RU2451658C2 - Способ и устройство для получения ацетилена - Google Patents

Способ и устройство для получения ацетилена Download PDF

Info

Publication number
RU2451658C2
RU2451658C2 RU2010116049/04A RU2010116049A RU2451658C2 RU 2451658 C2 RU2451658 C2 RU 2451658C2 RU 2010116049/04 A RU2010116049/04 A RU 2010116049/04A RU 2010116049 A RU2010116049 A RU 2010116049A RU 2451658 C2 RU2451658 C2 RU 2451658C2
Authority
RU
Russia
Prior art keywords
heat exchanger
electric discharge
tubular heat
acetylene
solid
Prior art date
Application number
RU2010116049/04A
Other languages
English (en)
Other versions
RU2010116049A (ru
Inventor
Игорь Александрович Росляков (RU)
Игорь Александрович Росляков
Ольга Игоревна Лаврова (RU)
Ольга Игоревна Лаврова
Original Assignee
Ольга Игоревна Лаврова
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ольга Игоревна Лаврова filed Critical Ольга Игоревна Лаврова
Priority to RU2010116049/04A priority Critical patent/RU2451658C2/ru
Publication of RU2010116049A publication Critical patent/RU2010116049A/ru
Application granted granted Critical
Publication of RU2451658C2 publication Critical patent/RU2451658C2/ru

Links

Images

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

Изобретение относится к способу получения ацетилена путем плазмохимического пиролиза смеси измельченного твердого сырья с фракцией менее 100 мкм с водяным паром в импульсном электроразрядном плазмотроне. Способ характеризуется тем, что процесс ведут с применением ударной волны, электрический разряд в плазмотроне производят за время менее 1 мс, а скорость полученного газового продукта снижают в трубчатом теплообменнике, расположенном после сопла Лаваля. Также изобретение относится к устройству для осуществления описанного способа. Использование настоящего изобретения позволяет сохранить высокий выход ацетилена и снизить энергозатраты. 2 н. и 4 з.п. ф-лы, 1 пр., 2 ил.

Description

Изобретение относится к получению ацетилена из твердого топлива и органической составляющей твердых отходов в среде водяного пара.
Уровень техники
Ацетилен является одним из важнейших химических продуктов, используемых в промышленности. В 1965-75 годы по распоряжению правительства проводились работы по получению ацетилена из газообразного, жидкого и твердого топлив с целью снижения энергозатрат на единицу полученного продукта - ацетилена. И хотя удельный расход энергии на единицу выхода ацетилена снизился с 10 кВт-ч/кг до 4,5-5 кВт-ч/кг, программа получения ацетилена из топлив была свернута из-за низкого выхода целевого продукта - ацетилена, наибольшая концентрация которого составляла не более 20 масс.% при переработке газообразного топлива - метана. Объясняется это тем, что все дуговые плазмотроны обладают существенным недостатком. Пиролиз исходного материала при температуре Т<1500 К при низких скоростях нагрева частиц, 2-50 °/с, ведет к образованию устойчивых соединений: окиси и двуокиси углерода, метана, жидких смол. При увеличении скорости нагрева до 10 4 -10 7 °/с (условия теплового удара) при температуре Т>2000 К появляется качественно новый продукт - ацетилен, а соединения: метан, двуокись углерода и жидкие смолы - отсутствуют. В дуговых плазмотронах давление электрического разряда значительно превышает давление газовой среды. То есть электрический разряд можно представить как раскаленную до нескольких тысяч градусов болванку, которую газовая среда только обтекает. Благодаря низкому значению коэффициента теплопроводности газовой среды, λ=002-0,07 Вт/(м·К), слои газовой среды, которые касаются разряда или находятся на близком расстоянии от него, нагреваются до высокой температуры, в то время как слои газовой среды, которые касаются водоохлаждаемой стенки реактора, - охлаждаются.
Наиболее близкими к данному изобретению по технической сущности являются патенты РФ №2009112 и №2041244.
Описанный в патенте №2009112 способ получения ацетилена проводится в пульсирующей плазме в течение 0,001-0,009 с, в струе плазмы, созданной путем отключения подвода электроэнергии от электродов плазмотрона. Нагрев и повышение параметров - давления, температуры и плотности - смеси твердого топлива с водяным паром осуществляется только электрическим разрядом, который образуется при отключении подвода энергии от электродов плазмотрона. Ударная волна отсутствует, т.к. время выделения энергии составляет 0,001-0,009 с. Кроме того, нерешенной в патенте №2009112 проблемой является следующая. Ацетилен - термодинамически неустойчивое соединение, способное диссоциировать при низкой скорости охлаждения на водород и сажистые частицы. Поэтому необходимо не только получить высокий выход ацетилена, но и сохранить его. Полученный в реакторе газовый продукт поступает в сверхзвуковое сопло Лаваля, в котором происходит адиабатическое расширение смеси, т.е. превращение тепловой энергии в кинетическую энергию движения потока, и ее температура снижается до заданного значения со скоростью примерно 1*10 7 град/с. Если в каком-нибудь Х-сечении сопла Лаваля газовая среда встретит на своем пути препятствие (поворот на 90 градусов для вывода продукта из сопла Лаваля, ввод в струю жидкой среды для дальнейшего охлаждения продукта), ее скорость в этом Х-сечении станет равной нулю (поток затормозится), зато ее параметры (давление, температура и плотность) приобретут первоначальные значения. Кроме того, данный способ предполагает создание дополнительного магнитного поля между электродами для продвижения электрического разряда.
Недостатком устройства для разложения твердого топлива по патенту №2041244 является то, что для индуктивного источника питания дополнительно требуется высоковольтный источник, собранный на конденсаторах, для пробоя межэлектродного пространства в плазмотроне. При заряде индуктивной катушки потребляется значительный ток из сети, что ведет к применению проводов очень большого сечения. При разряде катушки большое сопротивление между электродами плазмотрона приводит к значительному росту индуктированной в межэлектродном пространстве эдс самоиндукции. Эта эдс может достигнуть опасных для электрической цепи значений, во много раз превосходящих напряжение, под которым индуктивная катушка находилась при заряде.
Раскрытие изобретения
Целью изобретения является получение и сохранение высокого выхода ацетилена и снижение энергозатрат.
Для этого процесс получения ацетилена путем плазмохимического пиролиза смеси измельченного твердого сырья с фракцией менее 100 мкм с водяным паром в импульсном электроразрядном плазмотроне ведут с применением ударной волны при начальном давления среды менее 100 кПа, электрический разряд в плазмотроне производят за время менее 1 мс, а скорость полученного газового продукта снижают в трубчатом теплообменнике, расположенном после сопла Лаваля.
В частном случае в качастве сырья используют бытовые отходы или твердое топливо.
В другом частном случае можно использовать водоохлаждаемый трубчатый теплообменник.
В результате использования принципа ударной волны создаются достаточные условия для образования газообразного продукта. Суммарные действия падающей ударной волны и адиабатического сжатия электрическим разрядом исходной смеси значительно повышают ее параметры: давление в 120-210 раз, температуру в 10-15 раз, плотность в 10-15 раз. При этом нужно принять во внимание, что электрический разряд, который как поршень адиабатически (т.к. время движения потока составляет несколько миллисекунд) сжимает исходный и газообразный продукты, должен обладать значительно большим давлением, чем давление газовой смеси в реакторе. Так что все это ведет к существенному увеличению толщины стенки как плазмотрона, так и реактора. Поэтому сам процесс переработки необходимо начинать проводить при низких давлениях, примерно 10-25 кПа (100 кПа=1 кг/см 2 ). Применение отраженной ударной волны крайне нежелательно.
Устройство для получения ацетилена из смеси измельченных бытовых отходов или твердого топлива с фракцией меньше 100 мкм с водяным паром, включающее реактор, средства для ввода реагентов, электроды с высоковольтным емкостным источником питания и сопло Лаваля, отличается тем, что оно снабжено трубчатым теплообменником, а с целью снижения энергозатрат между соплом Лаваля и трубчатым теплообменником установлен отборник для удаления электрического разряда из устройства и возвращения его энергии в электрическую сеть.
В частном случае используют водоохлаждаемый трубчатый теплообменник.
Для стабилизации низкой температуры газообразного продукта необходимо в Х-сечении сопла Лаваля сверхзвуковую скорость газовой среды перевести в дозвуковую. Тогда параметры газовой среды, особенно температура, сохранятся. Эту функцию выполняет трубчатый теплообменник - в каждой трубке теплообменника скорость газового потока будет меньше звуковой.
Авторами принят емкостной источник питания электроразрядного плазмотрона. Единственным недостатком данного источника питания является высокое напряжение, значительно превышающее 1000 В, из-за малой емкости конденсаторов. Обслуживающий персонал должен пройти соответствующее обучение проведению работ при напряжениях свыше 1000 В. Выделение энергии в межэлектродном пространстве плазмотрона при разряде конденсаторов высоковольтного источника за время менее 1 мс является источником образования ударной волны с заданной частотой следования импульсов. Ударная волна со сверхзвуковой скоростью (число М>1) проходит через смесь измельченного исходного материала (твердого топлива или твердых отходов) с водяным паром и повышает давление, температуру и плотность последней. Вслед за ударной волной с несколько меньшей скоростью движется электрический разряд, заполняя собой все сечение реактора. Электрический разряд как поршень собирает смесь исходной среды и газообразного продукта и адиабатически (время движения потока не превышает нескольких миллисекунд) сжимает эту смесь и дополнительно повышает давление, температуру и плотность последней. Позади фронта электрического разряда в плазмотроне и в реакторе создается разрежение.
Краткое описание чертежей
На Фиг.1 показана блочная схема устройства для термической переработки исходного твердого сырья (угля или твердых отходов).
На Фиг.2 представлена электрическая схема импульсного источника питания.
Осуществление изобретения
Устройство для получения ацетилена состоит из импульсного плазмотрона, реактора 1 со средствами для ввода реагентов и электродами, соединенными с емкостным источником питания 2, бункера 3, в который поступает исходный материал из измельчителя 4, подогревателя 5, сопла Лаваля 6 для охлаждения («закалки») газообразного продукта и водоохлаждаемого трубчатого теплообменника 7 для стабилизации температуры газовой смеси. Измельчителем 4 является известная конструкция роликовой мельницы, в которой измельчение исходного твердого материала происходит в среде жидкого воздуха. Следует принять во внимание, что длина реактора 1 определяет время пребывания частицы исходного твердого материала в зоне реагирования, т.е. влияет на полноту прогрева частицы и, следовательно, на выход ацетилена. Кроме того, учитывая весьма малую величину коэффициента теплопроводности твердого тела, λ=0,1-0,2 Вт/(м·К), обеспечить полный разогрев твердой частицы до температуры среды за очень короткий промежуток времени реагирования, примерно 10-4 - 10-5 с, возможно либо за счет значительного уменьшения размера частицы твердого тела, либо за счет увеличения времени пребывания частицы в зоне реагирования. Второй вариант является более предпочтительным. Увеличение длины реактора, т.е. времени пребывания частицы твердого тела в зоне реагирования до величины нескольких миллисекунд, позволит измельчать исходные твердые материалы лишь до фракций менее 100 мкм. Компрессором К газообразный продукт из теплообменника 7 через циклон Ц, в котором за счет центробежной силы происходит отделение газа от твердых частиц, подается в емкость 8 газа. Проба продукта на анализ отбирается в пробоотборник 9. Из емкости 8 газовая смесь разделяется на составляющие - водород, ацетилен, окись углерода - в соответствие с температурой кипения. Последние собираются в соответствующие емкости (не показано). Вода для охлаждения трубок теплообменника подается насосом Н из емкости воды 10. На границе между соплом Лаваля 6 и теплообменником 7 установлен отборник ОТБ для удаления электрического разряда из устройства. Это медная трубка, которая заземляется через индуктивное (первичную обмотку трансформатора) и активное Ra сопротивления.
Работает устройство следующим образом. Общим рубильником Роб источники питания устройства подключаются к сети, а при включении рубильников Р и Р1 происходит зарядка конденсаторов С и С1 через активные сопротивления R и R1 с заданной частотой следования импульсов fси, Гц. Вначале разряжаются конденсаторы С1, когда напряжение на конденсаторах будет соответствовать расстоянию между вспомогательным и основным электродами, и в плазмотрон выбрасывается электрический разряд от вспомогательного источника питания. Этот вспомогательный разряд способствует разрядке основных конденсаторов С, и в межэлектродном пространстве плазмотрона возникает основной электрический разряд. Так как время разряда конденсаторов С очень мало, меньше 1 мс, в реакторе возникает падающая ударная волна. Этот первый импульс электрического разряда необходим для того, чтобы освободить все устройство от воздуха и создать начальные условия (низкое давление - разрежение) для проведения переработки исходного материала. В течение τ си =1/fси, с вновь происходит заряд конденсаторов С и С1. При этом в течение τ 〉 , с из измельчителя 4 исходный материал с фракцией менее 100 мкм поступает в бункер 3 с мешалкой и далее в реактор через соответствующий патрубок. Исходным материалом, если используют твердые бытовые отходы, могут быть пищевые отходы, бумага, картон, деревянные изделия, тряпки, пластмассовые изделия и т.д. Туда же, в реактор, из подогревателя 5 поступает подогретая вода, которая при разрежении в течении τ 〉 , с испаряется. Вновь разряжаются конденсаторы С и С1 (при этом рубильники Р и Р1 автоматически отключаются), возникает падающая ударная волна, которая в течении импульса создает достаточные условия образования газообразного продукта и совместно с электрическим повышает параметры исходной смеси: давление, температуру и плотность - до заданных значений. Полученный продукт под действием электрического разряда поступает в сопло Лаваля 6 и далее в трубчатый теплообменник 7, откуда компрессором К направляется в сборник газа 8. Для охлаждения теплообменника насосом Н подается вода из емкости 10. Для улучшения контакта электрического разряда с отборником ОТБ через последний подается окись углерода, которая препятствует налипанию твердых частиц на отборнике ОТБ. В дальнейшем окись углерода возвращается (не показано) в емкость сбора газа 8. При заряде конденсаторов электрический разряд в плазмотроне отсутствует, и подача окиси углерода в отборник ОТБ электрического разряда автоматически прекращается. Эти циклы переработки смеси исходного твердого сырья с водяным паром с применением ударной волны повторяются с заданной частотой следования импульсов fси, Гц. В случае отсутствия разряда между основными электродами плазмотрона емкость С источника питания замыкается на активное сопротивление Re через индуктивное сопротивление L. В этом случае вся накопленная энергия в емкости С выделяется на активном сопротивлении Re в виде тепла.
Пример.
Опыты по переработке твердого топлива (бурого угля Канско-Ачинского бассейна - содержание твердого углерода Сг=71,5%, серы S=0,3-0,8%) проводились в реакторе в среде водяного пара. Расход реагентов составлял: твердого топлива с фракцией менее 40 мкм (поскольку длина реактора не превышала 2-х метров, и значит время пребывания частиц топлива было меньше 1 мс, то для проведения опытов пришлось измельчать уголь до фракций меньше 40 мкм) 0,001 кг/им, водяного пара 0,00075 кг/им с температурой Т≅363 К. Для подачи водяного пара в реактор применялся аргон в количестве 0,0015 кг/им. Импульсный емкостной источник питания постоянного тока с частотой следования импульсов f=5-30 Гц включает повышающий трансформатор напряжением 6000 В, три конденсатора емкостью по 80 мкФ каждый, активное зарядное сопротивление в R=350 Ом. Время выделения энергии в межэлектродном пространстве плазмотрона в количестве 5790 Дж/им (с учетом нагрева аргона) при начальном давлении Ро=10 кПа и частоте следования импульсов f=16 Гц (время импульса τ=1/16=0,0625 с) составляет 1,5*10-4 с. Теплообменник состоит из 169 латунных трубок диаметром D=14/12 мм и общим сечением S=0,019 м 2 . Скорость газового потока в каждой трубке при плотности среды 0,022 кг/м 3 составляла u=(0.00325*10)/(0.022*0.019)=77,8 м/с.
Наибольший выход ацетилена при данных условиях составлял 28 масс.%, что соответствовало примерно 90% от теоретически возможного. Потребляемая мощность из сети и удельный расход энергии составляли
N=5790/0,0625=92640 Вт=92,64 кВт
β=92,64/(0,309*0,00175*10*3600)=4,76 кВт-ч/кг С 2 Н 2

Claims (6)

1. Способ получения ацетилена путем плазмохимического пиролиза смеси измельченного твердого сырья с фракцией менее 100 мкм с водяным паром в импульсном электроразрядном плазмотроне, отличающийся тем, что процесс ведут с применением ударной волны, электрический разряд в плазмотроне производят за время менее 1 мс, а скорость полученного газового продукта снижают в трубчатом теплообменнике, расположенном после сопла Лаваля.
2. Способ получения ацетилена по п.1, отличающийся тем, что трубчатый теплообменник является водоохлаждаемым.
3. Способ получения ацетилена по п.1, отличающийся тем, что в качестве сырья используют твердые отходы.
4. Способ получения ацетилена по п.1, отличающийся тем, что в качестве сырья используют твердое топливо.
5. Устройство для получения ацетилена из смеси измельченных бытовых отходов или твердого топлива с фракцией меньше 100 мкм с водяным паром, включающее реактор, средства для ввода реагентов, электроды с высоковольтным емкостным источником питания и сопло Лаваля, отличающееся тем, что устройство снабжено трубчатым теплообменником, а между соплом Лаваля и трубчатым теплообменником установлен отборник электрического разряда.
6. Устройство для получения ацетилена по п.5, отличающееся тем, что трубчатый теплообменник является водоохлаждаемым.
RU2010116049/04A 2010-04-22 2010-04-22 Способ и устройство для получения ацетилена RU2451658C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2010116049/04A RU2451658C2 (ru) 2010-04-22 2010-04-22 Способ и устройство для получения ацетилена

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2010116049/04A RU2451658C2 (ru) 2010-04-22 2010-04-22 Способ и устройство для получения ацетилена

Publications (2)

Publication Number Publication Date
RU2010116049A RU2010116049A (ru) 2011-10-27
RU2451658C2 true RU2451658C2 (ru) 2012-05-27

Family

ID=44997824

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2010116049/04A RU2451658C2 (ru) 2010-04-22 2010-04-22 Способ и устройство для получения ацетилена

Country Status (1)

Country Link
RU (1) RU2451658C2 (ru)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014031516A1 (en) * 2012-08-21 2014-02-27 Uop Llc Methane conversion apparatus and process using a supersonic flow reactor
US8927769B2 (en) 2012-08-21 2015-01-06 Uop Llc Production of acrylic acid from a methane conversion process
US8933275B2 (en) 2012-08-21 2015-01-13 Uop Llc Production of oxygenates from a methane conversion process
US8937186B2 (en) 2012-08-21 2015-01-20 Uop Llc Acids removal and methane conversion process using a supersonic flow reactor
US9023255B2 (en) 2012-08-21 2015-05-05 Uop Llc Production of nitrogen compounds from a methane conversion process
US9205398B2 (en) 2012-08-21 2015-12-08 Uop Llc Production of butanediol from a methane conversion process
RU2575722C2 (ru) * 2014-05-14 2016-02-20 Акционерное общество "Газпромнефть-Омский-НПЗ" Способ получения водорода и серы путем плазмохимической диссоциации сероводорода
US9308513B2 (en) 2012-08-21 2016-04-12 Uop Llc Production of vinyl chloride from a methane conversion process
US9327265B2 (en) 2012-08-21 2016-05-03 Uop Llc Production of aromatics from a methane conversion process
US9370757B2 (en) 2012-08-21 2016-06-21 Uop Llc Pyrolytic reactor
US9434663B2 (en) 2012-08-21 2016-09-06 Uop Llc Glycols removal and methane conversion process using a supersonic flow reactor
US9656229B2 (en) 2012-08-21 2017-05-23 Uop Llc Methane conversion apparatus and process using a supersonic flow reactor
US9689615B2 (en) 2012-08-21 2017-06-27 Uop Llc Steady state high temperature reactor
US9707530B2 (en) 2012-08-21 2017-07-18 Uop Llc Methane conversion apparatus and process using a supersonic flow reactor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4588850A (en) * 1983-08-26 1986-05-13 Huels Aktiengesellschaft Process for the production of acetylene and synthesis or reduction gas from coal in an electric arc process
RU2009112C1 (ru) * 1992-05-06 1994-03-15 Игорь Александрович Росляков Способ получения ацетилена
CN1552680A (zh) * 2003-12-18 2004-12-08 四川大学 热等离子体裂解含甲烷气体制乙炔方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4588850A (en) * 1983-08-26 1986-05-13 Huels Aktiengesellschaft Process for the production of acetylene and synthesis or reduction gas from coal in an electric arc process
RU2009112C1 (ru) * 1992-05-06 1994-03-15 Игорь Александрович Росляков Способ получения ацетилена
CN1552680A (zh) * 2003-12-18 2004-12-08 四川大学 热等离子体裂解含甲烷气体制乙炔方法

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9370757B2 (en) 2012-08-21 2016-06-21 Uop Llc Pyrolytic reactor
US9327265B2 (en) 2012-08-21 2016-05-03 Uop Llc Production of aromatics from a methane conversion process
US8933275B2 (en) 2012-08-21 2015-01-13 Uop Llc Production of oxygenates from a methane conversion process
US8937186B2 (en) 2012-08-21 2015-01-20 Uop Llc Acids removal and methane conversion process using a supersonic flow reactor
US9023255B2 (en) 2012-08-21 2015-05-05 Uop Llc Production of nitrogen compounds from a methane conversion process
US9205398B2 (en) 2012-08-21 2015-12-08 Uop Llc Production of butanediol from a methane conversion process
US8927769B2 (en) 2012-08-21 2015-01-06 Uop Llc Production of acrylic acid from a methane conversion process
US9707530B2 (en) 2012-08-21 2017-07-18 Uop Llc Methane conversion apparatus and process using a supersonic flow reactor
US9434663B2 (en) 2012-08-21 2016-09-06 Uop Llc Glycols removal and methane conversion process using a supersonic flow reactor
WO2014031516A1 (en) * 2012-08-21 2014-02-27 Uop Llc Methane conversion apparatus and process using a supersonic flow reactor
US9308513B2 (en) 2012-08-21 2016-04-12 Uop Llc Production of vinyl chloride from a methane conversion process
US9656229B2 (en) 2012-08-21 2017-05-23 Uop Llc Methane conversion apparatus and process using a supersonic flow reactor
US9689615B2 (en) 2012-08-21 2017-06-27 Uop Llc Steady state high temperature reactor
RU2575722C2 (ru) * 2014-05-14 2016-02-20 Акционерное общество "Газпромнефть-Омский-НПЗ" Способ получения водорода и серы путем плазмохимической диссоциации сероводорода

Also Published As

Publication number Publication date
RU2010116049A (ru) 2011-10-27

Similar Documents

Publication Publication Date Title
RU2451658C2 (ru) Способ и устройство для получения ацетилена
EP2606003B1 (en) An apparatus, a system and a method for producing hydrogen
CN101980588B (zh) 一种电弧等离子体喷枪
WO2012067546A2 (en) Device for producing of fullerene-containing soot
WO2010094972A1 (en) Plasma reactor
CN105027685A (zh) 通过非等温反应等离子体助剂处理两相碎片状或粉状材料的方法和装置
CN102417438B (zh) 一种转化甲醇的方法
CN102363521A (zh) 车载在线制氢的微波低温等离子体重整器系统
CN103200757A (zh) 一种电弧等离子体喷枪
CN103200758B (zh) 电弧等离子体装置
US11471851B2 (en) Multi-stage system for processing hydrocarbon fuels
KR20210060628A (ko) 플라즈마-화학적 가스/가스 혼합물 전환 방법 및 장치
CN101733405A (zh) 纳米粉末材料的射频辉光放电感应耦合等离子体制备技术
CN201830542U (zh) 一种电弧等离子体喷枪
CN102798157A (zh) 等离子体解水制氢高效节能燃气灶
US20170077840A1 (en) Method for producing thermal and electrical energy and device for implementing said method
CN205382131U (zh) 等离子体热解系统
RU2520490C2 (ru) Способ и устройство для получения водорода из воды
CN202272731U (zh) 车载在线制氢的微波低温等离子体重整器系统
Huang et al. A comparative study of ozone generation using pulsed and continuous AC dielectric barrier discharges
CN1297781C (zh) 一种利用高频等离子体处理固体有机废弃物的方法
RU106616U1 (ru) Установка для получения высококалорийного плазмогаза из углеродосодержащих водоорганических ультрадисперсных систем
CN113105306B (zh) 一种等离子电场辅助甲醇合成有机物的装置及方法
RU2509719C1 (ru) Способ и устройство для получения водорода из воды (варианты)
RU2041244C1 (ru) Устройство для разложения твердого топлива

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20140423