RU2513423C2 - Дисперсия частиц оксида титана со структурой рутила, способ ее получения и ее применение - Google Patents

Дисперсия частиц оксида титана со структурой рутила, способ ее получения и ее применение Download PDF

Info

Publication number
RU2513423C2
RU2513423C2 RU2011138151/05A RU2011138151A RU2513423C2 RU 2513423 C2 RU2513423 C2 RU 2513423C2 RU 2011138151/05 A RU2011138151/05 A RU 2011138151/05A RU 2011138151 A RU2011138151 A RU 2011138151A RU 2513423 C2 RU2513423 C2 RU 2513423C2
Authority
RU
Russia
Prior art keywords
titanium oxide
dispersion
stage
particles
rutile structure
Prior art date
Application number
RU2011138151/05A
Other languages
English (en)
Other versions
RU2011138151A (ru
Inventor
Ацуси НОМУРА
Кенити НАКАГАВА
Таканори МОРИТА
Original Assignee
Сакай Кемикал Индастри Ко., Лтд.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Сакай Кемикал Индастри Ко., Лтд. filed Critical Сакай Кемикал Индастри Ко., Лтд.
Publication of RU2011138151A publication Critical patent/RU2011138151A/ru
Application granted granted Critical
Publication of RU2513423C2 publication Critical patent/RU2513423C2/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D17/00Pigment pastes, e.g. for mixing in paints
    • C09D17/004Pigment pastes, e.g. for mixing in paints containing an inorganic pigment
    • C09D17/007Metal oxide
    • C09D17/008Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • C01G23/053Producing by wet processes, e.g. hydrolysing titanium salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • C01G23/053Producing by wet processes, e.g. hydrolysing titanium salts
    • C01G23/0536Producing by wet processes, e.g. hydrolysing titanium salts by hydrolysing chloride-containing salts
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/36Compounds of titanium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/32Thermal properties
    • C01P2006/37Stability against thermal decomposition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]

Abstract

Изобретение может быть использовано в химической промышленности. Представлена дисперсия частиц оксида титана со структурой рутила, в которой частицы оксида титана со структурой рутила имеют D50 в интервале от 1 до 15 нм и D90 40 нм или менее в распределении частиц по размеру при его определении методом динамического рассеяния света; удельную поверхность в интервале от 120 до 180 м/г при определении методом по БЭТ; и степень потери массы 5% или менее при ее определении нагреванием частиц оксида титана со структурой рутила от 105°C до 900°C. Указанную дисперсию частиц оксида титана получают способом, который включает первую стадию, на которой водный раствор тетрахлорида титана нагревают и гидролизуют для получения суспензии, содержащей осажденные частицы оксида титана со структурой рутила; вторую стадию, на которой суспензию, полученную на первой стадии, фильтруют и промывают водой; третью стадию, на которой суспензию, полученную на второй стадии, подвергают гидротермической реакции в присутствии органической кислоты; четвертую стадию, на которой суспензию, полученную на третьей стадии, фильтруют и промывают водой; пятую стадию, на которой к суспензии, полученной на четвертой стадии, добавляют кислоту и полученную смесь подвергают влажному диспергированию, посредством чего получают дисперсию; и шестую стадию, на которой избыточную кислоту и водорастворимые соли удаляют из дисперсии, полученной на пятой стадии. Изобретение позволяет повысить стабильность дисперсий оксида титана. 4 н. и 5 з.п. ф-лы, 1 ил., 2 табл., 6 пр.

Description

Область техники
Изобретение относится к дисперсии частиц оксида титана со структурой рутила, способу ее получения и ее применению, в особенности для композиции смолы.
Предшествующий уровень техники
Многие способы получения дисперсии частиц оксида титана со структурой рутила уже известны. Наиболее широко распространенным способом является способ, в котором гидролизуют соль титана, чтобы приготовить суспензию водного оксида титана, и данную суспензию пептизируют кислотой или щелочью, чтобы получить дисперсию. Однако частицы оксида титана в дисперсии оксида титана со структурой рутила, полученной этим обычным известным способом, имеют диаметр D90 40 нм или более, и поэтому они не могут быть применимы в таком приложении, как формованные изделия из смолы или покровный материал для твердого покрытия, где требуется, чтобы частицы имели высокую прозрачность.
В последнее время предложены некоторые способы получения дисперсии тонких частиц оксида титана со структурой рутила. Например, предложен способ, в котором тетрахлорид титана и хлористоводородная кислота смешиваются в воде, имеющей температуру от 65 до 90°C, и смесь нагревается до температуры от 65°C до точки кипения результирующей смеси, чтобы гидролизовать тетрахлорид титана, посредством чего получают дисперсию частиц оксида титана со структурой рутила (JP 2006-335619A). В соответствии с этим способом может быть получена дисперсия тонких частиц оксида титана со структурой рутила, имеющих удельную поверхность по БЭТ в интервале от 50 до 300 м2/г, однако данный способ имеет тот недостаток, что частицы оксида титана обладают низкой кристалличностью. В общем, чем выше кристалличность частиц, тем более эффективно проявление различных физических свойств оксида титана со структурой рутила, таких как способность к экранированию УФ-излучения, фотокаталитическая активность и показатель преломления, и, соответственно, более высокая кристалличность является предпочтительной. Увеличение кристалличности может быть подтверждено посредством увеличения интенсивности пика рентгеновской порошковой дифракции без наличия сопутствующего роста частиц.
Кроме того, полагают, что кристалличность частиц оксида титана со структурой рутила, полученных термическим гидролизом тетрахлорида титана, не увеличивается, поскольку к ним примешано аморфное соединение титана, и что имеется летучий компонент, такой как вода, который содержится внутри частиц или пристает к поверхности частиц. Для сравнения количеств аморфного соединения титана могут быть сравнены изменения в потере массы при нагревании. Можно сказать, что чем меньше потеря в массе при нагревании, тем выше кристалличность.
Обычно известно, что кристалличность оксида титана со структурой рутила может быть увеличена его прокаливанием, однако когда оксид прокаливается, одновременно происходит рост частиц, и поэтому кристалличность не может быть увеличена, в то время как частицы оставались бы тонкими. Так что наличие высокой степени кристалличности противостоит малому размеру частиц.
В качестве другого способа получения дисперсии тонких частиц оксида титана со структурой рутила предложен, например, способ, в котором тонкие частицы оксида титана со структурой рутила, которые были первоначально получены, диспергируются в воде (JP 07-232925A). В соответствии с этим способом, однако, частицы оксида титана, диспергированные в воде, имеют минимальный средний размер частиц 70 нм.
Сущность изобретения
Техническая проблема
Данное изобретение было сделано для того, чтобы решить вышеуказанные проблемы в обычных дисперсиях частиц оксида титана со структурой рутила. Поэтому цель данного изобретения состоит в том, чтобы предложить стабильную дисперсию тонких частиц оксида титана со структурой рутила и способ ее получения. Другая цель изобретения состоит в том, чтобы предложить применение такой дисперсии частиц оксида титана со структурой рутила, в частности применение в композициях смолы, таких как формованные изделия из смолы и покрытия.
Решение проблемы
Данное изобретение предлагает дисперсию частиц оксида титана со структурой рутила, в которой частицы оксида титана со структурой рутила имеют величину D50 в интервале от 1 до 15 нм и D90 40 нм или менее в распределении частиц по размеру при его определении методом динамического рассеяния света; удельную поверхность в интервале от 120 до 180 м2/г при определении методом БЭТ; и степень потери массы 5% или менее при ее определении нагреванием частиц оксида титана со структурой рутила от 105°C до 900°C.
Такую дисперсию частиц оксида титана со структурой рутила получают в соответствии со способом по данному изобретению, который включает:
первую стадию, на которой после регулирования концентрации хлоридных ионов водного раствора тетрахлорида титана до 4,4 моль/л или более раствор нагревают при температуре в интервале от 86°C до точки кипения, чтобы гидролизовать тетрахлорид титана, тем самым получая суспензию, содержащую осажденные частицы оксида титана со структурой рутила;
вторую стадию, на которой суспензию, полученную на первой стадии, фильтруют и промывают водой, чтобы удалить из суспензии водорастворимые соли, растворенные в ней;
третью стадию, на которой суспензию, полученную на второй стадии, подвергают гидротермической реакции в присутствии органической кислоты;
четвертую стадию, на которой суспензию, полученную на третьей стадии, фильтруют и промывают водой, чтобы удалить из суспензии водорастворимые соли, растворенные в ней;
пятую стадию, на которой к суспензии, полученной на четвертой стадии, добавляют кислоту и результирующую смесь подвергают влажному диспергированию, посредством чего получают дисперсию; и
шестую стадию, на которой избыточную кислоту и водорастворимые соли удаляют из дисперсии, полученной на пятой стадии.
Преимущества данного изобретения
Дисперсия частиц оксида титана со структурой рутила, полученная в соответствии со способом по данному изобретению, имеет более высокую кристалличность и более высокую стабильность наряду с тем, что размер частиц составляет 15 нм или менее, как рассчитано из удельной поверхности по БЭТ, по сравнению с обычными известными дисперсиями, полученными термическим гидролизом тетрахлорида титана. Соответственно, например, когда дисперсия, полученная в соответствии с данным изобретением, смешивается со смолой и диспергируется в ней, чтобы получить композицию смолы, может быть реализована простая и однородная дисперсия оксида титана по сравнению со случаем, в котором порошок оксида титана смешивается со смолой и диспергируется в ней. Соответственно, формованные изделия из полученной таким образом композиции смолы могут эффективным образом проявлять свойства частиц оксида титана со структурой рутила, такие как способность к экранированию УФ-излучения, высокий показатель преломления и фотокаталитическую активность.
Краткое описание чертежа
Фиг. 1 показывает порошковую рентгенограмму частиц оксида титана со структурой рутила, полученных из дисперсии в соответствии с данным изобретением, по сравнению с порошковой рентгенограммой частиц оксида титана со структурой рутила, полученных в качестве сравнительного примера.
Описание вариантов осуществления
В соответствии с дисперсией частиц оксида титана со структурой рутила по данному изобретению, частицы оксида титана со структурой рутила имеют величину D50 в интервале от 1 до 15 нм и D90 40 нм или менее в распределении частиц по размеру при его определении методом динамического рассеяния света; удельную поверхность в интервале от 120 до 180 м2/г при определении методом по БЭТ; и степень потери массы 5% или менее при ее определении нагреванием частиц оксида титана со структурой рутила от 105°C до 900°C.
Дисперсионная среда в дисперсии частиц оксида титана со структурой рутила может быть водой или органическим растворителем.
Среди дисперсий частиц оксида титана со структурой рутила, водную дисперсию получают способом, включающим следующие стадии в соответствии с данным изобретением:
первую стадию, на которой после регулирования концентрации хлоридных ионов водного раствора тетрахлорида титана до 4,4 моль/л или более, предпочтительно 7,0 моль/л или более, раствор нагревают при температуре в интервале от 86°C до точки кипения, чтобы гидролизовать тетрахлорид титана, тем самым получая суспензию, содержащую осажденные частицы оксида титана со структурой рутила;
вторую стадию, на которой суспензию, полученную на первой стадии, фильтруют и промывают водой, чтобы удалить из суспензии водорастворимые соли, растворенные в ней;
третью стадию, на которой суспензию, полученную на второй стадии, подвергают гидротермической реакции в присутствии органической кислоты;
четвертую стадию, на которой суспензию, полученную на третьей стадии, фильтруют и промывают водой, чтобы удалить из суспензии водорастворимые соли, растворенные в ней;
пятую стадию, на которой к суспензии, полученной на четвертой стадии, добавляют кислоту и результирующую смесь подвергают влажному диспергированию, посредством чего получают дисперсию; и
шестую стадию, на которой избыточную кислоту и водорастворимые соли удаляют из дисперсии, полученной на пятой стадии.
Вода, которая является дисперсионной средой полученной таким образом водной дисперсии частиц оксида титана со структурой рутила, может быть замещена органическим растворителем в соответствии с обычным известным методом замещения растворителя, посредством чего может быть получена дисперсия частиц оксида титана со структурой рутила, дисперсионная среда которой является органическим растворителем.
Способ получения водной дисперсии частиц оксида титана со структурой рутила в соответствии с данным изобретением будет разъяснен ниже.
Первая стадия представляет собой стадию, на которой тетрахлорид титана термически гидролизуется в воде таким образом, что частицы оксида титана со структурой рутила выпадают в осадок, посредством чего получают суспензию, содержащую такие частицы оксида титана со структурой рутила. Более подробно, на первой стадии, воду добавляют к водному раствору тетрахлорида титана таким образом, что он имеет содержание оксида титана (TiO2, далее такое же обозначение) в интервале от 75 до 250 г/л, предпочтительно от 80 до 200 г/л, и концентрацию хлоридных ионов 4,4 моль/л или более, предпочтительно 7,0 моль/л или более. Затем водный раствор нагревают при температуре 86°C до точки кипения в течение от одного до двух часов, так что тетрахлорид титана гидролизуют, и частицы оксида титана со структурой рутила осаждают. При таком гидролизе тетрахлорида титана, если концентрация хлоридных ионов в водном растворе тетрахлорида титана составляет меньше чем 4,4 моль/л, то образованные частицы оксида титана со структурой рутила смешиваются нежелательным образом с оксидом титана со структурой анатаза. Скорость гидролиза тетрахлорида титана зависит от температуры гидролиза, и чем выше температура, тем выше скорость гидролиза. Более высокая температура поэтому является выгодной с точки зрения промышленного производства.
Вторая стадия представляет собой стадию, на которой суспензию, полученную на первой стадии, фильтруют и промывают водой, чтобы удалить из суспензии водорастворимые соли, растворенные в ней. На второй стадии, хотя средства и процедуры для фильтрации и промывки водой особым образом не ограничиваются, когда к суспензии перед фильтрацией добавляется подходящая щелочь, чтобы отрегулировать pH суспензии до изоэлектрической точки оксида титана, суспензия может быть эффективным образом отфильтрована и промыта водой.
Третья стадия представляет собой стадию, на которой суспензию, полученную на второй стадии, подвергают гидротермической реакции в присутствии органической кислоты, которая является агентом, ингибирующим рост частиц, чтобы увеличить кристалличность частиц оксида титана со структурой рутила, наряду с тем, что ингибируется рост частиц. В качестве органической кислоты используются карбоновые кислоты и гидроксикарбоновые кислоты, и также могут быть использованы их соли. Конкретные примеры органической кислоты могут включать монокарбоновые кислоты, такие как муравьиная кислота, уксусная кислота и пропионовая кислота, и их соли; многоосновные кислоты, такие как щавелевая кислота, малоновая кислота, янтарная кислота, фумаровая кислота и малеиновая кислота, и их соли; гидроксикарбоновые кислоты, такие как молочная кислота, яблочная кислота, виннокаменная кислота, лимонная кислота и глюконовая кислота, и их соли. В качестве солей карбоновой кислоты и гидроксикарбоновой кислоты предпочтительно используются, например, соли щелочных металлов, такие как соли натрия и соли калия.
В соответствии с данным изобретением, когда органическая кислота используется в количестве 75 частей на моль или более на 100 частей на моль оксида титана, кристалличность частиц оксида титана со структурой рутила, полученных гидротермической реакцией, может быть эффективным образом увеличена. Если количество органической кислоты составляет меньше чем 75 частей на моль на 100 частей на моль оксида титана, то эффект ингибирования роста частиц оксида титана со структурой рутила не может быть достигнут в гидротермической реакции. Предпочтительное количество органической кислоты составляет 85 частей на моль или более на 100 частей на моль оксида титана. С другой стороны, верхний предел количества органической кислоты по отношению к оксиду титана не ограничивается особым образом, однако даже если используется слишком большое количество органической кислоты, эффект увеличения кристалличности частиц оксида титана со структурой рутила больше не возрастает. Поэтому обычно достаточно количества 200 частей на моль или менее органической кислоты на 100 частей на моль оксида титана.
Кроме того, в соответствии с данным изобретением температура гидротермической реакции находится в интервале от 120 до 180°C. Когда температура гидротермической реакции ниже чем 120°C, кристалличность частиц оксида титана со структурой рутила не может быть увеличена. С другой стороны, когда она выше чем 180°C, частицы растут заметным образом. А именно, затрудняется увеличение кристалличности при одновременном ингибировании роста частиц. В частности, в соответствии с данным изобретением, выгодно выполнять гидротермическую реакцию при температуре в интервале от 140 до 160°C, поскольку не только увеличивается кристалличность частиц оксида титана со структурой рутила при одновременном ингибировании роста частиц оксида титана со структурой рутила, но и эффекты, описанные выше, могут быть получены за короткое время.
Четвертая стадия представляет собой стадию, на которой суспензию, полученную гидротермической реакцией, фильтруют и промывают водой, чтобы удалить из суспензии водорастворимые соли, растворенные в ней. На четвертой стадии средства и процедуры для фильтрации и промывки водой также не ограничиваются особым образом, однако фильтрация и промывка водой могут быть эффективно выполнены посредством добавления подходящей щелочи к суспензии перед фильтрацией, чтобы отрегулировать pH суспензии до изоэлектрической точки оксида титана. На четвертой стадии предпочтительно, чтобы суспензия была отфильтрована и промыта водой таким образом, чтобы суспензия имела удельную электропроводность 100 мкСм/см или менее, когда суспензия репульпируется таким образом, чтобы иметь концентрацию частиц оксида титана со структурой рутила 100 г/л.
Пятая стадия представляет собой стадию, на которой затем к суспензии, полученной на четвертой стадии, добавляется кислота и результирующая смесь подвергается влажному диспергированию, чтобы получить дисперсию. А именно, на пятой стадии, к суспензии, полученной на четвертой стадии, добавляется кислота, чтобы пептизировать частицы оксида титана со структурой рутила, и одновременно, предпочтительно, выполняется влажное диспергирование, чтобы получить дисперсию частиц оксида титана со структурой рутила. Кислота, используемая для пептизации, может быть неорганической кислотой или органической кислотой. В качестве неорганической кислоты предпочтительными являются, например, азотная кислота и хлористоводородная кислота. В качестве органической кислоты предпочтительными являются, например, монокарбоновые кислоты, такие как муравьиная кислота, уксусная кислота и пропионовая кислота; многоосновные кислоты, такие как щавелевая кислота, малоновая кислота, янтарная кислота, фумаровая кислота и малеиновая кислота; и гидроксикарбоновые кислоты, такие как молочная кислота, яблочная кислота, виннокаменная кислота, лимонная кислота и глюконовая кислота.
Кислота используется обычно в количестве от 15 до 60 частей на моль, предпочтительно от 20 до 50 частей на моль, на 100 частей на моль оксида титана.
Влажное диспергирование может быть выполнено обычным образом, и, например, предпочтительно используется шаровая мельница. Шарики, имеющие твердость по Моосу выше, чем у диоксида титана, являются предпочтительными, и, например, предпочтительно применение шариков из диоксида циркония. В предпочтительном варианте осуществления суспензия и шарики из диоксида циркония, имеющие диаметр от 15 до 300 мкм и такой же объем, что и суспензия, помещают в шаровую мельницу и диспергирование выполняют в течение нескольких часов, например 4 часа, посредством чего получают дисперсию частиц оксида титана со структурой рутила.
Шестая стадия представляет собой стадию, на которой водорастворимые соли, растворенные в дисперсии, полученной на пятой стадии, удаляют из нее, чтобы сделать дисперсию стабильной. Средства и процедуры для удаления водорастворимых солей, растворенных в дисперсии, не ограничиваются особым образом. Например, могут быть применены диализ, или ультрафильтрация, или т.п. Дисперсия, полученная на пятой стадии, содержит кислоту, описанную выше, или пептизатор, и, соответственно, ее удельная электропроводность обычно выше чем 10 мСм/см. На шестой стадии, однако, удельную электропроводность дисперсии доводят до интервала от 0,1 до 5 мСм/см, предпочтительно от 1 до 3 мСм/см, за счет чего может быть получена дисперсия, обладающая высокой стабильностью частиц оксида титана со структурой рутила.
Как описано выше, в соответствии с данным изобретением, тетрахлорид титана термически гидролизуют в водном растворе таким образом, что осаждаются тонкие частицы оксида титана со структурой рутила; данные тонкие частицы подвергаются гидротермической обработке в присутствии органической кислоты таким образом, что кристалличность частиц увеличивается при одновременном ингибировании роста частиц; затем к полученной таким образом суспензии частиц оксида титана со структурой рутила добавляют кислоту таким образом, что она пептизируется, и результирующая суспензия предпочтительно подвергается влажному диспергированию, чтобы получить дисперсию частиц оксида титана со структурой рутила; и избыточную кислоту и водорастворимые соли, растворенные в дисперсии, удаляют, посредством чего может быть получена дисперсия, в которой тонкие частицы оксида титана со структурой рутила стабильно диспергированы в воде без образования конгломератов.
Полученная таким образом дисперсия частиц оксида титана со структурой рутила в соответствии с данным изобретением имеет D50 в интервале от 1 до 15 нм и D90 40 нм или менее в распределении частиц по размеру при определении методом динамического рассеяния света, и частицы оксида титана со структурой рутила имеют удельную поверхность в интервале от 120 до 180 м2/г при определении методом по БЭТ, однако поскольку дисперсия обладает высокой кристалличностью и высокой стабильностью, частицы оксида титана со структурой рутила имеют степень потери массы 5% или менее, когда они нагреваются при температуре от 105°C до 900°C.
Следовательно, когда дисперсия частиц оксида титана со структурой рутила в соответствии с данным изобретением, например, смешивается со смолой и диспергируется в ней, чтобы обеспечить композицию смолы, может быть реализована простая и однородная дисперсия оксида титана по сравнению со случаем, в котором порошок оксида титана смешивается со смолой и диспергируется в ней, и формованные изделия из полученной таким образом композиции смолы могут эффективным образом проявлять свойства частиц оксида титана со структурой рутила, такие как способность к экранированию УФ-излучения, высокий показатель преломления и фотокаталитическая активность.
При необходимости, когда дисперсионная среда, а именно вода, полученной таким образом дисперсии частиц оксида титана со структурой рутила замещается органическим растворителем при применении обычного известного метода замещения растворителя, может быть получена дисперсия, дисперсионная среда которой является органическим растворителем. Используемый органический растворитель не ограничивается особым образом, и предпочтительно такие растворители являются органическими растворителями, смешивающимися с водой. Органические растворители, смешивающиеся с водой, не ограничиваются особым образом, и их примеры включают алифатические спирты, такие как метанол, этанол и 2-пропанол; сложные эфиры алифатических карбоновых кислот, такие как этилацетат и метилформиат; алифатические кетоны, такие как ацетон, метилэтилкетон и метилизобутилкетон; многоатомные спирты, такие как этиленгликоль и глицерин; и смеси двух или более указанных веществ. Метанол, метилэтилкетон и метилизобутилкетон и их смеси являются особенно предпочтительными.
Вода в качестве дисперсионной среды дисперсии частиц оксида титана со структурой рутила может быть замещена органическим растворителем посредством добавления органического растворителя к водной дисперсии, в то время как дисперсию дистиллируют, чтобы удалить воду в качестве дисперсионной среды; посредством дистилляции водной дисперсии, чтобы удалить воду в качестве дисперсионной среды из дисперсии, и последующего добавления органического растворителя к дисперсии, чтобы разбавить ее, и повторения такого концентрирования и разбавления; или посредством обработки водной дисперсии ультрафильтрацией, чтобы удалить воду в качестве дисперсионной среды, и последующего добавления органического растворителя к дисперсии, чтобы разбавить ее, и повторения такого концентрирования и разбавления. Таким путем, вода, которая является первоначальной дисперсионной средой, может быть замещена органическим растворителем, чтобы получить дисперсию частиц оксида титана со структурой рутила, дисперсионная среда которой является органическим растворителем.
Также возможно, что воду в качестве дисперсионной среды дисперсии частиц оксида титана со структурой рутила замещают органическим растворителем, смешивающимся с водой, чтобы получить дисперсию, дисперсионная среда которой является органическим растворителем, смешивающимся с водой, при последующем замещении органического растворителя, смешивающегося с водой, еще одним органическим растворителем, чтобы получить дисперсию, дисперсионная среда которой является другим органическим растворителем.
Хотя это и зависит от используемой смолы, дисперсия частиц оксида титана со структурой рутила по данному изобретению, предпочтительно дисперсия, дисперсионная среда которой изменена на органический растворитель методом замещения растворителя, может быть соответствующим образом использована в различных композициях смолы. А именно, предпочтительно дисперсия частиц оксида титана со структурой рутила, дисперсионная среда которой является органическим растворителем, смешивается со смолой, и дисперсия равномерно диспергируется в смоле, посредством чего может быть получена композиция смолы, содержащая частицы оксида титана со структурой рутила. Количество оксида титана со структурой рутила в смоле зависит от применения и желательных свойств результирующей композиции смолы, и она обычно находится в интервале от 5 до 350 частей по массе на 100 частей по массе смолы.
Вышеуказанная смола может быть подходящим образом выбрана в зависимости от применения и желательных свойств результирующей композиции смолы, и ее конкретные примеры могут включать полиолефиновые смолы, включая гомополимеры и сополимеры олефина, такие как полиэтилен, полипропилен, сополимеры этилена и пропилена, тройные сополимеры этилена, пропилена и диенового мономера, сополимеры этилена и бутена, сополимеры сложного эфира этиленакриловой кислоты (такого как этилакрилат), сополимеры этилена и винилацетата и сополимеры этилена и метилметакрилата; гомополимеры ароматического винилового мономера, такого как стирол, и его сополимеры, такие как сополимеры акрилонитрила, бутадиена и стирола (смолы ABS); поли(мета)акриловая смола; сложные полиэфиры, такие как полиэтилентерефталат, полибутилентерефталат и полиарилат; полиамиды, такие как 6-найлон, 6,6-найлон, 12-найлон, 46-найлон и ароматические полиамиды; полиэфиры, такие как полифениленэфир, модифицированный полифениленэфир и полиоксиметилен; поликарбонат; эластомеры, такие как стирол-конъюгированные диеновые сополимеры, полибутадиен, полиизопрен, сополимеры акрилонитрила и бутадиена и полихлоропрен; поливинилхлорид и т.п. При необходимости, в качестве смолы могут быть также использованы термоотверждающиеся смолы, такие фенольные смолы, эпоксидные смолы, ненасыщенные полиэфиры и полиуретан, и кремнийорганические смолы. Эти смолы могут быть использованы в отдельности или в виде смеси двух или более их видов.
Композиция смолы, содержащая оксид титана со структурой рутила, в соответствии с данным изобретением может быть подходящим образом смешана с другими добавками, в зависимости от смолы, если это необходимо, в дополнение к оксиду титана со структурой рутила, описанному выше. Такие добавки могут включать, например, пластификатор, смазочный материал, наполнитель, антиоксидант, термостабилизатор, зародышеобразующий агент, сшивающий агент, сшивающий вспомогательный агент, антистатик, агент, улучшающий совместимость, агент, придающий светонепроницаемость, пигмент, вспенивающий агент, противогрибковый агент, связующий агент и т.п.
Композиция смолы может быть получена смешиванием дисперсии частиц оксида титана со структурой рутила, описанной выше, со смолой и перемешиванием смеси с применением подходящего оборудования, такого как смесительная и перемешивающая машина, одношнековый экструдер, двухшнековый экструдер, валковый смеситель, пластикатор, смеситель Бенбери, шаровая мельница или бисерная мельница. Полученная таким образом композиция смолы в соответствии с данным изобретением может быть предпочтительно использована для различных формованных изделий посредством соответствующего метода, такого как инжекционное формование, экструзионное формование, формование раздувом, прессование в пресс-форме, вакуумное формование, каландрование, литьевое прессование, формование ламината, формование с применением формующей головки и способ формирования пленки с использованием раствора, в зависимости от применения или назначения.
Примеры
Данное изобретение будет разъяснено со ссылками на Примеры ниже, однако изобретение никак не ограничивается этими Примерами. В последующих Примерах и Сравнительных примерах физические свойства полученных дисперсий частиц оксида титана со структурой рутила оценивались следующим образом.
(Распределение частиц дисперсии по размеру)
Распределение частиц по размеру определяли в соответствии с методом динамического рассеяния света с применением UPA-UT 151 производства Nikkiso Co., Ltd. Величина D50 представляет собой размер частиц, до которого, начиная с наименьшего размера частиц, суммарный объем частиц составляет 50 об.%, в объемном распределении частиц по размеру, и величина D90 представляет собой размер частиц, до которого, начиная с наименьшего размера частиц, суммарный объем частиц составляет 90 об.%, в объемном распределении частиц по размеру.
(Концентрация хлоридных ионов)
Концентрацию хлоридных ионов определяли с применением хлорионного электрода серии F-50 производства HORIBA, Ltd.
(Стабильность дисперсии)
После выдерживания дисперсии при комнатной температуре в течение одного месяца визуально наблюдали, были ли осаждены частицы оксида титана.
Кроме того, полученную дисперсию частиц оксида титана со структурой рутила нагревали при 105°C в течение 12 часов, чтобы удалить воду, и оценивали физические свойства полученных частиц оксида титана со структурой рутила следующим образом.
(Кристаллическая структура частиц)
Кристаллическую структуру частиц определяли с применением устройства для порошковой рентгеновской дифрактометрии (RINT-TTR 3 производства Rigaku Corporation) (излучение Cu Kα).
(Удельная поверхность частиц)
Удельную поверхность частиц определяли методом по БЭТ (методом многоточечной адсорбции азота) с применением GEMINI 2360 производства Micro Meritics Instrument Corporation, при этом в качестве предварительной обработки выполняли дегазацию при 230°C в течение 40 минут.
(Потеря массы при нагревании)
Вес определяли при 105°C и при 900°C с применением SSC5200 TG/DTA 320 производства Seiko Instruments Inc. и рассчитывали разницу в весе.
(Коэффициент пропускания и величина мутности тонкой пленки)
Коэффициент пропускания и величину мутности тонкой пленки определяли с применением нефелометра Haze meter NDH-2000 производства Nippon Denshoku Industries Co., Ltd.
Пример 1
Первая стадия
Водный раствор тетрахлорида титана разбавляли водой таким образом, чтобы он содержал тетрахлорид титана в количестве 200 г/л в расчете на оксид титана и хлоридные ионы в концентрации 8,3 моль/л. Один литр водного раствора тетрахлорида титана помещали в отдельную колбу, снабженную дефлегматором, и нагревали ее при точке кипения (110°C) в течение 2 часов, для того чтобы тетрахлорид титана гидролизовался, посредством чего получали суспензию, содержащую осажденные частицы оксида титана со структурой рутила.
Вторая стадия
Суспензию фильтровали через фильтровальную бумагу, сделанную из стеклянных волокон, имеющую диаметр отбора 300 нм, и удаляли непрореагировавший тетрахлорид титана и растворенные компоненты. Полученные таким образом частицы оксида титана со структурой рутила репульпировали в воде и к полученной суспензии добавляли водный раствор гидроксида натрия до достижения pH 7,0. Результирующую суспензию затем фильтровали через фильтровальную бумагу, сделанную из стеклянных волокон, имеющую диаметр отбора 300 нм, посредством чего суспензию отфильтровывали и промывали водой, чтобы удалить из суспензии водорастворимые соли, растворенные в ней, таким образом, что когда полученные частицы оксида титана со структурой рутила репульпировали в воде в количестве 50 г/л в расчете на оксид титана, результирующая суспензия имела удельную электропроводность 100 мкСм/см или менее.
Третья стадия
Частицы оксида титана со структурой рутила, полученные на второй стадии, репульпировали в воде таким образом, что результирующая суспензия имела содержание 50 г/л оксида титана со структурой рутила в расчете на оксид титана. К суспензии добавляли уксусную кислоту в количестве 150 частей на моль на 100 частей на моль оксида титана. Смесь подвергали гидротермической реакции при 150°C в течение 3 часов, чтобы увеличить кристалличность частиц оксида титана со структурой рутила.
Четвертая стадия
К суспензии, полученной гидротермической реакцией, описанной выше, добавляли водный раствор гидроксида натрия до тех пор, пока суспензия не достигала величины pH 5,0. Суспензию затем фильтровали через фильтровальную бумагу, сделанную из стеклянных волокон, имеющую диаметр отбора 300 нм, посредством чего суспензию отфильтровывали и промывали водой, чтобы удалить из суспензии водорастворимые соли, растворенные в ней, таким образом, что когда полученные частицы оксида титана со структурой рутила репульпировали в воде в количестве 100 г/л в расчете на оксид титана, результирующая суспензия имела удельную электропроводность 100 мкСм/см или менее.
Пятая стадия
Частицы оксида титана со структурой рутила, полученные на четвертой стадии, репульпировали в воде таким образом, что результирующая суспензия имела содержание 100 г/л оксида титана со структурой рутила в расчете на оксид титана. К суспензии затем добавляли азотную кислоту в количестве 30 частей на моль на 100 частей на моль оксида титана, чтобы пептизировать оксид титана. К полученной таким образом суспензии добавляли шарики из диоксида циркония, имеющие диаметр 100 мкм, в том же самом объеме, что и объем суспензии, и выполняли влажное диспергирование в течение 4 часов с применением планетарной шаровой мельницы, посредством чего получали водную дисперсию частиц оксида титана со структурой рутила.
Шестая стадия
Водную дисперсию частиц оксида титана со структурой рутила подвергали диализу для того, чтобы удалить избыток азотной кислоты и водорастворимые соли, растворенные в ней, до тех пока водная дисперсия не достигала удельной электропроводности 3,2 мСм/см, посредством чего получали дисперсию частиц оксида титана со структурой рутила.
Полученную таким образом дисперсию нагревали при 105°C в течение 12 часов, чтобы удалить воду, посредством чего получали частицы оксида титана со структурой рутила в виде порошка. Рентгеновская дифрактограмма полученного таким образом порошка оксида титана со структурой рутила показана на Фиг. 1. Понятно, что кристалличность частиц оксида титана со структурой рутила увеличена по сравнению с частицами оксида титана со структурой рутила Сравнительного примера 2, описанного ниже.
Пример 2
На пятой стадии Примера 1 в качестве пептизатора была использована хлористоводородная кислота вместо азотной кислоты, а во всем остальном дисперсию частиц оксида титана со структурой рутила получали таким же образом, что и в Примере 1.
Пример 3
На третьей стадии Примера 1 добавляли уксусную кислоту в количестве 90 частей на моль на 100 частей на моль оксида титана, а во всем остальном дисперсию частиц оксида титана со структурой рутила получали таким же образом, что и в Примере 1.
Пример 4
На третьей стадии Примера 1 вместо уксусной кислоты использовали 150 частей на моль цитрата натрия на 100 частей на моль оксида титана и на пятой стадии Примера 1 вместо 30 частей на моль азотной кислоты использовали 30 частей на моль лимонной кислоты, а во всем остальном дисперсию частиц оксида титана со структурой рутила получали таким же образом, что и в Примере 1.
Пример 5
На первой стадии Примера 1 водный раствор тетрахлорида титана разбавляли водой таким образом, чтобы он содержал тетрахлорид титана в количестве 90 г/л в расчете на оксид титана и хлоридные ионы в концентрации 4,5 моль/л, и водный раствор тетрахлорида титана нагревали при точке кипения (110°C), чтобы гидролизовать тетрахлорид титана, а во всем остальном дисперсию частиц оксида титана со структурой рутила получали таким же образом, что и в Примере 1.
Пример 6
(Приготовление композиции смолы, содержащей частицы оксида титана со структурой рутила, и ее оценка)
Дисперсию частиц оксида титана со структурой рутила, полученную в Примере 1, подвергали замещению растворителя посредством ультрафильтрации, чтобы получить дисперсию частиц оксида титана со структурой рутила, дисперсионная среда которой была метанолом и содержание в которой оксида титана со структурой рутила составляло 20% по массе.
4,4 части по массе 0,01 н. хлористоводородной кислоты добавляли к 12,5 частей по массе 3-глицидоксипропилтриметоксисилана (KBM-403 производства Shin-Etsu Chemical Co., Ltd.) и результирующую смесь перемешивали в течение 24 часов. 62,5 части по массе вышеуказанной дисперсии частиц оксида титана со структурой рутила, 15 частей по массе монометилэфира пропиленгликоля, 56 частей по массе метанола и небольшое количество отвердителя (ацетилацетоната алюминия) добавляли к смеси и перемешивали, посредством чего получали покровный материал для твердого покрытия.
Покровный материал наносили центрифугированием на предметное стекло при скорости вращения 500 об/мин в течение 3 секунд, сушили при 25°C в течение 30 минут, при 80°C в течение 15 минут и затем при 150°C в течение 60 минут, посредством чего формировали покровную пленку толщиной 2 мкм. Коэффициент пропускания света и величина мутности покровной пленки были найдены составляющими 89% и 0,1, соответственно.
Сравнительный пример 1
Шестую стадию в Примере 1 не выполняли, а во всем остальном получали дисперсию частиц оксида титана со структурой рутила таким же образом, что и в Примере 1.
Сравнительный пример 2
Третью стадию и четвертую стадию в Примере 1 не выполняли, а во всем остальном получали дисперсию частиц оксида титана со структурой рутила таким же образом, что и в Примере 1.
Сравнительный пример 3
50 частей на моль уксусной кислоты добавляли на 100 частей на моль оксида титана, а во всем остальном получали дисперсию частиц оксида титана со структурой рутила таким же образом, что и в Примере 1.
Сравнительный пример 4
Гидротермическую реакцию выполняли при температуре 200°C в Примере 1, а во всем остальном получали дисперсию частиц оксида титана со структурой рутила таким же образом, что и в Примере 1.
Сравнительный пример 5
Коммерчески доступные тонкие частицы оксида титана со структурой рутила (STR-100N производства Sakai Chemical Industry Co., Ltd.) репульпировали в воде в количестве 100 г/л в расчете на оксид титана. К результирующей суспензии добавляли азотную кислоту в количестве 30 частей на моль на 100 частей на моль оксида титана, чтобы пептизировать частицы оксида титана. К полученной суспензии добавляли шарики из диоксида циркония, имеющие диаметр 100 мкм, в том же самом объеме, что и объем суспензии, и выполняли влажное диспергирование в течение 4 часов с применением планетарной шаровой мельницы, посредством чего получали водную дисперсию частиц оксида титана со структурой рутила.
Удельная электропроводность, стабильность дисперсии и величины D50 и D90 частиц оксида титана со структурой рутила в дисперсии частиц оксида титана со структурой рутила, полученной в каждом из Примеров и Сравнительных примеров, описанных выше, представлены в Таблице 1 и Таблице 2 вместе с условиями получения. Кроме того, в Таблице 2 представлены потеря массы при нагревании и удельная поверхность частиц оксида титана со структурой рутила, полученных из дисперсии частиц оксида титана со структурой рутила, полученной в каждом из Примеров и Сравнительных примеров, описанных выше.
ТАБЛИЦА 1
Получение дисперсии
Концентрация хлоридных ионов во время гидролиза на первой стадии (моль/л) Органическая кислота1) Количество добавленной органической кислоты (частей на моль) Пептизирующая кислота1) Количество добавленной петизирующей кислоты (частей на моль) Температура гидротермической реакции (°C)
Пример 1 8,3 Уксусная кислота 150 Азотная кислота 30 150
Пример 2 8,3 Уксусная кислота 150 Хлористоводородная кислота 30 150
Пример 3 8,3 Уксусная кислота 90 Азотная кислота 30 150
Пример 4 8,3 Цитрат натрия 150 Лимонная кислота 30 150
Пример 5 4,5 Уксусная кислота 150 Азотная кислота 30 150
Сравнительный пример 1 8,3 Уксусная кислота 150 Азотная кислота 30 150
Сравнительный пример 2 8,3 Нет - Азотная кислота 30 -
Сравнительный пример 3 8,3 Уксусная кислота 50 Азотная кислота 30 150
Сравнительный пример 4 8,3 Уксусная кислота 150 Азотная кислота 30 200
Сравнительный пример 5 - Нет - Азотная кислота 30 -
(Примечания) 1) Количество органической кислоты и пептизирующей кислоты указано для каждой в частях на моль на 100 частей на моль оксида титана (TiO2)
ТАБЛИЦА 2
Свойства дисперсии Свойства частиц дисперсии
D50 (нм) D90 (нм) Удельная электропроводность (мСм/см) Стабильность дисперсии2) Потеря массы при нагревании (%) Удельная поверхность (м2/г)
Пример 1 5 11 3,2 Хорошая 4 140
Пример 2 6 13 4,0 Хорошая 4 140
Пример 3 6 12 2,9 Хорошая 4 142
Пример 4 8,5 22 3,2 Хорошая 4 140
Пример 5 6 12 3,2 Хорошая 4 126
Сравнительный пример 1 24 47 >100 Плохая 4 140
Сравнительный пример 2 7 19 3,2 Хорошая 10 145
Сравнительный пример 3 12 42 3,3 Хорошая 4 130
Сравнительный пример 4 15 45 3,1 Хорошая 3 120
Сравнительный пример 5 >100 >2000 >100 Плохая - 100
(Примечания) 2) Стабильность дисперсии оценивалась как «Хорошая», когда не наблюдалась преципитация частиц, и «Плохая», когда наблюдалась преципитация частиц.
Как видно из результатов, представленных в Таблице 1 и Таблице 2, дисперсии частиц оксида титана со структурой рутила, полученных в соответствии с данным изобретением, имели величину D50 в интервале 1 до 15 нм, предпочтительно от 5 до 10 нм, и величину D90 40 нм или менее, предпочтительно 25 нм или менее, в распределении частиц по размеру; удельную поверхность частиц оксида титана со структурой рутила в интервале от 120 до 180 м2/г; и степень потери массы 5% или менее, когда частицы оксида титана со структурой рутила нагревали от 105°C до 900°C.
Дисперсии частиц оксида титана со структурой рутила, полученные в соответствии с данным изобретением, имели частицы с высокой кристалличностью и превосходной стабильностью.

Claims (9)

1. Дисперсия частиц оксида титана со структурой рутила, в которой частицы оксида титана со структурой рутила имеют D50 в интервале от 1 до 15 нм и D90 40 нм или менее в распределении частиц по размеру при его определении методом динамического рассеяния света; удельную поверхность в интервале от 120 до 180 м2/г при определении методом по БЭТ; и степень потери массы 5% или менее при ее определении нагреванием частиц оксида титана со структурой рутила от 105°C до 900°C.
2. Способ получения дисперсии частиц оксида титана со структурой рутила по п. 1, который включает:
первую стадию, на которой после доведения концентрации хлоридных ионов водного раствора тетрахлорида титана до 4,4 моль/л или более раствор нагревают при температуре в интервале от 86°C до точки кипения, чтобы гидролизовать тетрахлорид титана, с получением тем самым суспензии, содержащей осажденные частицы оксида титана со структурой рутила;
вторую стадию, на которой суспензию, полученную на первой стадии, фильтруют и промывают водой, чтобы удалить из суспензии растворенные в ней водорастворимые соли;
третью стадию, на которой суспензию, полученную на второй стадии, подвергают гидротермической реакции в присутствии органической кислоты;
четвертую стадию, на которой суспензию, полученную на третьей стадии, фильтруют и промывают водой, чтобы удалить из суспензии растворенные в ней водорастворимые соли;
пятую стадию, на которой к суспензии, полученной на четвертой стадии, добавляют кислоту и полученную смесь подвергают влажному диспергированию, посредством чего получают дисперсию; и
шестую стадию, на которой избыточную кислоту и водорастворимые соли удаляются из дисперсии, полученной на пятой стадии.
3. Способ получения дисперсии частиц оксида титана со структурой рутила по п. 2, в котором суспензию подвергают гидротермической реакции в присутствии органической кислоты в количестве 75 мольных частей или более на 100 мольных частей оксида титана на третьей стадии.
4. Способ получения дисперсии частиц оксида титана со структурой рутила по п. 2, в котором избыточную кислоту удаляют из дисперсии таким образом, что дисперсия имеет удельную электропроводность в интервале от 1 до 5 мСм/см, на шестой стадии.
5. Способ получения дисперсии частиц оксида титана со структурой рутила по п. 2, в котором дисперсионную среду дисперсии, полученной на шестой стадии, замещают органическим растворителем.
6. Способ получения дисперсии частиц оксида титана со структурой рутила по п. 2, в котором гидротермическую реакцию проводят при температуре в интервале 120-180°C на третьей стадии.
7. Способ получения дисперсии частиц оксида титана со структурой рутила по п. 2, в котором концентрацию хлоридных ионов в водном растворе тетрахлорида титана доводят до 7,0 моль/л или более на первой стадии.
8. Дисперсия частиц оксида титана со структурой рутила, полученная способом по любому из пп. 2-7.
9. Композиция смолы, содержащая дисперсию частиц оксида титана со структурой рутила по п. 1.
RU2011138151/05A 2009-02-19 2010-02-15 Дисперсия частиц оксида титана со структурой рутила, способ ее получения и ее применение RU2513423C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009036491 2009-02-19
JP2009-036491 2009-02-19
PCT/JP2010/052573 WO2010095726A1 (ja) 2009-02-19 2010-02-15 ルチル型酸化チタン粒子の分散体とその製造方法とその利用

Publications (2)

Publication Number Publication Date
RU2011138151A RU2011138151A (ru) 2013-03-27
RU2513423C2 true RU2513423C2 (ru) 2014-04-20

Family

ID=42634003

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2011138151/05A RU2513423C2 (ru) 2009-02-19 2010-02-15 Дисперсия частиц оксида титана со структурой рутила, способ ее получения и ее применение

Country Status (11)

Country Link
US (1) US9234113B2 (ru)
EP (1) EP2399868B1 (ru)
JP (1) JP4941614B2 (ru)
KR (1) KR101604159B1 (ru)
CN (2) CN104961156B (ru)
AU (1) AU2010216659B2 (ru)
CA (1) CA2752850C (ru)
RU (1) RU2513423C2 (ru)
SG (1) SG173715A1 (ru)
TW (1) TWI487668B (ru)
WO (1) WO2010095726A1 (ru)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012017238A (ja) * 2010-06-11 2012-01-26 Sumitomo Chemical Co Ltd 酸化物粒子分散液の製造方法、酸化物粒子分散液、および光触媒機能製品
EP2607318B1 (en) * 2010-08-17 2017-12-06 Sakai Chemical Industry Co., Ltd. Method for producing dispersion of rutile-type titanium oxide particles
EP2641939A1 (de) * 2012-03-21 2013-09-25 Basf Se Hellgefärbte flammgeschützte Polyamide
JP6243649B2 (ja) * 2013-07-30 2017-12-06 昭和電工株式会社 酸化チタン粒子及びその製造方法
CN104048895B (zh) * 2013-11-18 2016-02-17 攀钢集团攀枝花钢铁研究院有限公司 一种二氧化钛表面羟基含量的测定方法
CN111498897B (zh) * 2015-02-27 2022-07-12 堺化学工业株式会社 氧化钛颗粒的分散液的制造方法
CN107250047B (zh) * 2015-02-27 2020-01-24 堺化学工业株式会社 氧化钛颗粒的有机溶剂分散体的制造方法
KR102561087B1 (ko) 2015-03-18 2023-07-27 피너지 엘티디. 금속 산화물 입자 및 이의 제조 방법
EP4324577A1 (en) 2015-12-16 2024-02-21 6K Inc. Method of producing spheroidal dehydrogenated titanium alloy particles
CN107828248B (zh) * 2017-11-10 2020-02-14 广西顺风钛业有限公司 一种塑料色母粒用钛白粉
CN109911932A (zh) * 2017-12-13 2019-06-21 广西金茂钛业有限公司 塑料色母粒专用钛白粉
CN108855227A (zh) * 2018-04-29 2018-11-23 广州长裕化工科技有限公司 一种光触媒空气净化剂及其制备方法与应用
US20220135422A1 (en) * 2019-02-19 2022-05-05 Showa Denko K.K. Titanium oxide production method
KR20220006079A (ko) * 2019-04-29 2022-01-14 글로벌 어드밴스드 메탈스 유에스에이, 아이엔씨. Ti-Zr 합금 분말 및 이를 함유하는 애노드
JP2023512391A (ja) 2019-11-18 2023-03-27 シックスケー インコーポレイテッド 球形粉体用の特異な供給原料及び製造方法
RU2741022C1 (ru) * 2019-12-13 2021-01-22 Акционерное общество "Объединенная компания РУСАЛ Уральский Алюминий" (АО "РУСАЛ Урал") Порошковый алюминиевый материал
US11590568B2 (en) * 2019-12-19 2023-02-28 6K Inc. Process for producing spheroidized powder from feedstock materials
EP4173060A1 (en) 2020-06-25 2023-05-03 6K Inc. Microcomposite alloy structure
AU2021349358A1 (en) 2020-09-24 2023-02-09 6K Inc. Systems, devices, and methods for starting plasma
US11919071B2 (en) 2020-10-30 2024-03-05 6K Inc. Systems and methods for synthesis of spheroidized metal powders

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3524342B2 (ja) * 1996-08-30 2004-05-10 昭和電工株式会社 薄膜形成用二酸化チタンゾル及び薄膜
RU2281913C2 (ru) * 2004-10-14 2006-08-20 Ольга Николаевна Вахменина Способ получения диоксида титана
JP2006335619A (ja) * 2005-06-03 2006-12-14 Showa Denko Kk 酸化チタン粒子、その製造方法及び応用
JP2008506627A (ja) * 2004-07-19 2008-03-06 ユニベルシテ ピエール エ マリー キュリー ルチル構造を有する酸化チタン

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3591871B2 (ja) 1993-12-27 2004-11-24 触媒化成工業株式会社 チタニアゾルおよびその製造方法
CN1328962A (zh) * 2000-06-15 2002-01-02 泰兴纳米材料厂 一种制备纳米二氧化钛微粉的方法
CN1274770C (zh) * 2002-02-26 2006-09-13 舟山明日纳米材料有限公司 纳米金红石型氧化钛浆料及其制备方法
CN1172856C (zh) * 2002-03-01 2004-10-27 北京化大天瑞纳米材料技术有限公司 生产金红石型纳米二氧化钛的方法
CN1283555C (zh) * 2003-12-03 2006-11-08 苏州大学 一种金红石相纳米二氧化钛的制备方法
DE102004055165A1 (de) * 2003-12-03 2005-06-30 Degussa Ag Flammenhydrolytisch hergestelltes Titandioxidpulver
JP4445972B2 (ja) * 2003-12-03 2010-04-07 エボニック デグサ ゲーエムベーハー 火炎加水分解により製造される二酸化チタン粉末
JP4780635B2 (ja) * 2004-06-16 2011-09-28 東邦チタニウム株式会社 酸化チタン分散体の製造方法
KR100809758B1 (ko) * 2004-06-29 2008-03-04 미쓰이 가가쿠 가부시키가이샤 주석 변성 루틸형 산화티탄 미립자
CN100392023C (zh) * 2005-09-01 2008-06-04 江苏大学 纳米金红石二氧化钛沉积法制备云母钛纳米复合材料
AU2006298378B2 (en) * 2005-09-30 2010-07-22 Sakai Chemical Industry Co., Ltd. Process for producing fine particle of rutile-form titanium oxide
CN101613124B (zh) * 2008-06-26 2011-11-16 比亚迪股份有限公司 一种金红石型二氧化钛的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3524342B2 (ja) * 1996-08-30 2004-05-10 昭和電工株式会社 薄膜形成用二酸化チタンゾル及び薄膜
JP2008506627A (ja) * 2004-07-19 2008-03-06 ユニベルシテ ピエール エ マリー キュリー ルチル構造を有する酸化チタン
RU2281913C2 (ru) * 2004-10-14 2006-08-20 Ольга Николаевна Вахменина Способ получения диоксида титана
JP2006335619A (ja) * 2005-06-03 2006-12-14 Showa Denko Kk 酸化チタン粒子、その製造方法及び応用

Also Published As

Publication number Publication date
KR101604159B1 (ko) 2016-03-16
KR20110122132A (ko) 2011-11-09
CN102325726B (zh) 2015-09-02
JPWO2010095726A1 (ja) 2012-08-30
US9234113B2 (en) 2016-01-12
RU2011138151A (ru) 2013-03-27
EP2399868B1 (en) 2017-10-18
JP4941614B2 (ja) 2012-05-30
CN102325726A (zh) 2012-01-18
CN104961156A (zh) 2015-10-07
CA2752850C (en) 2016-12-13
AU2010216659A1 (en) 2011-10-13
CN104961156B (zh) 2017-04-12
WO2010095726A1 (ja) 2010-08-26
AU2010216659B2 (en) 2013-01-10
EP2399868A1 (en) 2011-12-28
CA2752850A1 (en) 2010-08-26
TW201033128A (en) 2010-09-16
EP2399868A4 (en) 2013-01-23
SG173715A1 (en) 2011-09-29
TWI487668B (zh) 2015-06-11
US20110301270A1 (en) 2011-12-08

Similar Documents

Publication Publication Date Title
RU2513423C2 (ru) Дисперсия частиц оксида титана со структурой рутила, способ ее получения и ее применение
RU2569083C2 (ru) Способ получения дисперсной системы частиц оксида титана рутила
RU2509728C2 (ru) Дисперсия оксида циркония, способ ее получения и содержащая ее смоляная композиция
KR102466600B1 (ko) 산화티탄 입자의 유기 용매 분산체와 그 제조 방법
CN107250047B (zh) 氧化钛颗粒的有机溶剂分散体的制造方法
JP2003095657A (ja) 有機溶媒分散型酸化チタンゾル及びその製造方法
CN111498897B (zh) 氧化钛颗粒的分散液的制造方法

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20210216