシティ オブ サウス フロリダ 癌の診断方法および治療方法

Also Published As

Publication number Publication date
US9605657B2 (en) 2017-03-28
JP2012197796A (ja) 2012-10-18
WO2011045999A1 (ja) 2011-04-21
CA2774416A1 (en) 2011-04-21
KR101647175B1 (ko) 2016-08-09
TWI587746B (zh) 2017-06-11
MX2012003382A (es) 2012-04-10
AU2010307867A1 (en) 2012-04-12
CN106907297A (zh) 2017-06-30
EP2489874A4 (en) 2014-05-21
JP5024736B2 (ja) 2012-09-12
CN102575648A (zh) 2012-07-11
AU2010307867B2 (en) 2015-08-27
US9370050B2 (en) 2016-06-14
IN2012DN03181A (ru) 2015-09-25
JP5598501B2 (ja) 2014-10-01
KR20120102633A (ko) 2012-09-18
EP2489874A1 (en) 2012-08-22
US20160252076A1 (en) 2016-09-01
ES2556378T3 (es) 2016-01-15
BR112012008949A2 (pt) 2020-09-15
EP2489874B1 (en) 2015-10-21
RU2012119787A (ru) 2013-11-20
US20120193924A1 (en) 2012-08-02
JP2011102576A (ja) 2011-05-26
CA2774416C (en) 2017-07-04
DK2489874T3 (en) 2016-02-01
TW201132244A (en) 2011-09-16

Similar Documents

Publication Publication Date Title
RU2542172C2 (ru) Система генерации электроэнергии
JP5739737B2 (ja) 誘導加熱装置、及びそれを備える発電システム
JP5413814B2 (ja) 発電システム
Furuse et al. Development of a cooling system for superconducting wind turbine generator
JP5545436B2 (ja) 発電システム
JP5637452B2 (ja) 誘導加熱装置、及びそれを備える発電システム
JP5344380B2 (ja) 発電システム
JP7304010B2 (ja) エネルギー貯蔵システムおよび変動電力安定利用システム
JP2011129433A (ja) 誘導加熱装置およびそれを備える発電システム
JP5435357B2 (ja) 発電システム
JP5778969B2 (ja) 発電システム
CN102575648B (zh) 发电系统
JP2011159468A (ja) 誘導加熱装置およびそれを備える発電システム

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20190914