RU2525176C2 - Способ нанесения смеси углерод/олово на слои металлов или сплавов - Google Patents
Способ нанесения смеси углерод/олово на слои металлов или сплавов Download PDFInfo
- Publication number
- RU2525176C2 RU2525176C2 RU2012126142/05A RU2012126142A RU2525176C2 RU 2525176 C2 RU2525176 C2 RU 2525176C2 RU 2012126142/05 A RU2012126142/05 A RU 2012126142/05A RU 2012126142 A RU2012126142 A RU 2012126142A RU 2525176 C2 RU2525176 C2 RU 2525176C2
- Authority
- RU
- Russia
- Prior art keywords
- substrate
- metal particles
- coating composition
- coating
- carbon
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/02—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D5/00—Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
- C09D5/03—Powdery paints
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D7/00—Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
- B05D7/14—Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to metal, e.g. car bodies
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C24/00—Coating starting from inorganic powder
- C23C24/08—Coating starting from inorganic powder by application of heat or pressure and heat
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C24/00—Coating starting from inorganic powder
- C23C24/08—Coating starting from inorganic powder by application of heat or pressure and heat
- C23C24/10—Coating starting from inorganic powder by application of heat or pressure and heat with intermediate formation of a liquid phase in the layer
- C23C24/103—Coating with metallic material, i.e. metals or metal alloys, optionally comprising hard particles, e.g. oxides, carbides or nitrides
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/09—Use of materials for the conductive, e.g. metallic pattern
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/09—Use of materials for the conductive, e.g. metallic pattern
- H05K1/092—Dispersed materials, e.g. conductive pastes or inks
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/22—Secondary treatment of printed circuits
- H05K3/24—Reinforcing the conductive pattern
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/02—Fillers; Particles; Fibers; Reinforcement materials
- H05K2201/0203—Fillers and particles
- H05K2201/0242—Shape of an individual particle
- H05K2201/0257—Nanoparticles
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/02—Fillers; Particles; Fibers; Reinforcement materials
- H05K2201/0203—Fillers and particles
- H05K2201/0242—Shape of an individual particle
- H05K2201/026—Nanotubes or nanowires
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/03—Conductive materials
- H05K2201/032—Materials
- H05K2201/0323—Carbon
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2203/00—Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
- H05K2203/04—Soldering or other types of metallurgic bonding
- H05K2203/0425—Solder powder or solder coated metal powder
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/24—Structurally defined web or sheet [e.g., overall dimension, etc.]
- Y10T428/24802—Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.]
- Y10T428/24893—Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.] including particulate material
- Y10T428/24909—Free metal or mineral containing
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/25—Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31678—Of metal
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Mechanical Engineering (AREA)
- Dispersion Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Wood Science & Technology (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
- Carbon And Carbon Compounds (AREA)
- Powder Metallurgy (AREA)
- Laminated Bodies (AREA)
- Paints Or Removers (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
- Non-Insulated Conductors (AREA)
- Application Of Or Painting With Fluid Materials (AREA)
- Manufacturing Of Electric Cables (AREA)
- Materials For Medical Uses (AREA)
- Conductive Materials (AREA)
Abstract
Изобретение относится к способу нанесения состава для покрытия, содержащего углерод в форме углеродных нанотрубок, графенов, фуллеренов или их смеси, и металлические частицы, на субстрат с последующей обработкой под давлением и тепловой обработкой покрытия после нанесения на субстрат. Также изобретение относится к полученному способом по изобретению покрытому субстрату и его применению в качестве электромеханического конструктивного элемента. Изобретение обеспечивает низкую механическую изнашиваемость, уменьшение коэффициента трения и хорошую электрическую проводимость покрытия. 4 н. и 26 з.п. ф-лы, 2 пр., 4 ил.
Description
Описание
Изобретение относится к способу нанесения состава для покрытия, содержащего углерод в форме углеродных нанотрубок, графенов, фуллеренов или их смеси, и металлические частицы, на субстрат. Далее, изобретение относится к полученному способом по изобретению покрытому субстрату, а также к применению покрытого субстрата в качестве электромеханического конструктивного элемента или в качестве проводящих полосок в электротехнике и электронике.
Углеродные нанотрубки (CNTs) открыл Сумио Ииджима в 1991 году (см. S. Iijama, Nature, 1991, 354, 56). Ииджима обнаружил в саже генератора фуллеренов при определенных условиях реакции трубчатые образования диаметром всего 10 нм, но длиной до нескольких микрометров. Обнаруженные им соединения состояли из нескольких концентрических графитовых трубок, которые получили название многостенные углеродные нанотрубки (multi-wall carbon nanotubes, MWCNTs). Вскоре после этого Ииджима и Ичихаши обнаружили одностенные CNTs диаметром всего 1 нм, которые, соответственно, были названы одностенными углеродными нанотрубками (SWCNTs) (см. S. Iijama, T. Ichihashi, Nature, 1993, 363, 6430). К выдающимся свойствам CNTs относятся, например, их
механическая прочность и жесткость около 40 ГПа и соответственно 1 ГПа (в 20 и, соответственно, в 5 раз выше, чем у стали).
CNTs бывают как проводящими, так и полупроводящими материалами. Углеродные нанотрубки принадлежат к роду фуллеренов и имеют диаметр от 1 нм до нескольких 100 нм. Углеродные нанотрубки представляют собой микроскопически маленькие трубчатые образования (молекулярные нанотрубки) из углерода. Их стенки состоят, как стенки фуллеренов или как слои графита, только из углерода, причем атомы углерода принимают ячеистую структуру с шестиугольными ячейками и каждый имеет три партнера по связи (установленной с помощью sp2-гибридизации). Диаметр трубок чаще всего находится в области от 1 до 50 нм, однако также были получены трубки с диаметром только 0,4 нм. Длина отдельных трубок достигает нескольких миллиметров, а пучков трубок до 20 см.
Из уровня техники известно, что нанотрубки можно смешивать с традиционными полимерами. Благодаря этому намного улучшаются механические свойства полимеров. Кроме того, возможно получать электропроводящие полимеры, например, нанотрубки уже применяют для придания проводимости антистатическим пленкам.
Как упомянуто выше, углеродные нанотрубки принадлежат к группе фуллеренов. Фуллеренами называют сферические молекулы из атомов углерода с высокой симметрией, которые представляют собой третью модификацию элемента углерода (наряду с алмазом и графитом).
Графеном называют одноатомный слой sp2-гибридизированных атомов углерода. Графен показывает очень хорошую электрическую и тепловую проводимость вдоль его слоя.
Олово или сплавы олова обычно применяют для спаивания электрических контактов, например, для того, чтобы соединять друг с другом медные провода. Также олово или сплавы олова часто наносят на штекерные соединения для того, чтобы улучшить коэффициент трения, защитить от коррозии, а также способствовать улучшению проводимости. Применение олова или сплавов олова имеет недостатки: склонность к коррозии от трения, недостаточный коэффициент трения, и в частности мягкость данного металла, или соответственно, сплава, так что, в частности, при частом разъединении и соединении штекерного соединения и при вибрации содержащее олово покрытие изнашивается и, таким образом, преимущества содержащего олово покрытия пропадают. Похожие проблемы встречаются также при применении других металлов или сплавов, например Ag, Au, Ni или Zn.
В этой связи было бы рациональным применять такое покрытие, которое не имеет проблем с износом или имеет только небольшой износ и не имеет недостатков относительно электрической проводимости и силы соединения и разъединения. Этого можно достичь, например, с помощью добавки углерода к металлу покрытия. Добавка углерода может существенно повысить твердость покрытия на субстрате. Однако при применении обычных частиц углерода это происходит за счет проводимости. Кроме того, трудно достичь гомогенного смешивания углерода с «металлом покрытия».
Таким образом, задача данного изобретения состоит в предоставлении способа нанесения на субстрат состава для покрытия, который содержит углерод и металл.
Данную задачу можно решить с помощью способа нанесения состава для покрытия на субстрат, который включает следующие стадии:
a) Получение состава для покрытия физическим и/или химическим смешиванием углерода в форме углеродных нанотрубок, графенов, фуллеренов или их смеси с металлическими частицами,
b) сплошное или избирательное нанесение состава для покрытия на субстрат или
c) сплошное или избирательное введение состава для покрытия в предварительно нанесенное покрытие/на предварительно покрытый субстрат.
В случае предварительно нанесенного покрытия или предварительно покрытого субстрата речь может идти о промежуточных слоях, например о слоях, содержащих Cu, Ni, Ag, Co, Fe и/или их сплавы.
В качестве металлических частиц для состава для покрытия предпочтительно применяют металлические частицы, содержащие Cu, Sn, Ag, Au, Pd, Ni и/или Zn и их сплавы. При этом в одном варианте осуществления данного изобретения предпочтительно, чтобы металлические частицы имели средний размер частиц (d50) в области от 10 до 200 мкм, предпочтительно от 25 до 150 мкм, наиболее предпочтительно от 40 до 100 мкм. Средний размер частиц можно определять, например, с помощью XRD (рентгеновская дифрактометрия).
В следующем варианте осуществления данного изобретения предпочтительно, чтобы металлические частицы имели средний размер частиц в области от 8 нм до 500 нм, предпочтительно 10-250 нм. Данный размер частиц, в частности, предпочтителен, если нанесение состава для покрытия происходит способом распыления.
В следующем варианте осуществления данного изобретения предпочтительно, чтобы металлические частицы имели средний размер частиц в области от 50 до 1000 нм, предпочтительно от 100-500 нм. Данный размер частиц, в частности, предпочтителен, если нанесение состава для покрытия происходит способом распыления аэрозоля.
В качестве углеродных нанотрубок предпочтительно применяют многостенные углеродные нанотрубки (multi-wall carbon nanotubes, MWCNTs) или одностенные углеродные нанотрубки (single-wall carbon nanotubes SWCNTs). Углеродные нанотрубки предпочтительно имеют диаметр от 1 нм до 1000 нм.
В рамках данного изобретения смесь углерода с металлическими частицами получают предпочтительно в сухом или влажном состоянии. Соответственно нанесение состава для покрытия также происходит в сухой или во влажной форме.
Смешивание компонентов состава для покрытия (влажных или сухих) производят предпочтительно с помощью смесителей, например с помощью шаровой мельницы, скоростного смесителя, механических мешалок, месильных машин, экструдеров и т.д.
В одном предпочтительном варианте осуществления смешивание углерода с металлическими частицами происходит во влажном состоянии, при этом добавляют такое количество растворителя (жидкой дисперсионной среды), чтобы образовывалась паста или дисперсия (в частности суспензия).
При смешивании во влажном состоянии можно добавлять одну или несколько добавок/смачивателей. Добавки/смачиватели предпочтительно выбирают из поверхностно-активных веществ, антиокислителей, флюсующих добавок и/или кислотных веществ.
Поверхностно-активные вещества, которые могут быть неионной, анионной, катионной и/или амфотерной природы, способствуют, в частности, тому, чтобы получалась стабильная дисперсия или суспензия. Пригодными ПАВами в рамках данного изобретения являются, например, октилфенолэтоксилат (тритон), лаурилсульфат натрия, CTAB (цетилтриметиламмониумбромид), поли(натрий-4-стиролсульфонат) или гуммиарабик.
Антиокислители, флюсующие добавки и/или кислотные добавки должны способствовать лучшей адгезии состава для покрытия к субстрату и вместе с этим активированию поверхности субстрата. Далее, оксиды металлов восстанавливаются в металлическую и, соответственно, проводящую форму. Пригодные антиокислители выбирают, например, из неорганических солей, таких как хлорид олова, растворенный в соляной кислоте, сульфит натрия или сульфит кальция и подобных.
Флюсующие добавки представляют собой добавки, которые облегчают процесс расплавления и применение расплавленных веществ. Флюсующие добавки добавляют в перерабатываемые металлы, а также в солевые расплавы для снижения температуры плавления и вязкости (густоты). Наряду с этим в некоторых процессах данные вещества выполняют также функцию защиты от окисления. Пригодными флюсующими добавками в рамках данного изобретения являются, например, соединения бора, такие как бороводородная кислота, соединения фтора, такие как фтороводородная кислота, фосфаты, силикаты или хлориды металлов, в частности хлорид цинка, а также хлорид алюминия, а также канифоль.
Пригодными кислотными средствами в рамках данного изобретения являются, в частности, разбавленные неорганические кислоты, такие как, например, соляная кислота с концентрацией <5 моль %, предпочтительно от 1 до 4,5 моль %, особенно предпочтительно от 2 до 4 моль %.
Состав для покрытия можно наносить на субстрат в жидком состоянии, в виде пасты или дисперсии. Это можно производить, например, напылением, наливом, ракелью, погружением, валиком и подобными способами или комбинацией упомянутых способов. Данные технические приемы известны специалистам. Состав для покрытия можно наносить на субстрат непрерывно или частично. Для избирательного нанесения при этом можно применять обычные в печатной технике способы, такие как, например, глубокая печать, трафаретная печать или штемпельная печать. Далее, для частичного нанесения можно управлять разбрызгиваемой струей при распылении, например, с помощью техники распыления через сопла.
Для того чтобы повысить адгезию состава для покрытия, можно нагревать субстрат перед или во время нанесения состава для покрытия, предпочтительно до температуры от 50 до 320°C, особенно предпочтительно от 80 до 300°C.
После нанесения состава для покрытия в жидком состоянии (в качестве пасты или дисперсии) предпочтительно производят тепловую обработку при температуре от >150°C до 1000°C, предпочтительно от 200 до 950°C, особенно предпочтительно от 250 до 900°C.
В следующем варианте осуществления данного изобретения состав для покрытия наносят на субстрат в сухом состоянии, то есть без растворителя, в виде порошковой смеси. При этом сухой состав для покрытия предпочтительно нагревают до расплавленного состояния и наносят на субстрат. Затем состав для покрытия можно наносить также наливом, напылением, ракелью, погружением, валиком и подобными способами. Данные технические приемы известны специалистам. Далее, данный состав для покрытия можно наносить на субстрат непрерывно или частично. При частичном нанесении можно применять, например, трафарет или можно управлять разбрызгиваемой струей при распылении.
Предпочтительно субстрат перед нанесением состава для покрытия обрабатывают антиокислителем, флюсующим средством и/или кислотным веществом и/или нагревают. В следующем предпочтительном варианте осуществления данного изобретения субстрат предварительно покрывают металлическими частицами. Данные металлические частицы предпочтительно содержат металл или предпочтительно состоят из металла, который применяют в соответствующем составе для покрытия. Субстрат также может быть снабжен дополнительными промежуточными слоями из металлов, таких как Cu, Ni, Ag, Co, Fe, и их сплавов.
После нанесения состава для покрытия в сухом состоянии (в виде расплава) производят предпочтительно тепловую обработку при температуре от >150°C до 1000°C, предпочтительно от 200 до 950°C, особенно предпочтительно от 250 до 900°C. Далее, в рамках данного изобретения предпочтительно, чтобы покрытие после нанесения было гомогенизировано с помощью давления и/или температуры. При этом, например, штемпель или валик может выполнять давление на покрытие и одновременно нагреваться для того, чтобы достичь расплавления покрытия. Это приводит к улучшению гомогенизации покрытия на субстрате.
В качестве субстрата, который покрывают составом для покрытия, предпочтительно применяют субстрат, содержащий металл. Конечно, также возможно применять в качестве субстрата неметаллический полимер. Содержащий металл субстрат при этом предпочтительно выбирают из меди, сплавов меди, никеля и сплавов никеля, алюминия и сплавов алюминия, стали, сплавов олова, сплавов серебра, металлизированных полимеров или металлизированной керамики.
Следующим объектом данного изобретения является покрытый субстрат, полученный способом по изобретению. Покрытый субстрат отличается тем, что имеет гомогенное покрытие, содержащее углерод в форме углеродных нанотрубок, графенов, фуллеренов или его смесь с металлическими частицами. Далее, данный субстрат может иметь промежуточные слои.
В качестве металлических частиц для состава для покрытия применяют предпочтительно Cu, Sn, Ag, Au, Pd, Ni и/или Zn содержащие металлические частицы. Данные металлические частицы могут также существовать в виде смеси или сплава указанных элементов. При этом предпочтительно, чтобы металлические частицы имели средний размер частиц (d50) в области от 10 до 200 мкм, предпочтительно от 25 до 150 мкм, наиболее предпочтительно от 40 до 100 мкм. Для нанесения состава для покрытия способами распыления или аэрозольного распыления предпочтительно, чтобы размер частиц находился в области от 8 нм до 300 нм или, соответственно, от 50 до 1000 нм, предпочтительно от 10 нм до 250 нм или, соответственно, от 100 нм до 500 нм. Средний размер частиц можно определять, например, способом XRD.
В случае углеродных нанотрубок речь идет предпочтительно о многостенных углеродных нанотрубках (multi-wall carbon nanotubes, MWCNTs) или одностенных углеродных нанотрубках (SWCNTs). Углеродные нанотрубки предпочтительно имеют диаметр от 1 нм до 1000 нм и длину <50 мкм, предпочтительно 1 мкм и в частности 200 нм.
Получение углеродных нанотрубок производят предпочтительно осаждением углерода из газовой фазы или плазмы. Данные технические приемы известны специалистам.
В случае, если согласно способу по изобретению применяют фуллерены, речь идет о сферических молекулах из атомов углерода с высокой симметрией. Получение фуллеренов происходит предпочтительно при испарении графита при пониженном давлении и в защитной газовой атмосфере (например, в аргоне) с реостатным обогревом или в электрической дуге. В качестве побочного продукта часто образуются описанные выше углеродные нанотрубки. Фуллерены имеют свойства от полупроводников до сверхпроводников.
В случае если согласно способу по изобретению применяют графены, речь идет о моноатомных слоях sp2-гибридизированных атомов углерода. Графены отличаются очень хорошей электрической и тепловой проводимостью вдоль их поверхности. Получение графенов происходит предпочтительно расщеплением графита на слои. При этом сначала интеркалируют кислород. Кислород частично реагирует с углеродом и приводит к взаимному отталкиванию слоев. Затем графен суспендируют и перерабатывают в состав для покрытия.
Еще одной возможностью получения отдельных слоев графена является нагревание поверхности гексагонального карбида кремния до температуры выше 1400°C. По причине более высокого давления пара кремния, атомы кремния испаряются быстрее, чем атомы углерода. На поверхности образуются тонкие слои монокристаллического графита, который состоит из небольшого количества монослоев графена.
Покрытый субстрат можно применять в качестве электромеханических конструктивных элементов, которые имеют низкую механическую изнашиваемость и низкие усилия при соединении и разъединении, по причине уменьшенного коэффициента трения, и, кроме того, имеют очень хорошую электрическую проводимость.
Данное изобретение можно применять, например, в следующих областях применения:
- частичные покрытия на ленточных материалах для электромеханических компонентов и штекерных соединений,
- проводящие полоски на печатных платах с контактным присоединением,
- проводящие полоски в качестве выводной рамки с контактным присоединением,
- проводящие полоски в разъемах FFC и FPC,
- Moulded Inteconnect Devices (MID) (Литые монтажные основания) - конструктивные элементы.
Далее, данное изобретение разъясняется подробнее посредством нескольких примеров вариантов осуществления, при этом данные варианты не следует рассматривать как ограничивающие данное изобретение. При этом ссылаются на следующие фигуры. На фигурах представлено:
Фиг.1 - микроскопическое встраивание Sn-порошка (от фирмы Ecka-Granules) с размером частиц <45 мкм с 2,1 масс.% CNTs, смешанных в шаровой мельнице в атмосфере защитного газа; длина измерительной полоски составляет 20 мкм; встраивание производили при напряжении 10 кВ;
Фиг.2 - микроскопическое встраивание смеси Sn и CNT-порошка, которую расплавляли в тигле под давлением. Можно различить неоднородное распределение CNT в слитке/шлифовке; длина измерительной полоски составляет 20 мкм, встраивание производили при напряжении 1 кВ;
Фиг.3 - смесь из Sn и CNT-порошка, которую напыляли на ленточный образец из Cu, который был подвергнут горячему лужению. Затем порошок расплавляли при 260°C и одновременно спрессовывали; длина измерительной полоски увеличенного встраивания составляет 1 мкм; данное встраивание производили при напряжении 10 кВ, и
Фиг.4 - поперечное сечение субстрата 1 со встраиванием с помощью FIB (Focussed Ion Beam) (Сфокусированный ионный пучок) после нанесения покрытия по изобретению 2; размер образованных при FIB-встраивании областей составляет 8,53 мкм; данное встраивание производили при напряжении 30 кВ.
Примеры вариантов осуществления:
Пример 1
Sn-порошок (размер частиц <45 мкм, см. Фиг.1) смешивали с 2,1 масс.% CNTs в шаровой мельнице в атмосфере Ar и данный порошок напыляли на ленточный образец из Cu, который был подвергнут горячему лужению. Данный порошок затем при 260°C расплавляли и одновременно раскатывали (спрессовывали) (см. Фиг.3).
Предварительно расплавляли порошковую смесь Sn+CNT в тигле под давлением для того, чтобы исследовать распределение CNT в Sn-матрице (см. Фиг.2). Можно различить существенно более гомогенное распределение CNTs.
Далее, расплавляли порошок на Sn-поверхности и спрессовывали, а затем выдерживали для того, чтобы получить CNTs в Sn-матрице посредством роста интерметаллической фазы на поверхности, для которой имеет значение эффект относительно силы соединения и разъединения.
Пример 2
Покрытие на Фиг.4 состоит из смешанного с Sn-порошком графена 3. Субстратом служит лист CuSn6.
Субстрат 1 и покрытие 2 расплавляли при давлении и температуре и данный расплав снова затвердевал. Можно различить, что при FIB-встраивании, в затвердевшем расплаве покрытия 2 графен 3 находится вокруг Sn-частиц 4 и окружает их. Различим также наряду с субстратом 1 и покрытием 2 двухслойный интерметаллический Cu-Sn-промежуточный слой 5, который возник из-за образования расплава между субстратом 1 и покрытием 2.
Обозначения
1 - субстрат
2 - покрытие
3 - графен
4 - Sn-частицы
5 - промежуточный слой
Claims (30)
1. Способ нанесения состава для покрытия на субстрат, который включает стадии:
a) получение состава для покрытия физическим и/или химическим смешиванием углерода в форме углеродных нанотрубок, графенов, фуллеренов или их смеси с металлическими частицами,
b) сплошное или избирательное нанесение состава для покрытия на субстрат или
c) сплошное или избирательное введение состава для покрытия в предварительно нанесенное покрытие/на предварительно покрытый субстрат,
d) обработка под давлением и тепловая обработка покрытия после нанесения на субстрат.
a) получение состава для покрытия физическим и/или химическим смешиванием углерода в форме углеродных нанотрубок, графенов, фуллеренов или их смеси с металлическими частицами,
b) сплошное или избирательное нанесение состава для покрытия на субстрат или
c) сплошное или избирательное введение состава для покрытия в предварительно нанесенное покрытие/на предварительно покрытый субстрат,
d) обработка под давлением и тепловая обработка покрытия после нанесения на субстрат.
2. Способ по п.1, отличающийся тем, что в качестве металлических частиц применяют металлические частицы, которые содержат Cu, Sn, Ag, Au, Pd, Ni, Zn и/или их сплавы.
3. Способ по п.1 или 2, отличающийся тем, что металлические частицы имеют средний размер частиц в области от 10 до 200 мкм.
4. Способ по п.1 или 2, отличающийся тем, что металлические частицы имеют средний размер частиц в области от 8 нм до 500 нм.
5. Способ по п.1 или 2, отличающийся тем, что металлические частицы имеют средний размер частиц в области от 50 до 1000 нм.
6. Способ по п.1, отличающийся тем, что смешивание углерода с металлическими частицами происходит в сухом или влажном состоянии.
7. Способ по п.2, отличающийся тем, что смешивание углерода с металлическими частицами происходит в сухом или влажном состоянии.
8. Способ по п.3, отличающийся тем, что смешивание углерода с металлическими частицами происходит в сухом или влажном состоянии.
9. Способ по п.4, отличающийся тем, что смешивание углерода с металлическими частицами происходит в сухом или влажном состоянии.
10. Способ по п.5, отличающийся тем, что смешивание углерода с металлическими частицами происходит в сухом или влажном состоянии.
11. Способ по одному из пп.6-10, отличающийся тем, что при смешивании во влажном состоянии добавляют такое количество растворителя, чтобы образовывалась паста или дисперсия.
12. Способ по п.11, отличающийся тем, что при смешивании во влажном состоянии добавляют одну или несколько добавок.
13. Способ по п.12, отличающийся тем, что добавки выбирают из ПАВ, антиокислителей, флюсующих добавок и/или кислотных/активирующих средств.
14. Способ по одному из пп.6-10, отличающийся тем, что состав для покрытия в сухой форме в виде порошка или во влажной форме в виде пасты или дисперсии/суспензии наносят на субстрат.
15. Способ п.11, отличающийся тем, что состав для покрытия в сухой форме в виде порошка или во влажной форме в виде пасты или дисперсии/суспензии наносят на субстрат.
16. Способ по одному из пп.12-13, отличающийся тем, что состав для покрытия в сухой форме в виде порошка или во влажной форме в виде пасты или дисперсии/суспензии наносят на субстрат.
17. Способ по одному из пп.6-10, отличающийся тем, что субстрат перед нанесением состава для покрытия обрабатывают антиокислителем, флюсующим средством и/или кислотным средством и/или нагревают.
18. Способ по п.11, отличающийся тем, что субстрат перед нанесением состава для покрытия обрабатывают антиокислителем, флюсующим средством и/или кислотным средством и/или нагревают.
19. Способ по одному из пп.12-13, отличающийся тем, что субстрат перед нанесением состава для покрытия обрабатывают антиокислителем, флюсующим средством и/или кислотным средством и/или нагревают.
20. Способ по п.14, отличающийся тем, что субстрат перед нанесением состава для покрытия обрабатывают антиокислителем, флюсующим средством и/или кислотным средством и/или нагревают.
21. Способ по п.15, отличающийся тем, что субстрат перед нанесением состава для покрытия обрабатывают антиокислителем, флюсующим средством и/или кислотным средством и/или нагревают.
22. Способ по п.16, отличающийся тем, что субстрат перед нанесением состава для покрытия обрабатывают антиокислителем, флюсующим средством и/или кислотным средством и/или нагревают.
23. Способ по п.1, отличающийся тем, что нанесение состава для покрытия производят частично.
24. Способ по п.23, отличающийся тем, что субстрат предварительно покрывают металлическими частицами.
25. Способ по п.1, отличающийся тем, что в качестве субстрата применяют неметаллический полимер.
26. Способ по п.1, отличающийся тем, что в качестве субстрата применяют содержащий металл субстрат.
27. Способ по п.26, отличающийся тем, что в качестве содержащего металл субстрата применяют медь, сплавы меди, сталь, никель, сплавы никеля, олово, сплавы олова, серебро, сплавы серебра, металлизированные полимеры или металлизированную керамику.
28. Покрытый субстрат, полученный способом по одному из пп.1-27.
29. Применение покрытого субстрата по п.28 или полученного способом по одному из пп.1-27 в качестве электромеханического конструктивного элемента.
30. Применение покрытого субстрата по п.28 или полученного способом по одному из пп.1-27 для проведения тока в электротехнике и электронике.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102009054427.5 | 2009-11-25 | ||
DE200910054427 DE102009054427B4 (de) | 2009-11-25 | 2009-11-25 | Verfahren zum Aufbringen von Gemengen aus Kohlenstoff und Metallpartikeln auf ein Substrat, nach dem Verfahren erhältliches Substrat und dessen Verwendung |
PCT/DE2010/001165 WO2011063778A1 (de) | 2009-11-25 | 2010-10-01 | Verfahren zum aufbringen von kohlenstoff/zinn-gemengen auf metall- oder legierungsschichten |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2012126142A RU2012126142A (ru) | 2013-12-27 |
RU2525176C2 true RU2525176C2 (ru) | 2014-08-10 |
Family
ID=43502912
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2012126142/05A RU2525176C2 (ru) | 2009-11-25 | 2010-10-01 | Способ нанесения смеси углерод/олово на слои металлов или сплавов |
Country Status (12)
Country | Link |
---|---|
US (1) | US20130004752A1 (ru) |
EP (1) | EP2504398A1 (ru) |
JP (2) | JP2013512167A (ru) |
KR (1) | KR20120098810A (ru) |
CN (1) | CN102648246B (ru) |
AR (1) | AR080618A1 (ru) |
BR (1) | BR112012012488A2 (ru) |
DE (1) | DE102009054427B4 (ru) |
MX (1) | MX2012005640A (ru) |
RU (1) | RU2525176C2 (ru) |
TW (1) | TW201134561A (ru) |
WO (1) | WO2011063778A1 (ru) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2727604C2 (ru) * | 2015-06-29 | 2020-07-22 | Люксембург Инститьют Оф Сайенс Энд Текнолоджи (Лист) | Композитное покрытие на основе углеродных нанотрубок и способ его получения |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102009026655B3 (de) * | 2009-06-03 | 2011-06-30 | Linde Aktiengesellschaft, 80331 | Verfahren zur Herstellung eines Metallmatrix-Verbundwerkstoffs, Metallmatrix-Verbundwerkstoff und seine Verwendung |
US20120273255A1 (en) * | 2011-04-26 | 2012-11-01 | Tyco Electronics Corporation | Electrical Conductors Having Organic Compound Coatings |
KR101386362B1 (ko) * | 2012-09-27 | 2014-04-16 | 한국과학기술원 | 은 나노와이어 네트워크―그래핀 적층형 투명전극 소재, 그 제조 방법 및 이를 포함하는 투명전극 |
CN103897446B (zh) * | 2014-04-21 | 2016-04-06 | 江苏同创节能科技有限公司 | 一种高性能的复合石墨烯导电涂料 |
KR101591454B1 (ko) * | 2014-10-07 | 2016-02-03 | 주식회사 동희홀딩스 | 금속 및 산화물로 하이브리드 코팅된 나노카본의 제조방법 |
DE102014114721B4 (de) | 2014-10-10 | 2019-08-29 | Harting Electric Gmbh & Co. Kg | Elektrischer Steckverbinder und Verfahren zur Überwachung des Zustands einer Kontaktoberfläche eines elektrischen Steckverbinder-kontaktes |
CN104312391A (zh) * | 2014-10-14 | 2015-01-28 | 江苏华光粉末有限公司 | 一种石墨烯抗静电粉末涂料及其制备方法 |
CN104357788B (zh) * | 2014-10-30 | 2017-01-25 | 安徽鼎恒再制造产业技术研究院有限公司 | 一种Ni‑Gr‑B纳米涂层及其制备方法 |
JPWO2017033374A1 (ja) * | 2015-08-24 | 2018-05-24 | パナソニックIpマネジメント株式会社 | 導電性塗料組成物、導電性材料、導電性塗料組成物の製造方法、導電性材料の製造方法 |
DE102017201159A1 (de) | 2017-01-25 | 2018-07-26 | Kjellberg-Stiftung | Bauelement oder Halteelement, das für die Plasmabearbeitung von Werkstücken einsetzbar ist und ein Verfahren zu seiner Herstellung |
CN108892507A (zh) * | 2018-06-28 | 2018-11-27 | 滁州市经纬装备科技有限公司 | 一种用于户外避雷装置的表面涂层材料的制备方法 |
KR20200005454A (ko) * | 2018-07-05 | 2020-01-15 | 어메이징 쿨 테크놀로지 코포레이션 | 그래핀 금속 복합재료의 제조방법 |
CN109852924B (zh) * | 2019-02-28 | 2021-10-22 | 贾春德 | 一种纳米、纳微米碳材料增强超细晶粒表层组织的渗剂、制备方法和具有该表层组织的钢材 |
GB201908011D0 (en) | 2019-06-05 | 2019-07-17 | Silberline Ltd | New product |
CN110885976A (zh) * | 2019-11-15 | 2020-03-17 | 唐山市兆寰冶金装备制造有限公司 | 一种激光带状纳米复合强化工艺 |
US20240084472A1 (en) * | 2021-02-05 | 2024-03-14 | Heraeus Materials Singapore Pte. Ltd. | Coated wire |
CN113223773B (zh) * | 2021-05-06 | 2022-07-01 | 上海超导科技股份有限公司 | 第二代高温超导带材及其制备方法 |
WO2023053168A1 (ja) * | 2021-09-28 | 2023-04-06 | 国立大学法人東北大学 | カーボンナノチューブ組成物、カーボンナノチューブ製造用の触媒、カーボンナノチューブの製造方法およびカーボンナノチューブ |
DE102022205343A1 (de) * | 2022-05-30 | 2023-11-30 | Sms Group Gmbh | Verfahren zum Bearbeiten eines metallischen Werkstücks |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2006109415A (ru) * | 2006-03-24 | 2007-09-27 | Федеральное государственное унитарное предпри тие"Центральный научно-исследовательский институт "Дельфин" (RU) | Электропроводной лакокрасочный материал для антикоррозионной защиты металлических конструкций |
WO2008015167A1 (de) * | 2006-08-03 | 2008-02-07 | Basf Se | Dispersion zum aufbringen einer metallschicht |
EP1930933A2 (en) * | 2006-12-07 | 2008-06-11 | Electronics And Telecommunications Research Institute | Method of manufacturing fine patternable carbon nano-tube emitter with high reliability |
JP2009043981A (ja) * | 2007-08-09 | 2009-02-26 | Nissan Motor Co Ltd | 電子部品用セラミックス基板及びその製造方法 |
Family Cites Families (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61116708A (ja) * | 1984-11-12 | 1986-06-04 | 呉羽化学工業株式会社 | 導電性フイルムおよびその製造方法 |
US20080035370A1 (en) * | 1999-08-27 | 2008-02-14 | Lex Kosowsky | Device applications for voltage switchable dielectric material having conductive or semi-conductive organic material |
US7138203B2 (en) * | 2001-01-19 | 2006-11-21 | World Properties, Inc. | Apparatus and method of manufacture of electrochemical cell components |
US8062697B2 (en) * | 2001-10-19 | 2011-11-22 | Applied Nanotech Holdings, Inc. | Ink jet application for carbon nanotubes |
US20050002851A1 (en) * | 2002-11-26 | 2005-01-06 | Mcelrath Kenneth O. | Carbon nanotube particulates, compositions and use thereof |
JP4351120B2 (ja) * | 2004-08-19 | 2009-10-28 | シナノケンシ株式会社 | 金属粒子の製造方法 |
US7886813B2 (en) * | 2005-06-29 | 2011-02-15 | Intel Corporation | Thermal interface material with carbon nanotubes and particles |
JP2007016262A (ja) * | 2005-07-06 | 2007-01-25 | Nissan Motor Co Ltd | カーボンナノチューブ含有複合材及びその製造方法 |
US8597453B2 (en) * | 2005-12-05 | 2013-12-03 | Manotek Instriments, Inc. | Method for producing highly conductive sheet molding compound, fuel cell flow field plate, and bipolar plate |
US20070145097A1 (en) * | 2005-12-20 | 2007-06-28 | Intel Corporation | Carbon nanotubes solder composite for high performance interconnect |
KR100748228B1 (ko) * | 2006-02-28 | 2007-08-09 | 한국과학기술원 | 전기도금을 이용한 금속/탄소나노튜브 복합재료 제조방법 |
US7600667B2 (en) * | 2006-09-29 | 2009-10-13 | Intel Corporation | Method of assembling carbon nanotube reinforced solder caps |
GB0622060D0 (en) * | 2006-11-06 | 2006-12-13 | Hexcel Composites Ltd | Improved composite materials |
JP4999072B2 (ja) * | 2007-03-22 | 2012-08-15 | 古河電気工業株式会社 | 表面被覆材 |
KR100915394B1 (ko) * | 2007-10-12 | 2009-09-03 | (주)태광테크 | 전기전도도 및 내마모성이 우수한 소재 및 그 제조방법 |
KR20090047328A (ko) * | 2007-11-07 | 2009-05-12 | 삼성전기주식회사 | 도전성 페이스트 및 이를 이용한 인쇄회로기판 |
JP4725585B2 (ja) * | 2008-02-01 | 2011-07-13 | トヨタ自動車株式会社 | 負極活物質、リチウム二次電池、および負極活物質の製造方法 |
CN101553084B (zh) * | 2008-04-01 | 2010-12-08 | 富葵精密组件(深圳)有限公司 | 线路基板及线路基板的制作方法 |
KR100974092B1 (ko) * | 2008-05-30 | 2010-08-04 | 삼성전기주식회사 | 탄소나노튜브를 포함하는 도전성 페이스트 및 이를 이용한인쇄회로기판 |
KR101099237B1 (ko) * | 2008-12-10 | 2011-12-27 | 엘에스전선 주식회사 | 전도성 페이스트와 이를 이용한 전도성 기판 |
CN101474899A (zh) * | 2009-01-16 | 2009-07-08 | 南开大学 | 石墨烯-无机材料复合多层薄膜及其制备方法 |
DE102009026655B3 (de) * | 2009-06-03 | 2011-06-30 | Linde Aktiengesellschaft, 80331 | Verfahren zur Herstellung eines Metallmatrix-Verbundwerkstoffs, Metallmatrix-Verbundwerkstoff und seine Verwendung |
-
2009
- 2009-11-25 DE DE200910054427 patent/DE102009054427B4/de active Active
-
2010
- 2010-10-01 MX MX2012005640A patent/MX2012005640A/es unknown
- 2010-10-01 CN CN201080053385.8A patent/CN102648246B/zh active Active
- 2010-10-01 KR KR20127016548A patent/KR20120098810A/ko active IP Right Grant
- 2010-10-01 EP EP10784952A patent/EP2504398A1/de not_active Withdrawn
- 2010-10-01 US US13/511,646 patent/US20130004752A1/en not_active Abandoned
- 2010-10-01 BR BR112012012488A patent/BR112012012488A2/pt not_active Application Discontinuation
- 2010-10-01 WO PCT/DE2010/001165 patent/WO2011063778A1/de active Application Filing
- 2010-10-01 RU RU2012126142/05A patent/RU2525176C2/ru not_active IP Right Cessation
- 2010-10-01 JP JP2012540282A patent/JP2013512167A/ja active Pending
- 2010-10-19 AR ARP100103816 patent/AR080618A1/es active IP Right Grant
- 2010-11-24 TW TW99140598A patent/TW201134561A/zh unknown
-
2015
- 2015-04-01 JP JP2015075413A patent/JP6180457B2/ja active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2006109415A (ru) * | 2006-03-24 | 2007-09-27 | Федеральное государственное унитарное предпри тие"Центральный научно-исследовательский институт "Дельфин" (RU) | Электропроводной лакокрасочный материал для антикоррозионной защиты металлических конструкций |
RU2318851C2 (ru) * | 2006-03-24 | 2008-03-10 | Федеральное государственное унитарное предприятие "Центральный научно-исследовательский институт "Дельфин" | Электропроводный лакокрасочный материал для антикоррозионной защиты металлических конструкций |
WO2008015167A1 (de) * | 2006-08-03 | 2008-02-07 | Basf Se | Dispersion zum aufbringen einer metallschicht |
EP1930933A2 (en) * | 2006-12-07 | 2008-06-11 | Electronics And Telecommunications Research Institute | Method of manufacturing fine patternable carbon nano-tube emitter with high reliability |
JP2009043981A (ja) * | 2007-08-09 | 2009-02-26 | Nissan Motor Co Ltd | 電子部品用セラミックス基板及びその製造方法 |
Non-Patent Citations (1)
Title |
---|
9. * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2727604C2 (ru) * | 2015-06-29 | 2020-07-22 | Люксембург Инститьют Оф Сайенс Энд Текнолоджи (Лист) | Композитное покрытие на основе углеродных нанотрубок и способ его получения |
Also Published As
Publication number | Publication date |
---|---|
RU2012126142A (ru) | 2013-12-27 |
CN102648246B (zh) | 2016-08-03 |
AR080618A1 (es) | 2012-04-25 |
BR112012012488A2 (pt) | 2018-10-16 |
MX2012005640A (es) | 2012-09-07 |
EP2504398A1 (de) | 2012-10-03 |
DE102009054427A1 (de) | 2011-09-22 |
TW201134561A (en) | 2011-10-16 |
US20130004752A1 (en) | 2013-01-03 |
JP2013512167A (ja) | 2013-04-11 |
JP6180457B2 (ja) | 2017-08-16 |
JP2015164896A (ja) | 2015-09-17 |
KR20120098810A (ko) | 2012-09-05 |
WO2011063778A1 (de) | 2011-06-03 |
CN102648246A (zh) | 2012-08-22 |
DE102009054427B4 (de) | 2014-02-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2525176C2 (ru) | Способ нанесения смеси углерод/олово на слои металлов или сплавов | |
JP2015164896A5 (ru) | ||
CA2731963C (en) | Method for producing a coating containing carbon nanotubes, fullerenes and/or graphenes | |
CN110462093B (zh) | 通过常压等离子体沉积制造阳极元件的方法、阳极元件及包括该元件的锂离子电池和蓄电池 | |
JP5151476B2 (ja) | インク組成物及び金属質材料 | |
Tian et al. | Sintering mechanism of the Cu–Ag core–shell nanoparticle paste at low temperature in ambient air | |
RU2536847C2 (ru) | Способ производства композиционного материала с металлической матрицей | |
JP2003528419A5 (ru) | ||
JP2016000843A (ja) | 球状複合金属微粒子およびその製造方法 | |
JP7397061B2 (ja) | 金属-cnt複合体、それらの製造方法及び材料 | |
Jung et al. | Ultrasonic spray pyrolysis for air-stable copper particles and their conductive films | |
TWI361143B (en) | Conductive ink and conductor | |
Chang et al. | Enhancement of the wettability and solder joint reliability at the Sn–9Zn–0.5 Ag lead-free solder alloy–Cu interface by Ag precoating | |
JP4248944B2 (ja) | 導電性ペースト、回路パターンの形成方法、突起電極の形成方法 | |
Nguyen et al. | The synthesis of carbon nanotubes grown on metal substrates: A review | |
KR102488985B1 (ko) | 탄소나노튜브 발열잉크의 제조방법 및 이에 따라 제조된 발열잉크 | |
KR20100025178A (ko) | 탄소나노튜브 네트워크 및 그의 제조방법 | |
Nguyen et al. | Enhancing Stability and Electrical Properties in Silver Nanowire Transparent Conductive Electrodes by Coating Platinum on Silver Nanowires | |
JP2009176605A (ja) | 導電膜付基板の製造方法 | |
Lee et al. | Formation of Sn-multiwalled carbon nanotube composite layer for the application of thermal interface materials |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PD4A | Correction of name of patent owner | ||
PC41 | Official registration of the transfer of exclusive right |
Effective date: 20160128 |
|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20181002 |