RU2509719C1 - Способ и устройство для получения водорода из воды (варианты) - Google Patents

Способ и устройство для получения водорода из воды (варианты) Download PDF

Info

Publication number
RU2509719C1
RU2509719C1 RU2012140364/05A RU2012140364A RU2509719C1 RU 2509719 C1 RU2509719 C1 RU 2509719C1 RU 2012140364/05 A RU2012140364/05 A RU 2012140364/05A RU 2012140364 A RU2012140364 A RU 2012140364A RU 2509719 C1 RU2509719 C1 RU 2509719C1
Authority
RU
Russia
Prior art keywords
reactor
iron
water
frequency
thin
Prior art date
Application number
RU2012140364/05A
Other languages
English (en)
Inventor
Дмитрий Семенович Стребков
Всеволод Владимирович Староверов
Original Assignee
Государственное научное учреждение Всероссийский научно-исследовательский институт электрификации сельского хозяйства Российской академии сельскохозяйственных наук (ГНУ ВИЭСХ Россельхозакадемии)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Государственное научное учреждение Всероссийский научно-исследовательский институт электрификации сельского хозяйства Российской академии сельскохозяйственных наук (ГНУ ВИЭСХ Россельхозакадемии) filed Critical Государственное научное учреждение Всероссийский научно-исследовательский институт электрификации сельского хозяйства Российской академии сельскохозяйственных наук (ГНУ ВИЭСХ Россельхозакадемии)
Priority to RU2012140364/05A priority Critical patent/RU2509719C1/ru
Application granted granted Critical
Publication of RU2509719C1 publication Critical patent/RU2509719C1/ru

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

Изобретение относится к области химии. Согласно первому варианту для получения водорода железные стержни изолируют от стенок реактора 1 и подают на них высоковольтный потенциал от трансформатора Тесла 14. Реактор 1 заземляют и заполняют водой до образования разряда между железными электродами и поверхностью воды. Согласно второму варианту плоский горизонтальный охлаждаемый электрод 18 изолируют от стенок реактора 1 и подают на него высоковольтный потенциал от трансформатора Тесла 14. Реактор заземляют, внутри реактора устанавливают вертикально тонкостенные трубы 23 из железа с устройством 24 перемещения, уменьшают расстояние между тонкостенными трубками и плоским электродом 18 до образования разряда. Через тонкостенные трубки подают водяной пар. Изобретение позволяет повысить чистоту водорода, снизить затраты энергии. 4 н. и 2 з.п. ф-лы, 2 ил., 2 пр.

Description

Изобретение относится к области химической технологии, а более конкретно к способам и устройствам для получения водорода путем экзотермической реакции водяного пара с металлами.
Известен способ и устройство получения водорода электролизом воды, где электролитом служит водный раствор КОН (350-400 г/л), давление в элекролизерах от атмосферного до 4 МПа (Химическая энциклопедия в 5 томах под редакцией Н.П.Кнунянца. - М.: Сов. энциклопедия, 1988 г., т.1, с.401).
Производительность электролизеров в известном способе составляет 4-500 м3/ч, а расход электроэнергии для получения 1 м3 водорода равен 4,0-5,6 кВт/ч.
Недостатком известного способа является большой расход электроэнергии.
Известен способ получения водорода методом конверсии, которым в настоящее время получают более половины промышленного водорода (Путилова И.Н. Курс общей химии. Высшая школа, 1964, с.208). Этот способ включает получение водяного газа (смеси СО и Н2) из кокса и водяного пара при температуре 1000°С (С+H2O=СО-Н2).
Чистый водород получают, используя реакцию СО и H2O в присутствии катализатора Fe2O3 (СО+H2O=CO22). Образующуюся смесь Н2, CO2 и СО растворяют в воде под давлением.
Данный способ, несмотря на относительную дешевизну, многостадиен, экологически ущербен и сложен в управлении.
Известен способ и устройство получения водорода при химической реакции воды (H2O) и алюминия (А1), в результате которой получается водород (Н2) как топливо и гидроокись алюминия (A1OH) как сырье, пригодное для дальнейшей переработки и использовании в промышленных целях: А1+3Н2О=А1(OH)3+1,5H2.
В обычных условиях эта реакция не протекает из-за наличия на поверхности алюминия очень тонкой, но большой плотности оксидной пленки, образующейся почти мгновенно по реакции:
2А1+1,5O2=A12O3.
В известном способе и устройстве используют сплав алюминия и едкого натра, благодаря которому оксидная пленка вокруг алюминия растворяется, и к поверхности алюминия открыт доступ для воды (патенты РФ МПК С01В 3/08, №2407701, опубл. 27.12.2010, №2410325, опубл. 27.01.2011). В качестве растворителя в данном сплаве используется щелочь, а именно едкий натр (NaOH):
2А1+2NaOH+10Н2О=2Na[Al(OH)4(H2O)2]+3Н2.
Недостатком известного способа и устройства является использование химически вредного вещества - щелочи для получения водорода.
Известен способ получения водорода, заключающийся в подаче в реактор металлосодержащих веществ и водной среды и последующем осуществлении взаимодействия металлосодержащих веществ с водной средой, в котором перед подачей в реактор металлосодержащих веществ осуществляют покрытие последних водорастворимой полимерной пленкой, а при осуществлении взаимодействия с водной средой в качестве последней используют водную среду, параметры которой соответствуют параметрам ее сверхкритического состояния для обеспечения возможности создания процесса послойного горения металлосодержащих веществ с выделением водорода. В качестве металлосодержащих веществ используют порошкообразный алюминий, а в качестве водорастворимой полимерной пленки - раствор полиэтиленоксида в диоксане или метиловом спирте, а давление сверхкритического состояния водной среды составляет более 22,12 МПа, температура - более 647,3°К (Мазалов Ю.А. Способ получения водорода. Патент РФ №2165888, опубл. 20.04.2001).
Недостатком известного способа является необходимость использования ультрадисперсного порошка алюминия с размером частиц 0,2 мкм, а также высокое давление и большая температура в реакторе, что увеличивает затраты энергии и создает проблемы безопасности при осуществлении процесса.
Наиболее близким по технической сущности и числу общих признаков является способ, принятый в качестве прототипа и заключающийся в реакционном взаимодействии водяного пара с раскаленным железом (Путилова И.Н. и др. Курс общей химии. Изд. «Высшая школа», 1964 г., с.209).
Реакция выглядит следующим образом:
4H2O+3Fe=Fe3O4+4H2.
Недостатком известного способа является ограниченность его использования в промышленности из-за больших затрат энергии и сложности технологического процесса.
Задачей, на решение которой направлен предлагаемый способ и устройство, является безопасное, экологически чистое получение водорода путем одностадийной реакции с возможностью регенерации исходного сырья.
Технический результат от использования заключается в реализации прямого окисления металлосодержащего вещества без предварительного его нагревания, требующего энергозатрат и использования растворов щелочи в воде.
Вышеуказанный технический результат достигается за счет того, что в способе получения водорода путем реакционного взаимодействия в реакторе водяного пара с раскаленным железом железные стержни изолируют от стенок реактора и подают на них высоковольтный потенциал от трансформатора Тесла с напряжением 1-500 кВ при частоте 1-500 кГц, реактор заземляют и заполняют водой до образования холодноплазменного высокочастотного разряда между железными электродами и поверхностью воды и осуществляют реакцию: 3Fe+4H2O=Fe3O4+4H2 в зоне холодноплазменного разряда.
В варианте способа получения водорода в качестве железных стержней используют множество игольчатых электродов из железа диаметром 1-10 мм, установленных на общем проводящем электроизолированном от стенок реактора основании.
В способе получения водорода путем реакционного взаимодействия в реакторе водяного пара с раскаленным железом плоский горизонтальный охлаждаемый электрод изолируют от стенок реактора и подают на электрод высоковольтный потенциал от трансформатора Тесла с напряжением 1-500 кВ при частоте 1-500 кГц, реактор заземляют, внутри реактора устанавливают вертикальные тонкостенные трубы из железа с устройством перемещения, уменьшают расстояние между тонкостенными трубками и плоским электродом до образования холодноплазменного высокочастотного разряда, подают через тонкостенные трубки водяной пар и осуществляют реакцию: 3Fe+4H2O=Fe3O4+4H2 в зоне холодноплазменного разряда.
В устройстве получения водорода из воды путем реакционного взаимодействия водяного пара с раскаленным железом, содержащем реактор с патрубками для подвода воды и отвода продуктов реакции и куски железа с устройством нагрева, куски железа выполнены в виде стержней, которые изолированы от стенок заземленного реактора, соединены с высоковольтным выводом высокочастотного резонансного трансформатора Тесла с напряжением 1-100 кВ и частотой 1-100 кГц и установлены вертикально над поверхностью воды на регулируемом расстоянии от воды 10-500 мм, для инициирования холодноплазменного разряда между стержнями и поверхностью воды.
В варианте устройства получения водорода железные стержни выполнены в виде игольчатых электродов диаметром 1-10 мм, установленных на общем проводящем электроизолированном от стенок реактора основании.
В устройстве получения водорода из воды путем реакционного взаимодействия водяного пара с раскаленным железом, содержащем реактор с патрубками для подвода воды и отвода продуктов реакции и куски железа с устройством нагрева, в верхней части реактора установлен плоский горизонтальный охлаждаемый электрод, который изолирован от стенок реактора и соединен с высоковольтным выводом резонансного высокочастотного трансформатора Тесла с напряжением 1-100 кВ и частотой 1-100 кГц, реактор снабжен устройством заземления и содержит вертикально установленные, тонкостенные трубы диаметром 5-50 мм, которые удалены на расстояние 10-500 мм от плоского электрода, тонкостенные трубки соединены с парогенератором для подачи водяного пара и снабжены устройством перемещения вдоль оси реактора.
Способ и устройство для получения водорода из воды иллюстрируется фиг.1, фиг.2.
На фиг.1 представлена блок-схема способа и устройства для получения водорода нагревом в парах воды с помощью холодноплазменного разряда игольчатых электродов из железа, на фиг.2 - блок-схема способа и устройства для получения водорода с нагревом тонкостенных труб из железа в парах воды с помощью холодноплазменного разряда.
На фиг.1 устройство для получения водорода выполнено в виде реактора 1, который имеет корпус 2 с устройством заземления 3, проходным изолятором 4 с электрическим выводом 5, который внутри реактора 1 соединен с плоским электродом 6, на котором закреплены вертикально множество игольчатых электродов 7 из железа диаметром 1-10 мм. Плоский электрод 6 установлен горизонтально в верхней части реактора 1 на изоляторах 8. Реактор 1 содержит патрубок 9 для подачи воды 10, патрубок 11 для выхода водорода и патрубок 12 для удаления продуктов реакции водного окисления, содержащих окислы железа. Электрический ввод 5 соединен с высоковольтным выводом 13 трансформатора Тесла 14. Низковольтная обмотка 15 трансформатора Тесла 14 вместе с емкостью 16 образует последовательный резонансный контур, который соединен с высокочастотным источником питания 17.
На фиг.2 реактор 1 имеет плоский охлаждаемый электрод 18 в верхней части реактора, закрепленный горизонтально на изоляторах 19 на крышке 20 реактора 1. Охлаждение плоского электрода 18 производится через патрубки для входа 21 и выхода 22 охлаждающей жидкости. В нижней части реактора установлены вертикально тонкостенные трубы 23 из железа диаметром 5-50 мм с устройством перемещения 24 вдоль вертикальной оси реактора 1.
На фиг.2 показаны две тонкостенные трубы 23, которые перемещают в цилиндрических уплотняющих устройствах 25, установленных на нижнем фланце 26 реактора 1. Трубы 23 соединены с водяным парогенератором 27 с помощью трубопровода 28 для подачи пара в реактор 1, толщина труб составляет 1-10 мм. Расстояние между трубами 23 и плоским электродом 18 регулируется и составляет Н=5-50 мм.
Способ и устройство для получения водорода из воды реализуется следующим образом. Реактор на фиг.1 заполняют водой 10 через патрубок 9 таким образом, чтобы расстояние между концами игольчатых электродов 7 и поверхностью воды 10 составляло h1=5-50 мм и при работе устройства поддерживалось на заданном уровне. При подаче потенциала на Фиг.1 от высоковольтного вывода 13 трансформатора Тесла 14 на игольчатые электроды 7 между электродами и поверхностью воды 10 возникает зона холодноплазменного разряда, при этом концы игольчатых электродов 7 нагревают до температуры 600-700°С и происходит интенсивное выделение пара из воды 10. Происходит реакция водного окисления железных игольчатых электродов 7 с выделением водорода: 4Н2О+3Fe=F3O4+4Н2. Из 1 кг железа получается 1,07 м3 водорода. (1).
Скорость реакции окисления игольчатых электродов 7 в воде и выделения водорода регулируется изменением потенциала высоковольтного вывода 13 трансформатора Тесла 14 и изменением расстояния h1 между поверхностью воды 10 и концами игольчатых электродов 7.
Кроме реакции водного окисления железа происходит электролиз воды, что увеличивает выход водорода из реактора 1.
Устройство на фиг.2 работает следующим образом. При подаче высокого напряжения на плоский электрод 18 между электродом 18 и тонкостенными трубами 23 возникает холодноплазменный разряд и стенки труб 21 нагревают до температуры 600-700°С. Водяной пар из парогенератора 27 по трубопроводу 28 поступает через тонкостенные трубы 23 в зону холодноплазменного разряда, где происходит реакция (1) водного окисления железа с выделением водорода. Одновременно происходит плазменный электролиз паров воды с образованием дополнительного количества водорода.
Устройство перемещения 24 поддерживает зазор между трубами 23 и электродом 18.
Примеры осуществления способа и устройства получения водорода из воды
Пример 1. Реактор 1 (фиг.1) выполнен в виде цилиндрической емкости из нержавеющей стали диаметром 300 мм и высотой 500 мм с толщиной стенок 0,6 мм. Внутри корпуса реактора 1 на изоляторах 8 установлен плоский электрод с шестью игольчатыми электродами из железа диаметром 5 мм. Расстояние от поверхности воды 10 до h1=40 мм, напряжение на высоковольтном выводе 13 трансформатора Тесла 14 составляет 40 кВ, частота 20 кГц, температура на концах игольчатых электродов 7 700°С, выход водорода 2 м3/ч.
Пример 2. Реактор 1 (фиг.2) имеет диаметр 400 мм, высоту 800 мм. В нижней части реактора вертикально установлено 10 труб 23 диаметром 15 мм с толщиной стенок 2 мм. Расстояние между концами труб 23 и плоским электродом 18h2=25 мм. Напряжение на электроде 18 30 кВ, частота 25 кГц. Температура на выходе стенок труб 23 составляет 700°С, выход водорода 4 м3/ч.
Образующиеся в результате реакции (1) оксиды железа могут быть легко восстановлены до железа при взаимодействии с синтез-газом.
Использование предложенного способа позволит снизить энергозатраты при производстве водорода, повысить управляемость и небезопасность процесса, а также осуществлять регенерацию исходного сырья. Изобретение может быть использовано в промышленности для получения водорода и на транспорте. При добавке водорода в количестве 5% к топливу количество вредных примесей в выхлопе двигателя внутреннего сгорания снижается в 10 раз, повышается КПД двигателя и снижается расход топлива на 8-10%. Использование водорода как 100% топлива в двигателе Стерлинга, газотурбинном двигателе или в топливных элементах позволяет исключить вредные выбросы.

Claims (6)

1. Способ получения водорода путем реакционного взаимодействия в реакторе водяного пара с раскаленным железом, отличающийся тем, что железные стержни изолируют от стенок реактора и подают на них высоковольтный потенциал от трансформатора Тесла с напряжением 1-500 кВ при частоте 1-500 кГц, реактор заземляют и заполняют водой до образования холодноплазменного высокочастотного разряда между железными электродами и поверхностью воды и осуществляют реакцию: 3Fe+4H2O=Fе3O4+4Н2 в зоне холодноплазменного разряда.
2. Способ получения водорода по п.1, отличающийся тем, что в качестве железных стержней используют игольчатые электроды из железа диаметром 1-10 мм, установленные на общем проводящем электроизолированном от стенок реактора основании.
3. Способ получения водорода путем реакционного взаимодействия в реакторе водяного пара с раскаленным железом, отличающийся тем, что плоский горизонтальный охлаждаемый электрод изолируют от стенок реактора и подают на электрод высоковольтный потенциал от трансформатора Тесла с напряжением 1-500 кВ при частоте 1-500 кГц, реактор заземляют, внутри реактора устанавливают вертикально тонкостенные трубы из железа с устройством перемещения, уменьшают расстояние между тонкостенными трубками и плоским электродом до образования холодноплазменного высокочастотного разряда, подают через тонкостенные трубки водяной пар и осуществляют реакцию: 3Fe+4H2O=Fe3O4+4H2 в зоне холодноплазменного разряда.
4. Устройство получения водорода из воды путем реакционного взаимодействия водяного пара с раскаленным железом, содержащее реактор с патрубками для подвода воды и отвода продуктов реакции и куски железа с устройством нагрева, отличающееся тем, что куски железа выполнены в виде стержней, которые изолированы от стенок заземленного реактора, соединены с высоковольтным выводом высокочастотного резонансного трансформатора Тесла с напряжением 1-100 кВ и частотой 1-100 кГц и установлены вертикально над поверхностью воды на регулируемом расстоянии от воды 10-500 мм, для инициирования холодноплазменного разряда между стержнями и поверхностью воды.
5. Устройство получения водорода по п.4, отличающееся тем, что железные стержни выполнены в виде игольчатых электродов диаметром 1-10 мм, установленных на общем проводящем электроизолированном от стенок реактора основании.
6. Устройство получения водорода из воды путем реакционного взаимодействия водяного пара с раскаленным железом, содержащее реактор с патрубками для подвода воды и отвода продуктов реакции и куски железа с устройством нагрева, отличающееся тем, что в верхней части реактора установлен плоский горизонтальный охлаждаемый электрод, который изолирован от стенок реактора и соединен с высоковольтным выводом резонансного высокочастотного трансформатора Тесла с напряжением 1-100 кВ и частотой 1-100 кГц, реактор снабжен устройством заземления и содержит вертикально установленные тонкостенные трубы диаметром 5-50 мм, которые удалены на расстояние 10-500 мм от плоского электрода, тонкостенные трубки соединены с парогенератором для подачи водяного пара и содержат устройство перемещения вдоль оси реактора.
RU2012140364/05A 2012-09-21 2012-09-21 Способ и устройство для получения водорода из воды (варианты) RU2509719C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2012140364/05A RU2509719C1 (ru) 2012-09-21 2012-09-21 Способ и устройство для получения водорода из воды (варианты)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2012140364/05A RU2509719C1 (ru) 2012-09-21 2012-09-21 Способ и устройство для получения водорода из воды (варианты)

Publications (1)

Publication Number Publication Date
RU2509719C1 true RU2509719C1 (ru) 2014-03-20

Family

ID=50279643

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012140364/05A RU2509719C1 (ru) 2012-09-21 2012-09-21 Способ и устройство для получения водорода из воды (варианты)

Country Status (1)

Country Link
RU (1) RU2509719C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2797611C2 (ru) * 2018-06-08 2023-06-07 Френд Ко., Лтд. Способ получения водородсодержащей газовой смеси
WO2024085779A1 (en) * 2022-10-17 2024-04-25 Timuca Sebastian Vlad Burner for producing thermal energy

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU15629A1 (ru) * 1927-04-26 1930-06-30 А.А. Бари Способ получени водорода
US3442620A (en) * 1968-04-18 1969-05-06 Consolidation Coal Co Production of hydrogen via the steam-iron process
SU1125186A1 (ru) * 1982-11-29 1984-11-23 Институт горючих ископаемых Способ получени водорода
RU2191742C2 (ru) * 2000-08-31 2002-10-27 Адамович Борис Андреевич Способ получения водорода
JP2008094645A (ja) * 2006-10-10 2008-04-24 Uchiya Thermostat Kk 水素発生媒体の製造方法
WO2009011671A1 (en) * 2007-07-13 2009-01-22 Serhii Pavlovych Semydiel Hydrogen production method and a device for carrying out said method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU15629A1 (ru) * 1927-04-26 1930-06-30 А.А. Бари Способ получени водорода
US3442620A (en) * 1968-04-18 1969-05-06 Consolidation Coal Co Production of hydrogen via the steam-iron process
SU1125186A1 (ru) * 1982-11-29 1984-11-23 Институт горючих ископаемых Способ получени водорода
RU2191742C2 (ru) * 2000-08-31 2002-10-27 Адамович Борис Андреевич Способ получения водорода
JP2008094645A (ja) * 2006-10-10 2008-04-24 Uchiya Thermostat Kk 水素発生媒体の製造方法
WO2009011671A1 (en) * 2007-07-13 2009-01-22 Serhii Pavlovych Semydiel Hydrogen production method and a device for carrying out said method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2797611C2 (ru) * 2018-06-08 2023-06-07 Френд Ко., Лтд. Способ получения водородсодержащей газовой смеси
WO2024085779A1 (en) * 2022-10-17 2024-04-25 Timuca Sebastian Vlad Burner for producing thermal energy

Similar Documents

Publication Publication Date Title
CN102500303B (zh) 一种转化混合醇的装置和方法
RU2425795C2 (ru) Установка для получения водорода и углеродных наноматериалов и структур из углеводородного газа, включая попутный нефтяной газ
CN103819030B (zh) 气液混合介质阻挡放电水处理装置与方法
RU2451658C2 (ru) Способ и устройство для получения ацетилена
US11148116B2 (en) Methods and apparatus for synthesizing compounds by a low temperature plasma dual-electric field aided gas phase reaction
CN104071747A (zh) 一种等离子体甲烷重整制备合成气的方法
CN102500304B (zh) 一种转化甲醇的装置和方法
CN102417438B (zh) 一种转化甲醇的方法
CN113336196A (zh) 基于微波加热的气化裂解装置及快速制备硫磺气体的方法
CN101733405B (zh) 纳米粉末材料的射频辉光放电感应耦合等离子体制备方法
RU2509719C1 (ru) Способ и устройство для получения водорода из воды (варианты)
RU2520490C2 (ru) Способ и устройство для получения водорода из воды
RU2320534C1 (ru) Способ получения хлора
Zhou et al. Hydrogen production by reforming methane in a corona inducing dielectric barrier discharge and catalyst hybrid reactor
RU134075U1 (ru) Устройство для термохимического разложения воды и преобразования энергии
Baowei et al. Steam reforming of dimethyl ether by gliding arc gas discharge plasma for hydrogen production
CN110980641B (zh) 一种气液两相高效制氢的装置及方法
RU2442644C2 (ru) Способ непрерывного осуществления электрохимической реакции в суб- и сверхкритических флюидах и устройство для его проведения
Wang et al. Hydrocracking of n-hexadecane via liquid or gaseous water assisted pulsed spark discharge in liquid
RU80449U1 (ru) Устройство для конверсии газов в плазме свч-разряда
RU2429191C1 (ru) Способ получения водорода
RU106616U1 (ru) Установка для получения высококалорийного плазмогаза из углеродосодержащих водоорганических ультрадисперсных систем
RU80450U1 (ru) Устройство для получения водородсодержащего газа в плазме свч-разряда
RU2800344C1 (ru) Способ получения водорода из углеводородного газа и реактор для его осуществления
CN110572923A (zh) 一种用于液体改性的可循环同轴式dbd等离子体反应器

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20150922