RU2502961C2 - Способ контроля измерительного прибора и измерительный прибор - Google Patents

Способ контроля измерительного прибора и измерительный прибор Download PDF

Info

Publication number
RU2502961C2
RU2502961C2 RU2010149870/28A RU2010149870A RU2502961C2 RU 2502961 C2 RU2502961 C2 RU 2502961C2 RU 2010149870/28 A RU2010149870/28 A RU 2010149870/28A RU 2010149870 A RU2010149870 A RU 2010149870A RU 2502961 C2 RU2502961 C2 RU 2502961C2
Authority
RU
Russia
Prior art keywords
measuring device
measuring
electronic unit
housing
circuit
Prior art date
Application number
RU2010149870/28A
Other languages
English (en)
Other versions
RU2010149870A (ru
Inventor
Гернот ЭНГСТЛЕР
Оле КАУДАЛЬ
Христиан МАТТ
Ганс ПОЛЬ
Original Assignee
Эндресс+Хаузер Флоутек Аг
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Эндресс+Хаузер Флоутек Аг filed Critical Эндресс+Хаузер Флоутек Аг
Publication of RU2010149870A publication Critical patent/RU2010149870A/ru
Application granted granted Critical
Publication of RU2502961C2 publication Critical patent/RU2502961C2/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • G01F1/8409Coriolis or gyroscopic mass flowmeters constructional details
    • G01F1/8431Coriolis or gyroscopic mass flowmeters constructional details electronic circuits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
    • G01F15/06Indicating or recording devices
    • G01F15/061Indicating or recording devices for remote indication
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F25/00Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume
    • G01F25/10Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume of flowmeters

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Measuring Volume Flow (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)

Abstract

Измерительный прибор включает в себя, по меньшей мере, частично помещенный, в частности, в заземленный корпус (100) измерительный преобразователь (MW) для регистрации, по меньшей мере, одного измеряемого параметра, а также, по меньшей мере, периодически электрически связанный с измерительным преобразователем электронный блок (ME) измерительного прибора. Электронный блок (ME) измерительного прибора имеет, по меньшей мере, один измерительный канал для регистрации и дальнейшей обработки, по меньшей мере, одного генерированного посредством измерительного преобразователя первичного сигнала (s), а также схему (20В) для измерения тока для регистрации протекающих внутри измерительного прибора электрических токов. Далее предусмотрено, что схема для измерения тока в процессе работы, по меньшей мере, периодически, в частности, время от времени регистрирует электрический ток (I) утечки, который течет вследствие, по меньшей мере, периодически имеющейся между корпусом и электронным блоком измерительного прибора разности потенциалов (ΔU), а также имеющегося между корпусом и электронным блоком измерительного прибора, в частности, нежелательного и/или образованного посредством поразившего корпус отложения, электропроводящего соединения (R). С учетом зарегистрированного тока утечки электронный блок измерительного прибора генерирует далее, по меньшей мере, один выражающий собой, в частности, неправильное рабочее состояние измерительного прибора в данный момент времени, в частности, цифровой параметр (Z) состояния. Технический результат - улучшение проверки рабочих состояний и/или эксплуатационной безопасности электрических про

Description

Область техники
Изобретение относится к способу контроля измерительного прибора, который имеет, по меньшей мере, частично помещенный, в частности, в заземленный корпус измерительный преобразователь, а также, по меньшей мере, периодически связанный с измерительным преобразователем электронный блок измерительного прибора, а также относится к выполненному, в частности, в виде измерительного прибора и/или прибора управления промышленных средств измерения и автоматизации, и/или электронного измерительного прибора для измерения и/или контроля, по меньшей мере, одного измеряемого параметра, проведенной в трубопроводе и/или в резервуаре среды.
Уровень техники
В промышленных средствах измерения и автоматизации, в частности, и в связи с автоматизацией химических или технологических процессов, и/или в связи с автоматизированным управлением промышленными установками, применяются установленные вблизи места осуществления процесса, электрические измерительные приборы и/или приборы управления, так называемые полевые приборы, такие, например, как работающие по принципу Кориолиса расходомеры, плотномеры, магнитно-индуктивные расходомеры, вихревые расходомеры, ультразвуковые расходомеры, термические расходомеры, манометры, уровнемеры, термометры, приборы измерения уровня pH и проч., которые служат для выработки выражающих собой параметры процесса - в аналоговой или в цифровой форме - измеренных параметров, а также передающих, в конечном итоге, эти параметры сигналов. Соответственно, под регистрируемыми параметрами процесса, в зависимости от применения, могут пониматься, например, весовой расход, плотность, вязкость, уровень наполнения или предельный уровень, давление или температура, и т.д.. жидкой, порошкообразной, парообразной или газообразной среды, которая проводится или удерживается в соответствующем резервуаре, например, как трубопровод или цистерна.
Для регистрации соответствующих параметров процесса полевые приборы указанного типа соответственно имеют физико-электрический или химико-электрический датчик. В большинстве случаев этот датчик вставлен в стенку соответственно проводящего среду резервуара или по ходу соответственно проводящей среду магистрали, например, трубопровода, и служит для того, чтобы вырабатывать, по меньшей мере, один, соответствующий регистрируемым параметром процесса, электрический измерительный сигнал. Для обработки измерительного сигнала датчик соединен далее с предусмотренной в электронном блоке полевого прибора, служащей для дальнейшей обработки или оценки, по меньшей мере, одного измерительного сигнала, а также для генерирования соответствующих сигналов измеренного параметра, находящейся внутри измерительного прибора, рабочей схемой или схемой обработки данных. Другие примеры таких, известных специалисту измерительных приборов, в частности, также и их конструкции, области применения и/или детали, касающиеся принципа их работы, достаточно подробно и детально описаны в, частности, в WO-A 07/130024, WO-A 03/048874, WO-A 02/45045, WO-A 02/103327, WO-A 02/086426, WO-A 01/02816, WO-A 00/48157, WO-A 00/36379, WO-A 00/14485, WO-A 95/16897, WO-A 88/02853, WO-A 88/02476, US-B 7134348, US-В 7133727, US-B 7075313, US-B 7073396, US-B 7032045, US-B 6854055, US-B 6799476, US-B 6776053, US-B 6769301, US-В 6711958, US-B 6666098, US-B 6662120, US-В 6640308, US-B 6577989, US-B 6574515, US-B 6556447, US-B 6539819, US-B 6535161, US-B 6512358, US-B 6487507, US-B 6484591, US-B 6480131, US-В 6476522, US-В 6397683, US-В 6366436, US-B 6352000, US-B 6311136, US-В 6285094, US-B 6269701, US-B 6236322, US-A 6140940, US-А 6051783, US-А 6014100, US-А 6006609, US-А 5959372, US-A 5796011, US-А 5742225, US-А 5742225, US-А 5705007, US-A 5687100, US-А 5672975, US-A 5604685, US-А 5535243, US-A 5469748, US-A 5416723, US-А 5363341, US-А 5359881, US-A 5349872, US-А 5231884, US-А 5207101, US-A 5131279, US-А 5068592, US-A 5065152, US-A 5052230, US-A 4926340, US-A 4850213, US-A 4768384, US-А 4716770, US-А 4656353, US-A 4617607, US-А 4594584, US-А 4574328, US-А 4524610, US-А 4468971, US-А 4317116, US-A 4308754, US-А 3878725, US-A 2007/0217091, US-A 2006/0179956, US-А 2006/0161359, US-А 2006/0120054, US-А 2006/0112774, US-A 2006/0096390, US-A 2005/0139015, US-А 2004/0117675, ЕР-А 1669726, ЕР-А 1158289, ЕР-А 1147463, ЕР-А 1058093, ЕР-А 984248, ЕР-А 591926, ЕР-А 525920, DE-A 102005032808, DE 10041166, DE-A 4412388, DE-A 3934007 или в DE-A 3711754.
У большого количества полевых приборов указанного типа датчик для выработки измерительного сигнала в процессе работы настраивается, к тому же, посредством, по меньшей мере, периодически, генерированного рабочей схемой или схемой обработки данных, задающего сигнала таким образом, что он подходящим для измерения образом, по меньшей мере, опосредованно или же через напрямую контактирующий со средой зонд, практически непосредственно воздействует на среду, чтобы вызвать там реакции, соответствующие регистрируемым измеряемым параметрам. Задающий сигнал может быть при этом, например, соответствующим образом отрегулирован в относительно силы тока, уровня напряжения и/или частоты. В качестве примеров таких активных, то есть соответствующим образом преобразующих в среде электрический задающий сигнал датчиков можно назвать, в частности, служащие для измерения, по меньшей мере, периодически протекающих сред расходомеры, например, по меньшей мере, с одной настроенной от задающего сигнала, создающей магнитное поле, катушкой или, по меньшей мере, с одним настроенным от задающего сигнала ультразвуковым датчиком, или же также служащие для измерения и/или контроля уровней наполнения в резервуаре датчики уровня наполнения и/или предельного уровня, как, например, датчики со свободно излучающей микроволновой антенной, Gouboun-магистралью или с вибрирующим погружным корпусом.
Приборы рассматриваемого типа имеют, по меньшей мере, один корпус, по меньшей мере, с одним электрическим, электронным и/или электромеханическим конструктивным элементом и/или блоком прибора, например, с камерой, принимающей компоненты упомянутой рабочей схемы или схемы обработки данных, обычно закрытой герметично и/или с возможностью предохранения от взрыва. Так, полевые приборы описанного типа для размещения электронного блока измерительного прибора имеют в большинстве случаев сравнительно прочный, в частности, устойчивый к ударным нагрузкам, воздействию давления и/или атмосферных явлений, корпус для электронного блока. Этот корпус, как предложено, например, в US-A 6397683 или в WO-A 00/36379, может располагаться на удалении от полевого прибора и быть соединен с ним лишь посредством гибкого провода; однако он может располагаться, как продемонстрировано, например, в ЕР-А 903651 или в ЕР-А 1008836, и прямо на датчике или на отдельном, окружающем этот датчик корпусе. При известных обстоятельствах, как продемонстрировано, например, в ЕР-А 984248, US-A 4594584, US-А 4716770 или в US-A 6352000, корпус для электронного блока может служить и для того, чтобы размещать в нем некоторые механические компоненты датчика, такие, например, как деформируемый в процессе эксплуатации под воздействием механических усилий, имеющий форму мембраны, стержня, втулки или трубы, деформирующийся или вибрирующий корпус, как в US-36352000 или US-A 6051783.
У полевых приборов соответствующий электронный блок обычно посредством соответствующих электрических проводов электрически присоединен к расположенной в большинстве случаев пространственно удаленно от соответствующего прибора, и в большинстве случаев также пространственно разделенной, вышестоящей электронной системе обработки данных, на которую генерированные соответствующим полевым прибором измеренные параметры актуальным образом передаются посредством соответственно передающего эти значения сигнала измеренных значений.
Электрические приборы описанного типа, к тому же, обычно посредством предусмотренной внутри системы обработки данных сети передачи данных соединены друг с другом и/или с соответствующими электронными системами управления процессом, например, с установленными по месту программируемыми системами управления или с установленными в удаленной диспетчерской вычислительными машинами для управления производственным процессом, куда выработанные электронным прибором и оцифрованные, а также соответствующим образом закодированные измеренные параметры передаются далее. Посредством такой вычислительной машины для управления производственным процессом переданные измеренные параметры могут быть обработаны и, в качестве соответствующих данных измерения, например, визуализированы на мониторах и/или преобразованы в сигналы управления для других, выполненных в виде приборов управления, полевых приборов, таких, например, как магнитные клапаны, электромоторы и проч. Так как современные измерительные устройства в большинстве случаев также могут контролироваться, а, при известных условиях, управляться и/или конфигурироваться непосредственно со стороны таких вычислительных машин для управления производственным процессом, то соответствующим образом посредством вышеупомянутых, в большинстве случаев в отношении физики передачи и/или логики передачи гибридных схем передачи данных, на электронный прибор также подаются назначенные рабочие параметры. В соответствии с этим, система обработки данных служит в том плане, что электронный прибор выполнен как полевый прибор указанного типа, в частности, как измерительный прибор, обычно и для того, чтобы преобразовать поданный от электронного прибора сигнал измеренного значения в соответствии с требованиями нижестоящей сети передачи данных, например, оцифровать его соответствующим образом, а, при известных условиях, преобразовать в соответствующее телеграммное сообщение, и/или использовать непосредственно на месте. Для этого в такого рода системах обработки данных предусмотрены электрически соединенные посредством соответствующих соединительных проводов схемы обработки данных, которые предварительно или далее обрабатывают полученные от соответствующего измерительного прибора и/или прибора управления измеренные параметры, а также, в случае необходимости, подходящим образом преобразовывают их. Для передачи данных в такого рода промышленных системах обработки данных служат, по меньшей мере, на отдельных участках, в частности, серийные полевые шины, такие, например, как основная полевая шина, шина RACKBUS-RS 485, высокоскоростная шина и проч., или, например, сети на базе стандарта ETHERNET, а также соответствующие, в большинстве случав стандартизированные, протоколы передачи. Наряду с необходимыми для обработки и преобразования переданных от соответствующих присоединенных полевых приборов измеренных параметров схемами обработки данных, такие вышестоящие системы обработки данных имеют служащие в большинстве случаев также для обеспечения присоединенных измерительных приборов и/или приборов управления, электрической энергией, электрические схемы энергообеспечения, которые предоставляют соответствующее, при известных условиях, питаемое непосредственно от присоединенной полевой шины, питающее напряжение для соответствующего электронного блока полевого прибора, и проводят электрические токи, проходящие через присоединенные к ним электрические провода, а также соответствующие электронные блоки полевых приборов. Схема энергообеспечения может быть присоединена при этом, например, точно к одному полевому прибору и совместно с присоединенной к соответствующему полевому прибору схемой обработки данных - например, объединенными в соответствующий адаптер полевой шины - помещена в совместный, выполненный, например, как Hutschienen-модуль, корпус для электронного блока. Однако абсолютно обычной является практика - помещать схемы энергообеспечения и схемы обработки данных соответственно в отдельные, при известных условиях, пространственно удаленные друг от друга корпуса для электронных блоков и соответствующим образом соединять их друг с другом посредством внешних поводов.
Пригодные для промышленного использования электрические или же электронные приборы, в частности, полевые приборы указанного типа, должны, как известно, отвечать очень высоким требованиям защиты, в частности, в отношении изоляции размещенных там электрических конструктивных элементов от внешних воздействий окружающей среды, в отношении защиты от чувствительных соприкосновений проводящих напряжение конструктивных элементов и/или в отношении прерывания электрической искры зажигания в случае ошибки в работе. К этому, в особенности относится, как изложено, например, и в DE-A 10041166, требование о том, что электрический ток утечки, который, например, при замыкании на корпус или при байпасировании, вследствие поврежденной изоляции проводов или вследствие наличия электропроводящих отложений, через корпус мог бы уходить в массу или в землю, не должен превышать максимально допустимого предельного значения. При подключении электрического прибора к 250 В это допустимое предельное значение составляет, например, 10 мА. Если эти требования выполняются, то прибор отвечает, по меньшей мере, требованиям класса защиты 11, то есть речь идет об электрическом приборе с защитной изоляцией. Для реализации данных требований в соответствии с этим необходимо, чтобы корпус электрического прибора был в достаточной степени изолирован от всех находящихся под напряжением частей прибора. Такая изоляция необходима, в частности, тогда, когда речь идет о корпусе из электропроводящего материала, например, из металла. Обычно сопротивления изоляции между корпусом и электронным блоком измерительного прибора, по меньшей мере, вначале существенно больше 1 Мом, где-то порядка 10 Мом или выше, в то время как такие, способствующие токам утечки, электропроводящие соединения между корпусом и электронным блоком измерительного прибора могут иметь электрическое сопротивление, которое может быть более чем в 10 раз меньше, чем первоначальное сопротивление изоляции, в частности, может быть меньше 1 Мом или даже меньше 500 ком.
Электрические приборы, которые должны эксплуатироваться и во взрывоопасных зонах, должны, сверх того, отвечать также и очень высоким требованиям в отношении обеспечения взрывобезопасности. При этом речь идет, прежде всего, о том, чтобы надежно предотвращать образование искр или, по меньшей мере, гарантировать, что внутри замкнутого пространства случайно возникшая искра не окажет воздействия на окружающую среду, чтобы, таким образом, надежно предотвращать потенциально возможный взрыв. Как изложено в связи с этим, например, в ЕР-А 1669726, US-B 6366436, US-B 6556447 или US-А 2007/0217091, в связи с вопросом обеспечения взрывобезопасности различают несколько степеней защиты от возгорания, которые соответствующим образом заявлены и в касающихся электрических производственных материалов для взрывоопасных зон стандартах и нормативах, как то, например, в американских нормативах FM3600, международных нормативах IEC 60079-18 или в нормативах DIN EN 50014 и далее. Так, например, согласно европейским нормативам EN 50020:1994 взрывобезопасность обеспечивается тогда, когда приборы выполнены в соответствии с определенной степенью защиты от возгорания или в соответствии с классом защиты под наименованием «искробезопасность» (Ex-i). В соответствии с данным классом защиты значения электрических параметров тока, напряжения и мощности в приборе в любое время должны находиться соответственно ниже заданного предельного значения. Три предельных значения выбраны таким образом, что в случае ошибки в работе, например, вследствие короткого замыкания, максимально возникшей тепловой энергии окажется недостаточно для образования икры возгорания. Ток, например, посредством сопротивлений, напряжение, например, посредством диодов Зенера, а мощность посредством соответствующей комбинации ограничивающих ток и напряжение конструктивных элементов удерживаются ниже заданных предельных значений. В европейских нормативах EN 50 019:1994 представлен следующий класс защиты с наименованием «повышенная безопасность» (Ех-е). У приборов, которые выполнены в соответствии с этим классом защиты искро- или взрывобезопасность достигается посредством того, что удаленность в пространстве между двумя различными электрическим потенциалами велика настолько, что образование искр, ввиду удаленности, не может иметь место даже в случае ошибки в работе. Однако при определенных обстоятельствах это может привести к тому, что для удовлетворения этих требований схемные устройства должны будут иметь очень значительные габариты. В качестве следующего класса защиты в европейских нормативах EN 50 018:1994 указана далее степень защиты от возгорания «взрывонепроницаемая оболочка» (Ex-d). Электрические приборы, которые выполнены в соответствии с этим классом защиты, должны иметь взрывонепроницаемый корпус, посредством наличия которого гарантируется, что возникший внутри прибора взрыв не может быть передан во внешнее пространство. Взрывонепроницаемые корпуса в предпочтительно варианте выполнены толстостенными, для обеспечения достаточной механической прочности. В США, Канаде, Японии и других странах имеется стандарт, сопоставимый с вышеуказанными европейскими нормативами.
Наряду с упомянутой ранее безопасностью при эксплуатации, в плане исключения исходящей от полевого прибора угрозы для персонала и/или установок, следующее требование к такого рода, выполненным как полевые приборы, электронным приборам состоит в том, чтобы долговременно обеспечить безопасность при эксплуатации и в плане надежности генерированных внутри полевого прибора измерительных сигналов или выведенных на их основе измеренных параметров. Так, например, вследствие прогрессирующего образования отложений и/или вследствие поврежденной изоляции внутри электронного блока измерительного прибора, нежелательным образом возникшие электропроводящие соединения и, тем самым, протекающие в полевом приборе токи утечки могут приводить к существенным ухудшениям генерированных внутри соответствующего полевого прибора измерительных сигналов.
Чтобы обеспечить безошибочную работу таких приборов, а также их безопасность при эксплуатации в течение очень длительного времени, или же иметь возможность максимально заблаговременно распознавать ошибки, которые могут возникнуть или уже появляются в работе прибора, особенно необходимо также периодически проверять электронный блок измерительного прибора на его целостность. У традиционных полевых приборов рассматриваемого типа целостность принадлежащих им электронных блоков нередко проверяется посредством того, что соответствующая электронная схема измерения и контроля, с помощью которой могут быть измерены сопротивления линий и изоляции, с внешней стороны через соответствующие обслуживающие элементы соединения присоединяется к электронному блоку измерительного прибора и соответствующее полное сопротивление проводится по отдельным конструктивным блокам и/или проводам электронного блока измерительного прибора, в случае необходимости, с временным прерыванием собственно процесса измерения. Разумеется, применение таких отдельных схем для измерения тока, в сочетании с диагностикой, производимой лишь при помощи обслуживающего персонала по месту, влечет за собой большие затраты в плане привлечения обслуживающего персонала, а также в плане логистики. Следующим недостатком таких отдельных схем измерения и контроля является, по меньшей мере, необходимое временное прерывание собственно процесса измерения прибора и/или необходимое, при определенных условиях, отделение электронного блока измерительного прибора от возможно присоединенной к нему схемы передачи данных и энергообеспечения.
Раскрытие изобретения
Техническим результатом изобретения является улучшение проверки рабочих состояний и/или эксплуатационной безопасности электрических проборов вышеуказанного типа, в частности, и их соответствующего электронного оборудования, чтобы иметь возможность заблаговременно распознавать намечающиеся аварийные состояния внутри электронного блока измерительного прибора, как наличие электропроводящих отложений и/или повреждений изоляции корпуса и/или байпаса, в случае необходимости, и без ограничения собственно процесса измерения, и/или же в ходе периодически и/или автоматически производимой на измерительном приборе диагностики.
Изобретение относится к выполненному, в частности, в виде измерительного прибора и/или прибора управления промышленных средств измерения и автоматизации, и/или электронного измерительного прибора для измерения и/или контроля, по меньшей мере, одной измеряемого параметра проведенной в трубопроводе и/или в резервуаре среды, при этом измерительный прибор содержит:
- по меньшей мере, частично помещенный, в частности, в заземленный и/или в металлический корпус измерительный преобразователь для регистрации, по меньшей мере, одного измеряемого параметра, а также
- по меньшей мере, периодически электрически связанный с измерительным преобразователем электронный блок измерительного прибора, который имеет:
- по меньшей мере, один измерительный канал для регистрации и дальнейшей обработки, по меньшей мере, одного генерированного посредством измерительного преобразователя первичного сигнала, а также
- схему для измерения тока для регистрации протекающих внутри измерительного прибора электрических токов,
- причем схема для измерения тока в процессе работы, по меньшей мере, периодически, в частности, время от времени, регистрирует электрический ток утечки, который течет вследствие, по меньшей мере, периодически имеющейся между корпусом и электронным блоком измерительного прибора разности потенциалов, а также имеющегося между корпусом и электронным блоком измерительного прибора, в частности, нежелательного и/или образованного посредством поразившего корпус отложения, электропроводящего соединения.
Изобретение относится также к способу контроля выполненного, в частности, в виде измерительного прибора и/или прибора управления промышленных средств измерения и автоматизации, и/или электронного измерительного прибора, который имеет, по меньшей мере, частично помещенный, в частности, в заземленный и/или металлический корпус измерительный преобразователь, а также, по меньшей мере, периодически соединенный с измерительным преобразователем электронный блок измерительного прибора, при этом способ содержит следующие этапы:
- образование разности потенциалов между корпусом и электронным блоком измерительного прибора для инициирования тока утечки, который протекает как через электронный блок измерительного прибора, так и через сосуществующее с этой разностью потенциалов, в частности, нежелательное и/или образованное посредством поразившего корпус отложения и/или посредством конденсата, электропроводящее соединение между корпусом и электронным блоком измерительного прибора,
- регистрация тока утечки, протекающего вследствие имеющейся, по меньшей мере, в данный момент времени между корпусом и электронным блоком измерительного прибора разности потенциалов, а также имеющегося, по меньшей мере, в данным момент времени электропроводящего соединения,
- генерирование, по меньшей мере, одного, выражающего собой в данный момент времени, в частности, неправильное рабочее состояние измерительного прибора, в частности, цифрового параметра состояния, с учетом зарегистрированного тока утечки.
В соответствии с первым вариантом осуществления измерительного прибора в рамках изобретении предусмотрено, что разность потенциалов между корпусом и электронным блоком измерительного прибора образована посредством того, что корпус подведен к первому электрическому базовому потенциалу, а, по меньшей мере, один компонент электронного блока измерительного прибора, в частности, измерительный канал, по меньшей мере, периодически подведен к отличному от первого электрического базового потенциала, второму электрическому базовому потенциалу. С целью усовершенствования данного варианта осуществления изобретения далее предусмотрено, что корпус для образования первого электрического базового потенциала заземлен и/или, что электронный блок измерительного прибора периодически также подведен к первому электрическому базовому потенциалу.
В соответствии со вторым вариантом осуществления измерительного прибора в рамках изобретении предусмотрено, что этот измерительный прибора содержит, по меньшей мере, одну, подающую на выходе, в частности, по меньшей мере, периодически, в основном, постоянное и/или тактовое, и/или импульсное выходное напряжение, схему источника питания. С целью усовершенствования данного варианта осуществления изобретения выход схемы источника питания для создания между корпусом и электронным блоком измерительного прибора разности потенциалов в процессе работы, по меньшей мере, периодически, в частности, долговременно, электрически соединен с корпусом.
В соответствии с третьим вариантом осуществления измерительного прибора в рамках изобретении предусмотрено, что схема источника питания выполнена таким образом, что ее выходное напряжение может изменяться, в частности, скачкообразно и/или ступенчато.
В соответствии с четвертым вариантом осуществления измерительного прибора в рамках изобретении предусмотрено, что схема источника питания выполнена таким образом, что ее выходное напряжение является переменным напряжением, в частности, изменяемой частоты.
В соответствии с пятым вариантом осуществления измерительного прибора предусмотрено, что электронный блок измерительного прибора имеет образованную, в частности, посредством служащей в качестве делителя напряжения и/или в качестве ограничителя тока сети сопротивления и/или посредством служащей в качестве выпрямителя напряжения и/или в качестве ограничителя напряжения диодной схемы, фильтрующую схему, которая, в частности, посредством переключателя в процессе работы, по меньшей мере, периодически, в частности, долговременно электрически подсоединена как в выходу схемы источника питания, так и к корпусу.
В соответствии с шестым вариантом осуществления измерительного прибора предусмотрено, что электронный блок измерительного прибора имеет служащую в качестве делителя напряжения и/или в качестве ограничителя тока схему сопротивления, которая, в частности, посредством переключателя в процессе работы, по меньшей мере, периодически, в частности, долговременно электрически подсоединена как к выходу схемы источника питания, так и к корпусу.
В соответствии с седьмым вариантом осуществления измерительного прибора предусмотрено, что электронный блок измерительного прибора имеет служащую в качестве выпрямителя напряжения и/или в качестве ограничителя напряжения диодную схему, которая, в частности, посредством переключателя в процессе работы, по меньшей мере, периодически, в частности, долговременно электрически подсоединена как к выходу схемы источника питания, так и к корпусу.
В соответствии с восьмым вариантом осуществления измерительного прибора предусмотрено, что, по меньшей мере, один измерительный канал приводится в действие посредством имеющегося внутри измерительного прибора полезного напряжения, и схема источника питания выполнена таким образом, что ее выходное напряжение и/или разность потенциалов между корпусом и электронным блоком измерительного прибора, по меньшей мере, периодически настроена на величину 50% от внутреннего полезного напряжения. С целью усовершенствования данного варианта осуществления изобретения полезное напряжение служит также для приведения в действие схемы источника питания.
В соответствии с девятым вариантом осуществления измерительного прибора предусмотрено, что схема источника питания выполнена таким образом, что ее, служащее для образования разности потенциалов между корпусом и электронным блоком измерительного прибора, выходное напряжение составляет максимально 40 В, в частности, менее 32 В, и/или, служащая для проведения тока утечки разность потенциалов между корпусом и электронным блоком измерительного прибора постоянно удерживается менее 40 В, в частности, составляет максимум 32 В.
В соответствии с десятым вариантом осуществления измерительного прибора способствующее току утечки электропроводящее соединение между корпусом и электронным блоком измерительного прибора имеет электрическое сопротивление, которое, в частности, более чем на десяток меньше, чем первоначальное сопротивление изоляции между корпусом и электронным блоком измерительного прибора, и/или которое меньше 1 Мом, в частности, меньше 500 ком.
В соответствии с одиннадцатым вариантом осуществления измерительного прибора предусмотрено, что первоначальное сопротивление изоляции между корпусом и электронным блоком измерительного прибора больше 1 Мом, в частности, больше чем 10 Мом.
В соответствии с двенадцатым вариантом осуществления измерительного прибора предусмотрено, что схема для измерения тока включает в себя сенсорное сопротивление, через которое проходит ток утечки, посредством которого, в основном, пропорциональное току утечки напряжение снижается.
В соответствии с тринадцатым вариантом осуществления измерительного прибора предусмотрено, что электронный блок измерительного прибора имеет, по меньшей мере, один компаратор для сравнения зарегистрированного тока утечки, по меньшей мере, с одним, заданным для этого, в частности, также изменяемым, предельным значением.
В соответствии с четырнадцатым вариантом осуществления измерительного прибора предусмотрено, что электронный блок измерительного прибора, базируясь на токе утечки, зарегистрированном посредством схемы для измерения тока, генерирует сигнал тревоги, который сигнализирует о возникновении обусловленной, в частности, нежелательным образованием электропроводящих отложений внутри корпуса, ошибки в работе измерительного прибора.
В соответствии с пятнадцатым вариантом осуществления измерительного прибора предусмотрено, что измерительный прибор содержит элемент отображения для визуализации генерированных внутри измерительного прибора сообщений об ошибке, в частности, базирующегося на токе утечки, зарегистрированном посредством схемы для измерения тока, генерированного сигнала тревоги.
В соответствии с шестнадцатым вариантом осуществления измерительного прибора предусмотрено, что электронный блок измерительного прибора, базируясь на токе утечки, зарегистрированном посредством схемы измерения тока, генерирует, по меньшей мере, один, в частности, цифровой параметр состояния, который выражает, в частности, неправильное рабочее состояние измерительного прибора в данный момент времени. С целью усовершенствования данного варианта осуществления изобретения предусмотрено, что электронный блок измерительного прибора, базируясь на параметре состояния, генерирует сигнал тревоги, который сигнализирует о возникновении обусловленной, в частности, посредством нежелательного образования электропроводящих отложений внутри корпуса, ошибки в работе измерительного прибора. В качестве альтернативы или в дополнение к этому предусмотрено, что схема для измерения тока имеет, по меньшей мере, один аналого-цифровой преобразователь для оцифровки зарегистрированного тока утечки, а электронный блок измерительного прибора имеет, по меньшей мере, периодически сообщающийся со схемой для измерения тока через аналого-цифровой преобразователь микрокомпьютер, который, базируясь на. зарегистрированном посредством схемы для измерения тока и оцифрованном токе утечки, генерирует, по меньшей мере, один параметр состояния.
В соответствии с семнадцатым вариантом осуществления измерительного прибора предусмотрено, что электронный блок измерительного прибора имеет сообщающийся, по меньшей мере, периодически со схемой для измерения тока и/или, по меньшей мере, периодически со схемой источника питания, микрокомпьютер. С целью усовершенствования данного варианта осуществления изобретения предусмотрено, что схема для измерения тока имеет, по меньшей мере, один аналого-цифровой преобразователь для оцифровки зарегистрированного тока утечки, и этот аналого-цифровой преобразователь, по меньшей мере, периодически подает на выходе выражающий собой в цифровом виде зарегистрированный ток утечки, цифровой сигнал.
В соответствии с первым вариантом осуществления способа предусмотрено, что разность потенциалов между корпусом и электронным блоком измерительного прибора образована посредством того, что корпус подведен к первому электрическому базовому потенциалу, а, по меньшей мере, один компонент электронного блока измерительного прибора, в частности, измерительный канал для регистрации, по меньшей мере, одного генерированного посредством измерительного преобразователя, первичного сигнала, по меньшей мере, периодически подведен к отличному от первого электрического базового потенциала, второму электрическому базовому потенциалу.
В соответствии со вторым вариантом осуществления способа предусмотрено, что корпус для образования первого электрического базового потенциала заземлен и/или, причем электронный блок измерительного прибора периодически также находится на первом электрическом базовом потенциале.
В соответствии с третьим вариантом осуществления способа предусмотрено, что этот способ включает в себя далее этап, в частности, скачкообразного, и/или ступенчатого, и/или периодического изменения, по меньшей мере, одного базового потенциала электронного блока измерительного прибора для образования разности потенциалов между корпусом и электронным блоком измерительного прибора.
В соответствии с четвертым вариантом осуществления способа предусмотрено, что этот способ содержит этап гальванического соединения выхода предусмотренной внутри электронного блока измерительного прибора, подающей, в частности, по меньшей мере, периодически, в основном, постоянное и/или тактовое, и/или импульсное выходное напряжение схемы источника питания с корпусом, в частности, при промежуточном подключении ограничивающей ток и/или напряжение фильтрующей схемы, для образования разности потенциалов между корпусом и электронным блоком измерительного прибора.
В соответствии с пятым вариантом осуществления способа предусмотрено, что этот способ содержит этап использования, по меньшей мере, одного параметра состояния для генерирования сигнала тревоги, который сигнализирует о возникновении обусловленной, в частности, посредством нежелательного образования электропроводящих отложений внутри корпуса, ошибки в работе измерительного прибора.
В соответствии с шестым вариантом осуществления способа предусмотрено, что способ содержит этап использования, по меньшей мере, одного параметра состояния для настойки, по меньшей мере, периодически, в частности, в данный момент времени сообщающегося с электронным блоком измерительного. прибора, в частности, также визуализирующего генерированные измерительным прибором сообщения об ошибке, элемента отображения.
В соответствии с седьмым вариантом осуществления способа предусмотрено, что способ содержит этап сравнения, по меньшей мере, одного параметра состояния, по меньшей мере, с одним заданным для этого, в частности, также контролируемым предельным значением.
В соответствии с восьмым вариантом осуществления способа предусмотрено, что электронный блок измерительного прибора имеет, по меньшей мере, один приводимый в действие посредством имеющегося внутри измерительного прибора полезного напряжения, измерительный канал для регистрации, по меньшей мере, одного, генерированного посредством измерительного преобразователя первичного сигнала и, причем разность потенциалов между корпусом и электронным блоком измерительного прибора, по меньшей мере, периодически настроена на величину 50% от внутреннего полезного напряжения.
В соответствии с девятым вариантом осуществления способа предусмотрено, что разность потенциалов между корпусом и электронным блоком измерительного прибора для проведения тока утечки отрегулирована на величину 40 В или менее, в частности, менее 32 В.
В соответствии с десятым вариантом осуществления способа предусмотрено, что способ содержит этап выработки, по меньшей мере, одного первичного сигнала посредством измерительного преобразователя, который соответствует, по меньшей мере, одному измеренному параметру проведенной, в частности, в электрически заземленном трубопроводе и/или, в частности, в электрически заземленном резервуаре, среды.
Основная идея изобретения состоит в том, чтобы производить проверку рабочих состояний и/или безопасности при эксплуатации электрических приборов вышеуказанного типа, в частности, и их электронного оборудования, с помощью средств, уже имеющихся в самих приборах, например, посредством вышеупомянутой схемы для измерения тока и/или вышеупомянутой схемы источника питания, в частности, также в автоматическом или полуавтоматическом режиме, в диалоге с пользователем, и притом, по возможности, без прерывания, или, по меньшей мере, без существенного ограничения собственно процесса измерения.
В частности, имеется большое количество возможностей для дальнейшего усовершенствования вышеупомянутых измерительных приборов или способа в соответствии с изобретением.
Краткое описание чертежей
На чертежах одинаковые детали обозначены на фигурах одинаковыми позициями. Если это необходимо для большей наглядности изображения, то уже обозначенные позиции на последующих фигурах опускаются. На чертежах представлены:
фиг.1 схематично, на перспективном виде сбоку, измерительный прибор для измерения и/или контроля, по меньшей мере, одного измеряемого параметра проведенной в трубопроводе и/или в резервуаре среды,
фиг.2 схематично, частично в разрезе, вид сбоку первого варианта выполненного как вводимый в трубопровод, встроенный измерительный прибор для измерения, по меньшей мере, одного параметра проведенной в трубопроводе среды, измерительный прибор в соответствии с фиг.1,
фиг.3 схематично, частично в разрезе, вид сбоку второго варианта выполненного как вводимый в трубопровод, встроенный измерительный прибор для измерения, по меньшей мере, одного параметра проведенной в трубопроводе среды, измерительный прибор в соответствии с фиг.1.
Осуществление изобретения
На фиг.1 представлен измерительный прибор, выполненный, в частности, как измерительный прибор и/или прибор управления промышленных средств измерения и автоматизации. Измерительный прибор имеет, по меньшей мере, один, в частности, металлический и/или модульный корпус 100, в котором размещены электрические, электронные и/или электромеханические конструктивные элементы и/или блоки измерительного прибора. Измерительный прибор предусмотрен, в частности, для того, чтобы использоваться для измерения физического и/или химического измеряемого параметра проведенной, в частности, в электрически заземленном трубопроводе и/или, в частности, в электрически заземленном резервуаре среды. Соответственно этому, под измерительным прибором может пониматься, например, работающий по принципу Кориолиса расходомер, плотномер, магнитно-индуктивный расходомер, вихревой расходомер, ультразвуковой расходомер, термический расходомер, манометр, уровнемер, термометр и проч.
Как очевидно на основании фиг.1, 2 и 3, измерительный прибор включает в себя для этого помещенный, в частности, в заземленный корпус 100 - в данном случае в отдельный приемный модуль 100' корпуса - измерительный преобразователь MW для регистрации, по меньшей мере, одного измеряемого параметра. Далее измерительный прибор имеет расположенный внутри корпуса - в данном случае, по меньшей мере, частично внутри отдельного модуля 100'' корпуса для электронного блока - и, по меньшей мере, периодически электрически связанный с измерительным преобразователем MW, электронный блок ME измерительного прибора. Он опять же включает в себя внутреннюю схему 30 энергообеспечения, которая в процессе работы предоставляет, по меньшей мере, одно внутреннее полезное напряжение UN, которое - как схематично представлено на фиг.2 - может быть выполнено биполярным с UN=+VCC … - VCC и/или - как схематично представлено на фиг.3 - униполярным с UN=+VCC …0 и/ и/или UN=+VCC … GND. Кроме того, электронный блок 2 (* нужно ME) измерительного прибора включает в себя образованную, в частности, посредством микрокомпьютера µС схему обработки данных или рабочую схему 20, по меньшей мере, один, приводимый в действие, например, также, по меньшей мере, частично посредством заданного полезного напряжения измерительный канал 20 А для регистрации и дальнейшей обработки, по меньшей мере, одного, генерированного посредством измерительного преобразователя MW и зависящего от регистрируемого измеряемого параметра и, тем самым, соответствующего ему первичного сигнала s1, например, измеренного напряжения или измеренного тока. С целью оцифровки, по меньшей мере, одного первичного сигнала s1 измерительный канал 20 А может иметь далее соответствующий аналого-цифровой преобразователь. Для визуализации полученных внутри измерительного прибора измеренных параметров и/или, в случае необходимости, генерированных внутри измерительного прибора статусных сообщений, например, сообщения об ошибке или сигнала тревоги, непосредственно на месте измерительный прибор в соответствии с вариантом усовершенствования изобретения включает в себя далее, по меньшей мере, периодически сообщающийся с электронным блоком измерительного прибора элемент АЕ отображения, например, размещенный в корпусе жидкокристаллический или тонкопленочный дисплей.
Для дальнейшего разъяснения изобретения в представленных на фиг.2 и 3 примерах осуществления изобретения в качестве замены выбран соответственно рекомендованный к использованию в технике промышленных измерений, встроенный измерительный прибор с измерительным преобразователем вибрационного типа, известный специалисту, например, из уже упомянутых выше документов WO-A 95/16897, US-B 6910366, US-A 6006609, US-B 6505519, US-A 5301557, US-A 4957005, US 2003/0208325, WO-A 99/39164, WO-A 98/07009, WO-A 01/33174, WO-A 00/57141, WO-A 88/03261. Этот, выполненный, например, как работающий по принципу Кориолиса расходомер, плотномер, вискозиметр и проч., встроенный измерительный прибор может быть посредством подходящих фланцевых соединений 101, 102 встроен по ходу - не изображенного здесь - трубопровода и предназначен для измерения и/или контроля, по меньшей мере, одного параметра, например, массового расхода, плотности, вязкости и т.д.., протекающей по трубопроводу среды. Измерительный преобразователь в представленном здесь измерительном приборе предназначен для инициирования в протекающей среде механических сил реакции, например, зависящих от массового; расхода кориолисовых сил, зависящих от плотности сил инерции и/или зависящих от вязкости сил трения, которые, с возможностью учета посредством датчиков, воздействуют: на измерительный преобразователь. На основании данных сил реакции, известным специалисту способом могут быть измерены, например, массовый расход т, плотность и/или вязкость среды.
Для проведения среды измерительный преобразователь включает в себя, по меньшей мере, одну - в представленном здесь примере осуществления изобретения, в основном, прямую - измерительную трубу 10, которая в процессе работы принуждается к вибрации и при этом, выполняя колебательные движения вокруг статичного исходного положения, неоднократно эластично деформируется. Вместо измерительного преобразователя - как представлено в данном случае или, например, также в упомянутых выше WO-A 03/095950, WO-A 03/095949, WO-A 95/16897, US-А 2005/0139015, US-В 6910366, US-В 6691583, US-А 6041665, US-A 6006609, US-A 5616868, US-A 5253533 - с прямой измерительной трубой, мог бы быть использован и измерительный преобразователь с параллельными друг другу прямыми измерительными трубами, представленными, например, в US-A 5218873 или в US-A 5602345, или же с изогнутыми параллельно друг другу измерительными трубами, которые известны, в частности, из US-В 6711958, US-B 6505519, US-A 5796011, US-А 5349872, US-А 5301557, US-A 4895031, US 2003/0208325, US-A 4491025, WO-A 99/39164, WO-A 98/07009, WO-A 01/33174, US-A 4876898, WO-A 00/57141, WO-A 88/03261 или из US-B 6895826. Далее возможно также использовать измерительный преобразователь лишь с одной единственной изогнутой измерительной трубой, как известно из WO-A 07/130024, US-A 4187721, US-A 5069074, US-B 6484591 или из US-B 6666098, или с геликсообразной измерительной трубой, как известно из US-A 4957005.
В процессе работы измерительного преобразователя измерительная труба 10 с целью выработки - сформированных в данном случае как колебательные измерительные сигналы - первичных сигналов s1, s2, по меньшей мере, периодически побуждается к сформированным, в частности, как боковые изгибающие колебания, вибрациям в полезном режиме работы, в частности, в зоне естественной резонансной частоты соответствующего естественного режима колебаний. Для случая, когда среда протекает по трубопроводу и, тем самым, массовый расход m отличен от нуля, с помощью вибрирующей измерительной трубы 10 в протекающей среде индуцируются кориолисовы силы. Эти силы, в свою очередь, воздействуют на измерительную трубу 10 и, таким образом, способствуют, как известно, дополнительной, с возможностью учета посредством датчиков, деформации измерительной трубы 10 в так называемом, наложенном на возбужденный полезный режим работы, кориолисовом режиме. Проявление этой дополнительной деформации измерительной трубы 10 в данный момент. времени зависит, при этом, в частности, касательно ее амплитуды, от массового расхода m в данный момент времени. Для минимизации воздействующих на измерительную трубу 10 негативных воздействий, а также для снижения переданной со стороны измерительного преобразователя на присоединенный трубопровод колебательной энергии - что обычно имеет место при такого рода измерительных преобразователях с одной единственной измерительной трубой - в измерительном преобразователе предусмотрен далее - в данном случае, в основном, прямой и проходящий, в основном, параллельно измерительной трубе 10 - контросциллятор 13. Этот контросциллятор, что очевидно и на основании фиг.1, с образованием со стороны впуска - практически определяющей впускной конец измерительной трубы 10 - первой зоны 11# соединения и с образованием со стороны выпуска - практически определяющей выпускной конец измерительной трубы 10 - второй зоны 12# соединения, закреплен на измерительной трубе 10. Контросциллятор 13 может быть выполнен в форме трубы или ящика и, например, таким образом, соединен с измерительной трубой 10 на впускном конце и на выпускном конце, что оказывается, в: основном, соосно ориентированным с измерительной трубой 10 и, тем самым, измерительная труба 10 оказывается, по меньшей мере, частично окружена контросциллятором 13. К тому же, предпочтительным может являться, если контросциллятор 13 рассчитан более тяжелым, чем измерительная труба 10.
Измерительная труба 10 через входящий со стороны впуска в области первой зоны соединения впускной участок 11 трубы и через входящий со стороны выпуска в области второй зоны соединения, в частности, в основном, идентичный впускному участку 11 трубы, выпускной участок 12 трубы, далее присоединена соответственно к подающему или отводящему среду - в данном случае не изображенному - трубопроводу. Впускной участок 11 трубы и выпускной участок 12 трубы в представленном примере осуществления изобретения выполнены, в основном, прямолинейными и ориентированными по одной оси друг с другом, с измерительной трубой 10, а также с практически соединяющей друг с другом зоны соединения, воображаемой продольной осью L. В предпочтительном варианте измерительная труба 10, впускной участок 11 трубы и выпускной участок 12 трубы выполнены цельными, так что для их изготовления может использоваться, например, один, имеющий форму трубы, полуфабрикат. Вместо того чтобы измерительная труба 10, впускной участок 11 трубы и выпускной участок 12 трубы были выполнены соответственно из сегмента одной цельной трубы, в случае необходимости, они, однако, могут изготавливаться также из одного, дополнительно соединенного, например, сваренного полуфабриката. Для изготовления измерительного преобразователя 1 (* нужно MW) может, впрочем, использоваться практически любой из применяемых для этой цели материалов, например, сталь, титан, тантал, цирконий и т.д., или же соответствующие комбинации этих материалов. Например, использование титана и циркония выявило себя как наиболее благоприятное для изготовления прямых труб, в то время как, например, из соображений экономии средств, для корпуса 100 преобразователя, а также для используемого, при известных условиях, контросциллятора, применение стали является предпочтительным.
Для генерирования механических колебаний измерительной трубы 10 измерительный преобразователь включает в себя далее электрически присоединенное к электронному блоку измерительного прибора, например, электродинамическое устройство возбуждения с - закрепленной в данном случае на контросцилляторе 13 - и взаимодействующей с закрепленным на измерительной трубе - здесь не изображенным - постоянным магнитом, катушкой 40 возбуждения. Устройство возбуждения служит для того, чтобы с помощью рабочей схемы или схемы 20 обработки данных записанную в форме соответствующего условного электрического задающего сигнала, например, с регламентированным током и/или регламентированным напряжением, электрическую энергию Еехс возбуждения преобразовывать в воздействующую на измерительную трубу 10, например, импульсно, тактируемо или гармонически, и эластично деформирующую эту трубу описанным ранее образом, силу Fexc возбуждения. Сила Fexc возбуждения может быть сформирована при этом двунаправленной или же однонаправленной, и может быть отрегулирована известным специалисту способом, например, с помощью схемы регулировки тока и/или напряжения, в отношении своей амплитуды, и, например, с помощью контура регулирования фаз, в отношении своей частоты. В частности, устройство возбуждения, что является обычным для измерительных преобразователей такого типа, образовано далее и расположено в измерительном преобразователе таким образом, что врезается в измерительную трубу, в основном, по середине и/или, по меньшей мере, в отдельных местах закреплено снаружи на измерительной трубе вдоль воображаемой серединной линии по периферии этой измерительной трубы. Для обнаружения колебаний измерительной трубы 10 может быть использовано, например, обычное для такого рода измерительных преобразователей сенсорное устройство, при котором известным специалисту способом с помощью установленного со стороны впуска на измерительной трубе 10 - в данном случае не изображенного - постоянного магнита и взаимодействующей с ним - закрепленной в данном случае на контросцилляторе 13 - первой сенсорной катушки 50А и с помощью установленного со стороны выпуска на измерительной трубе 10 - в данном случае не изображенного - постоянного магнита и взаимодействующей с ним - в данном случае также закрепленной на контросцилляторе 13 - второй сенсорной катушки 50 В движение измерительной трубы 10 регистрируется и преобразовывается в соответствующий первый или второй сенсорный сигнал s1, s2.
Для присоединения устройства возбуждения, а также сенсорного устройства к упомянутой рабочей схеме 20 или схеме обработки данных встроенного измерительного прибора далее предусмотрены соответствующие соединительные провода, которые, по меньшей мере, на отдельных участках проведены внутри корпуса преобразователя. Соединительные провода могут быть выполнены при этом, по меньшей мере, частично как электрические провода, по меньшей мере, на отдельных участках в оболочках из электроизоляционного материала, например, в форме «витой пары» проводов, плоских ленточных кабелей и/или коаксиальных кабелей. В качестве альтернативы или в дополнение к этому соединительные провода могут быть образованы, по меньшей мере, на отдельных участках и посредством проводящих полосок, в частности, эластичной, при известных условиях покрытой лаком печатной платы, см. к этому уже упомянутые ранее US-B 6711958 или US-A 5349872.
Как уже упоминалось ранее, у измерительного прибора рассматриваемого типа при случае может возникнуть проблема в том, что в процессе работы между корпусом и электронным блоком измерительного прибора нежелательным образом образуется -представленное на фиг.2 и 3 соответственно посредством сопротивления - электропроводящее соединение RF, например, вследствие поразившего корпус отложения, и/или вследствие образованного внутри корпуса конденсата, и/или вследствие проникновения в корпус среды при пробитом измерительном датчике и/или негерметичном корпусе, через которые, при известных условиях, могут походить мешающие работе токи утечки. Электрическое сопротивление такого электропроводящего соединения может быть при этом более чем на десяток меньше, чем первоначальное сопротивление изоляции между корпусом и электронным блоком измерительного прибора, в частности, также меньше 1 Мом. По этой причине такие электропроводящие соединения, чье электрическое сопротивление вполне может упасть и ниже 500 ком, могут приводить к тому, что первоначальное сопротивление изоляции между корпусом и электронным блоком измерительного прибора, которое обычно больше 1 Мом, в частности, больше 10 Мом, существенно снижается, в частности, до способствующих появлению значительных токов утечки значений менее 1 Мом.
С целью контроля измерительного прибора на предмет образования таких, благоприятствующих токам утечки, электропроводящих соединений RF и/или с целью распознавания имеющего место с таким электропроводящим сопротивлением, неправильного рабочего состояния измерительного прибора, далее предусмотрено, в процессе работы посредством электронного блока измерительного прибора целенаправленно, по меньшей мере, периодически создавать разность потенциалов ΔU12 между корпусом 100 и электронным блоком ME измерительного прибора, которая проводит определенный ток утечки II, например, порядка от 100 нА до 100 мкА, как через электронный блок ME измерительного прибора, так и далее по ходу через такое, сосуществующее с этой разностью потенциалов ΔU12, электропроводящее соединение RF вышеуказанного типа. Далее протекающий вследствие имеющейся, по меньшей мере, в данный момент времени между корпусом 110 и электронным блоком ME измерительного прибора ME, разности потенциалов ΔU12, а также вследствие имеющегося, по меньшей мере, в данный момент времени электропроводящего сопротивления RF, ток II утечки регистрируется посредством электронного блока измерительного прибора, чтобы на основе этого, генерировать, по меньшей мере, один параметр Z состояния, который в данный момент времени выражает собой имеющее место в данный момент времени - в соответствии с определением неправильное или, по меньшей мере, нежелательное - рабочее состояние измерительного прибора.
Проводящая ток утечки разность потенциалов ΔU12 между корпусом 100 и электронным блоком ME измерительного прибора может быть простым способом образована, например, посредством того, что корпус 100 подведен к первому электрическому базовому потенциалу U1, в частности, к потенциалу Земли, а, по меньшей мере, один компонент электронного блока ME измерительного прибора, в частности, по меньшей мере, один измерительный канал 20 А, по меньшей мере, периодически и/или, по меньшей мере, частично, подведен к отличному от первого электрического базового потенциала, второму электрическому базовому потенциалу U2, например, на величину 50% от поданного внутренней схемой 30 энергообеспечения полезного напряжения UN.
В соответствии со следующим вариантом осуществления изобретения электронный блок измерительного прибора имеет далее служащую для регистрации протекающих внутри измерительного прибора электрических токов, интегрированную, например, в схему 20 обработки данных или в рабочую схему, в процессе работы, по меньшей мере, периодически взаимодействующую с микрокомпьютером µС, схему 20 В для измерения тока, которая, по меньшей мере, периодически, в частности, время от времени, регистрирует электрический ток IL утечки, который, вследствие, по меньшей мере, периодически возникающей между корпусом 100 и электронным блоком ME измерительного прибора разности потенциалов ΔU12, а также возникающего между корпусом 100 и электронным блоком ME измерительного прибора вышеуказанного электропроводящего соединения RF, протекает через него, а также внутри электронного блока ME измерительного прибора. В соответствии со следующим вариантом осуществлении изобретении схема 20 В для измерения тока включает в себя для этого далее служащее для регистрации проводимого за счет разности потенциалов ΔU12 тока IL утечки сенсорное сопротивление RF, через которое в процессе работы, по меньшей мере, при наличии электропроводящего соединения между электронным блоком ME измерительного прибора и корпусом 100, протекает спровоцированный при известных условиях вышеописанным образом ток IL утечки, так что, в результате этого, в основном, пропорциональное току IL уточки напряжение Rs·IL, падает. С целью передачи зарегистрированного тока IL утечки на имеющийся, при известных условиях, микрокомпьютер µC, схема 20 В для измерения тока в соответствии со следующим вариантом осуществления изобретения включает в себя, по меньшей мере, один, служащий для оцифровки зарегистрированного тока IL уточки аналого-цифровой преобразователь, который, по меньшей мере, периодически подает на выходе выражающий собой в цифровой форме зарегистрированный ток IL уточки Цифровой сигнал.
Для образования проводящей ток IL уточки разности потенциалов ΔU12 измерительный прибор включает в себя далее, в частности, также приводимую в действие посредством схемы 30 энергообеспечения или с помощью поданного от нее внутреннего полезного напряжения UN, схему QS источника питания, которая на выходе подает, например, по меньшей мере, периодически, в основном, постоянное, и/или тактированное, и/или импульсное, и/или периодическое выходное напряжение. Схема QS источника питания может быть при этом выполнена далее таким образом, что ее выходное напряжение, а также настроенный, тем самым, соответствующим образом базовый потенциал U2 электронного блока измерительного прибора по величине и/или по знаку может изменяться, например, скачкообразно, и/или ступенчато, и/или циклически, и/или, что его выходное напряжение является переменным напряжением, в частности, изменяемой частоты. Управление схемой QS источника питания и, соответственно, поданным от нее выходным напряжением, может осуществляться, например, посредством предусмотренного, при известных условиях, в электронном блоке ME измерительного прибора микрокомпьютера µС, который в соответствии с этим в процессе работы, по меньшей мере, периодически сообщается со схемой источника питания.
Как схематично представлено на фиг.1, выход схемы QS источника питания - по меньшей мере, с целью образования проводящей ток IL утечки разности потенциалов ΔU12 - в процессе работы, по меньшей мере, периодически, например, посредством переключателя, электрически соединен с корпусом. Для вышеупомянутого случая, когда корпус заземлен, электронный блок измерительного прибора также может быть периодически, в частности, и во время регулярного процесса измерения, и/или, по меньшей мере, частично, подведен к первому электрическому базовому потенциалу U1 - в данном случае к потенциалу Земли.
По меньшей мере, для представленного на фиг.2 случая, когда поданное посредством схемы 30 энергообеспечения внутреннее полезное напряжение UN выполнено униполярным (VCC) и, вследствие этого, что является обычным у измерительных преобразователей вибрационного типа, по меньшей мере, схема 20 обработки данных или рабочая схема, в частности, ее измерительный канал 20 А, приводится в действие также в нормальном режиме измерения одновременно на различных уровнях напряжения, например, как с внутренним полезным напряжением Un=Vcc, так и с напряжением 0,5·UN=0,5·VCC, выход схемы QS источника питания может быть, например, также постоянно электрически соединен с корпусом. В соответствии с этим, схема QS источника питания согласно следующему варианту осуществления изобретения выполнена далее таким образом, что ее выходное напряжение и/или настроенная, тем самым, разность потенциалов ΔU12 между корпусом и электронным блоком измерительного прибора, по меньшей мере, периодически, составляет, в основном, примерно 50% от внутреннего полезного напряжения UN. В качестве альтернативы или в дополнение к этому, в частности, для случая, когда измерительный прибор должен быть рассчитан таким образом, чтобы соответствовать требованиям степени защиты от возгорания ««искробезопасность» (Ex-i), далее предусмотрено задавать параметры схема QS источника питания таким образом, чтобы, по меньшей мере, отрегулированная таким образом, служащая для проведения тока IL утечки разность потенциалов ΔU12 между корпусом и электронным блоком измерительного прибора постоянно удерживалась меньше 40 В, в частности, максимально 32 В. В предпочтительном варианте схема QS источника питания может быть выполнена для этого, например, и таким образом, что уже служащее для образования разности потенциалов ΔU12 между корпусом и электронным блоком измерительного прибора, ее выходное напряжение составляет максимально 40 В, в частности, менее 32 В.
В соответствии со следующим вариантом осуществления изобретения, в частности, для упомянутого случая, когда измерительный прибор должен быть рассчитан таким образом, чтобы соответствовать требованиям степени защиты от возгорания «искробезопасность» (Ex-i), электронный блок измерительного прибора имеет далее, в частности, ограничивающую ток и/или напряжение фильтрующую схему FS, которая в процессе работы, по меньшей мере, периодически, или же долговременно электрически подсоединена как к выходу схемы QS источника питания, так и к корпусу 100, в случае необходимости, с использованием электронных переключателей. Фильтрующая схема FS может быть образована, например, посредством служащей в качестве делителя напряжения и/или в качестве ограничителя тока, схемы сопротивления, и/или посредством служащей в качестве выпрямителя напряжения и/или в качестве ограничителя напряжения диодной схемы. Предусмотренная, в случае необходимости, в электронном блоке измерительного прибора, служащая в качестве делителя напряжения и/или в качестве ограничителя тока для тока утечки схема сопротивления и/или предусмотренная, в случае необходимости, в электронном блоке измерительного прибора, служащая в качестве выпрямителя напряжения и/или в качестве ограничителя напряжения для выходного напряжения схемы QS источника питания диодная схема может быть в процессе работы - как схематично обозначено на фиг 2 или 3 - например, посредством переключателя, электрически присоединена к выходу схемы QS источника питания и/или к корпусу 100, будь то долговременно, или же на время.
В соответствии со следующим вариантом осуществления изобретения электронный блок ME измерительного прибора, базируясь на зарегистрированном посредством схемы для измерения тока токе II утечки, генерирует, например, посредством предусмотренного, в случае необходимости, в схеме для измерения или в рабочей схеме 20, микрокомпьютера µС, по меньшей мере, один, в частности, цифровой параметр Z состояния, который выражает собой в данный момент времени рабочее состояние измерительного прибора. Для распознавания возможно имеющейся в измерительном приборе ошибки, вследствие наличия электропроводящего соединения RF между электронным блоком ME измерительного прибора и корпусом 100, и/или с целью определения параметра Z состояния, электронный блок измерительного прибора в соответствии со следующим вариантом осуществления изобретения имеет далее, по меньшей мере, один, при известных условиях, реализованный также посредством сообщающегося со схемой для измерения тока через аналого-цифровой преобразователь микрокомпьютера, компаратор для сравнения зарегистрированного тока IL утечки, по меньшей мере, с одним, заданным для этого, например, также контролируемым со стороны пользователя, предельным значением. Для случая, когда параметр Z состояния выражает собой соответствующее наличию электропроводящего соединения между электронным блоком ME измерительного прибора и корпусом 100, неправильное рабочее состояние, преимуществом может являться, к тому же, если электронный блок ME измерительного прибора, базируясь на зарегистрированном посредством схемы для измерения тока токе IL утечки или, базируясь на параметре Z состояния, генерирует, в частности, непосредственно воспринимаемый на месте сигнал тревоги, который сигнализирует о возникновении, обусловленной, в частности, нежелательным образованием электропроводящих отложений (RF) внутри корпуса 100, ошибок в работе измерительного прибора. Параметр Z состояния может служить затем для настройки сообщающегося с электронным блоком ME измерительного прибора, по меньшей мере, в данный момент времени, элемента АЕ отображения, например, будучи переведенным в соответствующее сообщение об ошибке открытым текстом, в код ошибки и/или в цветовой тон тревоги для элемента АЕ отображения, и/или может быть использован для выработки команды для вмешательства в контролируемый посредством неправильно работающего измерительного прибора процесс. В альтернативном варианте или в дополнение к этому, параметр Z состояния и/или выведенный на его основе сигнал тревоги может быть послан также на сообщающуюся в процессе работы с измерительным прибором, вышестоящую электронную систему обработки данных, например, беспроводным способом по радио и/или по проводам.

Claims (27)

1. Способ контроля, выполненного, в частности, в виде измерительного прибора и/или прибора управления промышленных средств измерения и автоматизации, и/или электронного измерительного прибора, который имеет, по меньшей мере, частично помещенный, в частности, в заземленный и/или металлический корпус (100) измерительный преобразователь (MW), а также, по меньшей мере, периодически связанный с измерительным преобразователем электронный блок (ME) измерительного прибора, содержащий следующие этапы:
образование, по меньшей мере, одного первичного сигнала (s1) посредством измерительного преобразователя, который соответствует, по меньшей мере, одному измеренному параметру проведенной, в частности, в электрически заземленном трубопроводе;
образование разности потенциалов (ΔU12) между корпусом и электронным блоком измерительного прибора для инициирования тока (IL) утечки, который протекает как через электронный блок измерительного прибора, так и через сосуществующее с этой разностью потенциалов, в частности, нежелательное и/или образованное посредством поразившего корпус отложения и/или посредством конденсата, электропроводящее соединение (RF) между корпусом и электронным блоком измерительного прибора, причем разность потенциалов между корпусом и электронным блоком измерительного прибора отрегулирована для проведения тока утечки на величину 40 В или менее;
регистрация тока утечки, протекающего вследствие имеющейся, по меньшей мере, в данный момент времени между корпусом и электронным блоком измерительного прибора разности потенциалов, а также имеющегося, по меньшей мере, в данный момент времени электропроводящего соединения (RF),
генерирование, по меньшей мере, одного, выражающего собой в данный момент времени, в частности, неправильное рабочее состояние измерительного прибора, в частности, цифрового параметра (Z) состояния, с учетом зарегистрированного тока утечки;
использование, по меньшей мере, одного параметра состояния для настройки, по меньшей мере, периодически, в частности, в данный момент времени сообщающегося с электронным блоком измерительного прибора, в частности, также визуализирующего генерированные измерительным прибором сообщения об ошибке, элемента (АЕ) отображения;
причем для образования разности потенциалов (ΔU12) выход предусмотренной внутри электронного блока измерительного прибора, подающей, в частности, по меньшей мере, периодически, в основном постоянное и/или тактовое, и/или импульсное выходное напряжение схемы (QS) источника питания гальванически соединяется с корпусом, в частности, посредством выключателя и/или при промежуточном подключении ограничивающей ток и/или напряжение фильтрующей схемы (FS).
2. Способ по п.1, характеризующийся тем, что разность потенциалов (ΔU12) между корпусом и электронным блоком измерительного прибора образована посредством того, что корпус подводят к первому электрическому базовому потенциалу (U1), а, по меньшей мере, один компонент электронного блока измерительного прибора, в частности, измерительный канал (20А) для регистрации, по меньшей мере, одного генерированного посредством измерительного преобразователя, первичного сигнала (s1), по меньшей мере, периодически подводят к отличному от первого электрического базового потенциала второму электрическому базовому потенциалу (U2).
3. Способ по п.2, характеризующийся тем, что корпус для образования первого электрического базового потенциала заземляют и/или, электронный блок измерительного прибора периодически также находится на первом электрическом базовом потенциале.
4. Способ по любому из пп.1-3, характеризующийся тем, что содержит этап, в частности, скачкообразного, и/или ступенчатого, и/или периодического изменения, по меньшей мере, одного базового потенциала электронного блока измерительного прибора для образования разности потенциалов между корпусом и электронным блоком измерительного прибора.
5. Способ по любому из пп.1-3, характеризующийся тем, что содержит этап использования, по меньшей мере, одного параметра состояния для генерирования сигнала тревоги, который сигнализирует о возникновении обусловленной, в частности, посредством нежелательного образования электропроводящих отложений внутри корпуса, ошибки в работе измерительного прибора.
6. Способ по любому из пп.1-3, характеризующийся тем, что содержит этап сравнения, по меньшей мере, одного параметра состояния, по меньшей мере, с одним заданным для этого, в частности, также контролируемым предельным значением.
7. Способ по любому из пп.1-3, характеризующийся тем, что электронный блок измерительного прибора содержит, по меньшей мере, один приводимый в действие посредством имеющегося внутри измерительного прибора полезного напряжения (UN), измерительный канал (20А) для регистрации, по меньшей мере, одного, генерированного посредством измерительного преобразователя первичного сигнала (s1), причем разность потенциалов между корпусом и электронным блоком измерительного прибора, по меньшей мере, периодически настроена на величину 50% от внутреннего полезного напряжения.
8. Способ по любому из пп.1-3, характеризующийся тем, что разность потенциалов между корпусом и электронным блоком измерительного прибора для проведения тока утечки отрегулирована на величину менее 32 В.
9. Измерительный прибор для измерения и/или контроля, по меньшей мере, одного измеряемого параметра проведенной в трубопроводе среды, содержащий
по меньшей мере, частично помещенный, в частности, в заземленный и/или в металлический корпус (100) измерительный преобразователь (MW) для регистрации, по меньшей мере, одного измеряемого параметра,
по меньшей мере, периодически электрически связанный с измерительным преобразователем электронный блок (ME) измерительного прибора, в частности, помещенный внутри корпуса (100), который содержит:
по меньшей мере, один измерительный канал для регистрации и дальнейшей обработки, по меньшей мере, одного генерированного посредством измерительного преобразователя первичного сигнала (s1),
по меньшей мере, одну схему (QS) источника питания, подающую на выходе, в частности, по меньшей мере, периодически, в основном постоянное и/или тактовое, и/или импульсное выходное напряжение, для образования, по меньшей мере, периодически имеющейся разности потенциалов (ΔU12) между корпусом и электронным блоком измерительного прибора,
схему (20В) для измерения тока для регистрации протекающих внутри измерительного прибора электрических токов, и
по меньшей мере, один микрокомпьютер (µС), периодически со схемой для измерения тока и/или, по меньшей мере, периодически со схемой источника питания, а также
элемент (АЕ) отображения для визуализации генерированных внутри измерительного прибора сообщений об ошибке,
причем в схеме для измерения тока предусмотрено, по меньшей мере, эпизодическое, предпочтительно периодическое регистрирование электрического тока (IL) утечки, который течет вследствие, по меньшей мере, периодически имеющейся между корпусом и электронным блоком измерительного прибора разности потенциалов (ΔU12), а также имеющегося между корпусом и электронным блоком измерительного прибора, в частности, нежелательного и/или образованного посредством поразившего корпус отложения, электропроводящего соединения (RF),
причем элемент (АЕ) отображения предусмотрен для визуализации сигнала тревоги, генерированного на основе тока утечки, зарегистрированного схемой для измерения тока,
схема источника питания выполнена таким образом,
что ее, служащее для образования разности потенциалов между корпусом и электронным блоком измерительного прибора, выходное напряжение составляет максимально 40 В, в частности менее 32 В, и/или
что служащая для проведения тока утечки разность потенциалов между корпусом и электронным блоком измерительного прибора постоянно удерживается менее 40 В, в частности составляет максимум 32 В.
10. Измерительный прибор по п.9, характеризующийся тем, что разность потенциалов между корпусом и электронным блоком измерительного прибора образована посредством того, что корпус подведен к первому электрическому базовому потенциалу (U1), а, по меньшей мере, один компонент электронного блока измерительного прибора, в частности измерительный канал, по меньшей мере, периодически подведен к отличному от первого электрического базового потенциала, второму электрическому базовому потенциалу (U2).
11. Измерительный прибор по п.10, характеризующийся тем, что корпус для образования первого электрического базового потенциала (U1) заземлен и/или, причем электронный блок (ME) измерительного прибора периодически также подведен к первому электрическому базовому потенциалу (U1).
12. Измерительный прибор по п.9, характеризующийся тем, что схема источника питания выполнена таким образом, что ее выходное напряжение может меняться, в частности, скачкообразно и/или ступенчато.
13. Измерительный прибор по п.9, характеризующийся тем, в схеме источника питания предусмотрено переменное выходное напряжение, в частности, изменяемой частоты.
14. Измерительный прибор по п.9, характеризующийся тем, что электронный блок измерительного прибора содержит фильтрующую схему (FS), образованную посредством служащей в качестве делителя напряжения и/или в качестве ограничителя тока сети сопротивления и/или посредством служащей в качестве выпрямителя напряжения и/или в качестве ограничителя напряжения диодной схемы, причем фильтрующая схема (FS), посредством переключателя в процессе работы, по меньшей мере, периодически, в частности, долговременно электрически подсоединена как к выходу схемы источника питания, так и к корпусу.
15. Измерительный прибор по п.9, характеризующийся тем, что электронный блок измерительного прибора содержит служащую в качестве делителя напряжения и/или в качестве ограничителя тока схему сопротивления, которая, в частности, посредством переключателя в процессе работы, по меньшей мере, периодически, в частности, долговременно электрически подсоединена как к выходу схемы источника питания, так и к корпусу.
16. Измерительный прибор по п.9, характеризующийся тем, что электронный блок измерительного прибора содержит служащую в качестве выпрямителя напряжения и/или в качестве ограничителя напряжения диодную схему, которая, в частности, посредством переключателя в процессе работы, по меньшей мере, периодически, в частности, долговременно электрически подсоединена как к выходу схемы источника питания, так и к корпусу.
17. Измерительный прибор по п.9, характеризующийся тем, что, по меньшей мере, один измерительный канал приводится в действие посредством имеющегося внутри измерительного прибора полезного напряжения (UN),
причем схема источника питания выполнена таким образом, что ее выходное напряжение и/или разность потенциалов между корпусом и электронным блоком измерительного прибора, по меньшей мере, периодически настроена на величину 50% от внутреннего полезного напряжения.
18. Измерительный прибор по п.17, характеризующийся тем, что полезное напряжение служит для приведения в действие схемы источника питания.
19. Измерительный прибор по любому из пп.9-11, характеризующийся тем, что способствующее току утечки электропроводящее соединение между корпусом и электронным блоком измерительного прибора имеет электрическое сопротивление, которое, в частности, более чем на десяток меньше, чем первоначальное сопротивление изоляции между корпусом и электронным блоком измерительного прибора, и/или которое меньше 1 МОм, в частности меньше 500 кОм.
20. Измерительный прибор по любому из пп.9-11, характеризующийся тем, что первоначальное сопротивление изоляции между корпусом и электронным блоком измерительного прибора больше 1 МОм, в частности больше чем 10 МОм.
21. Измерительный прибор по любому из пп.9-11, характеризующийся тем, что схема для измерения тока содержит сенсорное сопротивление (RS), через которое проходит ток утечки, посредством которого, в основном, пропорциональное току утечки напряжение снижается.
22. Измерительный прибор по любому из пп.9-11, характеризующийся тем, что электронный блок измерительного прибора имеет, по меньшей мере, один компаратор для сравнения зарегистрированного тока утечки, по меньшей мере, с одним, заданным для этого, в частности, также изменяемым, предельным значением.
23. Измерительный прибор по любому из пп.9-11, характеризующийся тем, что электронный блок измерительного прибора выполнен с возможностью генерирования сигнала тревоги, базируясь на токе утечки, зарегистрированном посредством схемы измерения тока, причем сигнал тревоги свидетельствует о возникновении обусловленной, в частности, нежелательным образованием электропроводящих отложений внутри корпуса, ошибки в работе измерительного прибора.
24. Измерительный прибор по любому из пп.9-11, характеризующийся тем, что электронный блок измерительного прибора выполнен с возможностью генерирования, по меньшей мере, одного, в частности, цифрового параметра (Z) состояния, который выражает собой, в частности, неправильное рабочее состояние измерительного прибора в данный момент времени, базируясь на токе утечки, зарегистрированном посредством схемы для измерения тока.
25. Измерительный прибор по п.24, характеризующийся тем, что электронный блок измерительного прибора выполнен с возможностью генерирования, базируясь на параметре состояния сигнала тревоги, который сигнализирует о возникновении обусловленной, в частности, посредством нежелательного образования электропроводящих отложений внутри корпуса, ошибки в работе измерительного прибора.
26. Измерительный прибор по п.9, характеризующийся тем, что схема для измерения тока содержит, по меньшей мере, один аналого-цифровой преобразователь для оцифровки зарегистрированного тока утечки, который, по меньшей мере, периодически подает на выходе выражающий собой в цифровом виде зарегистрированный ток утечки, цифровой сигнал.
27. Измерительный прибор по п.24, характеризующийся тем, что
схема для измерения тока содержит, по меньшей мере, один аналого-цифровой преобразователь для оцифровки зарегистрированного тока утечки,
электронный блок измерительного прибора содержит, по меньшей мере, периодически сообщающийся со схемой для измерения тока через аналого-цифровой преобразователь микрокомпьютер, выполненный с возможностью генерирования, базируясь на зарегистрированном посредством схемы для измерения тока и оцифрованном токе утечки, по меньшей мере, одного параметра состояния.
RU2010149870/28A 2008-05-06 2009-04-23 Способ контроля измерительного прибора и измерительный прибор RU2502961C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102008022373.5 2008-05-06
DE102008022373A DE102008022373A1 (de) 2008-05-06 2008-05-06 Meßgerät sowie Verfahren zum Überwachen eines Meßgeräts
PCT/EP2009/054870 WO2009135764A1 (de) 2008-05-06 2009-04-23 Messgerät sowie verfahren zum überwachen eines messgeräts

Publications (2)

Publication Number Publication Date
RU2010149870A RU2010149870A (ru) 2012-06-20
RU2502961C2 true RU2502961C2 (ru) 2013-12-27

Family

ID=40933808

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2010149870/28A RU2502961C2 (ru) 2008-05-06 2009-04-23 Способ контроля измерительного прибора и измерительный прибор

Country Status (6)

Country Link
US (1) US7886614B2 (ru)
EP (1) EP2274582B1 (ru)
CN (1) CN202119489U (ru)
DE (1) DE102008022373A1 (ru)
RU (1) RU2502961C2 (ru)
WO (1) WO2009135764A1 (ru)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010030924A1 (de) 2010-06-21 2011-12-22 Endress + Hauser Flowtec Ag Elektronik-Gehäuse für ein elektronisches Gerät bzw. damit gebildetes Gerät
DE102011088495A1 (de) 2011-12-14 2013-06-20 Endress + Hauser Flowtec Ag Gehäusedeckel für ein Elektronik-Gehäuse bzw. damit gebildetes Elektronik-Gehäuse
DE102012102979A1 (de) * 2012-04-05 2013-10-24 Endress + Hauser Flowtec Ag Durchflussmessgerät, Messrohr sowie Verfahren zur Herstellung eines Durchflussmessgeräts
US9170140B2 (en) * 2012-05-04 2015-10-27 Cameron International Corporation Ultrasonic flowmeter with internal surface coating and method
NO2948624T3 (ru) * 2013-03-15 2018-03-31
JP6283174B2 (ja) * 2013-06-14 2018-02-21 ローム株式会社 電気回路の評価方法
DE102013107964A1 (de) * 2013-07-03 2015-01-08 Endress + Hauser Conducta Gesellschaft für Mess- und Regeltechnik mbH + Co. KG Messanordnung
DE102013110243A1 (de) 2013-09-17 2015-04-02 Endress + Hauser Flowtec Ag Verfahren zur Überwachung eines Messgerätes der Automatisierungstechnik
DE102014119260A1 (de) 2014-12-19 2016-06-23 Endress + Hauser Flowtec Ag Anschlußvorrichtung für ein Elektronik-Gehäuse sowie Meßwandler bzw. Feldgerät mit einer solchen Anschlußvorrichtung
US9182261B1 (en) * 2014-12-24 2015-11-10 Finetek Co., Ltd. Thermal mass flow meter
DE102015121462A1 (de) 2015-12-09 2017-06-14 Endress + Hauser Flowtec Ag Anschlußvorrichtung zum mechanischen Verbinden eines Elektronik-Gehäuses und eines Meßwandler-Gehäuses, Meßwandler mit einer einer solchen Anschlußvorrichtung bzw. damit gebildetes Feldgerät
CN111742196A (zh) * 2017-12-29 2020-10-02 Abb瑞士股份有限公司 电磁流量计上的夹具
WO2023061718A1 (de) * 2021-10-13 2023-04-20 Endress+Hauser Flowtec Ag Prüfmodul, prüfsystem bzw. prüfanordnung für ein basismodul und/oder eine messsystemelektronik eines modularen vibronischen messsystems
DE102022100349A1 (de) 2022-01-10 2023-07-13 Phoenix Contact Gmbh & Co. Kg Steckverbinder mit einem ersten und einem zweiten Sensorelement zur Erfassung eines Kriechstroms, Anordnung mit zwei Steckverbindern und Verfahren zur Erkennung eines Kriechstroms in einem Steckverbinder
LU501224B1 (de) 2022-01-10 2023-07-10 Phoenix Contact Gmbh & Co Steckverbinder mit einem ersten und einem zweiten Sensorelement zur Erfassung eines Kriechstroms, Anordnung mit zwei Steckverbindern und Verfahren zur Erkennung eines Kriechstroms in einem Steckverbinder

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2081452A (en) * 1980-08-01 1982-02-17 Endress Hauser Gmbh Co Container fluid level determination
RU2076989C1 (ru) * 1993-09-29 1997-04-10 Государственное малое предприятие "Трубопрогресс" Способ определения координат места повреждения изоляции подземного трубопровода
RU2157424C1 (ru) * 2000-01-31 2000-10-10 Южно-Уральский государственный университет Система катодной защиты и диагностики трубопровода
EP0666467B1 (en) * 1994-02-04 2001-10-17 The Foxboro Company Flow measuring apparatus

Family Cites Families (106)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3878725A (en) 1973-09-25 1975-04-22 Fischer & Porter Co Cross-flexure pivot for electronic differential pressure transmitter
DE2901516C2 (de) 1979-01-16 1985-01-24 VEGA Grieshaber GmbH & Co, 7620 Wolfach Anordnung zur Erzeugung eines einer Kapazität proportionalen Signals
US4308754A (en) 1979-10-19 1982-01-05 Panametrics, Inc. Ultrasonic flowmeter
DE8216324U1 (de) 1982-06-04 1982-09-23 Endress U. Hauser Gmbh U. Co, 7867 Maulburg Sonde zur kapazitiven messung des fuellstands in einem behaelter, insbesondere von heissem fuellgut
US4468971A (en) 1982-07-16 1984-09-04 Fischer And Porter Company Ultrasonic flowmeter for clean and dirty fluids
US4524610A (en) 1983-09-02 1985-06-25 National Metal And Refining Company, Ltd. In-line vibratory viscometer-densitometer
DE3336991A1 (de) 1983-10-11 1985-05-02 Endress U. Hauser Gmbh U. Co, 7867 Maulburg Vorrichtung zur feststellung und/oder ueberwachung eines vorbestimmten fuellstands in einem behaelter
US4617607A (en) 1985-12-10 1986-10-14 Kavlico Corporation High pressure capacitive transducer
DE3544198A1 (de) 1985-12-13 1987-06-19 Flowtec Ag Wirbelstroemungsmesser
US4656353A (en) 1986-01-21 1987-04-07 The Babcock & Wilcox Company Variable pulse rate led electronics for a fiber optic vortex shedding flowmeter
US4926340A (en) 1986-07-10 1990-05-15 Rosemount Inc. Low power process measurement transmitter
DE3632800A1 (de) 1986-09-26 1988-04-07 Flowtec Ag Nach dem coriolisprinzip arbeitendes massendurchflussmessgeraet
DE3633047A1 (de) 1986-09-29 1988-04-07 Endress Hauser Gmbh Co Fuellstandmessgeraet zur messung des fuellstandes von explosiblen oder aggresiven medien in einem behaelter
AU601501B2 (en) 1986-10-03 1990-09-13 Micro Motion, Inc. Coriolis mass flow metering
WO1988002853A1 (en) 1986-10-09 1988-04-21 Micro Motion, Inc. Apparatus and methods for measuring the density of an unknown fluid using a coriolis meter
GB2203556B (en) 1987-04-06 1991-04-17 Rosemount Ltd Two-wire loop electric circuit arrangement
DE3711754A1 (de) 1987-04-07 1988-10-27 Heinrichs Messgeraete Josef Explosionsgeschuetztes magnetisch-induktives durchflussmessgeraet
EP0378651B1 (de) 1988-07-08 1993-10-13 Endress + Hauser Flowtec AG Verfahren und anordnung zur durchflussmessung mittels ultraschallwellen
CA1311032C (en) 1989-03-31 1992-12-01 Stanley Chlebda Two-wire telemetering system including power regulated transmitting device
US4930356A (en) * 1989-04-20 1990-06-05 The United States Of America As Represented By The United States Department Of Energy Flowmeter for gas-entrained solids flow
DE3933474C2 (de) 1989-10-06 1994-01-27 Endress Hauser Gmbh Co Füllstandsmeßgerät
FR2656705B1 (fr) 1989-12-28 1992-04-17 Telemecanique Detecteur du type deux fils a tension regulee.
DE59007347D1 (de) 1990-05-19 1994-11-03 Flowtec Ag Messerwertaufnehmer für ein Ultraschall-Volumendurchfluss-Messgerät.
US5373745A (en) 1991-02-05 1994-12-20 Direct Measurement Corporation Single path radial mode Coriolis mass flow rate meter
DE59200669D1 (de) * 1991-02-25 1994-12-01 Claas Ohg Vorrichtung zur Messung eines Massestromes mit einem Messkondensator.
DE4121961A1 (de) 1991-06-28 1993-01-07 Siemens Ag Schaltungsanordnung zur energieversorgung von feldgeraeten
US5231884A (en) 1991-07-11 1993-08-03 Micro Motion, Inc. Technique for substantially eliminating temperature induced measurement errors from a coriolis meter
US5207101A (en) 1991-09-06 1993-05-04 Magnetrol International Inc. Two-wire ultrasonic transmitter
EP0631662B1 (en) 1992-03-20 1997-10-22 Micro Motion Incorporated Improved viscometer for sanitary applications
WO1994004019A1 (de) * 1992-08-22 1994-03-03 Claas OHG beschränkt haftende offene Handelsgesellschaft Vorrichtung zur messung eines massestromes
MX9306152A (es) 1992-10-05 1994-05-31 Fisher Controls Int Sistema de comunicacion y metodo.
US5416723A (en) 1993-03-03 1995-05-16 Milltronics Ltd. Loop powered process control transmitter
US5796011A (en) 1993-07-20 1998-08-18 Endress + Hauser Flowtech Ag Coriolis-type mass flow sensor
US5349872A (en) 1993-08-20 1994-09-27 Micro Motion, Inc. Stationary coils for a coriolis effect mass flowmeter
DE4412388A1 (de) 1994-06-08 1995-12-14 Hoenicke Helmut Prof Dipl Ing Leistungssparende Elektronikschaltung zur Stromversorgung elektro-pneumatischer Stellungsregler mit Mikrocontroller
US5535243A (en) 1994-07-13 1996-07-09 Rosemount Inc. Power supply for field mounted transmitter
US5469748A (en) 1994-07-20 1995-11-28 Micro Motion, Inc. Noise reduction filter system for a coriolis flowmeter
DE59409796D1 (de) 1994-11-11 2001-08-09 Endress Hauser Gmbh Co Anordnung zur Linearisierung und Temperaturkompensation von Sensorsignalen
US5706007A (en) 1995-01-03 1998-01-06 Smar Research Corporation Analog current / digital bus protocol converter circuit
DE59509491D1 (de) 1995-05-24 2001-09-13 Endress Hauser Gmbh Co Anordnung zur leitungsgebundenen Energieversorgung eines Signalgebers vom Singnalempfänger
US5672975A (en) 1995-06-07 1997-09-30 Rosemount Inc. Two-wire level transmitter
DE59509980D1 (de) 1995-09-28 2002-02-07 Endress Hauser Gmbh Co Elektronikgehäuse
US5687100A (en) 1996-07-16 1997-11-11 Micro Motion, Inc. Vibrating tube densimeter
EP0849568B1 (de) 1996-12-11 1999-06-02 Endress + Hauser Flowtec AG Coriolis-Massendurchfluss-/-Dichte-Aufnehmer mit einem einzigen geraden Messrohr
DE19723645B4 (de) 1997-06-05 2006-04-13 Endress + Hauser Gmbh + Co. Kg Anordnung zur Signalübertragung zwischen einer Geberstelle und einer Empfangsstelle
US5959372A (en) 1997-07-21 1999-09-28 Emerson Electric Co. Power management circuit
US6311136B1 (en) 1997-11-26 2001-10-30 Invensys Systems, Inc. Digital flowmeter
GB2332527B (en) 1997-12-19 2002-10-30 Abb Kent Taylor Ltd Electromagnetic flowmeter
US6014100A (en) 1998-02-27 2000-01-11 Vega Grieshaber Kg Two-wire RADAR sensor with intermittently operating circuitry components
DK0945714T3 (da) 1998-03-17 2011-01-31 Endress & Hauser Deutschland Ag & Co Kg Elektronisk udstyr til brug i eksplosionsudsatte områder
US6397683B1 (en) 1998-07-22 2002-06-04 Flowtec Ag Clamp-on ultrasonic flowmeter
US6352000B1 (en) 1998-08-12 2002-03-05 Flowtec Ag Vortex flow sensor
EP0984248B1 (de) 1998-09-02 2004-06-09 Endress + Hauser GmbH + Co. KG Messaufnehmer
US6539819B1 (en) 1998-09-02 2003-04-01 Endress + Hauser Gmbh + Co. Sensor with moisture protection
DE19840782C2 (de) 1998-09-08 2001-09-06 Krohne Messtechnik Kg Massendurchflußmeßgerät
US6236322B1 (en) 1998-09-09 2001-05-22 Endress + Hauser Gmbh + Co. Apparatus for establishing and/or monitoring a predetermined filling level in a container
US6285094B1 (en) 1998-09-16 2001-09-04 Otto P. Fest, Sr. Loop-powered current-loop controller and method
WO2000026739A1 (en) 1998-11-03 2000-05-11 Drexelbrook Controls, Inc. High efficiency power supply for a two-wire loop powered device
JP2002529742A (ja) * 1998-11-06 2002-09-10 オンガード システムズ,インク. 電子回路
US6513392B1 (en) 1998-12-08 2003-02-04 Emerson Electric Co. Coriolis mass flow controller
JP3545344B2 (ja) 1998-12-11 2004-07-21 エンドレス ウント ハウザー フローテック アクチエンゲゼルシャフト コリオリ質量流量/比重計
DE19905071A1 (de) 1999-02-08 2000-08-10 Siemens Ag Meßumformer sowie Verfahren zur Diagnose der Versorgung eines Meßumformers
US6640308B1 (en) 1999-04-16 2003-10-28 Invensys Systems, Inc. System and method of powering and communicating field ethernet device for an instrumentation and control using a single pair of powered ethernet wire
EP1058093B1 (de) 1999-05-29 2003-01-29 MTL Instruments GmbH Verfahren und Schaltungsanordnung zur Spannungsversorgung und Funktionsüberwachung zumindest eines Messwertumformers
DE19925943A1 (de) 1999-06-08 2000-12-21 Krohne Messtechnik Kg Schaltungsanordnung zur Meßwerterfassung, -übertragung und -auswertung
US6327915B1 (en) 1999-06-30 2001-12-11 Micro Motion, Inc. Straight tube Coriolis flowmeter
US6487507B1 (en) 1999-10-15 2002-11-26 Micro Motion, Inc. Remote signal conditioner for a Coriolis flowmeter
US6854055B1 (en) 1999-10-18 2005-02-08 Endress + Hauser Flowtec Ag Method and system for switching active configuration memory during on-line operation of programmable field mounted device
DE10059815A1 (de) 2000-12-01 2002-06-13 Grieshaber Vega Kg Elektronische Messvorrichtung zur Erfassung einer Prozessvariablen, insbesondere Radar- oder Ultraschall-Füllstandsmessvorrichtung und Verfahren zum Betreiben einer solchen Messvorrichtung
US6556447B2 (en) 2000-03-01 2003-04-29 Endress + Hauser Flowtec Ag Electronic apparatus with an enclosure
EP1340972B1 (de) 2000-04-27 2019-07-17 Endress + Hauser Flowtec AG Vibrations-Messgerät und Verfahren zum Messen einer Viskosität eines Fluids
US6484591B2 (en) 2000-05-04 2002-11-26 Flowtec Ag Mass flow rate/density sensor with a single curved measuring tube
US6574515B1 (en) 2000-05-12 2003-06-03 Rosemount Inc. Two-wire field-mounted process device
US6711958B2 (en) 2000-05-12 2004-03-30 Endress + Hauser Flowtec Ag Coriolis mass flow rate/density/viscoy sensor with two bent measuring tubes
US6476522B1 (en) 2000-05-31 2002-11-05 Micro Motion, Inc. Method and apparatus to control power drawn by a measurement device
DE10034684A1 (de) 2000-07-17 2002-01-31 Endress Hauser Gmbh Co Meßeinrichtung zur Messung einer Prozeßvariablen
US6480131B1 (en) 2000-08-10 2002-11-12 Rosemount Inc. Multiple die industrial process control transmitter
DE10041166C2 (de) 2000-08-21 2002-11-14 Ifm Electronic Gmbh Elektronisches Schaltgerät
US6535161B1 (en) 2000-11-28 2003-03-18 Mcewan Technologies, Llc Loop powered radar rangefinder
EP1253408A1 (de) 2001-04-24 2002-10-30 Endress + Hauser Flowtec AG Messwandler vom Vibrationstyp
US6666098B2 (en) 2001-05-23 2003-12-23 Endress + Hauser Flowtec Ag Vibratory transducer
WO2002103327A1 (de) 2001-06-19 2002-12-27 Endress + Hauser Flowtec Ag Viskositäts-messgerät
US6662120B2 (en) 2001-06-19 2003-12-09 Endress + Hauser Flowtec Ag Excitation circuits for coriolis mass flowmeters
US7032045B2 (en) 2001-09-18 2006-04-18 Invensys Systems, Inc. Multi-protocol bus device
US6776053B2 (en) 2001-11-26 2004-08-17 Emerson Electric, Inc. Flowmeter for the precision measurement of an ultra-pure material flow
US7211990B2 (en) 2001-11-30 2007-05-01 Invensys Systems, Inc. 4-20 mA interface circuit
DE10200768B4 (de) 2001-12-06 2004-03-11 Krohne Ag Massendurchflussmessgerät und Verfahren zum Betrieb eines Massendurchflussmessgerätes
US6946299B2 (en) * 2002-04-25 2005-09-20 Home Diagnostics, Inc. Systems and methods for blood glucose sensing
DE10235047A1 (de) 2002-07-31 2004-02-12 Endress + Hauser Gmbh + Co. Kg Elektronikgehäuse mit integriertem Wärmeverteiler
DE10256623A1 (de) 2002-12-03 2004-06-24 Krohne Meßtechnik GmbH & Co KG Elektrisches Gerät und Verfahren zum Betreiben eines elektrischen Geräts
DE10315106A1 (de) * 2003-04-02 2004-10-14 Endress + Hauser Flowtec Ag, Reinach Vorrichtung zur Überwachung eines Meßumformers eines Feldgeräts
US7133727B2 (en) 2003-08-01 2006-11-07 Invensys Systems, Inc. System and method for continuous online safety and reliability monitoring
DE10351311B3 (de) 2003-10-31 2005-06-30 Abb Patent Gmbh Coriolis-Massendurchflussmessgerät
DE10356629C5 (de) 2003-12-01 2010-06-02 Krohne Meßtechnik GmbH & Co KG Verfahren zum Betreiben eines elektronischen Meßgeräts
US7073396B2 (en) 2004-05-26 2006-07-11 Krohne Ag Coriolis mass flowmeter
TWI280383B (en) * 2004-06-29 2007-05-01 Japan Ae Power Systems Corp Partial discharge detecting sensor, and detecting device, and gas insulated electric apparatus provided with a partial discharge detecting sensor
DE102004056235A1 (de) 2004-10-29 2006-05-04 Krohne Ag Verfahren zum Betreiben eines Massendurchflußmeßgeräts
DE102005014058B4 (de) 2004-11-23 2010-04-08 Krohne Ag Verfahren zum Betreiben eines Massendurchflußmeßgeräts
DE102005013770B4 (de) 2004-12-01 2007-09-06 Krohne Ag Verfahren zum Betreiben eines Massendurchflussmessgeräts
DE102005032808A1 (de) 2004-12-13 2007-01-18 Krohne Ag Meßgerät
US7200503B2 (en) 2004-12-29 2007-04-03 Endrss + Hauser Flowtec Ag Field device electronics fed by an external electrical energy supply
DE102005012505B4 (de) 2005-02-16 2006-12-07 Krohne Ag Verfahren zum Betreiben eines Massendurchflußmeßgeräts
DE102006009827B4 (de) 2006-03-01 2013-08-08 KROHNE Meßtechnik GmbH & Co. KG Nichteigensicher gespeistes Meßgerät
JP2007263845A (ja) * 2006-03-29 2007-10-11 Yokogawa Electric Corp 流量計測装置及び流量計測方法
CA2650549C (en) 2006-05-01 2013-04-02 Micro Motion, Inc. A balancing structure for a single curved tube coriolis flow meter
JP2007303890A (ja) * 2006-05-09 2007-11-22 Toshiba Corp 絶縁性液体の電荷密度診断装置およびその方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2081452A (en) * 1980-08-01 1982-02-17 Endress Hauser Gmbh Co Container fluid level determination
RU2076989C1 (ru) * 1993-09-29 1997-04-10 Государственное малое предприятие "Трубопрогресс" Способ определения координат места повреждения изоляции подземного трубопровода
EP0666467B1 (en) * 1994-02-04 2001-10-17 The Foxboro Company Flow measuring apparatus
RU2157424C1 (ru) * 2000-01-31 2000-10-10 Южно-Уральский государственный университет Система катодной защиты и диагностики трубопровода

Also Published As

Publication number Publication date
CN202119489U (zh) 2012-01-18
EP2274582B1 (de) 2021-06-09
DE102008022373A1 (de) 2009-11-12
US7886614B2 (en) 2011-02-15
EP2274582A1 (de) 2011-01-19
RU2010149870A (ru) 2012-06-20
WO2009135764A1 (de) 2009-11-12
US20090277278A1 (en) 2009-11-12

Similar Documents

Publication Publication Date Title
RU2502961C2 (ru) Способ контроля измерительного прибора и измерительный прибор
US11573111B2 (en) Flow measuring system having transducer temperatures that deviate from measuring point temperatures
US10942058B2 (en) Vibration-type fluid flow-rate measuring system having temperature compensation
US9109936B2 (en) Measuring device electronics for a measuring device as well as measuring device formed therewith
US10234338B2 (en) Transducer apparatus as well as measuring system formed therewith
US7619418B2 (en) Magnetic flowmeter output verification
US11530967B2 (en) Transducer for a vibronic measuring system and vibronic measuring system formed therewith
US10371553B2 (en) Transducer apparatus as well as measuring system formed therewith
US20110317390A1 (en) Electronics housing for an electronic device, and a device formed therewith
US9372107B2 (en) Measuring system for ascertaining a volume flow and/or a volume flow rate of a medium flowing in a pipeline
US9304025B2 (en) Measuring transducer as well as measuring system formed therewith
RU2640897C2 (ru) Система детектирования вибрации в термокармане
US10309866B2 (en) Measuring system with a pressure device as well as method for monitoring and/or checking such a pressure device
US11846532B2 (en) Vibronic measuring system
US20160123836A1 (en) Measuring system with a pressure device as well as method for monitoring and/or checking such a pressure device
US11774276B2 (en) Coriolis mass flow meter
US11740114B2 (en) Coriolis mass flowmeter
US20220412785A1 (en) Vibronic measuring system for measuring a mass flow rate of a fluid measurement medium
US20220099543A1 (en) Coriolis mass flow meter
US20230392972A1 (en) Method for checking a vibronic measuring system
CN116157654A (zh) 电子振动测量系统
RU2008138604A (ru) Расходомер и способ обнаружения повреждения кабеля в кабельной сети расходомера