JP6283174B2 - 電気回路の評価方法 - Google Patents

電気回路の評価方法 Download PDF

Info

Publication number
JP6283174B2
JP6283174B2 JP2013125842A JP2013125842A JP6283174B2 JP 6283174 B2 JP6283174 B2 JP 6283174B2 JP 2013125842 A JP2013125842 A JP 2013125842A JP 2013125842 A JP2013125842 A JP 2013125842A JP 6283174 B2 JP6283174 B2 JP 6283174B2
Authority
JP
Japan
Prior art keywords
ground
electric circuit
noise signal
malfunction
lsi
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013125842A
Other languages
English (en)
Other versions
JP2015001436A (ja
Inventor
則秋 平賀
則秋 平賀
克典 木戸
克典 木戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm Co Ltd
Original Assignee
Rohm Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co Ltd filed Critical Rohm Co Ltd
Priority to JP2013125842A priority Critical patent/JP6283174B2/ja
Priority to US14/301,536 priority patent/US9417274B2/en
Publication of JP2015001436A publication Critical patent/JP2015001436A/ja
Application granted granted Critical
Publication of JP6283174B2 publication Critical patent/JP6283174B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/001Measuring interference from external sources to, or emission from, the device under test, e.g. EMC, EMI, EMP or ESD testing
    • G01R31/002Measuring interference from external sources to, or emission from, the device under test, e.g. EMC, EMI, EMP or ESD testing where the device under test is an electronic circuit

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Tests Of Electronic Circuits (AREA)
  • Testing Electric Properties And Detecting Electric Faults (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)

Description

本発明は、電気回路の評価方法に関する。
従来より、電気回路の評価方法として、DPI[direct RF power injection]テストが知られている。
なお、上記に関連する従来技術の一例としては、特許文献1や特許文献2を挙げることができる。
特開2007−278781号公報 特開2009−210322号公報
従来のDPIテストでは、対象電気回路が実際に使用される状態を反映した誤動作に対する評価ができなかった。
本発明は、本願の発明者らにより見出された上記の問題点に鑑み、電気回路が実際に使用される状態を反映した誤動作評価が可能な電気回路の評価方法、及び、これにより評価された電気回路を提供することを目的とする。
本発明に係る電気回路の評価方法は、対象電気回路をシールド構造内に配置するとともに、誤動作テスト用のノイズ信号を前記対象電気回路に入力し、前記シールド構造のグラウンドと前記対象電気回路に誤動作テスト用のノイズ信号を入力するノイズ源部のグラウンドとをショートさせるとともに、前記対象電気回路のグラウンドと前記シールド構造のグラウンドとは遮断されていることを特徴とする。
また、本発明に係る電気回路は、前記電気回路をシールド構造内に配置し、前記シールド構造のグラウンドとショートするとともに前記電気回路のグラウンドとは遮断されるグラウンドを基準に誤動作テスト用のノイズ信号を入力したとき誤動作を起こす電力の大きさの周波数特性とともに提供されることを特徴とする。
なお、本発明のその他の特徴、要素、ステップ、利点、及び、特性については、以下に続く実施形態の詳細な説明やこれに関する添付の図面によって、さらに明らかとなる。
本発明によれば、電気回路の端子に誤動作テスト用のノイズ信号を入力する評価方法であることは変えることなく、妨害ノイズである電波に曝される製品レベルでの誤動作評価を行うことが可能となる。
DPIテストの第1構成例を示すブロック図 DPIテスト結果(誤動作電力周波数特性)の一例を示す図 Sパラメータ測定の一例を示す図 等価回路化の一例を示す図 AC解析の一例を示す図 誤動作電流/電圧周波数特性の一例を示す図 到達電流/電圧周波数特性との比較例を示す図 BCIテストの一構成例を示すブロック図 DPIテストの第2構成例を示すブロック図 図9の第2構成例と他の構成例とを比較するための模式図 DPIテストの第3構成例を示す模式図 DPIテストの第4構成例を示す模式図 高周波ノイズ信号のリターンパスを示す模式図 アタッチメントの一構成例を示す模式図
<DPIテスト(第1構成例)>
図1は、DPIテストの第1構成例を示すブロック図である。DPIテストは、国際電気標準会議(IEC[international electrotechnical commission])で標準化された半導体集積回路用EMS[electromagnetic susceptibility]検証法の一つ(IEC62132−4)であり、被試験デバイス10(以下、DUT[device under test]10と呼ぶ)のほか、ノイズ源部20、検知部30、コントローラ40、バッテリ50、及び、電源フィルタ60などを用いて実施される。
DUT10は、対象電気回路11(以下、LSI11と呼ぶ)とこれを搭載したプリント配線基板(PCB[printed circuit board])を含む。もちろん、DUT10としてLSI11単体を用いることも可能である。なお、DUT10は、必ずしも実機デバイスである必要はなく、一般的には試験用の模擬デバイスを用いることが多い。
特に、複数LSIの相互比較(例えば、新モデルLSIと旧モデルLSIとの相互比較や、自社LSIと他社コンパチブルLSIとの相互比較)を行う場合には、評価対象となるLSI以外の構成要素(PCBのサイズや配線パターン、ないしは、PCBに搭載されるディスクリート部品の種類や特性など)が共通化された試験用の模擬デバイスを用いることが望ましい。
ノイズ源部20は、DUT10の端子(図1では電源端子VCCを例示)に高周波ノイズ信号(妨害波電力)を注入する主体であり、シグナルジェネレータ21と、RFアンプ22と、双方向性結合器23と、進行波側パワーセンサ24と、反射波側パワーセンサ25と、パワーメータ26と、カップリングコンデンサ27と、を含む。
シグナルジェネレータ(SG[signal generator])21は、正弦波状の高周波ノイズ信号を発生する。高周波ノイズ信号の発振周波数と振幅は、いずれもコントローラ40によって制御することができる。なお、妨害波がパルスの場合、パルスジェネレータ(PG[pulse generator])、妨害波がインパルスの場合、インパルスジェネレータ(IG[impulse generator]を用いても良い。
RF[radio frequency]アンプ22は、シグナルジェネレータ21で生成された高周波ノイズ信号を所定の利得で増幅する。
双方向性結合器(BDC[bi-directional coupler])23は、RFアンプ22で増幅された高周波ノイズ信号をDUT10に向かう進行波成分とDUT10から戻ってくる反射波成分に分離する。
進行波側パワーセンサ24は、双方向性結合器23で分離された進行波成分の電力測定を行う。一方、反射波側パワーセンサ25は、双方向性結合器23で分離された反射波成分の電力測定を行う。なお、進行波側パワーセンサ24及び反射波側パワーセンサ25への各伝送線路は、いずれも疑似遮断状態(例えば、インピーダンス:50Ω以上、電力通過特性:−20dBm以下)としておくことが望ましい。
パワーメータ26は、進行波側パワーセンサ24で測定された進行波電力と反射波側パワーセンサ25で測定された反射波電力をコントローラ40に送出する。コントローラ40により差分演算することにより、DUT10に対して実際に注入された電力を算出し、その算出結果をコントローラ40に記録する。このように、DUT10への注入電力は、DUT10からかけ離れたパワーメータ26で測定される。従って、DUT10への注入電力を高精度に測定するためには、高周波ノイズ信号伝送時のケーブルロスを極力小さい値(例えば1dB以下)に低減することが望ましい。
カップリングコンデンサ27は、双方向結合器23の出力端とDUT10との間に接続されて、直流成分をカットして交流成分(高周波ノイズ信号)のみを通過させる。なお、図1では、カップリングコンデンサ27をノイズ源部20の構成要素として描写したが、LSI11を搭載したPCB上にセラミックコンデンサを配置して代用する場合も多い。
検知部30は、DUT10の出力波形を監視してその監視結果をコントローラ40に送出する。検知部30としてはオシロスコープなどを好適に用いることができる。なお、検知部30の存在がDPIテストに影響を及ぼさないように、高入力インピーダンス(1MΩ)の差動プローブを使用して、DUT10から検知部30への伝送線路を疑似遮断状態とすることが望ましい。
コントローラ40は、DPIテストを統括制御する主体である。DPIテストの実施に際して、コントローラ40は、例えば、DUT10に注入される高周波ノイズ信号の発振周波数を固定したまま、高周波ノイズ信号の振幅(注入電力)を徐々に大きくしていくように、シグナルジェネレータ21を制御する。また、コントローラ40は、上記の振幅制御と並行して、検知部30の監視結果に応じたLSI11の誤動作判定(クロック信号のパルス抜けや周波数乱れ、出力電圧の規格外れ、または、通信エラーなどを起こしたか否かの判定)を行う。そして、コントローラ40は、LSI11の誤動作発生時点におけるパワーメータ26の測定値の演算結果(DUT10への注入電力)を取得し、これを現在設定中の発振周波数と関連付けて記憶する。以降も、コントローラ40は、高周波ノイズ信号の発振周波数をスイープしながら上記測定を繰り返すことにより、高周波ノイズ信号の発振周波数と誤動作発生時の注入電力とを関連付けた誤動作電力周波数特性を求める。なお、コントローラ40としては、上記測定をシーケンシャルに実施し得るパーソナルコンピュータなどを好適に用いることができる。
バッテリ50は、DUT10に電力供給を行う直流電源である。例えば、車載用LSIをDPIテストの評価対象とする場合には、バッテリ50として車載バッテリを用いればよい。ただし、DUT10への直流電源としては、バッテリに限らず、商用交流電力から所望の直流電力を生成するAC/DCコンバータなどを用いることも可能である。
電源フィルタ60は、ノイズ源部20からバッテリ50への伝送線路を疑似遮断状態とするための回路部であり、電源インピーダンス安定回路網61及び62(以下、LISN[line impedance stabilization network]61及び62と呼ぶ)を含む。LISN61及び62は、いずれもバッテリ50の見かけ上のインピーダンスを安定化させる。なお、LISN61は、バッテリ50の正極端子(+)とDUT10の電源端子(VCC)との間を結ぶ電源ラインに挿入されており、LISN62は、バッテリ50の負極端子(−)とDUT10のGND端子(VEE)との間を結ぶGNDラインに挿入されている。
<DPIテスト結果(誤動作電力周波数特性)>
図2は、DPIテスト結果(誤動作電力周波数特性)の一例を示す図である。なお、本図の横軸は高周波ノイズ信号の発振周波数[Hz]を示しており、縦軸は高周波ノイズ信号の注入電力[dBm]を示している。本図では、DPIテストの結果として高周波ノイズ信号の発振周波数毎にLSI11が誤動作を起こす限界の注入電力がプロットされている(図中の実線を参照)。すなわち、図中の実線は誤動作境界となるので、これより上側の領域(I)は誤動作領域となり、これより下側の領域(II)は正常動作領域となる。
ただし、所定の最大電力(例えば38〜40dBm)を注入しても誤動作を生じなかった発振周波数では、暫定的に上記最大電力がプロットされている(図中の破線を参照)。すなわち、図中の破線は正常動作保証境界となるので、これより上側の領域(III)は保証外領域となり、これより下側の領域(II)は正常動作領域となる。
このように、DPIテストでは、DUT10が誤動作を起こす限界の高周波ノイズ信号の大きさをDUT10に注入される電力で表した誤動作電力周波数特性が求められる。ただし、背景技術の項でも述べたように、誤動作電力周波数特性は取得しやすい情報ではある反面、実際のLSI11で生じる事象を改善するための情報としては扱いにくかった。
そこで、以下では、DPIテストにより上記の誤動作電力周波数特性を求めるステップに加えて、さらに、誤動作電力周波数特性からLSI11が誤動作を起こす限界の高周波ノイズ信号の大きさをLSI11の所定部分に流れる端子電流I_LSIで表した誤動作電流周波数特性及びLSI11が誤動作を起こす限界の高周波ノイズ信号の大きさをLSI11の所定点間に現れる端子電圧V_LSIで表した誤動作電圧周波数特性をそれぞれ求めるステップを有する電気回路の評価方法を提案する。
なお、当該評価方法の実施に際しては、DUT10とLSI11のS[scattering]パラメータを測定してLSI11の等価回路化とそのAC解析を行い、さらに、その解析結果に基づいて端子電流I_LSIと端子電流V_LSIのIB[immunity behavior]モデル化(誤動作電流周波数特性と誤動作電圧周波数特性の取得)を行う。以下では、これらの要素ステップについて順次詳細に説明する。
<Sパラメータ測定>
図3は、Sパラメータ測定の一例を示す図である。Sパラメータとは、DUT10やLSI11の周波数特性を表すパラメータであり、回路網の電力通過特性や電力反射特性を示すものである。例えば、図3で例示したSパラメータ|S11|は、2端子対回路(4端子回路網)において、第1端子から信号を入力したときに同第1端子に反射する信号の割合(反射損失)を示している。2端子対回路では、第1端子の反射損失(|S11|)以外にも、第1端子から第2端子への挿入損失(|S21|)、第2端子から第1端子への挿入損失(|S12|)、及び、第2端子の反射損失(|S22|)が測定される。なお、LSI11については単体のSパラメータを測定すればよく、DUT10についてはLSI実装時のSパラメータを測定すればよい。
<等価回路化>
図4は、等価回路化の一例を示す図である。DUT10とLSI11のSパラメータから、LSI11とこれを搭載するPCBの等価回路化を行う。等価回路化に際しては、例えば、本図で示したように、LSI11を抵抗R、インダクタL、コンデンサCの直列回路とみなしたり、PCBを配線パターンのインダクタLと搭載部品(コンデンサCなど)で表したりすればよい。
<AC解析>
図5は、AC解析の一例を示す図である。LSI11及びこれを搭載するPCBの等価回路に対してAC解析を行う。なお、交流電圧Vs[Vrms]を生成するAC信号源としては、50Ω系の交流電圧源を用いればよい。このとき、LSI11の所定部分に流れる端子電流I_LSI、及び、LSI11の所定点間に現れる端子電圧V_LSIは、それぞれ、次の(1a)式及び(1b)式で示すように、交流電圧Vsの関数として表すことができる。
I_LSI=fI(Vs) …(1a)
V_LSI=fV(Vs) …(1b)
また、AC信号源で生成される交流電圧VsとLSI11への注入電力Piとの間には次の(2)式が成立する。
Pi=Vs/200 …(2)
従って、(2)式を(1a)式及び(1b)式に各々代入すると、端子電流I_LSI及び端子電圧V_LSIは、それぞれ、次の(3a)式及び(3b)式で示すように、注入電力Piの関数として表すことができる。
I_LSI=fI(Vs)=fI(√(Pi×200))=gI(Pi) …(3a)
V_LSI=fV(Vs)=fv(√(Pi×200))=gV(Pi) …(3b)
なお、端子電流I_LSIが流れる所定部分としては、LSI11の信号入力端子、信号出力端子、信号入出力端子、電源端子、GND端子、放熱フィン板などを挙げることができる。特に、LSI11の信号入力端子に対して高周波ノイズ信号が入力されると、LSI11に誤動作を生じやすいので、信号入力端子の誤動作電流周波数特性や誤動作電圧周波数特性を求めることは非常に重要である。
<IBモデル化(誤動作電流/電圧周波数特性)>
図6は、誤動作電流周波数特性と誤動作電圧周波数特性の一例を示す図である。先出の(3a)式及び(3b)式にDPIテストの結果(LSI11が誤動作を起こす限界の注入電力Pi)を代入すると、高周波ノイズ信号の発振周波数毎に、LSI11が誤動作を起こす限界の端子電流I_LSIと端子電圧V_LSIが得られる。
このように、本発明に係る電気回路の評価方法において、誤動作電力周波数特性は、DUT10についてのものであるとともに、誤動作電流周波数特性及び誤動作電圧周波数特性は、誤動作電力周波数特性からLSI11についての周波数特性を抽出したものとなっている。その際、上記の誤動作電流周波数特性及び誤動作電圧周波数特性は、DUT10の誤動作電力周波数特性、DUT10の等価回路、及び、LSI11の等価回路に基づいて抽出される。
なお、上記の誤動作電流周波数特性及び誤動作電圧周波数特性に関するデータは、LSI11と共にユーザへ提供するとよい。このようなデータ提供を行うことにより、ユーザは、LSI11の誤動作を容易に回避することが可能となる。
<到達電流/電圧周波数特性との比較>
図7は、図6で示した誤動作電流周波数特性及び誤動作電圧周波数特性(実線)と、到達電流周波数特性及び到達電圧周波数特性(破線)との比較例を示す図である。到達電流周波数特性とは、LSI11を含む測定対象回路ユニットまたはその模擬ユニットに対して所定のイミュニティテスト(詳細は後述)を行なったときにLSI11の所定部分に到達して流れる到達電流I_arrの周波数特性である。一方、到達電圧周波数特性とは、上記のイミュニティテストを行ったときにLSI11の所定点間に到達して現れる到達電圧V_arrの周波数特性である。
このように、本発明に係る電気回路の評価方法は、先に求めたLSI11の誤動作電流周波数特性及び誤動作電圧周波数特性をEMS評価に活用すべく、各々をLSI11の到達電流周波数特性及び到達電圧周波数特性と比較するステップを有する。このような比較を行うことにより、例えば、図7において破線が実線を上回っている発振周波数では、LSI11が誤動作を生じ得ると判断することができる。また、LSI11の各端子毎に上記と同様の比較を行えば、誤動作を生じ得る端子を特定することができるので、速やかに回路設計を改善することが可能となる。
以上により、同一のLSI11を使用している条件であれば、PCBの構造やノイズ注入方法(テスト方法)が変わったとしても、端子電流I_LSIと端子電圧V_LSIを算出することにより、LSI11が誤動作を起こすか否かを推測することが可能となる。
なお、LSI11の到達電流周波数特性及び到達電圧周波数特性は、LSI11を搭載する測定対象回路ユニットの等価回路または模擬ユニットの等価回路に基づいてシミュレーションで求められる。このようなシミュレーションを行う際には、測定対象回路ユニットまたはその模擬ユニットに対して、所定のイミュニティテストを行う必要がある。
例えば、車載用LSIを評価対象とする場合には、上記のイミュニティテストとして、ISO11452に準拠したテストを行うことが望ましい。なお、ISO11452に準拠したテストとしては、ISO11452−2に準拠した放射イミュニティテスト、ISO11452−3に準拠したTEMCELL[transverse electromagnetic cell]テスト、及び、ISO11452−4に準拠したBCI[bulk current injection]テストなどを挙げることができる。また、イミュニティテストとしては、ISO7637やIEC61000−4シリーズに代表される製品のイミュニティ試験に準拠したテストを採用してもよい。以下では、BCIテストを例に挙げて詳細な説明を行う。
<BCIテスト>
図8は、BCIテストの一構成例を示すブロック図である。BCIテストは、国際標準化機構(ISO[international organization for standardization])で標準化された車載電子機器向けの狭帯域電磁放射エネルギーによる電気的妨害のためのコンポーネント試験方法の一つ(製品用EMS規格:ISO11452−4)である。
BCIテストは、LSI11を含む測定対象回路ユニット100(またはその模擬ユニット)に対して実施されるテストであり、先のDPIテスト(図1を参照)と同様、DUT10のほか、ノイズ源部20、検知部30、コントローラ40、バッテリ50、及び、電源フィルタ60などを用いて実施される。
測定対象回路ユニット100は、LSI11が搭載される実際の製品(実機)に相当するものであり、先出のDUT10やバッテリ50のほかに、DUT10と電源フィルタ部60との間を電気的に接続する1.5〜2.0m程度のワイヤーハーネス70を含む。なお、ワイヤーハーネス70にはインジェクションプローブ80が挿入されており、ノイズ源部20の50Ω伝送線路28を介してバルク電流が注入される。
なお、測定対象回路ユニット100に対してBCIテストを行った場合、LSI11の到達電流周波数特性及び到達電圧周波数特性は、測定対象回路ユニット100の等価回路に基づいてシミュレーションで求められる。
一方、測定対象回路ユニット100を簡略化した模擬ユニットに対してBCIテストを行った場合、LSI11の到達電流周波数特性及び到達電圧周波数特性は、測定対象回路ユニット100の等価回路と模擬ユニットの等価回路の双方に基づいてシミュレーションで求められる。
なお、上記の等価回路は、測定対象回路ユニット100のSパラメータとLSI11のSパラメータに基づくものである。
このように、本発明に係る電気回路の評価方法は、LSI11を含む測定対象回路ユニット100に対して所定のイミュニティテスト(例えばBCIテスト)を行なったときにLSI11の所定部分に到達して流れる到達電流I_arrを表わす到達電流周波数特性をLSI11の等価回路及び測定対象回路ユニット100の等価回路に基づいてシミュレーションで求めるステップと、同イミュニティテストを行なったときにLSI11の所定点間に到達して現れる到達電圧V_arrを表わす到達電圧周波数特性をLSI11の等価回路及び測定対象回路ユニット100の等価回路に基づいてシミュレーションで求めるステップと、を有する。
<DPIテスト(第2構成例)>
図9は、DPIテストの第2構成例を示すブロック図である。第2構成例は、先の第1構成例と基本的に同一であるが、高周波ノイズ信号をDUT10の端子にグラウンド基準で入力するのではなく、高周波ノイズ信号をDUT10のグラウンド端子VEE自体に入力し、LSI11が誤動作を起こす電力の大きさの周波数特性(誤動作電力周波数特性)を求める点に特徴を有する。そこで、第1構成例と同様の構成要素については、図1と同一の符号を付すことで重複した説明を割愛し、以下では、第2構成例の特徴部分について重点的に説明する。
DPIテストの第2構成例における一つ目の特徴は、LSI11が誤動作を起こすかどうかを検知する検知部30の検知基準グラウンド30aがDUT10のグラウンド端子VEEに対して高インピーダンス部品31で接続されている点である。この高インピーダンス部品31は、抵抗器(例えば10kΩ)、コイル、フェライトビーズ等で構成する。
DUT10のグランド端子VEEに高周波ノイズ信号を注入する場合、検知部30の基準電位を得るために検知基準グラウンド30aをDUT10のグラウンド端子VEEに低インピーダンスで接続してしまうと、高周波ノイズ信号が検知部30のグラウンドに分散してしまうので、検知部30の存在がDPIテスト結果に影響を及ぼしてしまう。一方、検知部30のグラウンドをDUT10のグラウンド端子VEEから完全に絶縁してしまうと、DUT10と検知部30のグラウンド電位が不一致となるので、出力波形の検出を正しく行うことができなくなる。
そこで、検知部30の検知基準グラウンドとDUT10のグラウンド端子VEEとの間を高インピーダンス部品31で接続した状態(疑似遮断状態)とすることにより、検知部30に向けた高周波ノイズ信号のリークを低減することができるので、上記の問題を解消することが可能となる。
DPIテストの第2構成例における二つ目の特徴は、DUT10に誤動作テスト用の高周波ノイズ信号を入力するノイズ源部20のグラウンド20aがDUT10のグラウンドVEEから直流的に遮断されている点である。つまり、グラウンド20aは、グラウンドVEEとは別ノードとなっている。このような構成を採用することにより、ノイズ源部20のグラウンドVEEに向けた高周波ノイズ信号のリークを防止することが可能となる。
DPIテストの第2構成例における三つ目の特徴は、DUT10に誤動作テスト用の高周波ノイズ信号を入力するノイズ源部20のグラウンド20aが、DUT10に電力供給を行うバッテリ50等の直流電源系のグラウンド50aと別ノードとなっていて遮断されている点である。
図9に示すように、ノイズ源部20のグラウンド20aは、共通グラウンドとなっていて、コントローラ40および検知部30のシステムグラウンドと共通電位に置かれる。
なお、上記の誤動作電力周波数特性に関するデータは、LSI11と共にユーザへ提供するとよい。このようなデータ提供を行うことにより、ユーザは、当該データをLSI11の誤動作回避に活用することが可能となる。
図10は、図9の第2構成例と他の構成例とを比較するための模式図である。(X)欄には、第1構成例と同様、グラウンド基準でLSIの出力端子OUT1に高周波ノイズ信号を注入する構成が描写されている。(Y)欄には、アンテナからシャーシに向けて妨害電波を放出することでLSIのグラウンド端子VEEに高周波ノイズ信号を注入する構成が描写されている。(Z)欄には、第2構成例と同様、LSIのグラウンド端子VEE自体に高周波ノイズ信号を注入する構成が描写されている。
(X)欄で示した構成では、LSIのグラウンド端子VEE以外の端子に高周波ノイズ信号を注入した場合の誤動作しか評価することができない。
(Y)欄で示した構成であれば、LSIのグラウンド端子VEEに高周波ノイズ信号を注入した場合の誤動作を評価することができる。ただし、このような構成では、シャーシの存在がDPIテストの結果に影響を及ぼしてしまう。
(Z)欄で示した構成であれば、シャーシの影響を受けることなく、LSIのグラウンド端子VEEに高周波ノイズ信号を注入した場合の誤動作を評価することができる。
<DPIテスト(第3構成例)>
図11は、DPIテストの第3構成例を示すブロック図である。第3構成例も第2構成例と同様にして、高周波ノイズ信号をDUT10のグラウンド端子VEE自体に入力し、LSI11が誤動作を起こす電力の大きさの周波数特性(誤動作電力周波数特性)を求めるものである。第2構成例と同様の構成要素については、図9と同一の符号を付すことで重複した説明を割愛し、以下では、第3構成例の特徴部分について重点的に説明する。
DPIテストの第3構成例では、検知部30が高入力インピーダンス(例えば1MΩ)の差動入力部30bを有し、その一方の入力である第1差動入力30b1にDUT10の検知対象部が接続される。一方、差動入力部30bの他方の入力である第2差動入力30b2にはDUT10のGND端子(VEE)が接続される。これによって、DUT10から検知部30への結合が疑似遮断状態となり、検知部30の存在がDPIテストに影響を及ぼさないようにすることができる。なお、第3構成例の検知部30においては、DUT10と検知部30の検知基準グラウンド電位を一致させる必要がないので、検知部30のグラウンドをDUT10のグラウンド端子VEEから完全に絶縁してよく、検知基準グラウンド30aは適宜の電位に接続される。
<DPIテスト(第4構成例)>
図12は、DPIテストの第4構成例を示す模式図である。第4構成例は、先の第1構成例〜第3構成例と基本的に同一であるが、DUT10がシールド構造110の内部に配置されている点に特徴を有する。そこで、第1構成例〜第3構成例と同様の構成要素については、図1、図9、ないし、図11と同一の符号を付すことで重複した説明を割愛し、以下では、第4構成例の特徴部分について重点的に説明する。
DPIテストの第4構成例では、DUT10がシールド構造110の内部に配置されている。シールド構造110は、導体で形成された閉空間であり、例えば、電界シールドとして一般に用いられているシールドルームやシールドボックスがこれに相当する。
誤動作テスト用の高周波ノイズ信号は、ノイズ源部20から同軸ケーブル120を介してDUT10に入力される。なお、高周波ノイズ信号を入力したときにDUT10が誤動作を起こす電力の大きさの周波数特性を求める点については、第1構成例〜第3構成例のDPIテストと同様である。
ここで、シールド構造110のグラウンド(シールドルーム壁)とノイズ源部20のグラウンド(GNDA)とは、DC的ないしAC的(RF的)に良好な導通度を持って互いにショートされている。一方、DUT10のグラウンド(GND)とシールド構造110のグラウンド(GNDA)とは、互いに遮断されている。
図12の例に即して具体的に述べると、ノイズ源部20からDUT10に至る同軸ケーブル120は、貫通型Nコネクタなどを介してシールド構造110を貫通している。同軸ケーブル120の外部導体(グラウンド線)121は、シールド構造110とショートされる一方、DUT10とは遮断されている。従って、DUT10に設けられた任意の端子(特にグラウンド端子)に対して高周波ノイズ信号を注入するための条件が満たされる。
一方、同軸ケーブル120の内部導体122は、高周波ノイズ信号の伝送線路としてDUT10に接続されている。このとき、高周波ノイズ信号の注入を受けたPCBの配線パターン(特にGNDパターン)は、放射アンテナの役割を果たす。
このように、第4構成例のDPIテストを実施するための評価装置は、DUT10を配置するためのシールド構造110と、シールド構造110を貫通する同軸ケーブル120と、同軸ケーブル120により誤動作テスト用の高周波ノイズ信号をDUT10に入力するノイズ源部20とを有する。そして、同軸ケーブル120は、シールド構造110とショートするとともにDUT10とは遮断される外部導体121と、DUT10に接続して高周波ノイズ信号を入力するための内部導体122とを持つ。
<高周波ノイズ信号のリターンパス>
図13は、高周波ノイズ信号のリターンパスを示す模式図である。なお、DUT10の内部における大破線矢印は、高周波ノイズ信号が注入される任意の端子(ここではグラウンド端子とする)から一番通りやすい経路を通じてDUT10を通過するノイズ伝搬経路を示している。また、DUT10からシールド構造110に向かう小破線矢印は、電波を介したノイズ伝搬経路を示している。また、シールド構造110に沿った実線矢印は、シールド構造110を経由してノイズ源部20に戻る伝導性妨害ノイズを示している。
DUT10のグラウンドに注入された高周波ノイズ信号は、その発振周波数に応じて一番通りやすい経路を通じてノイズ源部20に戻る。DUT10のグラウンド(GND)とシールド構造110のグラウンド(GNDA)は遮断されているので、相互間は電波によって結合する(図中の小破線を参照)。この電波を介した一番通りやすい経路を通じて形成されるリターンパスが、第3構成例のDPIテストにおける重要な要件となる。
DUT10をシールド構造110で囲まずに実施するDPIテストの場合、DUT10のグラウンド(GND)から放射された電波がノイズ源部20のグラウンド(GNDA)に戻る経路は、テスト環境(建造物の構造や電波の伝搬特性など)によって千差万別であり、これがテスト結果に影響を及ぼす。これに対して、DUT10をシールド構造110で囲んで実施するDPIテストであれば、上記リターンパスがシールド構造100を介した経路に固定されるので、テスト環境に依存しないテスト結果を得ることが可能となり、延いては、DUT10の実使用状態を反映した誤動作評価を行うことが可能となる。
なお、上記の誤動作電力周波数特性に関するデータは、LSI11と共にユーザへ提供するとよい。このようなデータ提供を行うことにより、ユーザは、当該データをLSI11の誤動作回避に活用することが可能となる。
<アタッチメント>
図14は、DUT10と同軸ケーブル120との間に挿入されるアタッチメントの一構成例を示す模式図である。(A)欄では、同軸ケーブル120、アタッチメント130、及び、DUT10側に設けられたコネクタ140が互いに分離された状態で描写されている。(B)欄では、アタッチメント130を用いて同軸ケーブル120とコネクタ140とを接続した状態が描写されている。(C)欄では、アタッチメント130を用いることなく同軸ケーブル120とコネクタ140とを直接接続した状態が描写されている。
本構成例のアタッチメント130は、外部導体131と内部導体132を含む。(B)欄で示したように、アタッチメント130を用いて同軸ケーブル120とコネクタ140とを接続した状態において、アタッチメント130の外部導体131は、同軸ケーブル120の外部導体121(GNDA)に導通されることなく、コネクタ140の外部導体141(GND)に導通される。なお、同軸ケーブル120の外部導体121とアタッチメント130の外部導体131とは、フランジ固定用SMA[sub miniature type A]コネクタの対向面間(4mm)で分離すればよい。
一方、アタッチメント130の内部導体132は、一端が外部導体131にショートされており、コネクタ140の内部導体142(信号ライン)に導通されることなく、同軸ケーブル120の内部導体122(ノイズライン)に導通される。なお、外部導体131は、内部導体132とのショート点から開放端までが24mmのオープンスタブとなる。
当該構成のアタッチメント130を用いることにより、極めて容易に、同軸ケーブル120の外部導体121をDUT10と遮断しながら内部導体122をDUT10に接続することが可能となる。
また、(C)欄で示したように、アタッチメント130を用いることなく同軸ケーブル120とコネクタ140とを直接接続すれば、当然のことながら、同軸ケーブル120の外部導体121及び内部導体122と、コネクタ140の外部導体141及び内部導体142との間を相互に接続することが可能となる。
<その他の変形例>
なお、本明細書中に開示されている種々の技術的特徴は、上記実施形態のほか、その技術的創作の主旨を逸脱しない範囲で種々の変更を加えることが可能である。すなわち、上記実施形態は、全ての点で例示であって制限的なものではないと考えられるべきであり、本発明の技術的範囲は、上記実施形態の説明ではなく、特許請求の範囲によって示されるものであり、特許請求の範囲と均等の意味及び範囲内に属する全ての変更が含まれると理解されるべきである。
本発明は、例えば、車載用LSIのEMS検証を行う際に利用することが可能である。
10 被試験デバイス(DUT)
11 対象電気回路(LSI)
20 ノイズ源部
21 シグナルジェネレータ
22 RFアンプ
23 双方向性結合器
24 進行波側パワーセンサ
25 反射波側パワーセンサ
26 パワーメータ
27 カップリングコンデンサ
28 50Ω伝送線路
30 検知部(オシレータなど)
31 高インピーダンス部品
40 コントローラ(パソコンなど)
50 バッテリ
60 電源フィルタ
61、62 電源インピーダンス安定回路網(LISN)
70 ワイヤーハーネス
80 インジェクショントランス
100 測定対象回路ユニット
110 シールド構造(シールドルーム、シールドボックスなど)
120 同軸ケーブル
121 外部導体
122 内部導体
130 アタッチメント
131 外部導体
132 内部導体
140 コネクタ
141 外部導体
142 内部導体

Claims (6)

  1. 対象電気回路をシールド構造内に配置するとともに、誤動作テスト用のノイズ信号を前記対象電気回路のグラウンドに入力し、前記シールド構造のグラウンドと前記対象電気回路に誤動作テスト用のノイズ信号を入力するノイズ源部のグラウンドとをショートさせるとともに、前記対象電気回路のグラウンドと前記ノイズ源部のグラウンドとは遮断されていることを特徴とする電気回路の評価方法。
  2. 前記シールド構造には前記ノイズ源部から前記対象電気回路への同軸ケーブルが貫通しており、前記同軸ケーブルの外部導体は前記シールド構造とショートするとともに前記対象電気回路とは遮断され、前記同軸ケーブルの内部導体は前記対象電気回路に接続されて前記ノイズ信号を入力することを特徴とする請求項1に記載の電気回路の評価方法。
  3. 前記同軸ケーブルの内部導体は、前記対象電気回路のグラウンドに接続されていることを特徴とする請求項2に記載の電気回路の評価方法。
  4. 前記ノイズ信号を入力したときに前記対象電気回路が誤動作を起こす限界の前記ノイズ信号の大きさを前記ノイズ信号の発振周波数毎に前記電気回路に注入される電力で表した誤動作電力周波数特性を求めることを特徴とする請求項1〜請求項3のいずれか一項に記載の電気回路の評価方法。
  5. 電気回路と;
    前記電気回路をシールド構造内に配置し、前記シールド構造のグラウンドとショートするとともに前記電気回路のグラウンドとは遮断されるノイズ源部のグラウンドを基準に誤動作テスト用のノイズ信号を前記電気回路のグラウンドに入力したときに前記電気回路が誤動作を起こす限界の前記ノイズ信号の大きさを前記ノイズ信号の発振周波数毎に前記電気回路に注入される電力で表した誤動作電力周波数特性を示すデータをユーザに提供するデータ提供手段と;
    からなるデバイスセット
  6. 対象電気回路を配置するためのシールド構造と、前記シールド構造を貫通する同軸ケーブルと、前記同軸ケーブルにより誤動作テスト用のノイズ信号を前記対象電気回路のグラウンドに入力するノイズ源部とを有し、
    前記対象電気回路のグラウンドと前記ノイズ源部のグラウンドとは遮断されており、
    前記同軸ケーブルは、前記シールド構造とショートするとともに前記対象電気回路とは遮断される外部導体と、前記対象電気回路に接続して前記ノイズ信号を入力するための内部導体とを持つ、
    ことを特徴とする電気回路の評価装置。
JP2013125842A 2013-06-14 2013-06-14 電気回路の評価方法 Active JP6283174B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013125842A JP6283174B2 (ja) 2013-06-14 2013-06-14 電気回路の評価方法
US14/301,536 US9417274B2 (en) 2013-06-14 2014-06-11 Electric circuit evaluation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013125842A JP6283174B2 (ja) 2013-06-14 2013-06-14 電気回路の評価方法

Publications (2)

Publication Number Publication Date
JP2015001436A JP2015001436A (ja) 2015-01-05
JP6283174B2 true JP6283174B2 (ja) 2018-02-21

Family

ID=52018694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013125842A Active JP6283174B2 (ja) 2013-06-14 2013-06-14 電気回路の評価方法

Country Status (2)

Country Link
US (1) US9417274B2 (ja)
JP (1) JP6283174B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10361795B2 (en) * 2016-07-27 2019-07-23 Skyworks Solutions, Inc. Apparatus and methods for testing patch antennas
JP7075121B2 (ja) * 2018-08-21 2022-05-25 地方独立行政法人東京都立産業技術研究センター 電子製品の評価方法および評価装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0607481A1 (en) * 1993-01-19 1994-07-27 Electronic Development, Inc. Apparatus and method for electromagnetical field susceptibility testing
JP4066478B2 (ja) * 1997-10-28 2008-03-26 松下電工株式会社 電子回路基板のコモンモード・インピーダンス測定方法及びその測定装置
JP4929797B2 (ja) * 2006-04-05 2012-05-09 株式会社デンソー 半導体評価装置
JP4775302B2 (ja) * 2007-04-11 2011-09-21 株式会社デンソー 半導体評価装置
JP2009210322A (ja) * 2008-03-03 2009-09-17 Denso Corp 半導体評価装置
DE102008022373A1 (de) * 2008-05-06 2009-11-12 Endress + Hauser Flowtec Ag Meßgerät sowie Verfahren zum Überwachen eines Meßgeräts
US9244117B2 (en) * 2013-03-15 2016-01-26 Livewire Innovation, Inc. Systems and methods for implementing S/SSTDR measurements

Also Published As

Publication number Publication date
US9417274B2 (en) 2016-08-16
US20140368225A1 (en) 2014-12-18
JP2015001436A (ja) 2015-01-05

Similar Documents

Publication Publication Date Title
JP6267918B2 (ja) ノイズ源を含むデバイスの評価方法
JP6338830B2 (ja) 複数の電気回路を含むデバイスの評価方法
Reuter et al. Impedance analysis of automotive high voltage networks for EMC measurements
WO2022244246A1 (ja) Icのノイズ耐量検出装置、icのノイズ耐量検出方法、およびicの内部インピーダンス測定方法
JP6283174B2 (ja) 電気回路の評価方法
CN108872682B (zh) 一种基于微带线耦合电压测量装置及方法
US10635778B2 (en) Method for computer simulation and method for generating a transmission line model
zur Nieden et al. Circuit models for ESD-generator-cable field coupling configurations based on measurement data
JP6541294B2 (ja) 電気回路の評価方法および電気回路
JP6510746B2 (ja) 電気回路の評価方法
US9400300B2 (en) Electric circuit evaluation method
Nozadze et al. Prediction of Worst-Case Radiation Immunity in Cable Harnesses
Kayano et al. Radiated emission from a PCB with an attached cable resulting from a nonzero ground plane impedance
Richter et al. Antenna factor determination of a shielded standard loop antenna
Funato et al. Application of a magnetic near-field probe to the differentiation of defective connections
Endo et al. Dimension Dependence of Transfer Characteristics of Tubular Wave Coupler and Improvement of Directivity
Aizpurua et al. EMC Study of Automotive Wire Harness Configurations in a GTEM Cell
Castagnet et al. Correlation Between Conducted Injection and Near-Field Scan Immunity in the L-Band
Růžek et al. Influence of the probe position to disturbance measurement in the workbench Faraday cage
Agoris et al. Sensitivity check for on-line VHF/UHF PD detection on Transmission cables
JP2023166924A (ja) コンピュータシミュレーション方法
Zouaoui et al. Radiated immunity of the Gigabit Ethernet Switch embedded in an industrial programmable logic controller
Johns et al. TLM Simulation of RF Emissions and Confirmation of Results through Testing
Reuter et al. Characterization of automotive high voltage networks for EMI measurements
JP2012013582A (ja) ノイズ測定用ケーブル及びノイズ測定装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160513

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170328

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20170529

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20170529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180126

R150 Certificate of patent or registration of utility model

Ref document number: 6283174

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250