RU2507507C1 - Сканирующее устройство с использованием пучка излучения для формирования изображения в режиме обратного рассеяния и способ его осуществления - Google Patents

Сканирующее устройство с использованием пучка излучения для формирования изображения в режиме обратного рассеяния и способ его осуществления Download PDF

Info

Publication number
RU2507507C1
RU2507507C1 RU2012127343/28A RU2012127343A RU2507507C1 RU 2507507 C1 RU2507507 C1 RU 2507507C1 RU 2012127343/28 A RU2012127343/28 A RU 2012127343/28A RU 2012127343 A RU2012127343 A RU 2012127343A RU 2507507 C1 RU2507507 C1 RU 2507507C1
Authority
RU
Russia
Prior art keywords
scanning
screen body
radiation
rotating screen
region
Prior art date
Application number
RU2012127343/28A
Other languages
English (en)
Other versions
RU2012127343A (ru
Inventor
Кэцзюнь КАН
Чжицян ЧЭНЬ
Юаньцзин ЛИ
Цзыжань ЧЖАО
Инун ЛЮ
Ваньлун У
Дун ЛИНЬ
Лэ ТАН
Чао ТУ
Цзунцзюнь ШЭНЬ
Гуанвэй ДИН
Инкан ЦЗИНЬ
Силэй ЛО
Шо ЦАО
Original Assignee
Ньюктек Компани Лимитед
Тсинхуа Юниверсити
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ньюктек Компани Лимитед, Тсинхуа Юниверсити filed Critical Ньюктек Компани Лимитед
Publication of RU2012127343A publication Critical patent/RU2012127343A/ru
Application granted granted Critical
Publication of RU2507507C1 publication Critical patent/RU2507507C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/203Measuring back scattering
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/02Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diaphragms, collimators
    • G21K1/04Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diaphragms, collimators using variable diaphragms, shutters, choppers
    • G21K1/043Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diaphragms, collimators using variable diaphragms, shutters, choppers changing time structure of beams by mechanical means, e.g. choppers, spinning filter wheels

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Measurement Of Radiation (AREA)
  • Mechanical Optical Scanning Systems (AREA)

Abstract

Использование: для формирования изображения в режиме обратного рассеяния. Сущность заключается в том, что сканирующее устройство включает в себя источник излучения, стационарную экранную пластину и вращающееся экранное тело, расположенные соответственно между источником излучения и сканируемым объектом, причем стационарная экранная пластина зафиксирована относительно источника излучения, а вращающееся экранное тело поворачивается относительно стационарной экранной пластины. Область прохождения луча, позволяющая лучам из источника излучения проходить сквозь стационарную экранную пластину, обеспечена на стационарной экранной пластине, а область падения луча и область выхода луча обеспечены соответственно на вращающемся экранном теле. В ходе процесса вращения и сканирования вращающегося экранного тела область прохождения луча стационарной экранной пластины последовательно пересекается с областью падения луча и областью выхода луча вращающегося экранного тела с формированием коллимационных отверстий для сканирования. Кроме того, также обеспечен способ сканирования с использованием пучка излучения для формирования изображения в режиме обратного рассеяния. Технический результат: обеспечение возможности использования нового механизма образования «бегущею пятна» для достижения улучшенного сканирования бегущим пятном в режиме обратного рассеяния. 2 н. и 10 з.п. ф-лы, 3 ил.

Description

ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ
Настоящее изобретение в основном относится к области применения радиационной техники, и в частности, к безопасному контрольно-измерительному устройству и способу его использования, а точнее к сканирующему устройству с использованием пучка излучения для формирования изображений в режиме обратного рассеяния и способу его осуществления.
УРОВЕНЬ ТЕХНИКИ
При применении безопасного исследования и обследовании организма человека обычно используют два типа технологий: технологию формирования изображений с использованием пучка излучения для технологии передачи и технологию формирования изображений с использованием радиационного излучения для создания обратного рассеяния. Там, где используется формирование изображений в режиме обратного рассеяния, исследуемый объект подвергается сканированию пучком излучения, т.е. узким пучком, при одновременном приеме детектором сигнала, отображающего излучение, рассеянное назад от объекта. Рассеянное изображение можно реконструировать или получать на основе детектируемых сигналов, коррелированных со сканируемыми позициями или участками исследуемого объекта.
Стандартный механизм сканирования бегущим пятном выполняет сканирование первого измерения за счет вращательного движения вращающегося экранного тела с множеством коллимационных отверстий, в пределах сектора сканирования лучом, при осуществлении сканирования второго измерения при колебательных или поступательных перемещениях сектора сканирования луча.
Однако в установке вышеупомянутого вращательного экранного тела с множеством коллимационных отверстий используется относительно сложный механизм создания бегущего пятна, и он неблагоприятно влияет на экранирование рентгеновского излучения, а утечка рентгеновского излучения опасна для человеческого организма.
Кроме того, при осуществлении сканирования первого измерения сканирующее устройство осуществляет неравномерное сканирование на объекте в вертикальной плоскости. Точнее говоря, сканирующий луч ускоряется при запуске и окончании одной одиночной операции сканирования узким пучком. В результате, сканирующее пятно в дальнейшем будет увеличиваться продольно в начальной и в конечной точке одной одиночной операции сканирования узким пучком, где происходит геометрическая деформация сканирующего пятна. Следовательно, имеет место деформация продольного сжатия из-за изменения скорости сканирования, в дополнение к геометрической деформации результирующего изображения.
Кроме того, для операции сканирования второго измерения, если осуществляется поступательное перемещение сектора сканирования лучом, устройство формирования луча, вращающееся экранное тело, и т.д., необходимо перемещать по двум направлениям, что делает механическую конфигурацию этого устройства достаточно сложной; и если осуществляется вращательное движение сектора сканирования лучом, необходимо преодолевать инерцию вращения устройства формирования луча и вращательного экранного тела. Это вызывает проблему, связанную с износом и разрывом или поломкой подшипников вращающегося привода и вращающегося устройства формирования луча и вращающегося экранного тела.
В дополнение, источник излучения согласно уровню техники, например, рентгеновскую трубку, обычно помещают внутрь вращающегося тела излучения, таким образом, что становится сложным совместить устройство сопряжения механизма сканирования с устройством сопряжения стандартной рентгеновской трубки. Следовательно, это вызывает необходимость в модернизации экранного тела рентгеновской трубки для достижения его совмещения с устройством сопряжения стандартной рентгеновской трубки, что, в свою очередь, повышает затраты на сканирующее устройство для формирования изображений в режиме обратного рассеяния.
РАСКРЫТИЕ ИЗОБРЕТЕНИЯ
Настоящее изобретение было создано для того, чтобы преодолеть или смягчить, по меньшей мере, один аспект вышеупомянутых недостатков или проблем, существующих согласно уровню техники.
Следовательно, задачей настоящего изобретения является обеспечение сканирующего устройства с использованием пучка излучения для формирования изображения в режиме обратного рассеяния и способ его использования, в котором использован новый механизм образования «бегущего пятна» для достижения сканирования бегущим пятном для получения обратного рассеяния.
Следовательно, другой целью настоящего изобретения является обеспечение радиационно-лучевого сканирующего устройства и способа, в котором достигается линейное перемещение бегущего пятна.
Следовательно, еще одной целью настоящего изобретения является обеспечение сканирующего устройства и способа сканирования для управления формой поперечного сечения пучка излучения, проходящего через коллимационные отверстия для сканирования, и облучение сканируемого объекта путем ограничения форм коллимационных отверстий для сканирования в различных местоположениях.
Согласно одному аспекту настоящего изобретения обеспечено сканирующее устройство с использованием пучка излучения для формирования изображения в режиме обратного рассеяния, причем сканирующее устройство содержит:
- источник излучения; и
- стационарную экранную пластину и вращающееся экранное тело, расположенное соответственно между источником излучения и сканируемым объектом, причем стационарная экранная пластина закреплена относительно источника излучения, а вращающееся экранное тело поворачивается относительно стационарной экранной пластины; причем:
- область прохождения луча, позволяющая пучкам излучения исходящего из источника излучения, проходить сквозь стационарную экранную пластину, обеспечена на стационарной экранной пластине; и
- область падения луча и область выхода луча соответственно обеспечены на вращающемся экранном теле; в ходе процесса вращения и сканирования вращающегося экранного тела, область прохождения луча, принадлежащая стационарной экранной пластине, последовательно пересекается с областью падения луча и областью выхода луча, принадлежащую вращающемуся экранному телу, с образованием коллимационных отверстий для сканирования.
Согласно одному предпочтительному варианту осуществления настоящего изобретения область прохождения луча, принадлежащая стандартной экранной пластине, представляет собой линейную прорезь; вращающееся экранное тело является цилиндрическим, а область падения луча и область выхода луча представляют собой спиральные прорези. Когда вращающееся экранное тело вращается с равномерной скоростью, коллимационные отверстия для сканирования последовательно перемещаются вдоль линейной прорези.
Согласно одному предпочтительному варианту осуществления настоящего изобретения стационарная экранная пластина обеспечена между источником излучения и вращающимся экранным телом.
Является предпочтительным, чтобы сканирующее устройство, в котором использован пучок излучения для формирования изображения в режиме обратного рассеяния, дополнительно содержало: блок управления, который управляет скоростью сканирования пучком излучения, путем управления скоростью вращения вращающегося экранного тела, и обнаруживает направление выхода для пучка излучения, выявляя угол поворота вращающегося экранного тела.
Согласно одному предпочтительному варианту осуществления настоящего изобретения путем управления шириной спиральных прорезей вращающегося экранного тела в различных местоположениях, можно управлять формой коллимационных отверстий для сканирования в различных местоположениях таким образом, чтобы можно было управлять формой поперечного сечения пучка излучения, проходящего через коллимационные отверстия для сканирования, и облучение сканируемого объекта.
Более того, сканирующее устройство дополнительно содержит: блок привода, приспособленный для того, чтобы приводить в действие, вращающееся экранное тело; причем вращающееся экранное тело представляет собой полый цилиндр или сплошной цилиндр.
В частности, ось поворота вращающегося экранного тела расположена на копланарной плоскости, которая задается источником излучения и линейной прорезью стационарной экранной пластины.
Согласно другому аспекту настоящего изобретения обеспечен способ сканирования, в котором пучок излучения используется для формирования изображения в режиме обратного рассеяния, причем способ сканирования включает в себя этапы:
- обеспечения источника излучения, который испускает пучок излучения;
- обеспечения стационарной экранной пластины и вращающегося экранного тела, расположенных соответственно между источником излучения и сканируемым объектом, причем стационарная экранная пластина закреплена относительно источника излучения, а вращающееся экранное тело вращается относительно стационарной экранной пластины; причем область прохождения луча, пропускающая пучки излучения, проходящие из источника излучения сквозь стационарную экранную пластину, обеспечена на стационарной экранной пластине, а область падения луча и область выхода луча обеспечены соответственно на вращающемся экранном теле; и
- вращение вращающегося экранного тела таким образом, чтобы область прохождения луча, принадлежащая стационарному экранному телу, пересекалась последовательно с областью падения луча и областью выхода луча, принадлежащей вращающемуся экранному телу, с образованием коллимационных отверстий для сканирования.
Является предпочтительным, чтобы область прохождения луча, принадлежащая стационарной экранной пластине, представляла собой линейную прорезь; вращающееся экранное тело представляет собой цилиндр, а область падения луча и область выхода луча представляют собой спиральные прорези. Когда вращающееся экранное тело вращается с равномерной скоростью, коллимационные отверстия для сканирования последовательно перемещаются вдоль линейной прорези.
Согласно одному предпочтительному варианту осуществления настоящего изобретения способ сканирования дополнительно включает в себя этапы: выявления местоположений коллимационных отверстий для сканирования; и управления направлением выхода пучка излучения, исходя из обнаружения местоположений коллимационных отверстий для сканирования.
Является предпочтительным, чтобы способ сканирования дополнительно включал в себя этапы: размещения коллимационных отверстий для сканирования таким образом, чтобы эти отверстия имели заданную форму относительно источника излучения, и в результате этого форма поперечного сечения пучка излучения, проходящего через коллимационные отверстия для сканирования и освещающего сканируемый объект, имеет определенный вид.
Как видно из вышеупомянутых, точно не установленных вариантов осуществления, настоящее изобретение обладает, по меньшей мере, одним или более следующих преимуществ и эффектов:
1. Настоящее изобретение обеспечивает сканирующее устройство и способ с новым механизмом формирования «бегущего пятна», который включает в себя упрощенный механизм сканирования для формирования изображения в режиме обратного рассеяния и достигает хорошего эффекта с точки зрения экранирования излучения.
2. Согласно одному предпочтительному варианту осуществления настоящего изобретения сканирующее устройство и способ могут обеспечить контролируемое сканирование сканируемого объекта и удобное взятие замеров для сканируемого объекта в соответствии с заданным режимом, с получением, таким образом, желаемых данных об изображении, формируемых в режиме обратного рассеяния. Например, с помощью сканирующего устройства и способа по настоящему изобретению можно осуществлять сканирование сканируемого объекта с равномерной скоростью, что дает возможность равномерно замерять сканируемый объект и предотвращать возникновение деформаций продольного сжатия на получаемом изображении, формируемом в режиме обратного рассеяния.
3. В соответствии с различными потребностями применения, можно изготавливать различные вращающиеся экранные тела с различными спиральными прорезями или с различными линейными прорезями, причем вращающееся экранное тело механизма сканирования согласно настоящему изобретению является съемным, что отвечает различным потребностям применения.
4. Согласно настоящему изобретению, в ходе выполнения сканирования второго измерения, при котором должно осуществляться колебательное движение сектора сканирования лучом, поскольку сектор сканирования лучом и вращающееся экранное тело выполняют вращательное движение в одной плоскости, направление вращательного момента вращающегося экранного тела не будет изменяться при сканировании вращающимся лучом по поверхности сектора сканирования лучом. Когда сектор сканирования лучом должен совершать колебательное движение, нет необходимости в преодолении как таковой инерции вращения вращательного экранного тела, и операцию сканирования второго измерения можно легко осуществлять за счет колебательного движения сектора сканирования лучом.
5. В соответствии с настоящим изобретением, поскольку источник излучения не расположен внутри вращающегося экранного тела, механизм сканирования может быть снабжен механическим устройством сопряжения, которое подогнано к стандартной рентгеновской трубке, без необходимости в переконструировании экранного тела для рентгеновской трубки. Таким образом, получается компактная структура, при серьезном снижении затрат.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
Фиг. 1 представляет собой структурное перспективное изображение сканирующего устройства с использованием пучка излучения для формирования изображения в режиме обратного рассеяния согласно предпочтительному варианту осуществления настоящего изобретения;
Фиг. 2 представляет собой поперечное сечение сканирующего устройства согласно Фиг. 1; и
Фиг. 3 представляет собой перспективное покомпонентное изображение расположений и конфигураций сканирующего устройства для формирования изображений в режиме обратного рассеяния согласно Фиг. 1.
ОСУЩЕСТВЛЕНИЕ ИЗОБРЕТЕНИЯ
Примерные варианты осуществления настоящего раскрытия в дальнейшем будут описаны более подробно со ссылкой на Фиг. 1-3, в которых одинаковые номера ссылок относятся к одинаковым элементам. Настоящее раскрытие, однако, может быть осуществлено в виде многих различных форм, и его не следует рассматривать как ограниченное вариантом осуществления, изложенным здесь; скорее, эти варианты осуществления обеспечены таким образом, что настоящее раскрытие будет полным и завершенным, и будет полностью отображать концепцию раскрытия для специалистов в данной области техники.
На Фиг. 1-3 проиллюстрировано сканирующее устройство с использованием пучка излучения для формирования изображения в режиме обратного рассеяния согласно предпочтительному варианту осуществления настоящего изобретения. Сканирующее устройство содержит: источник 13 излучения (например, рентгеновскую трубку), стационарную экранную пластину 5 и вращающееся экранное тело 1, расположенное соответственно между источником 13 излучения и сканируемым объектом (не показан, - например, на левой стороне Фиг. 2). Стационарная экранная пластина 4 закреплена относительно источника 13 излучения, а вращающееся экранное тело 1 поворачивается относительно стационарной экранной пластины 4. Кроме того, область прохождения луча, позволяющая пучкам излучения проходить из источника 13 излучения сквозь стационарную экранную пластину 4 (например, через продольную прорезь 5 на Фиг. 1-3), обеспечена на стационарной экранной пластине 4. Область падения луча (например, прорезь 3 на Фиг. 1-3) и область выхода луча (например, прорезь 2 на Фиг. 1-3) соответственно обеспечены на вращающемся экранном теле 1; во время процесса вращения и сканирования вращающегося экранного тела 1 область 5 прохождения луча, принадлежащая стационарной экранной пластине 4, последовательно пересекается с областью 3 падения луча и областью 2 выхода луча вращающегося экранного тела 1, с формированием коллимационных отверстий для сканирования. В вышеупомянутом варианте осуществления стационарная экранная пластина 4 обеспечена между источником 13 излучения и вращающимся экранным телом 1.
В вышеуказанном варианте осуществления настоящего изобретения устройство формирования луча, такой как рентгеновская трубка, включает в себя корпус 11 устройства формирования луча и источник 13 излучения, помещенный в корпус 11 устройства формирования луча. В вышеупомянутой установке источник 13 излучения может представлять собой рентгеновскую трубку, источник γ-излучения или источник изотопов, и т.д. Как показано на Фиг. 1 и 3, в одном предпочтительном варианте осуществления корпус 11 устройства формирования луча имеет почти прямоугольную форму поперечного сечения, а коллимационная прорезь 31 обеспечена на корпусе 11 устройства формирования луча таким образом, чтобы луч излучения, испускаемый из источника 13 излучения, выходил через коллимационную прорезь 31 корпуса 11 устройства формирования луча. Пучок 14 излучения, испускаемый из заданной точки P источника 13 излучения, проходит через коллимационную прорезь 31, с образованием лучевого сектора, а затем проходит через область прохождения луча (например, продольную прорезь 5 на Фиг. 1-3) сквозь стационарную экранную пластину 4, область падения луча (например, прорезь 3 на Фиг. 1-3) и область выхода луча (например, прорезь 2 на Фиг. 1-3). Путем обеспечения продольной прорези 5 стационарной экранной пластины 4, соотношение относительных местоположений прорезей 3 и 2 делают таким, чтобы во время процесса вращения и сканирования вращающегося экранного тела 1 область 5 прохождения луча, принадлежащая стационарной экранной пластине 4, последовательно пересекалась с областью 3 падения луча и областью 2 выхода луча вращающегося экранного тела 1, с образованием коллимационных отверстий для сканирования. Иными словами, спиральная прорезь 3 для падения луча и спиральная прорезь для 2 выхода луча вращающегося экранного тела 1, и продольная прорезь 5 стационарной экранной пластины 4 вместе формируют коллимационное отверстие для пучка излучения.
Как показано на Фиг. 1-3, область 5 прохождения луча стационарной экранной пластины 4 представляет собой линейную прорезь, вращающееся экранное тело 1 представляет собой цилиндр, а область 3 падения луча и область 2 выхода луча представляют собой спиральные прорези. Согласно Фиг. 2, в частности, любая точка на области 3 падения луча и на области 2 выхода луча, например, точка A и точка B, совершают равномерное круговое движение вдоль цилиндрической поверхности вращающегося экранного тела 1, и одновременно совершают линейное движение в соответствии с определенным распределением скоростей, которое должно иметь место вдоль радиального направления вращающегося экранного тела 1, для образования некоторой цилиндрической спиральной линии. В одном предпочтительном варианте осуществления любая точка на области 3 падения луча и на области 2 выхода луча, например, точка A и точка B, может совершать равномерное круговое движение по цилиндрической поверхности вращающегося экранного тела 1, и одновременно совершать линейное движение с равномерной скоростью вдоль радиального направления вращающегося экранного тела 1, с образованием цилиндрической спиральной траектории перемещения при равномерной скорости.
Согласно Фиг. 2, после определения заданной координаты P источника 13 излучения и точки A области 3 падения луча, путем привязывания заданной координаты P источника 13 излучения к точке A области 3 падения луча, для формирования пучка 14 излучения в линейном направлении, можно определить точку B области 2 выхода луча.
Поскольку область 3 падения луча и область 2 выхода луча сконфигурированы таким образом, чтобы были образованы цилиндрические спиральные линии равномерной скорости, когда вращающееся экранное тело 1 вращается с равномерной скоростью, местоположения коллимационных отверстий для сканирования перемещаются с вращением вращающегося экранного тела 1. Следовательно, выходной пучок 14 излучения перемещается, вследствие чего коллимационные отверстия для сканирования последовательно и равномерно перемещаются вдоль линейной прорези 5.
Хотя область 3 падения луча и область 2 выхода луча сконфигурированы таким образом, чтобы были образованы цилиндрические спиральные линии для достижения равномерной скорости согласно вышеупомянутым вариантам осуществления, они не ограничены этим согласно настоящему изобретению. Например, область 3 падения луча и область 2 выхода луча могут быть сконфигурированы в виде спиральных линий с вышеуказанной определенной формой, то есть, любая точка на области 3 падения луча и области 2 выхода луча может перемещаться по круговой траектории вдоль цилиндрической поверхности вращающегося экранного тела 1, и одновременно может перемещаться по прямолинейной траектории, в соответствии с определенным распределением скоростей вдоль радиального направления вращающегося экранного тела 1, с образованием определенной цилиндрической спиральной линии. В результате, когда вращающееся экранное тело 1 вращается с равномерной скоростью, местоположения коллимационных отверстий для сканирования перемещаются вместе с вращением вращающегося экранного тела 1. Следовательно, выходной пучок 14 излучения движется, вследствие чего коллимационные отверстия для сканирования движутся вдоль линейной прорези 5 в соответствии с заданным распределением скоростей. Следовательно, сканирующее устройство согласно настоящему изобретению может обеспечить контролируемое сканирование сканируемого объекта и удобное проведение замеров по сканируемому объекту в соответствии с заданным режимом, с получением, таким образом, желаемых данных по изображению в режиме обратного рассеяния. В результате, качества и разрешения изображений в режиме обратного рассеяния улучшаются, а точность и эффективность детектирования путем обратного рассеяния повышается, удовлетворяя, таким образом, различные требования по применению.
Более того, сканирующее устройство может дополнительно включать в себя блок 6 привода, приспособленный для управления вращением вращающегося экранного тела 1, например, двигателя, управляющего скоростью, и т.д. Для снижения инерции вращения вращающегося экранного тела 1, согласно одному предпочтительному варианту осуществления, вращающееся экранное тело 1 осуществлено в виде полой цилиндрической формы. Однако, согласно настоящему изобретению, оно не ограничено ею. Например, вращающееся экранное тело 1 также может быть осуществлено в виде сплошного цилиндра.
В частности, в вышеупомянутом варианте осуществления, как видно из Фиг. 1, сканирующее устройство может дополнительно включать в себя блок 7 считывания вращающегося кодирующего диска, приспособленное для выявления полярной координаты вращающегося экранного тела 1, и сигнальную шину 8 считывания кодирующего диска, приспособленную для ввода информации, относящейся к полярной координате экранного тела 1, в блок 10 управления. Поскольку местоположения коллимационных отверстий для сканирования определяются по полярной координате вращающегося экранного тела 1. С помощью вышеописанной установки можно выявлять местоположения, где сформировались коллимационные отверстия для сканирования. Как показано на Фиг. 1, блок 10 управления также соединен с приводным двигателем 6 через управляющую шину 9 двигателя, для дополнительного контроля вращения вращающегося экранного тела 1. Путем управления скоростью вращения вращающегося экранного тела 1, можно контролировать скорость сканирования пучка излучения, и, путем выявления угла поворота вращающегося экранного тела 1, можно установить направление выхода пучка излучения. На Фиг. 2 показано, что в одном предпочтительном варианте осуществления ось вращения L вращающегося экранного тела 1 может быть расположена на копланарной плоскости, которая совместно задается источником 13 излучения и линейной прорезью 5 стационарной экранной пластины 4. Как было описано выше, вращающееся экранное тело 1 может быть осуществлено в виде сплошного цилиндра, или еще в виде полого цилиндра с определенной толщиной. Ограничивая ширину спиральных прорезей вращающегося экранного тела в различных местоположениях, можно управлять формой коллимационных отверстий для сканирования в различных местоположениях, вследствие чего можно управлять формой поперечного сечения пучка излучения, проходящего через коллимационные отверстия для сканирования и облучающего сканируемый объект.
Например, ширина спиральных прорезей 2 и 3 на обоих концах вращающегося экранного тела 1 в длину может быть уже, чем ширина прорези в центральном местоположении в длину, а коллимационные отверстия для сканирования на спиральных прорезях 2 и 3 на обоих концах вращающегося экранного тела 1 в длину могут быть сформированы таким образом, чтобы они находились под определенным углом к ним в центральной части в длину.
При использовании вышеупомянутой установки, она обеспечивает, чтобы коллимационные отверстия для сканирования всегда были нацелены на заданную точку от источника излучения, и чтобы в них образовывался свободный проход для пучка излучения. Кроме того, формы поперечного сечения пучков излучения, проходящих через коллимационные отверстия для сканирования и падающих на сканируемый объект в различных местоположениях, например, пучков излучения, испускаемых из обоих концов и средних частей вращающегося экранного тела 1, поддерживаются постоянными и равномерными. Однако, согласно настоящему изобретению, они не ограничены этим. Например, путем ограничения ширины спиральных прорезей вращающегося экранного тела в различных местоположениях, формой коллимационных отверстий для сканирования в различных местоположениях можно управлять, и в результате этого можно управлять формой поперечного сечения пучков излучения, проходящих через коллимационные отверстия для сканирования и падающих на сканируемый объект, чтобы они отвечали различным требованиям сканирования.
Из Фиг. 3 видно, что корпус 11 устройства формирования луча можно дополнительно соединять со стационарной экранной пластиной 4 через экранный патрубок 12, для обеспечения эффекта экранирования луча. Из вышеупомянутой установки видно, что источник 13 излучения расположен внутри корпуса 11 устройства формирования луча, вместо того, чтобы помещать его внутрь вращающегося экранного тела 1. Механизм сканирования можно снабдить экранным патрубком 12 с механическим устройством сопряжения, который совместим с механическим устройством сопряжения стандартной рентгеновской трубки, без реконструирования экранного тела для рентгеновской трубки. Как таковой, механизм сканирования согласно настоящему изобретению обладает компактной структурой, и его стоимость сильно снижена.
Здесь и далее способ сканирования с использованием пучка излучения для формирования изображения в режиме обратного рассеяния согласно настоящему изобретению будет описан со ссылкой на прилагаемые чертежи.
Согласно Фиг. 1-3, способ сканирования с использованием пучка излучения для формирования изображения в режиме обратного рассеяния согласно одному предпочтительному варианту осуществления настоящего изобретения включает в себя этапы: обеспечения источника 13 излучения, который испускает пучок 14 излучения; обеспечения стационарной экранной пластины 4 и вращающегося экранного тела 1, помещенного непосредственно между источником 13 излучения и сканируемым объектом, причем стационарная экранная пластина 4 закреплена относительно источника излучения, а вращающееся экранное тело 1 вращается относительно стационарной экранной пластины 4; причем область прохождения луча, позволяющая пучкам 14 излучения проходить от источника 13 излучения сквозь стационарную экранную пластину 4, обеспечена на стационарной экранной пластине 4, а область 3 падения луча и область 2 выхода луча соответственно обеспечены на вращающемся экранном теле 4; и вращения вращающегося экранного тела 4 таким образом, чтобы область 5 прохождения луча, принадлежащая стационарной экранной пластине 4, последовательно пересекалась с областью 3 падения луча и областью 2 выхода луча вращающегося экранного тела 4, с образованием коллимационных отверстий для сканирования.
В вышеупомянутом сканирующем устройстве область 5 прохождения луча стационарной экранной пластины 4 представляет собой линейную прорезь; вращающееся экранное тело 1 представляет собой цилиндр, а область 3 падения луча и область 2 выхода луча представляют собой спиральные прорези; и когда вращающееся экранное тело 1 вращается с равномерной скоростью, коллимационные отверстия для сканирования последовательно перемещаются вдоль линейной прорези 5 с контролируемой скоростью.
Согласно Фиг. 1, в ходе процесса сканирования посредством блока 7 считывания вращающегося кодирующего диска и сигнальной шины 8 считывания кодирующего диска блок 10 управления может считывать текущее состояние вращающегося экранного тела 1, и, таким образом, можно определять текущие местоположения коллимационных отверстий для сканирования. Исходя из выявленных местоположений коллимационных отверстий для сканирования, можно дополнительно установить направление выхода. Кроме того, устанавливая коллимационные отверстия для сканирования таким образом, чтобы эти отверстия имели заданную форму относительно источника 13 излучения, в результате можно поддерживать форму поперечного сечения пучка 14 излучения, проходящего сквозь коллимационные отверстия для сканирования и облучающего сканируемый объект, в заданном виде, для удовлетворения различных запросов для различных операций сканирования.
Хотя здесь были описаны некоторые примерные варианты осуществления, специалистам в данной области техники должно быть понятно, что в этих вариантах могут быть сделаны различные изменения и модификации, без отступления от принципов и сущности раскрытия, объем которого задан в пунктах формулы изобретения и их эквивалентах.

Claims (12)

1. Сканирующее устройство с использованием пучка излучения для формирования изображения в режиме обратного рассеяния, содержащее:
источник излучения; и
стационарную экранную пластину и вращающееся экранное тело, расположенное соответственно между источником излучения и сканируемым объектом, причем стационарная экранная пластина закреплена относительно источника излучения, а вращающееся экранное тело вращается относительно стационарной экранной пластины; причем
область прохождения луча, позволяющая пучкам излучения из источника излучения проходить сквозь стационарную экранную пластину, обеспечена на стационарной экранной пластине; и
область падения луча и область выхода луча соответственно обеспечены на вращающемся экранном теле, в ходе процесса вращения и сканирования вращающегося экранного тела область прохождения луча стационарной экранной пластины последовательно пересекается с областью падения луча и областью выхода луча вращающегося экранного тела, с образованием коллимационных отверстий для сканирования.
2. Сканирующее устройство с использованием пучка излучения для формирования изображения в режиме обратного рассеяния по п.1, в котором:
область прохождения луча стационарной экранной пластины представляет собой линейную прорезь;
вращающееся экранное тело представляет собой цилиндр, а область падения луча и область выхода луча представляют собой спиральные прорези; и
когда вращающееся экранное тело вращается с равномерной скоростью, коллимационные отверстия для сканирования последовательно перемещаются вдоль линейной прорези.
3. Сканирующее устройство с использованием пучка излучения для формирования изображения в режиме обратного рассеяния по п.1 или 2, в котором:
стационарная экранная пластина обеспечена между источником излучения и вращающимся экранным телом.
4. Сканирующее устройство с использованием пучка излучения для формирования изображения в режиме обратного рассеяния по п.3, дополнительно содержащее:
блок управления, который управляет скоростью сканирования пучка излучения путем управления скоростью вращения вращающегося экранного тела и устанавливает направление выхода пучка излучения путем выявления угла поворота, вращающегося экранного тела.
5. Сканирующее устройство с использованием пучка излучения для формирования изображения в режиме обратного рассеяния по п.4, в котором:
путем ограничения ширины спиральных прорезей вращающегося экранного тела в различных местоположениях можно управлять формой коллимационных отверстий для сканирования в различных местоположениях таким образом, чтобы можно было управлять формой поперечного сечения пучка излучения, проходящего через коллимационные отверстия для сканирования и облучающего сканируемый объект.
6. Сканирующее устройство с использованием пучка излучения для формирования изображения в режиме обратного рассеяния по п.2, дополнительно содержащее:
приводной блок, приспособленный для приведения в действие вращением вращающегося экранного тела, причем вращающееся экранное тело представляет собой полый или сплошной цилиндр.
7. Сканирующее устройство с использованием пучка излучения для формирования изображения в режиме обратного рассеяния по п.2 или 6, в котором:
ось вращения вращающегося экранного тела расположена на копланарной плоскости, которая образована совместно источником излучения и линейной прорезью стационарной экранной пластины.
8. Способ сканирования с использованием пучка излучения для формирования изображения в режиме обратного рассеяния, включающий в себя этапы:
обеспечения источника излучения, который испускает пучок излучения;
обеспечения стационарной экранной пластины и вращающегося экранного тела, расположенного соответственно между источником излучения и сканируемым объектом, причем стационарная экранная пластина зафиксирована относительно источника излучения, а вращающееся экранное тело может вращаться относительно стационарной экранной пластины; причем область прохождения луча, позволяющая пучкам излучения из источника излучения проходить сквозь стационарную экранную пластину, обеспечена на стационарной экранной пластине, а область падения луча и область выхода луча соответственно обеспечены на вращающемся экранном теле; и
вращение вращающегося экранного тела таким образом, чтобы область прохождения луча стационарной экранной пластины последовательно пересекалась с областью падения луча и областью выхода луча вращающегося экранного тела, с образованием коллимационных отверстий для сканирования.
9. Способ сканирования с использованием пучка излучения для формирования изображения в режиме обратного рассеяния по п.8, в котором:
область прохождения луча стационарной экранной пластины представляет собой линейную прорезь;
вращающееся экранное тело представляет собой цилиндр, а область падения луча и область выхода луча представляют собой спиральные прорези; и
когда вращающееся экранное тело вращается с равномерной скоростью, коллимационные отверстия для сканирования последовательно перемещаются вдоль линейной прорези.
10. Способ сканирования с использованием пучка излучения для формирования изображения в режиме обратного рассеяния по п.8 или 9, в котором:
стационарная экранная пластина обеспечена между источником излучения и вращающимся экранным телом.
11. Способ сканирования с использованием пучка излучения для формирования изображения в режиме обратного рассеяния по п.10, дополнительно включающий в себя этап:
управления скоростью сканирования пучка излучения путем управления скоростью вращения вращающегося экранного тела, и установления направления выхода пучка излучения путем выявления угла поворота, вращающегося экранного тела.
12. Способ сканирования с использованием пучка излучения для формирования изображения в режиме обратного рассеяния по п.11, в котором:
путем ограничения ширины спиральных прорезей вращающегося экранного тела в различных местоположениях управляют формой коллимационных отверстий для сканирования в различных местоположениях таким образом, чтобы можно было управлять формой поперечного сечения пучка излучения, проходящего через коллимационные отверстия для сканирования и облучающего сканируемый объект.
RU2012127343/28A 2009-12-30 2010-06-28 Сканирующее устройство с использованием пучка излучения для формирования изображения в режиме обратного рассеяния и способ его осуществления RU2507507C1 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN200910244502.8 2009-12-30
CN200910244502.8A CN102116747B (zh) 2009-12-30 2009-12-30 一种背散射成像用射线束的扫描装置和方法
PCT/CN2010/074570 WO2011079603A1 (zh) 2009-12-30 2010-06-28 一种背散射成像用射线束的扫描装置和方法

Publications (2)

Publication Number Publication Date
RU2012127343A RU2012127343A (ru) 2014-01-10
RU2507507C1 true RU2507507C1 (ru) 2014-02-20

Family

ID=44215613

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012127343/28A RU2507507C1 (ru) 2009-12-30 2010-06-28 Сканирующее устройство с использованием пучка излучения для формирования изображения в режиме обратного рассеяния и способ его осуществления

Country Status (8)

Country Link
US (1) US9194827B2 (ru)
EP (1) EP2520927B1 (ru)
CN (2) CN102116747B (ru)
HK (1) HK1159752A1 (ru)
PL (1) PL2520927T3 (ru)
RU (1) RU2507507C1 (ru)
WO (1) WO2011079603A1 (ru)
ZA (1) ZA201204180B (ru)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5844793B2 (ja) * 2010-03-14 2016-01-20 ラピスカン システムズ、インコーポレイテッド 多重スクリーン検出システム
CN102393399B (zh) * 2011-08-24 2015-10-28 屈俊健 X射线飞点的形成装置和方法
CN103063691B (zh) * 2011-10-18 2014-11-12 北京睿思厚德辐射信息科技开发有限公司 双飞线多缝扫描背散射平面成像立体成像和自扫描成像装置
WO2014008275A1 (en) * 2012-07-05 2014-01-09 American Science And Engineering, Inc. Variable angle collimator
CN103630947B (zh) * 2012-08-21 2016-09-28 同方威视技术股份有限公司 可监测放射性物质的背散射人体安检系统及其扫描方法
CN103776848B (zh) * 2012-10-24 2017-08-29 同方威视技术股份有限公司 射线发射装置和成像系统
FR3000211B1 (fr) * 2012-12-20 2015-12-11 Commissariat Energie Atomique Dispositif d'eclairage par balayage , dispositif d'imagerie le comportant et procede de mise en oeurvre
CN104865281B (zh) * 2014-02-24 2017-12-12 清华大学 人体背散射检查方法和系统
US9978471B2 (en) * 2014-03-07 2018-05-22 Powerscan Company Limited Flying spot forming apparatus and design method
CN104898173B (zh) * 2014-03-07 2018-03-23 北京君和信达科技有限公司 一种飞点形成装置及设计方法
US11280898B2 (en) 2014-03-07 2022-03-22 Rapiscan Systems, Inc. Radar-based baggage and parcel inspection systems
KR20170109533A (ko) 2014-11-25 2017-09-29 라피스캔 시스템스, 인코포레이티드 지능형 보안관리시스템
CN105987920B (zh) * 2015-02-11 2019-10-08 北京君和信达科技有限公司 一种飞点形成装置及设计方法
US10714227B2 (en) * 2016-06-06 2020-07-14 Georgetown Rail Equipment Company Rotating radiation shutter collimator
CN107797155A (zh) * 2016-08-31 2018-03-13 合肥美亚光电技术股份有限公司 康普顿背散射检测装置
US10720300B2 (en) 2016-09-30 2020-07-21 American Science And Engineering, Inc. X-ray source for 2D scanning beam imaging
CN109471186A (zh) * 2018-12-18 2019-03-15 东莞深圳清华大学研究院创新中心 一种飞点扫描安检仪及其扫描方法
US11940395B2 (en) * 2019-08-02 2024-03-26 Videray Technologies, LLC Enclosed x-ray chopper wheel
EP3933881A1 (en) 2020-06-30 2022-01-05 VEC Imaging GmbH & Co. KG X-ray source with multiple grids
CN114476542B (zh) * 2022-01-12 2024-02-02 北京鸿仪四方辐射技术股份有限公司 一种螺旋轨道的辐照控制系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2645079Y (zh) * 2003-08-22 2004-09-29 貊大卫 一种反散射式x射线扫描仪
CN200941097Y (zh) * 2006-07-27 2007-08-29 上海英迈吉东影图像设备有限公司 一种具有x射线背散射和断层扫描的成像装置
US20080043913A1 (en) * 2006-08-15 2008-02-21 Martin Annis Personnel X-ray Inspection System
RU2334219C2 (ru) * 2002-11-06 2008-09-20 Эмерикэн Сайэнс Энд Энджиниэринг, Инк. Устройство и способ контроля объекта проверки
CN201285377Y (zh) * 2008-08-05 2009-08-05 同方威视技术股份有限公司 背散射成像用射线束扫描装置
WO2009129488A1 (en) * 2008-04-17 2009-10-22 University Of Florida Research Foundation, Inc. Method and apparatus for computed imaging backscatter radiography

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3808444A (en) 1973-01-05 1974-04-30 Westinghouse Electric Corp X-ray contrast detection system
US4745631A (en) * 1982-12-27 1988-05-17 North American Philips Corp. Flying spot generator
DE3443095A1 (de) 1984-11-27 1986-05-28 Philips Patentverwaltung Gmbh, 2000 Hamburg Anordnung zur untersuchung eines koerpers mit gamma- oder roentgenstrahlung
DE3829688A1 (de) * 1988-09-01 1990-03-15 Philips Patentverwaltung Anordnung zur erzeugung eines roentgen- oder gammastrahls mit geringem querschnitt und veraenderlicher richtung
DE3908966A1 (de) 1989-03-18 1990-09-20 Philips Patentverwaltung Anordnung zur erzeugung eines roentgen- oder gammastrahls mit geringem querschnitt und veraenderbarer lage
JPH05296946A (ja) * 1992-04-21 1993-11-12 Fujitsu Ltd X線回折装置
US5493596A (en) 1993-11-03 1996-02-20 Annis; Martin High-energy X-ray inspection system
US6272206B1 (en) 1999-11-03 2001-08-07 Perkinelmer Detection Systems, Inc. Rotatable cylinder dual beam modulator
CN1207558C (zh) * 2003-08-22 2005-06-22 貊大卫 一种反散射式x射线扫描仪
CN101113961A (zh) * 2006-07-27 2008-01-30 上海英迈吉东影图像设备有限公司 一种具有x射线背散射和断层扫描的成像系统
CN201173903Y (zh) * 2008-03-14 2008-12-31 王经瑾 跳点扫描辐射成像装置
CN101644687A (zh) * 2008-08-05 2010-02-10 同方威视技术股份有限公司 背散射成像用射线束扫描方法和装置
JP5844793B2 (ja) * 2010-03-14 2016-01-20 ラピスカン システムズ、インコーポレイテッド 多重スクリーン検出システム
KR101575704B1 (ko) 2012-11-13 2015-12-08 가부시키가이샤 고마쓰 세이사쿠쇼 유압 셔블

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2334219C2 (ru) * 2002-11-06 2008-09-20 Эмерикэн Сайэнс Энд Энджиниэринг, Инк. Устройство и способ контроля объекта проверки
CN2645079Y (zh) * 2003-08-22 2004-09-29 貊大卫 一种反散射式x射线扫描仪
CN200941097Y (zh) * 2006-07-27 2007-08-29 上海英迈吉东影图像设备有限公司 一种具有x射线背散射和断层扫描的成像装置
US20080043913A1 (en) * 2006-08-15 2008-02-21 Martin Annis Personnel X-ray Inspection System
WO2009129488A1 (en) * 2008-04-17 2009-10-22 University Of Florida Research Foundation, Inc. Method and apparatus for computed imaging backscatter radiography
CN201285377Y (zh) * 2008-08-05 2009-08-05 同方威视技术股份有限公司 背散射成像用射线束扫描装置

Also Published As

Publication number Publication date
EP2520927A4 (en) 2013-05-01
RU2012127343A (ru) 2014-01-10
ZA201204180B (en) 2013-08-28
US20120288066A1 (en) 2012-11-15
CN102116747B (zh) 2014-04-30
WO2011079603A1 (zh) 2011-07-07
CN103558240B (zh) 2016-03-09
CN103558240A (zh) 2014-02-05
PL2520927T3 (pl) 2016-12-30
HK1159752A1 (en) 2012-08-03
US9194827B2 (en) 2015-11-24
EP2520927A1 (en) 2012-11-07
EP2520927B1 (en) 2016-03-23
CN102116747A (zh) 2011-07-06

Similar Documents

Publication Publication Date Title
RU2507507C1 (ru) Сканирующее устройство с использованием пучка излучения для формирования изображения в режиме обратного рассеяния и способ его осуществления
RU2532495C1 (ru) Сканирующее устройство и способ визуализации с обратнорассеянным пучком излучения
US10267753B2 (en) Multi-energy spectrum X-ray grating-based imaging system and imaging method
KR102121821B1 (ko) 리니어 스캔 초음파 탐상 장치 및 리니어 스캔 초음파 탐상 방법
TR201901095T4 (tr) Mobil geri saçılım görüntüleme güvenlik incelemesi aparatı ve yöntemi.
JP2001269331A (ja) 検査域におけるパルス運動量移動スペクトルを決定するコンピュータ断層撮影装置
CN101644687A (zh) 背散射成像用射线束扫描方法和装置
CN201285377Y (zh) 背散射成像用射线束扫描装置
GB1598058A (en) Apparatus for tomography using penetrating radiation
CN104764759A (zh) 一种用于x射线背散射成像系统的跳线飞点扫描装置
EP0188782B2 (en) Sectional radiography display method and apparatus
JPH1068702A (ja) コンピュータトモグラフィ装置
JP2004045247A (ja) X線画像検査装置
RU2554311C1 (ru) Системы и способы осмотра на основе обратного рассеяния для тела человека
RU2069854C1 (ru) Рентгеновский вычислительный томограф
EP3845892B1 (en) X-ray scattering apparatus
JP2019029273A (ja) X線管、x線検査装置、およびx線検査方法
JP2753717B2 (ja) 光走査装置
CN103728326A (zh) 一种背散射成像用射线束的扫描装置和方法
CN102692423B (zh) 一种非扫描式采集ct投影数据的方法
JPH01207645A (ja) 光走査装置
JPS59173783A (ja) エミッションct装置