RU2506174C2 - Система охлаждения - Google Patents

Система охлаждения Download PDF

Info

Publication number
RU2506174C2
RU2506174C2 RU2011144810/11A RU2011144810A RU2506174C2 RU 2506174 C2 RU2506174 C2 RU 2506174C2 RU 2011144810/11 A RU2011144810/11 A RU 2011144810/11A RU 2011144810 A RU2011144810 A RU 2011144810A RU 2506174 C2 RU2506174 C2 RU 2506174C2
Authority
RU
Russia
Prior art keywords
electric motor
generator
oil
refrigerant
motor
Prior art date
Application number
RU2011144810/11A
Other languages
English (en)
Other versions
RU2011144810A (ru
Inventor
Йосихиро САКАГУТИ
Original Assignee
Мицубиси Дзидося Когио Кабусики Кайся
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Мицубиси Дзидося Когио Кабусики Кайся filed Critical Мицубиси Дзидося Когио Кабусики Кайся
Publication of RU2011144810A publication Critical patent/RU2011144810A/ru
Application granted granted Critical
Publication of RU2506174C2 publication Critical patent/RU2506174C2/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K11/00Arrangement in connection with cooling of propulsion units
    • B60K11/02Arrangement in connection with cooling of propulsion units with liquid cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/02Arrangement or mounting of electrical propulsion units comprising more than one electric motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K11/00Arrangement in connection with cooling of propulsion units
    • B60K11/02Arrangement in connection with cooling of propulsion units with liquid cooling
    • B60K11/04Arrangement or mounting of radiators, radiator shutters, or radiator blinds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/34Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles
    • B60K17/356Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles having fluid or electric motor, for driving one or more wheels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/20Cooling circuits not specific to a single part of engine or machine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K2001/003Arrangement or mounting of electrical propulsion units with means for cooling the electrical propulsion units
    • B60K2001/006Arrangement or mounting of electrical propulsion units with means for cooling the electrical propulsion units the electric motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/92Hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2306/00Other features of vehicle sub-units
    • B60Y2306/05Cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2400/00Special features of vehicle units
    • B60Y2400/61Arrangements of controllers for electric machines, e.g. inverters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2050/00Applications
    • F01P2050/24Hybrid vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • General Engineering & Computer Science (AREA)
  • Motor Or Generator Cooling System (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

Изобретение относится к системе охлаждения для гибридного транспортного средства. Система содержит контур охлаждения, модуль создания давления. В контуре охлаждения рециркулирует хладагент для охлаждения электродвигателя и генератора. Модуль создания давления нагнетает хладагент. Нижний конец ротора электродвигателя находится выше уровня хладагента в бачке для хладагента. электродвигатель расположен по потоку ниже модуля создания давления в направлении рециркуляции хладагента. Генератор расположен по потоку ниже электродвигателя и по потоку выше модуля создания давления в направлении рециркуляции. Электродвигатель расположен выше генератора. Технический результат заключается в повышении эффективности охлаждения. 3 з.п. ф-лы, 6 ил.

Description

Область техники
Настоящее изобретение относится к системе охлаждения и, в частности, к системе охлаждения, установленной в гибридном транспортном средстве.
В последние годы получают распространение гибридные транспортные средства, в которых установлены двигатель внутреннего сгорания, электродвигатель для приведения в движение транспортного средства и генератор для генерирования электричества. В качестве конфигурации традиционного гибридного транспортного средства известна конфигурация, в которой электродвигатель и генератор располагаются соосно в поперечном направлении транспортного средства (см. Патентный Документ 1).
Хотя электродвигатель и генератор нагреваются до высоких температур в то время, когда гибридное транспортное средство приводится в движение, поскольку температуры термостойкости электродвигателя и генератора ограничены, для их охлаждения используется система охлаждения посредством рециркуляции масла или воды, в общем, через охлаждающий трубопровод посредством насоса. Таким образом, электродвигатель и генератор охлаждаются посредством общей системы охлаждения.
Здесь описывается пример традиционной системы охлаждения для электродвигателя и генератора в гибридном транспортном средстве. Фиг.5 является примерной схемой, показывающей состояние, в котором работает масляный насос в традиционной системе охлаждения. Помимо этого, фиг.6 является примерной схемой, показывающей состояние, в котором масляный насос в традиционной системе охлаждения остановлен.
Как показано на фиг.5 и 6, традиционная система охлаждения включает в себя масляный радиатор 102 для охлаждения масла, которое охлаждает электродвигатель 100, и масляный насос 101 для накачивания масла. Электродвигатель 100, главным образом, состоит из ротора 100a и статора 100b, которые задаются концентрически в кожухе 100c. Спирали наматываются вокруг статора 100b электродвигателя 100 (иллюстрация которого опускается). Масляный бачок 100d формируется в нижней части во внутренней части кожуха 100c электродвигателя 100 для предотвращения втягивания воздуха в масляный насос 101.
Первый маслопровод 103 размещается между нижней частью электродвигателя 100 и масляным насосом 101. Масло, накопленное в масляном бачке 100d в электродвигателе 100, подается в масляный насос 101 через первый маслопровод 103. Второй маслопровод 104 размещается между масляным насосом 101 и масляным радиатором 102. Масло под давлением посредством масляного насоса 101 подается в масляный радиатор 102 через второй маслопровод 104.
Третий маслопровод 105 размещен между масляным радиатором 102 и верхней частью кожуха 100c электродвигателя 100. Масло, охлажденное в масляном радиаторе 102, подается в электродвигатель 100 через третий маслопровод 105. Масло, выпускаемое из третьего маслопровода 105, сливается в верхнюю часть статора 100b электродвигателя 100. Соответственно, ротор 100a и статор 100b электродвигателя 100 охлаждаются.
Когда работает масляный насос 101, масло рециркулирует в направлении, указываемом посредством стрелок на фиг.5, через маслопроводы от первого маслопровода 103 до третьего маслопровода 105. Следовательно, когда масляный насос 101 работает, масло заполняет маслопроводы от первого маслопровода 103 до третьего маслопровода 105, и, следовательно, уровень 100e масла в масляном бачке 100d в электродвигателе 100 является низким.
Как показано на фиг.6, тем не менее, когда масляный насос 101 остановлен, масло, заполненное в маслопроводах от первого маслопровода 103 до третьего маслопровода 105, возвращается для накапливания в масляном бачке 100d в электродвигателе 100. Следовательно, положение уровня масла 100e повышается, посредством чего ротор 100a электродвигателя 100 частично погружается в масло.
На фиг.5 и 6 описание выполняется путем демонстрации только электродвигателя 100 в качестве примера составляющего компонента. Традиционно, поскольку электродвигатель 100 располагается коаксиально с генератором в поперечном направлении транспортного средства, уровни масла в электродвигателе 100 и генераторе являются идентичными. Когда электродвигатель 100 и генератор имеют одинаковый размер, ротор генератора также частично погружается в масло.
В гибридном транспортном средстве, описанном выше, когда температуры электродвигателя 100 и генератора являются низкими, масляный насос 101 работает прерывисто, и, следовательно, предусмотрен случай, в котором роторы 100a электродвигателя 100 и генератора вращаются, когда масляный насос 101 остановлен.
В гибридном транспортном средстве с последовательным возбуждением, в котором электродвигатель 100 возбуждается посредством использования электроэнергии, сгенерированной в генераторе, как электродвигатель 100, так и генератор работают при последовательном возбуждении, при котором электродвигатель 100 возбуждается посредством использования электроэнергии, сгенерированной в генераторе. Помимо этого, при EV-возбуждении, при котором электродвигатель 100 возбуждается посредством использования электроэнергии аккумулятора высокого напряжения, работает только электродвигатель 100. Вследствие этого, частота, на которой работает электродвигатель 100, становится высокой.
Тем не менее, как описано выше, когда масляный насос 101 остановлен, ротор 100a электродвигателя 100 частично погружается в масло, зарезервированное в масляном бачке 100d в электродвигателе 100, и, следовательно, ротор 100a электродвигателя 100 взбалтывает масло в масляном бачке 100d. Вследствие этого, сопротивление при перемешивании формируется в роторе 100a электродвигателя 100, приводя к такой проблеме, что вращение ротора 100a электродвигателя 100 нарушается.
Патентный Документ 1: JP-A-2010-163053
Сущность изобретения
Следовательно, один преимущественный аспект настоящего изобретения заключается в том, чтобы создать систему охлаждения, которая может охлаждать приводной электродвигатель, который работает на высокой частоте, с хорошей эффективностью без нарушения вращения ротора приводного электродвигателя.
Согласно одному преимуществу изобретения создана система охлаждения, выполненная с возможностью установки на гибридном транспортном средстве, включающем в себя:
электродвигатель, возбуждаемый посредством электроэнергии, подаваемой от аккумулятора; и
генератор, выполненный с возможностью возбуждения посредством двигателя внутреннего сгорания, когда остаточная электроэнергия в аккумуляторе не превышает заданное значение, чтобы заряжать аккумулятор, причем система охлаждения содержит:
контур для охлаждения, в котором рециркулирует хладагент для охлаждения электродвигателя и генератора; и
модуль создания давления, выполненный с возможностью нагнетания хладагента,
при этом электродвигатель расположен ниже по потоку модуля создания давления в направлении рециркуляции хладагента, а генератор расположен ниже по потоку электродвигателя и выше по потоку модуля создания давления в направлении рециркуляции.
Согласно системе охлаждения согласно изобретению, даже когда модуль создания давления остановлен, ротор электродвигателя не погружается в хладагент, и, следовательно, не формируется большое сопротивление при перемешивании в роторе электродвигателя, посредством чего требуемое охлаждение может быть реализовано с хорошей эффективностью без нарушения вращения ротора электродвигателя, который работает на высокой частоте.
Краткое описание чертежей
Фиг.1 - примерная схема, показывающая состояние, в котором работает масляный насос системы охлаждения согласно первому варианту осуществления изобретения;
Фиг.2 - примерная схема, показывающая состояние, в котором масляный насос системы охлаждения согласно первому варианту осуществления изобретения остановлен;
Фиг.3 - примерная схема, показывающая конфигурацию гибридного транспортного средства, в котором установлена система охлаждения согласно первому варианту осуществления изобретения;
Фиг.4 - примерная схема, показывающая состояние, в котором масляный насос системы охлаждения согласно второму варианту осуществления изобретения работает;
Фиг.5 - примерная схема, показывающая состояние, в котором масляный насос традиционной системы охлаждения работает; и
Фиг.6 - примерная схема, показывающая состояние, в котором масляный насос традиционной системы охлаждения остановлен.
Подробное описание примерных вариантов осуществления изобретения
В дальнейшем в этом документе варианты осуществления системы охлаждения согласно изобретению описываются со ссылкой на чертежи.
Сначала будет описан первый вариант осуществления системы охлаждения согласно изобретению. Фиг.3 является примерной схемой, показывающей конфигурацию гибридного транспортного средства, в котором установлена система охлаждения согласно этому варианту осуществления. Как показано на фиг.3, гибридное транспортное средство 1 согласно этому варианту осуществления включает в себя приводной передний электродвигатель (электродвигатель) 2 и задний электродвигатель 3, которые приводят в движение гибридное транспортное средство 1, генератор 4 для генерирования электричества и двигатель 5 внутреннего сгорания для приведения генератора 4.
В этом варианте осуществления, хотя описание выполняется посредством рассмотрения гибридного транспортного средства с последовательным возбуждением, включающего в себя передний электродвигатель 2 и задний электродвигатель 3, например, изобретение также может применяться к гибридному транспортному средству с последовательным приведением, в котором используется только передний электродвигатель 2, и, помимо этого, к гибридному транспортному средству с параллельным приведением.
Помимо этого, в этом варианте осуществления, хотя масло используется в качестве хладагента, чтобы охлаждать передний электродвигатель 2 и генератор 4, могут быть использованы другие жидкости, в этом числе вода.
Передняя коробка 7 передач в блоке с трансмиссией для передачи движущей силы переднего электродвигателя 2 на передний ведущий вал 6 и движущей силы двигателя 5 внутреннего сгорания на генератор 4 размещается между передним электродвигателем 2 и генератором 4 и двигателем 5 внутреннего сгорания и передним ведущим валом 6. Помимо этого, передний электродвигатель 2 соединяется с передним инвертором 8 посредством жгута 9 проводов трехфазного высокого напряжения. Дополнительно, генератор 4 соединяется с передним инвертором 8 посредством жгута 10 проводов трехфазного высокого напряжения. Аккумулятор 11 высокого напряжения соединяется с передним инвертором 8 посредством жгута 12 проводов высокого напряжения.
Задняя коробка 14 передач в блоке с трансмиссией для передачи движущей силы заднего электродвигателя 3 на задний ведущий вал 13 размещается между задним электродвигателем 3 и задним ведущим валом 13. Помимо этого, задний электродвигатель 3 соединяется с задним инвертором 15 посредством жгута 16 проводов трехфазного высокого напряжения. Аккумулятор 11 высокого напряжения соединяется с задним инвертором 15 посредством жгута 17 проводов высокого напряжения.
Помимо этого, гибридное транспортное средство 1 согласно варианту осуществления включает в себя контур для охлаждения, который состоит из масляного радиатора 20 (модуля охлаждения) для охлаждения масла, масляного насоса 21 (модуля создания давления) для накачивания масла и маслопроводов 22-27 для рециркуляции масла. Передний электродвигатель 2 и генератор 4 соединяются друг с другом посредством масляного радиатора 20, масляного насоса 21 и маслопроводов от первого маслопровода 22 до шестого маслопровода 27 и охлаждаются посредством масла. Передний электродвигатель 2 располагается ниже по потоку масляного насоса 21 в направлении рециркуляции масла, и генератор 4 располагается ниже по потоку переднего электродвигателя 2 и выше по потоку масляного насоса 21 в направлении рециркуляции масла. Помимо этого, масляный радиатор 20 располагается ниже по потоку масляного насоса 21 и выше по потоку переднего электродвигателя 2 в направлении рециркуляции масла.
Помимо этого, гибридное транспортное средство 1 согласно варианту осуществления включает в себя радиатор 30 для охлаждения хладагента, насос 31 для охлаждения для накачивания хладагента и охлаждающий трубопровод 32 для рециркуляции хладагента. Затем задний электродвигатель 3, передний инвертор 8 и задний инвертор 15 соединяются с радиатором 30 и насосом 31 для охлаждения посредством охлаждающего трубопровода 32 и охлаждаются посредством хладагента.
Фиг.1 является примерной схемой, показывающей состояние, в котором масляный насос системы охлаждения согласно первому варианту осуществления изобретения работает. Как показано на фиг.1, в системе охлаждения варианта осуществления положение, в котором передний электродвигатель 2 размещается, задается в гравитационном направлении выше положения, в котором размещается генератор 4.
Передний электродвигатель 2 включает в себя, главным образом, ротор 2a и статор 2b, которые размещаются концентрически в кожухе 2c. Спирали наматываются вокруг статора 2b переднего электродвигателя 2 (иллюстрация которого опускается). Ротор 2a переднего электродвигателя 2 выводит движущую силу на передний ведущий вал 6.
Помимо этого, генератор включает в себя, главным образом, ротор 4a и статор 4b, которые размещаются концентрически в кожухе 4c. Спирали наматываются вокруг статора 4b генератора 4 (иллюстрация которого опускается). Ротор 4a генератора 4 вращается посредством двигателя 5 внутреннего сгорания.
Масляный бачок 4d (бачок для хладагента) формируется в нижней части внутренней части кожуха 4c генератора 4 для предотвращения втягивания воздуха в масляный насос 21. Первый маслопровод 22 размещается между нижней частью кожуха 4c генератора 4 и масляным насосом 21. Масло, зарезервированное в масляном бачке 4d в генераторе 4, подается в масляный насос 21 через первый маслопровод 22. Второй маслопровод 23 размещается между масляным насосом 21 и масляным радиатором 20. Масло под давлением посредством масляного насоса 21 подается в масляный радиатор 20 через второй маслопровод 23.
Третий маслопровод 24 и четвертый маслопровод 25 размещаются между масляным радиатором 20 и верхней частью кожуха 2c переднего электродвигателя 2. Масло, охлажденное в масляном радиаторе 20, подается в передний электродвигатель 2 через третий маслопровод 24 и четвертый маслопровод 25. Масло, выпускаемое из четвертого маслопровода 25, сливается в верхнюю часть статора 2b переднего электродвигателя 2. Посредством выполнения этого охлаждаются ротор 2a и статор 2b переднего электродвигателя 2.
Третий маслопровод 24 и пятый маслопровод 26 размещаются между масляным радиатором 20 и верхней частью кожуха 4c генератора 4. Масло, охлажденное в масляном радиаторе 20, подается в генератор 4 через третий маслопровод 24 и пятый маслопровод 26. Масло, выпускаемое из пятого маслопровода 26, сливается в верхнюю часть статора 4b генератора 4. Посредством выполнения этого охлаждаются ротор 4a и статор 4b генератора 4.
Шестой маслопровод (канал для хладагента) 27 размещается между нижней частью кожуха 2c переднего электродвигателя 2 и нижней частью кожуха 4c генератора 4. Масло, которое охладило ротор 2a и статор 2b переднего электродвигателя 2, выпускается в масляный бачок 4d генератора 4.
Когда работает масляный насос 21, масло рециркулирует, как указано посредством стрелок на фиг.1, через маслопроводы от первого маслопровода 22 до шестого маслопровода 27. Таким образом, когда масляный насос 21 работает, масло заполнено в маслопроводах от первого маслопровода 22 до шестого маслопровода 27, и, следовательно, уровень 4e масла в масляном бачке 4d в генераторе 4 является низким.
В этой связи, в системе охлаждения согласно этому варианту осуществления, когда температуры переднего электродвигателя 2 и генератора 4 являются низкими, масляный насос 21 работает прерывисто, и, следовательно, возникает случай, в котором ротор 2a переднего электродвигателя 2 и ротор 4a генератора 4 вращаются, когда масляный насос 21 остановлен.
Фиг.2 является примерной схемой, показывающей состояние, в котором масляный насос системы охлаждения согласно первому варианту осуществления изобретения остановлен. Как показано на фиг.2, в системе охлаждения согласно варианту осуществления положение, в котором передний электродвигатель 2 размещается, задается выше положения, в котором генератор 4 размещается, как описано выше. Вследствие этого, даже когда масляный насос 21 остановлен, не возникает такой случай, что ротор 2a переднего электродвигателя 2 погружается в масло.
Положение размещения переднего электродвигателя 2 является таким, что ротор 2a переднего электродвигателя 2 не погружается в масло, и, следовательно, передний электродвигатель 2 размещается так, что нижний конец ротора 2a переднего электродвигателя 2 размещается выше уровня 4e масла в масляном бачке 4d в генераторе 4.
Следовательно, согласно системе охлаждения согласно варианту осуществления даже когда масляный насос 21 остановлен, ротор 2a переднего электродвигателя 2 не погружается в масло, и, следовательно, большое сопротивление при перемешивании не формируется в роторе 2a переднего электродвигателя 2, посредством чего требуемое охлаждение может быть реализовано с хорошей эффективностью без нарушения вращения ротора 2a переднего электродвигателя 2, который работает на высокой частоте.
Помимо этого, гибридное транспортное средство 1 согласно варианту осуществления включает в себя передний электродвигатель 2 и задний электродвигатель 3. Вследствие этого при последовательном возбуждении генератор 4 должен генерировать электроэнергию для возбуждения как переднего электродвигателя 2, так и заднего электродвигателя 3, и, следовательно, нагрузка, прикладываемая к генератору 4, превышает нагрузку, прикладываемую к переднему электродвигателю 2, и, следовательно, температура генератора 4 увеличивается до более высокого значения, чем температура переднего электродвигателя 2. Затем масло, сливаемое в генератор 4 из него, чтобы охлаждать генератор 4, нагревается до высокой температуры, когда масло достигает нижней части статора 4b генератора 4, и, следовательно, масло не может охлаждать нижнюю часть статора 4b генератора 4, приводя к случаю, в котором вызывается варьирование в температуре между верхней частью и нижней частью статора 4b генератора 4.
Вследствие этого, как показано на фиг.1, в системе охлаждения согласно изобретению уровень 4e масла в масляном бачке 4d в генераторе 4 размещается выше нижнего конца статора 4b генератора 4, посредством чего нижняя часть статора 4b генератора 4, который нагревается до высокой температуры во время последовательного возбуждения, может быть охлаждена посредством масла, имеющего относительно низкую температуру в результате протекания вдоль стороны переднего электродвигателя 2, в которой температура сохраняется относительно низкой во время последовательного возбуждения. Следовательно, согласно системе охлаждения согласно варианту осуществления варьирование в температуре статора 4b генератора 4, который нагревается до высокой температуры во время последовательного возбуждения, может быть уменьшено.
Теперь будет описан второй вариант осуществления системы охлаждения согласно изобретению. Фиг.4 является примерной схемой, показывающей состояние, в котором масляный насос системы охлаждения согласно этому варианту осуществления работает. Как показано на фиг.4, хотя конфигурация системы охлаждения согласно этому варианту осуществления почти является аналогичной конфигурации системы охлаждения согласно первому варианту осуществления, второй вариант осуществления отличается от первого варианта осуществления тем, что шестой маслопровод 28 соединяется с кожухом 2c от нижней части кожуха 2c переднего электродвигателя 2 к боковой стороне генератора 4. Шестой маслопровод 28 соединяется с кожухом 2c со стороны нижней части статора 4b генератора 4.
Вследствие этого в системе охлаждения согласно этому варианту осуществления посредством соединения шестого маслопровода 28 от нижней части кожуха 2c переднего электродвигателя 2 к стороне нижней части статора 4b в кожухе 4c генератора 4, с тем чтобы сливать масло, имеющее относительно низкую температуру в результате протекания вдоль стороны переднего электродвигателя 2, в которой температура сохраняется относительно низкой во время последовательного возбуждения, непосредственно в нижней части статора 4b генератора 4, нижняя часть статора 4b генератора 4, который нагревается до высокой температуры во время последовательного возбуждения, может быть охлаждена. Следовательно, согласно системе охлаждения согласно этому варианту осуществления может быть дополнительно уменьшено варьирование в температуре статора 4b генератора 4, который нагревается до высокой температуры во время последовательного возбуждения.
Изобретение не ограничено вариантами осуществления, которые описаны выше, и может изменяться или модифицироваться различными способами без отступления от сущности и объема изобретения.
Изобретение может быть использовано, например, в гибридном транспортном средстве, включающем в себя электродвигатель и генератор.

Claims (4)

1. Система охлаждения, выполненная с возможностью установки на гибридном транспортном средстве, включающем в себя:
электродвигатель, возбуждаемый посредством электроэнергии, подаваемой от аккумулятора; и
генератор, имеющий бачок для хладагента, который образован в нижней части внутри него, и выполненный с возможностью возбуждения посредством двигателя внутреннего сгорания, когда остаточная электроэнергия в аккумуляторе становится не более заданного значения, чтобы заряжать аккумулятор, причем система охлаждения содержит:
контур охлаждения, в котором рециркулирует хладагент для охлаждения электродвигателя и генератора; и
модуль создания давления, выполненный с возможностью нагнетания хладагента,
при этом электродвигатель размещён так, что нижний конец ротора электродвигателя находится выше уровня хладагента в бачке для хладагента,
электродвигатель расположен по потоку ниже модуля создания давления в направлении рециркуляции хладагента, а генератор расположен по потоку ниже электродвигателя и по потоку выше модуля создания давления в направлении рециркуляции, и электродвигатель расположен выше генератора.
2. Система по п.1, дополнительно содержащая:
кожух генератора, выполненный с возможностью размещения генератора, и кожух электродвигателя, выполненный с возможностью размещения электродвигателя, при этом контур охлаждения включает в себя канал для хладагента, через который хладагент протекает из нижнего конца кожуха электродвигателя в бачок для хладагента, причём нижний по потоку конец канала для хладагента соединён с бачком для хладагента.
3. Система по п.1, дополнительно содержащая
модуль охлаждения, выполненный с возможностью охлаждения хладагента и расположенный по потоку ниже модуля создания давления и выше электродвигателя.
4. Система по п.1, дополнительно содержащая:
кожух генератора, выполненный с возможностью размещения генератора, и кожух электродвигателя, выполненный с возможностью размещения электродвигателя, при этом контур охлаждения имеет канал для хладагента, через который хладагент протекает из нижнего конца электродвигателя в бачок для хладагента, причём нижний по потоку конец канала для хладагента соединен с кожухом генератора на боковой стороне генератора.
RU2011144810/11A 2010-11-05 2011-11-03 Система охлаждения RU2506174C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-248031 2010-11-05
JP2010248031A JP5338787B2 (ja) 2010-11-05 2010-11-05 冷却装置

Publications (2)

Publication Number Publication Date
RU2011144810A RU2011144810A (ru) 2013-05-10
RU2506174C2 true RU2506174C2 (ru) 2014-02-10

Family

ID=45047589

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2011144810/11A RU2506174C2 (ru) 2010-11-05 2011-11-03 Система охлаждения

Country Status (6)

Country Link
US (1) US9260007B2 (ru)
EP (1) EP2450217B1 (ru)
JP (1) JP5338787B2 (ru)
KR (1) KR101313520B1 (ru)
CN (1) CN102452311B (ru)
RU (1) RU2506174C2 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2681436C1 (ru) * 2017-07-27 2019-03-06 Тойота Дзидося Кабусики Кайся Система охлаждения батареи

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012217711A1 (de) * 2012-09-28 2014-04-03 Magna Powertrain Ag & Co. Kg Elektrische Maschine mit Kühlung
JP5978954B2 (ja) * 2012-11-26 2016-08-24 三菱自動車工業株式会社 回転電機装置
KR101664731B1 (ko) * 2015-07-30 2016-10-12 현대자동차주식회사 보조 쿨링 시스템
DE102016002518A1 (de) 2016-03-02 2017-09-07 Audi Ag Verfahren zum Betreiben eines Kraftfahrzeugs
KR101846876B1 (ko) 2016-10-24 2018-05-24 현대자동차 주식회사 파워트레인
KR101886109B1 (ko) * 2017-03-02 2018-08-07 현대자동차 주식회사 하이브리드 구동 시스템의 모터 냉각구조
JP6680263B2 (ja) * 2017-05-19 2020-04-15 トヨタ自動車株式会社 ハイブリッド車両の駆動装置
JP2019047548A (ja) * 2017-08-30 2019-03-22 ダイムラー・アクチェンゲゼルシャフトDaimler AG 車両用温度管理装置
DE102018215921A1 (de) * 2018-09-19 2020-03-19 ZF Drivetech (Suzhou) Co.Ltd. Antriebsvorrichtung zum elektrischen Antrieb eines Kraftfahrzeugs mit zwei elektrischen Antriebsaggregaten und mit einer Kühlvorrichtung für diese Antriebsaggregate
JP7073299B2 (ja) * 2019-05-07 2022-05-23 矢崎総業株式会社 車両用冷却システム
CN110171284B (zh) * 2019-05-23 2021-02-19 浙江吉利控股集团有限公司 一种模块化集成式混合动力系统
WO2021111810A1 (ja) * 2019-12-06 2021-06-10 三菱自動車工業株式会社 車両の駆動ユニット
CN113472126A (zh) * 2020-03-31 2021-10-01 蜂巢传动系统(江苏)有限公司保定研发分公司 双电机组件及车辆
JP2022108687A (ja) * 2021-01-13 2022-07-26 本田技研工業株式会社 車両駆動装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10266855A (ja) * 1997-03-21 1998-10-06 Toyota Motor Corp ハイブリッド車用動力冷却装置
JP2004332744A (ja) * 2004-05-17 2004-11-25 Nissan Motor Co Ltd ハイブリッド電気自動車の冷却システム
US20060231339A1 (en) * 2005-03-22 2006-10-19 Aisin Aw Co., Ltd. Hydraulic circuit device and hybrid drive system using that hydraulic circuit device
JP2007216791A (ja) * 2006-02-15 2007-08-30 Toyota Motor Corp 冷却システムおよびそれを備えたハイブリッド車両
RU2390432C2 (ru) * 2005-10-26 2010-05-27 Тойота Дзидося Кабусики Кайся Устройство привода транспортного средства (варианты)

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3716607B2 (ja) * 1998-03-26 2005-11-16 日産自動車株式会社 車両の冷却装置
JP3886696B2 (ja) * 1999-04-27 2007-02-28 アイシン・エィ・ダブリュ株式会社 駆動装置
JP3886697B2 (ja) * 1999-04-27 2007-02-28 アイシン・エィ・ダブリュ株式会社 駆動装置
JP3891348B2 (ja) * 2002-12-27 2007-03-14 アイシン・エィ・ダブリュ株式会社 電動駆動装置
JP4232750B2 (ja) * 2004-06-10 2009-03-04 株式会社デンソー ハイブリッド自動車用冷却システム
CN100999188A (zh) 2006-12-28 2007-07-18 奇瑞汽车有限公司 混合动力汽车的冷却系统
JP4633761B2 (ja) * 2007-05-25 2011-02-16 トヨタ自動車株式会社 駆動機構
CN104264737B (zh) * 2008-11-18 2018-06-19 住友重机械工业株式会社 工作机械
JP5245846B2 (ja) 2009-01-15 2013-07-24 トヨタ自動車株式会社 動力出力装置およびその制御方法並びにハイブリッド車
JP5321910B2 (ja) * 2009-09-24 2013-10-23 スズキ株式会社 ハイブリッド車両の冷却装置
JP5381872B2 (ja) * 2010-04-01 2014-01-08 三菱自動車工業株式会社 ハイブリッド車の冷却装置
JP2011259634A (ja) * 2010-06-10 2011-12-22 Toyota Motor Corp 回転電機冷却システム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10266855A (ja) * 1997-03-21 1998-10-06 Toyota Motor Corp ハイブリッド車用動力冷却装置
JP2004332744A (ja) * 2004-05-17 2004-11-25 Nissan Motor Co Ltd ハイブリッド電気自動車の冷却システム
US20060231339A1 (en) * 2005-03-22 2006-10-19 Aisin Aw Co., Ltd. Hydraulic circuit device and hybrid drive system using that hydraulic circuit device
RU2390432C2 (ru) * 2005-10-26 2010-05-27 Тойота Дзидося Кабусики Кайся Устройство привода транспортного средства (варианты)
JP2007216791A (ja) * 2006-02-15 2007-08-30 Toyota Motor Corp 冷却システムおよびそれを備えたハイブリッド車両

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2681436C1 (ru) * 2017-07-27 2019-03-06 Тойота Дзидося Кабусики Кайся Система охлаждения батареи

Also Published As

Publication number Publication date
RU2011144810A (ru) 2013-05-10
EP2450217B1 (en) 2020-01-22
JP2012096738A (ja) 2012-05-24
KR101313520B1 (ko) 2013-10-01
JP5338787B2 (ja) 2013-11-13
EP2450217A2 (en) 2012-05-09
US9260007B2 (en) 2016-02-16
CN102452311A (zh) 2012-05-16
KR20120048471A (ko) 2012-05-15
US20120111543A1 (en) 2012-05-10
EP2450217A3 (en) 2018-04-25
CN102452311B (zh) 2016-04-13

Similar Documents

Publication Publication Date Title
RU2506174C2 (ru) Система охлаждения
CN107923517B (zh) 混合驱动模块
US7509929B2 (en) System and method to control temperature of an alternator and/or an engine in a vehicle
US7649273B2 (en) Hybrid drive unit having a low-temperature circuit
JP5261514B2 (ja) 電力制御装置の搭載構造
US7270582B2 (en) Power generating and propelling system of vessel
US20170144532A1 (en) Cooling apparatus for vehicle
US20050211490A1 (en) Vehicle drive device and four-wheel drive with motor
JP4816350B2 (ja) コンデンサの冷却構造およびその冷却構造を備えたモータ
JP2021030811A (ja) 電気駆動車両の冷却装置
CN112406520A (zh) 电驱动车辆的冷却装置
JP2011234590A (ja) 駆動装置
US20220025967A1 (en) Motor operating module
JP2008218732A (ja) リアクトル固定構造
Schmidhofer et al. Highly integrated power electronics for a 48 V hybrid drive application
EP2453119B1 (en) Vehicle with a coolant circulation circuit
US10604003B2 (en) Hydraulic pressure supply system of automatic transmission for hybrid vehicle and cooling the jacket of a motor with low pressure supply to low pressure part
JP2012239337A (ja) 電力変換装置
CN111834696A (zh) 一种汽车电池温度控制系统
CN205706144U (zh) 混合动力系统
US11870327B2 (en) Vehicle drive device
JP2019532607A (ja) 電気モーターを有するハイブリッド駆動モジュール
JP2004304936A (ja) パワーコントロールユニット
EP4253129A1 (en) Electric vehicle cooling system
EP4166361A1 (en) Transaxle for electric vehicle

Legal Events

Date Code Title Description
PD4A Correction of name of patent owner