WO2022244246A1 - Icのノイズ耐量検出装置、icのノイズ耐量検出方法、およびicの内部インピーダンス測定方法 - Google Patents

Icのノイズ耐量検出装置、icのノイズ耐量検出方法、およびicの内部インピーダンス測定方法 Download PDF

Info

Publication number
WO2022244246A1
WO2022244246A1 PCT/JP2021/019384 JP2021019384W WO2022244246A1 WO 2022244246 A1 WO2022244246 A1 WO 2022244246A1 JP 2021019384 W JP2021019384 W JP 2021019384W WO 2022244246 A1 WO2022244246 A1 WO 2022244246A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
probe
output
coaxial
noise
Prior art date
Application number
PCT/JP2021/019384
Other languages
English (en)
French (fr)
Inventor
佑介 山梶
将臣 鷲野
延是 春名
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2021/019384 priority Critical patent/WO2022244246A1/ja
Priority to KR1020237039051A priority patent/KR20230170949A/ko
Priority to DE112021007695.7T priority patent/DE112021007695T5/de
Priority to CN202180098282.1A priority patent/CN117321429A/zh
Priority to JP2021559707A priority patent/JP7053969B1/ja
Publication of WO2022244246A1 publication Critical patent/WO2022244246A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/30Marginal testing, e.g. by varying supply voltage
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/0046Arrangements for measuring currents or voltages or for indicating presence or sign thereof characterised by a specific application or detail not covered by any other subgroup of G01R19/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/08Measuring electromagnetic field characteristics
    • G01R29/0864Measuring electromagnetic field characteristics characterised by constructional or functional features
    • G01R29/0878Sensors; antennas; probes; detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/12Measuring electrostatic fields or voltage-potential
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/001Measuring interference from external sources to, or emission from, the device under test, e.g. EMC, EMI, EMP or ESD testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2855Environmental, reliability or burn-in testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2855Environmental, reliability or burn-in testing
    • G01R31/2872Environmental, reliability or burn-in testing related to electrical or environmental aspects, e.g. temperature, humidity, vibration, nuclear radiation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2855Environmental, reliability or burn-in testing
    • G01R31/2872Environmental, reliability or burn-in testing related to electrical or environmental aspects, e.g. temperature, humidity, vibration, nuclear radiation
    • G01R31/2879Environmental, reliability or burn-in testing related to electrical or environmental aspects, e.g. temperature, humidity, vibration, nuclear radiation related to electrical aspects, e.g. to voltage or current supply or stimuli or to electrical loads
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/22Detection or location of defective computer hardware by testing during standby operation or during idle time, e.g. start-up testing
    • G06F11/24Marginal checking or other specified testing methods not covered by G06F11/26, e.g. race tests
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2853Electrical testing of internal connections or -isolation, e.g. latch-up or chip-to-lead connections

Definitions

  • the present disclosure relates to an IC noise tolerance detection device, an IC noise tolerance detection method, and an IC internal impedance measurement method.
  • test simulating electromagnetic noise is conducted to check for malfunction or destruction before shipment of equipment including ICs.
  • Tests simulating electromagnetic noise include an EFT/B (Electrical Fast Transient/Burst) test, an ESD (Electro Static Discharge) test, a conduction immunity test, a radiation immunity test, a lightning surge test, and the like. If the test result fails to satisfy the standard, a redesign is performed.
  • the electromagnetic noise evaluation method of IC which is the cause of malfunction, is the DPI (Direct Power Injection) method defined by IEC62132-4 in IEC (International Electrotechnical Commission) 621132, or the DPI (Direct Power Injection) method defined by IEC62132-9. There is a surface scanning method and the like.
  • Patent Document 1 An IC noise tolerance detector that detects the noise tolerance of an IC through the following four processes is known (see Patent Document 1, for example).
  • the IC's noise immunity detector injects common mode noise while the noise source sweeps the frequency into the transmission line provided in the electronic product.
  • the IC's noise tolerance detector measures the frequency characteristics indicating the noise level at each frequency of the common mode noise injected through the transmission line into the terminals of the device provided in the electronic product.
  • the IC's noise tolerance detector acquires endurance characteristics that indicate the noise level at each noise frequency at which the device malfunctions.
  • the IC's noise tolerance detector identifies the frequency band of common mode noise that causes the electronic product to malfunction from the frequency characteristics and durability characteristics.
  • Non-Patent Document 1 In order to reduce the influence on the measurement system, there is a known method of contactlessly applying noise to the IC to be measured and confirming malfunction (see, for example, Non-Patent Document 1).
  • an electric field or a magnetic field can be applied.
  • a current or voltage source caused by an applied electric or magnetic field causes a current return path according to Kirchhoff's laws.
  • the return path is caused by parasitic components such as electric and magnetic coupling that depend on spatial distances, structures, and the like. Therefore, the propagation path cannot be determined only by arranging the non-contact probes.
  • the propagation path can be determined by bringing the contact probe into contact with the IC to be measured and providing a return path.
  • malfunction conditions since the operating conditions of the IC to be measured change due to the contact, it is difficult to accurately measure the malfunction conditions (hereinafter referred to as "malfunction conditions") in the actual operating state of the IC.
  • an object of the present disclosure is to provide an IC noise tolerance detection device, an IC noise tolerance detection method, and an IC internal impedance measurement method that can accurately measure IC malfunction conditions.
  • the IC noise tolerance detection device of the present disclosure includes a signal generation unit that outputs a first AC signal and a second AC signal having different phases as noise, and a first coaxial cable for transmitting the first AC signal. , a second coaxial cable for transmitting a second AC signal, and the first coaxial cable, connected to the end opposite to the signal generator and arranged close to the IC on the printed circuit board a second probe connected to the end of the second coaxial cable opposite to the signal generating section and arranged close to the IC; the first AC signal and the second and a judgment device for judging whether or not the IC is malfunctioning based on the operating state of the IC or the device in which the IC is mounted after the AC signal is applied.
  • the IC noise tolerance detection device of the present disclosure includes a signal generation unit that outputs a first AC signal and a second AC signal having different phases, and a plurality of first AC signals each for transmitting the first AC signal. and a plurality of second coaxial cables, each for transmitting a second alternating current signal, each connected to a corresponding first coaxial cable and proximate to the IC on the printed circuit board.
  • a plurality of first probes arranged to apply a first alternating signal to the IC, each connected with a corresponding second coaxial cable and arranged proximate the IC to apply the second alternating signal; to the IC; and a plurality of third probes, each positioned proximate to the IC, for measuring the output signal of the IC; a plurality of third coaxial cables connected to the 3 probes for transmitting output signals of the IC; A judgment device for judging whether or not the IC malfunctions based on the output signal, and one first coaxial cable provided between the plurality of first coaxial cables and the signal generation section and connected to the signal generation section.
  • a first switch for switching between the coaxial cables, and a second switch provided between the plurality of second coaxial cables and the signal generator for switching one second coaxial cable connected to the signal generator a switch; and a third switch provided between the plurality of third coaxial cables and the determination device for switching one third coaxial cable connected to the determination device.
  • An IC noise tolerance detection method of the present disclosure includes a signal generator configured to output a first AC signal and a second AC signal having different phases; a second coaxial cable for transmitting a second AC signal, a first probe connected to the first coaxial cable, and a second probe connected to the second coaxial cable and a determination device.
  • An IC noise tolerance detection method of the present disclosure comprises the steps of placing a first probe and a second probe close to an IC, and causing a signal generator to output a first AC signal and a second AC signal. and a determination device determining whether the IC malfunctions based on the state of the IC, the printed circuit board on which the IC is mounted, or a different printed circuit board connected to the printed circuit board on which the IC is mounted. and a step.
  • the IC internal impedance measurement method of the present disclosure includes the steps of using an electric field probe to measure an electric field generated by an output terminal whose output signal does not change in an IC in an operating state; measuring the magnetic field; and calculating the internal impedance of the output terminals of the IC based on the measured electric field and the measured magnetic field.
  • the internal impedance measurement method of an IC of the present disclosure includes the steps of measuring a voltage applied to an input terminal of an IC to be measured in an operating state; injecting a modulated signal into the input terminal; measuring an electric field generated by the input terminal using an electric field probe; measuring a magnetic field generated by the input terminal using a magnetic field probe; calculating the internal impedance of the input terminal based on the electric field and the measured magnetic field.
  • the IC internal impedance measurement method of the present disclosure includes the steps of using an electric field probe to measure an electric field generated by an input terminal of known impedance, and using a magnetic field probe to measure a magnetic field generated by an input terminal of known impedance.
  • the step of calculating the frequency characteristic of the complex correction coefficient, and the input terminal to be measured using the electric field probe a step of measuring an electric field generated by a magnetic field probe, a step of measuring a magnetic field generated by an input terminal to be measured using a magnetic field probe, a frequency characteristic of a complex correction factor, and an electric field and a magnetic field generated by the input terminal to be measured and calculating the internal impedance of the input terminal to be measured using .
  • FIG. 1 is a diagram showing a configuration of an IC noise tolerance detection device according to a first embodiment
  • FIG. 4 is a diagram for explaining injection of a first AC signal and a second AC signal to IC 51
  • FIG. 2 is a diagram illustrating a configuration example of a determination device 70
  • FIG. FIG. 4 is a diagram showing an example of a coaxial probe
  • 5 is a flow chart showing the steps of a noise tolerance detection method for an IC according to the first embodiment
  • 1 is a schematic diagram of a first measurement method of Embodiment 1
  • FIG. 4 is a schematic diagram of a second measurement method of Embodiment 1.
  • FIG. 4 is a schematic diagram of a third measuring method of Embodiment 1.
  • FIG. 1 is a schematic diagram of a conventional measuring device;
  • FIG. 10 is a flow chart showing the steps of a noise tolerance detection method for an IC according to the second embodiment;
  • FIG. 10 is a diagram showing an example of a response map according to Embodiment 2;
  • FIG. 4 is a flow chart showing procedures of a method for determining a malfunction condition using two response maps;
  • FIG. 13 represents a response map for a second IC;
  • FIG. 4 is a diagram for explaining a method of identifying malfunction conditions using two response maps;
  • 10 is a flow chart showing a procedure of an IC noise tolerance detection method according to a modification of the second embodiment;
  • FIG. 11 is a diagram showing an example of a response map of a modification of the second embodiment;
  • FIG. 10 is a flow chart showing the steps of a noise tolerance detection method for an IC according to the second embodiment;
  • FIG. 10 is a diagram showing an example of a response map according to Embodiment 2;
  • FIG. 4 is a flow chart showing procedures of a method for determining a
  • FIG. 10 is a flow chart showing procedures of a method for measuring the internal impedance of an output terminal of an IC in Embodiment 3;
  • FIG. 10 is a diagram representing an example of a response map including description of internal impedance;
  • 10 is a flow chart showing procedures of a method for measuring the internal impedance of an input terminal of an IC in Embodiment 4;
  • FIG. 13 is a diagram showing the configuration of an IC noise tolerance detection device according to a fifth embodiment;
  • FIG. 20 is a diagram showing the configuration of an IC noise tolerance detection device according to a modification of the fifth embodiment;
  • FIG. 11 is a diagram showing the configuration of an IC noise tolerance detection device according to a sixth embodiment;
  • FIG. 12 is a diagram showing the configuration of an IC noise tolerance detection device according to Modification 1 of Embodiment 6;
  • FIG. 13 is a diagram showing the configuration of an IC noise tolerance detector according to Modification 2 of Embodiment 6;
  • FIG. 12 is a diagram showing the configuration of an IC noise tolerance detection device according to Modification 3 of Embodiment 6;
  • FIG. 13 is a diagram showing a part of an IC noise tolerance detection device according to a seventh embodiment;
  • 5 is a diagram showing measurement results when noise is applied to the printed circuit board 50.
  • FIG. It is a figure which shows the measurement result at the time of using a non-contact coaxial probe (electric field probe), and the measurement result at the time of using a magnetic field probe.
  • FIG. 5 is a diagram showing measurement results of a normal output (1.35 V) and an abnormal output of the power supply IC 51 when noise is applied to the IC 51; It is a figure which shows the result when a 10-V signal is injected into the feedback terminal of power supply IC.
  • FIG. 21 is a diagram showing first probe 40 of modification 1 of embodiment 7;
  • FIG. 13 is a diagram showing a configuration of part of a noise tolerance detection device for an IC according to an eighth embodiment;
  • FIG. 10 is a diagram showing measurement results of malfunction conditions when noise is applied to differential wiring;
  • FIG. 21 is a diagram showing a configuration of a part of an IC noise tolerance detection device according to a ninth embodiment;
  • FIG. 20 is a diagram showing the configuration of an IC noise tolerance detection device according to a tenth embodiment
  • FIG. 20 is a diagram showing the configuration of an IC noise tolerance detection device according to an eleventh embodiment
  • FIG. 22 is a diagram showing an electromagnetic field probe in Embodiment 12
  • FIG. 22 is a diagram showing an electromagnetic field probe in a modified example of the twelfth embodiment
  • FIG. 22 is a diagram showing estimation results of internal impedance Z(f) in the fourteenth embodiment
  • 20 is a diagram showing frequency characteristics of an estimated value of internal impedance Z(f) with respect to a 50 ⁇ termination when calibration is performed using a correction complex coefficient ⁇ (f) according to Embodiment 14 and when calibration is not performed; 29 is a flow chart showing procedures of a method for measuring internal impedance in the fourteenth embodiment;
  • FIG. 1 is a diagram showing the configuration of an IC noise tolerance detector according to a first embodiment.
  • This IC noise tolerance detector detects the noise tolerance of the IC 51 on the printed circuit board 50 .
  • Noise is generally a signal that occurs inside or outside the device to be measured and propagates through wiring or space. The signal is called noise.
  • this signal source may be used as a noise generation source.
  • the noise tolerance detector includes a signal generator 10, a first probe 40, a second probe 41, a determination device 70, a first coaxial cable 21, and a second coaxial cable 22.
  • the signal generator 10 outputs the first AC signal and the second AC signal with different phases as noise.
  • the signal generator 10 may output the first AC signal and the second AC signal having 10 cycles or more per bandwidth.
  • the first coaxial cable 21 transmits a first AC signal.
  • a second coaxial cable 22 transmits a second AC signal.
  • a phase difference between the first AC signal and the second AC signal may be 180 degrees. That is, the first AC signal and the second AC signal can be differential signals. Alternatively, the phase difference between the first AC signal and the second AC signal may be 120 degrees.
  • the first probe 40 is connected with the first coaxial cable 21 .
  • the first probe 40 is placed close to the IC 51 on the printed circuit board 50 and injects a first AC signal into the IC 51 .
  • the first probe 40 may be arranged without contacting the IC 51 on the printed circuit board 50 .
  • the second probe 41 is connected with the second coaxial cable 22 .
  • a second probe 41 is placed close to the IC on the printed circuit board 50 and injects a second AC signal into the IC 51 .
  • the second probe 41 may be arranged without contacting the IC 51 on the printed circuit board 50 .
  • the determination device 70 determines whether the IC 51 is malfunctioning based on the state of the IC 51 after injection of the first AC signal and the second AC signal. For example, determination device 70 may determine whether IC 51 is malfunctioning based on the output signal of IC 501 .
  • a terminal for injecting the first AC signal and the second AC signal is a signal input terminal or a signal input/output terminal of the IC51, and a terminal for observing an output signal from the IC51 is a signal output terminal or a signal input/output terminal of the IC51.
  • the signal generator 10 generates two signals for evaluation.
  • the two signals are a first AC signal and a second AC signal out of phase.
  • a first AC signal generated by the signal generator 10 is injected into the first probe 40 via the first coaxial cable 21 .
  • a second AC signal generated by the signal generator 10 is injected into the second probe 41 via the second coaxial cable 22 .
  • the signal generator 10 is configured by a two-output signal generator or function generator, or by two signal generators or function generators.
  • the respective generators are controlled from the outside to synchronize the two and output the first AC signal and the second AC signal having different phases.
  • Signals with two or more outputs may be generated from one generator via a coupler, distributor, phase shifter, or the like.
  • a differential signal which is an example of signals with different phases, can also be generated using a 180-degree hybrid coupler (also known as a balun) or the like.
  • the first AC signal and the second AC signal are generated. It is desirable to create a phase difference between the signals.
  • the two signals for evaluation may have different amplitudes, or may have different phases and amplitudes.
  • the coaxial cables 21, 22 and the probes 40, 41 if dielectrics of the same material are generally used, they should have the same length. More precisely, electrical length accuracy can be determined by measuring the reflection or transmission characteristics of a vector network analyzer (VNA) or by measuring the propagation delay time or reflectance using time domain reflectometry (TDR). It is possible to measure In particular, when a signal including a frequency signal of 1 GHz or more is output from the signal generating section 10, the electrical length is measured in consideration of individual differences between the coaxial cables 21 and 22, and then the measurement according to the present embodiment is performed. is desirable. If the phase or amplitude differs as a result of measuring the electrical length, the output of the signal generating section 10 may be adjusted using a phase shifter, an attenuator, or the like.
  • VNA vector network analyzer
  • TDR time domain reflectometry
  • a signal output from the signal generator 10 is input to first ends of the coaxial cables 21 and 22 .
  • a first probe 40 and a second probe 41 are connected to the second ends of the coaxial cables 21 and 22, respectively.
  • the first probe 40 and the second probe 41 may be of the same type or different types. However, when different types of probes are used, the electrical length is different and the frequency characteristics of the amount of coupling with the measurement object are also different. Therefore, it is desirable to use the same kind of probes unless there is a reason not to do so.
  • Probes include electric field probes and magnetic field probes.
  • the electric field probe has a coaxial core wire and a conductor attached to the tip of the coaxial core wire. This conductor functions as an antenna.
  • electric field probes for example patch-structured electric field probes or coaxial probes are used.
  • a potential difference is generated between the tip of the coaxial core wire and the terminal or wiring of the IC to be measured, so that an electric field is superimposed on the object to be measured. do. This injects power into the object to be measured.
  • the magnetic field probe has a coaxial core wire and a coaxial outer conductor connected to the tip of the coaxial core wire.
  • the magnetic field probe has a coaxial core wire, a coaxial outer conductor, and a 50 ⁇ resistance member between the tip of the coaxial core wire and the coaxial outer conductor.
  • a coupling capacitor (a capacitor provided in series with the core wire and also called a DC cut capacitor) may be provided in the core wire of the coaxial cable.
  • a bipolar power supply which will be described later, is used as an amplifier
  • the short-circuit protection circuit of the bipolar power supply may work and high frequency components may not be superimposed.
  • the short circuit protection circuit does not work and the required high frequency signal can be superimposed on the magnetic field probe.
  • a low frequency component with a large amplitude component (generally, it is 1.8 kHz or less, which is a harmonic 30 times as high as 60 Hz).
  • the magnetic field probe or signal generator may experience excessive currents, and the coupling capacitor can prevent such excessive currents.
  • a filter such as a high-pass filter, a band-pass filter, or a band-reject filter may be used to remove low frequencies.
  • the output power of the signal generator 10 can be reduced by increasing the amount of coupling using a directional probe.
  • a directional probe By using a directional probe, not only can the output power of the signal generator 10 be reduced, but also the voltage applied to the probe can be reduced.
  • the current that can flow can be reduced, so the wiring can be made thinner and the size of the magnetic field probe can also be reduced. As a result, the resolution of the application position can be improved. Therefore, it is desirable to use directional probes.
  • the first probe 40 and the second probe 41 which are electric field probes or magnetic field probes, are placed close to the IC 51 on the printed circuit board 50. Normally, the first probe 40 and the second probe 40 are placed within 10 mm from the terminal of the IC 51 to be measured, although it also depends on the necessary positional resolution of the probe determined according to the distance between the terminals of the IC 51 and the dielectric breakdown distance due to the applied voltage. It is desirable to have two probes 41 in close proximity.
  • the tip of one of the first probe 40 and the second probe 41 is insulated, it is desirable to arrange the tip of one of the probes in contact with the terminal of the IC 51. . By doing so, the electromagnetic field component radiated from one of the probes can be easily injected into the IC 51 to be measured, and the injection efficiency can be increased. As a result, since it is not necessary to output a voltage with a large amplitude from the signal generating section 10, the signal generating section 10 can be miniaturized, and the withstand voltage and current rating of the wiring connected to the signal generating section 10 and one of the probes can be reduced. can be lowered.
  • the IC 51 is of the lead frame type, it is desirable to arrange one of the first probe 40 and the second probe 41 close to the terminal of the IC 51 or the wiring connected to the terminal of the IC 51. .
  • One of the first probe 40 and the second probe 41 can be placed above the IC 51 and a signal (noise) can be applied to the bonding wires inside the IC 51 from the outside.
  • a signal noise
  • the IC 51 is a flip-chip type IC that does not use wire bonding or a TAB (Tape Automated Bonding) type IC with terminals at the bottom, it should be close to the wiring connected to the terminals of the IC 51.
  • one of the first probe 40 and the second probe 41 is placed close to the top of the IC 51 . By doing so, noise can be applied to the semiconductor inside the IC 51, so that the IC 51 itself, that is, the noise resistance inside the IC 51 can be measured. If the wiring of the die and package inside the IC 51 can be grasped, noise can be applied to them.
  • first probe 40 and the second probe 41 have been described above, the arrangement of the other probe will be described.
  • the other probe is also placed close to the IC 51 to be measured. It is desirable to arrange the first probe 40 and the second probe 41 for one IC 51 to be measured. A few examples will be used for explanation.
  • the noise resistance performance can be evaluated by the same method even when a differential signal is used as an example of signals with different phases. That is, one probe is placed close to the line on one side of the differential signal, and the other probe is placed close to the paired differential line. By doing so, it is possible to inject a signal with a different phase difference or a differential signal with an equal amplitude and a phase difference of 180 degrees into the differential line. can inject a differential signal from As a result, the two probes can apply a voltage between adjacent wirings, or allow a current to flow between the wirings, so that the propagation path of the input signal can be uniquely determined. This is because the signal applied from one probe creates a path through which it passes through to the other probe.
  • the phase difference between wirings is 120 degrees.
  • the first probe 40 and the second probe 41 by applying signals whose phases are different by 120 degrees to the first probe 40 and the second probe 41, it is possible to measure the malfunction resistance against noise.
  • the conventional method using only one probe it was not possible to apply the intended noise between the terminals to which it was applied. was difficult to do.
  • FIG. 2 is a diagram for explaining the injection of the first AC signal and the second AC signal into the IC51.
  • FIG. 2 shows how the two probes 40 and 41 are used to inject the first AC signal and the second AC signal into the first noise applying section 54 and the second noise applying section 55.
  • a noise propagation path is formed via impedance 56 inside IC 51 connected to first noise applying section 54 and second noise applying section 55 .
  • the internal impedance of the other IC also serves as a current path.
  • a current path is formed.
  • the first probe 40 and the first noise applying section 54 are connected through space by parasitic capacitance and mutual inductance.
  • the second probe 41 and the second noise applying section 55 are connected through space by parasitic capacitance and mutual inductance.
  • Non-Patent Document 1 when a single probe is used for measurement, the current path is not determined, and the parasitic capacitance from the probe to each terminal and the applied signal via the power supply of the measurement system. Since a propagation path is formed, the operation is likely to change depending on the measurement environment such as measurement conditions, devices connected to the system power supply, and surrounding electronic devices. As a result, it is difficult to ensure reproducibility of measurements.
  • the current path can be fixed, so the reproducibility of measurement can be improved. Further, by forming a signal propagation path, a current return path is formed, so that the signal can be easily injected into the circuit.
  • a measurement time it is desirable to provide a measurement time according to the operating frequency of the IC51.
  • an IC operating at 100 kHz like a switching power supply has a period of 10 ⁇ sec.
  • this method may be used for a specific frequency band, but in general it is desirable to set the bandwidth as described below and measure comprehensively. That is, if the signal generator 10 is of a type that can set a bandwidth, measurement is performed by setting a plurality of bandwidths.
  • the signal generator 10 outputs the first AC signal and the second AC signal with a bandwidth of 1 kHz intervals up to 1 MHz, a bandwidth of 1 MHz intervals up to 100 MHz, and a bandwidth of 10 MHz intervals up to 1 GHz. Since the bandwidth is as narrow as several kHz to several 100 kHz, if the signal generator 10 can only generate the first AC signal and the second AC signal at one frequency each, the signal generator 10 may The noise tolerance of the IC may be measured while sweeping the frequencies of the first AC signal and the second AC signal. However, even in that case, the IC 51 may not malfunction immediately. It is desirable to slow the sweep speed by 10 times or more to output the first AC signal and the second AC signal of one frequency.
  • the determination device 70 detects malfunction due to the first AC signal and the second AC signal applied as noise by the first probe 40 and the second probe 41 .
  • the simplest one as the determination device 70 is a device having, for example, a pilot lamp or a speaker to indicate that the electronic device has stopped working. In such a device, when the electronic device stops operating, a sound is heard, or the pilot lamp that has been lit goes out, lights up, or blinks. In particular, when the IC 51 to be measured and the device for notifying that the operation has stopped are mounted, no additional device is required.
  • the IC 51 to be measured or an IC that is directly or indirectly connected to the object to be measured and has the function of detecting a malfunction, connects to an external PC (Personal (Computer) or the like to notify the malfunction.
  • an IC may transmit a signal indicating a malfunction not via a cable but via radio waves or sound waves such as radio waves or ultrasonic waves.
  • the determination device inside the IC 51 does not operate normally, an erroneous determination may be made even if the IC 51 malfunctions.
  • FIG. 3 is a diagram showing a configuration example of the determination device 70.
  • the determination device 70 includes a measurement section 71 , a calculation section 72 and a display section 73 .
  • a typical example of such a determination device 70 is an oscilloscope or a real-time spectrum analyzer.
  • the measurement cable 60 is directly connected to the IC51.
  • the measurement cable 60 can be applied when the IC 51 has a connector that detects an abnormal signal and outputs a specific output signal.
  • the determination device 70 observes the output terminal of the IC 51, the output of the wiring connected to the output terminal, or the change in the output signal due to an external signal. A malfunction of the IC 51 can be determined.
  • Terminals to be measured may be not only output terminals but also input terminals or input/output terminals, but measuring time can be shortened by focusing on output terminals and input/output terminals.
  • the determination device 70 may determine a malfunction based on a change in the operating state of an IC different from the IC connected to the IC 51 .
  • the determination device 70 monitors the operation status of another IC such as a CPU or FPGA that operates with power supplied from the power supply IC, thereby determining whether the power supply IC is malfunctioning. can be judged.
  • the target to which noise is applied and the target to monitor the malfunction state are not necessarily arranged on the same substrate.
  • the determination device 70 applies noise to the PHY of one printed circuit board and monitors the operating state of the PHY of the other printed circuit board, thereby A malfunction state may be determined. Furthermore, when the device A propagates signals such as radio waves, ultrasonic waves, or light in space, the determination device 70 may monitor the operating state of the device A based on the operating state of the device B that has received those signals. I do not care.
  • a single-ended passive probe a FET (Field Effect Transistor) probe (also called an active probe), or a contact-type high-impedance probe such as a differential probe
  • a non-contact probe such as a current probe or a Rogowski coil can be used as the probe used for measurement.
  • an optical probe such as an optical electric field probe or a device having an E/O conversion device can be used to reduce the influence of the distortion of the output signal by the probe.
  • the output signal of the IC 51 may be not only an electric signal but also an image, sound, vibration, heat, light, or the like.
  • the output signal of the IC 51 may be an abnormal operation of a peripheral device to which the IC 51 is connected.
  • the above device is not necessarily required, and the direct current voltage may be measured by a tester.
  • the display unit 73 is an oscilloscope or tester monitor. If the determination device 70 does not have the display unit 73 (monitor), a PC or the like can be connected to the determination device 70 and observed by the PC.
  • a contact or non-contact probe may be connected to the output position of the IC51.
  • a measuring instrument is required for the above measurements, but an oscilloscope is most desirable because it allows you to see changes over time. , band-pass filter, or band-reject filter), or a DC cut or the like may be used.
  • band-pass filter or band-reject filter
  • DC cut or the like may be used.
  • a real-time spectrum analyzer it is possible to capture temporal changes in a wide dynamic range (for example, 16 bits) even in a high frequency band such as the GHz band.
  • the determination device 70 may Fourier transform or short-time Fourier transform the output signal of the IC 51 .
  • the IC 51 cannot be automatically restored, it is necessary to stop the power supply of the IC 51 to be measured and restart it. Moreover, even if there is a peripheral circuit or another printed circuit board connected to the IC 51 to be measured, it is desirable to restart the device including the IC 51 . Also, depending on the device, the IC 51 does not start operating immediately after restarting. Therefore, after starting the power supply and the driving software, wait until the IC 51 starts operating, and then, after confirming whether or not the IC 51 has returned to the state before the malfunction by the determination device 70, restart the device. preferred to start. Also, if the IC 51 does not return to normal operation even after restarting, the device is in a destroyed state, and it is desirable to restart measurement with a new device or issue an alert to prompt the operator to replace the device.
  • the measurement may be continuously performed by controlling the restarting and the like by an automatic machine.
  • an automatic machine equipped with a robot arm or the like determines the orientation of the first probe 40 and the second probe 41 in consideration of the distance between the first probe 40 and the second probe 41 and the object to be measured, and the directivity of the first probe 40 and the second probe 41. It may be set to be constant. In order to determine a malfunction before the IC 51 to be measured is destroyed, it is desirable to gradually change the output voltage of the signal generator 10 and observe the change in the output of the determination device 70 .
  • ⁇ Measurement target> It is desirable that the IC 51 to be measured be in an operating state. Therefore, the IC 51 mounted on the printed circuit board 50 that operates when the power is turned on is evaluated.
  • the IC 51 is powered off, the semiconductor element itself included in the IC 51 is always on or always off.
  • the semiconductor device When the semiconductor device is on, it has a low impedance.
  • the semiconductor device When the semiconductor device is off, the semiconductor device becomes high impedance.
  • the impedance of the IC 51 differs depending on whether the IC 51 is powered on or off.
  • the evaluation board of the IC51 it is desirable to measure the evaluation board of the IC51, the prototype board, or the IC51 mounted on the product.
  • devices such as FPGA (Field Programmable Gate Array) whose circuits can be rewritten by software, it is desirable that the firmware is close to the actual product.
  • the evaluation board of the IC 51 which can be rewritten from the outside, it is desirable to evaluate in a state close to the actual product.
  • the noise filters such as normal mode choke coils, common mode choke coils, line-to-line capacitors, ground-to-ground capacitors, damping resistors, and wiring lengths connected to IC terminals may differ between the prototype and the actual product. Under such conditions, the resonance frequency and the like change. However, according to the present embodiment, a voltage can be applied only between the intended terminals of the IC 51 to allow a current to flow.
  • the noise applied inside the IC51 is calculated by post-processing that solves general series-parallel circuit equations. I don't mind. Further, these processes may be performed by inputting the above equivalent circuit to a circuit simulator and calculating the noise applied inside.
  • the ICs 51 to be evaluated include ICs that require feedback control such as switching power supplies, communication ICs such as PHY (PHYsical layer) chips, sensors, external card readers such as SD memory cards that are touched by human hands, DDR SDRAM (Double Data Rate Synchronous Dynamic Random Access Memory) or ICs that handle high-speed signals such as CPUs, ASICs (Application Specific Integrated Circuits), or ICs with special functions such as FPGAs.
  • the IC is not limited to this, and may be an IC not included in the above, such as a linear regulator.
  • the first probe 40 and the second probe 41 for inputting the first AC signal and the second AC signal, which are the test signals, are operated to be placed near the desired IC 51 or terminals of the IC 51. .
  • the amplitudes of the first AC signal and the second AC signal output by the signal generating section 10 are minimized, and the frequencies of the first AC signal and the second AC signal are changed from 100 kHz to 1 GHz, for example, by 10 Sweep over seconds. This confirms that the IC 51 does not malfunction.
  • the amplitudes of the first AC signal and the second AC signal output by the signal generating section 10 are gradually increased, measurements are performed in the same frequency band, and the amplitude is changed to cause the IC 51 to malfunction. If the IC 51 does not malfunction, the positions of the first probe 40 and the second probe 41 are changed.
  • the amplitudes of the first AC signal and the second AC signal output by the signal generator 10 are fixed and the frequency band is changed.
  • the frequency band is swept from 100 kHz to 1 GHz, for example, by dividing it 100 times every 10 MHz. If one band is swept for about 10 seconds, the measurement can be completed in about 1000 seconds, ie, about 15 minutes.
  • the step width of the frequency band is 10 MHz, but if the step is sufficient, the discussion ends here.
  • the band and the applied voltage (amplitude) are further changed within the band where the malfunction occurred as described above, and malfunction determination is performed. conduct.
  • AWGN additive white Gaussian noise
  • the signal generator 10 can output a signal having a specific bandwidth by pulse-modulating the sine wave.
  • a vector signal generator E8267D manufactured by Keysight can be used as an example of the signal generator 10 for generating the above signals.
  • the output of the signal generating section 10 may be amplified by an amplifier. If the frequency is about 50 MHz or less, a bipolar power supply may be used as the signal generator 10 . If the signal generator 10 is a bipolar power supply, a constant voltage or constant current can be injected into the IC 51 regardless of the impedances of the first probe 40 and the second probe 41 .
  • the signal generator 10 is used as a voltage source in this embodiment, a current source may be used. Furthermore, in a frequency band (for example, 100 MHz or higher) that needs to be considered as a distributed constant, the signal generator 10 may be used as a power source. In addition, regardless of whether it is applied voltage, applied current, or applied power, the frequency characteristics of the impedance of the first probe 40 and the second probe 41 are uniquely determined, so conversion is performed between them. can be done. Therefore, the signal generator 10 may be of any signal source and unit system.
  • the first probe 40 and the second probe 41 can be anything, such as electric field probes, magnetic field probes, or probes that can transmit and receive both electric and magnetic fields.
  • the interval between the terminals may be about 100 ⁇ m, so it is desirable that the dimensions of the application portions of the first probe 40 and the second probe 41 are approximately the same as the interval between the terminals.
  • the wiring that constitutes the first probe 40 and the second probe 41 must have a current capacity and allow the maximum rated current to flow. must.
  • a current of about 1 A per 1 mm 2 (1 square millimeter) can be passed when a general copper wire is used as the wiring, although it varies depending on the conductivity and usage environment.
  • the distance between the coaxial core wire and the outer conductor that constitute the first probe 40 and the second probe 41 must be equal to or greater than the dielectric breakdown distance.
  • a typical dielectric breakdown distance is about 1 kV per 1 mm of distance. More specifically, Paschen's law or modified Paschen's law is followed, but the dielectric breakdown voltage is a reference value because it is not highly reproducible and is due to the structure. In particular, when there is a sharp point between the coaxial core wire and the outer conductor, it is necessary to increase the dielectric breakdown distance beyond this.
  • the impedance between the measurement points becomes low, and the first AC signal and the second AC signal is likely to mix with the measurement target.
  • the voltage, current, and power of the first AC signal and the second AC signal output from the signal generator 10 can be reduced, so the first probe 40 and the second probe 41 can be made smaller. be able to.
  • the IC 51 or the portion of the first probe 40 and the portion of the second probe 41 that are brought closer to the terminals of the IC 51 can be made smaller.
  • the first probe 40 and the second probe 41 may be separated from the object to be measured in order to obtain the same applied voltage, and the influence of the probes on the object to be measured can be reduced.
  • FIG. 4 is a diagram showing an example of a coaxial probe.
  • the core wire 44 of the thin coaxial or semi-rigid cable protrudes from the outer conductor 49 by several 100 ⁇ m to several mm.
  • This coaxial probe does not carry current, and the core wire can be made thinner, so it can be made smaller.
  • the diameter of the core wire 44 can be 40 ⁇ m, and the diameter of the outer conductor 49 can be 200 ⁇ m.
  • the coaxial probe can be arranged near the fine terminals of the IC 51, so that noise can be applied only to the specific terminals of the IC 51.
  • the core wire 44 can have a diameter of 0.1 mm and the outer conductor 49 can have a diameter of 1 mm or less.
  • the probe may be attached to the tip of a fine wire coaxial, semi-rigid cable, or coaxial cable.
  • the coaxial probe is a magnetic field probe
  • a loop structure can be formed between the core wire 44 and the outer conductor 49, so it can be easily produced using the fine coaxial or semi-rigid cable.
  • the wiring must satisfy the current capacity as described above.
  • the distance between the first probe 40 and the second probe 41 and the IC 51 to be measured or the terminals of the IC 51 be close. For example, it is desirable that the distance is 1 mm or less. If the conductors are exposed at the tips of the first probe 40 and the second probe 41, the conductors are covered with a dielectric so that they do not conduct even if they come into contact with the copper foil on the printed circuit board 50. It is desirable that When using the first probe 40 and the second probe 41 covered with a dielectric, or when the surface of the object to be measured is insulated, the first probe 40 and the second probe 41 are placed on the object to be measured. It is desirable to contact the insulating material on the surface of the IC 51 for measurement. For example, in the case of an insulating material such as Kapton tape, the resolution of the application position can be improved by about 10 ⁇ m to 100 ⁇ m.
  • FIG. 5 is a flow chart showing the steps of the IC noise tolerance detection method according to the first embodiment.
  • step S101 the first probe 40 and the second probe 41 are placed close to the IC51.
  • step S102 the signal generator 10 outputs the first AC signal and the second AC signal having different phases as noise.
  • step S103 the determination device 70 determines whether or not the IC51 is malfunctioning based on the state of the IC51.
  • FIG. 6 is a schematic diagram of the first measurement method of Embodiment 1.
  • FIG. A first probe 40 is placed near one terminal of IC 51 and a second probe 41 is placed near another terminal of IC 51 .
  • Noise can be applied between the two terminals of the IC 51 by outputting the first AC signal and the second AC signal from the signal generator 10 .
  • FIG. 7 is a schematic diagram of the second measuring method of the first embodiment.
  • a first probe 40 is placed near the terminals of the IC 51 .
  • a second probe 41 is placed near a semiconductor element or bonding wire inside IC 51 .
  • This method is also effective for a BGA (Ball Grid Array) type in which the terminals of the IC 51 are not visible on the substrate. With this method, a potential difference can be applied between the signal wiring of the BGA type IC 51 and the GND terminal.
  • BGA Bit Grid Array
  • FIG. 8 is a schematic diagram of the third measuring method of the first embodiment.
  • a first probe 40 and a second probe 41 are arranged on the wiring on the printed circuit board 50 connected to the terminals of the IC 51 .
  • Noise can be applied to the wiring on the printed circuit board 50 connected to the terminals of the IC 51 .
  • noise can be applied to the wiring connected to the terminals of the IC 51 when the terminals of the IC 51 are small or when the terminals of the IC 51 are not directly visible on the surface of the printed circuit board such as the BGA type.
  • the combinations of probe positions shown in FIGS. 6 to 8 are examples of noise application methods, and are not limited to those shown here, and any combination may be used.
  • the point where the first AC signal and the second AC signal are injected from the signal generator 10 is the input terminal or the input/output terminal of the IC 51 to be measured.
  • an output terminal or an input/output terminal of the IC 51 to be measured is used for detecting the output signal of the IC 51 .
  • one probe is placed near the GND terminal of the IC 51 to be measured, and the other probe is placed near the signal terminal of the IC 51 to be measured, thereby reducing the number of combinations. can be reduced and evaluation of IC51 can be performed efficiently.
  • the amount of coupling is maximized by making the loop plane parallel to at least one of the terminal direction of the IC 51 and the wiring direction, thereby suppressing noise to the application target. can be maximized.
  • the amount of coupling can be maximized by arranging the probes so that they are oriented perpendicularly to the measurement target so that the facing area is maximized and the distance from the measurement target is minimized. can maximize the amount of noise applied to the application target.
  • the output of the signal generating section 10 can be reduced, so that the first probe 40 and the second probe 41 can be miniaturized.
  • the binding amount of a known measurement target may be grasped in advance, and the binding amount may be corrected.
  • the determination device 70 desirably detects malfunction of the entire electronic device to be measured. The reason for this is that even if only a specific IC malfunctions, it does not matter as long as the electronic device to be measured does not malfunction. However, when only the overall characteristics are observed, it is difficult to detect signs of malfunction of the measurement object, and the measurement object may be destroyed. Therefore, it is preferable that the signal generator 10 gradually increases the output voltage, and the determination device 70 observes the output waveform of the IC 51 to which the signal is applied while measuring the overall malfunction.
  • the determination device 70 observes an output signal when a signal is applied from the outside, and measures the voltage, power, and frequency of the applied signal together with the conditions when the frequency is changed. Changes in the output waveform can be observed depending on the applied signal, and malfunctions often occur under conditions where these changes are steep.
  • Non-contact probes such as electromagnetic field probes (electric field probes or magnetic field probes), current probes (current probes or Rogowski coils), and optical electric field probes can be used to measure the state of the IC51.
  • electromagnetic field probes electric field probes or magnetic field probes
  • current probes current probes or Rogowski coils
  • optical electric field probes can be used to measure the state of the IC51.
  • Measurement with such a non-contact probe is effective when the internal impedance of the object to be measured is high, which generally corresponds to the terminal of an IC that receives an input signal. Examples include a feedback wiring of a switching power supply, a CPU to which an output terminal of a crystal oscillator is connected, or an input terminal of a memory (DDR).
  • DDR memory
  • the probe for measurement can have directivity in the same way as the first probe 40 and the second probe 41 for applying noise. Specifically, it is desirable to change the orientation of the probe for measurement so that the amount of binding to the object to be measured is maximized. For example, in the case of a loop probe, the amount of coupling can be maximized by making the loop plane parallel to the direction of the terminals of the IC 51 or the direction of the wiring.
  • DPI Direct Power Injection
  • FIG. 9 is a schematic diagram of a conventional measuring device. As shown in FIG. 9, a coaxial cable 21 connected to the signal generator 10 is arranged near the IC 51 . A capacitor C42 of 1000 pF is arranged between the core wire of the coaxial cable 21 and the terminal of the IC to be measured.
  • FIG. 10 is a schematic diagram of another conventional measuring device.
  • a capacitor C43 is also arranged between the GND terminal 53 of the IC51 and the outer conductor 49 of the coaxial cable 21.
  • the capacitor C42 and the capacitor C43 are physical capacitors such as laminated ceramic capacitors, and are not capacitors based on parasitic capacitance.
  • the GND potentials of both, including the DC bias do not necessarily match.
  • the DC voltage will be the same potential, but the AC voltage will not always be the ground due to parasitic components. not at the same potential as Therefore, in many cases, it is difficult to normally operate the object to be measured by connecting the GND of the probe and the electronic device to be measured. Since the present embodiment can eliminate factors that cause such malfunctions, any IC and printed circuit board can be similarly measured as compared with the conventional method.
  • Embodiment 2 relates to a method for judging malfunction of an IC.
  • malfunctions also include the start of operation of an electronic device that should have been stopped, the momentary stop of the electronic device, or the occurrence of a signal delay.
  • a person or another electronic device receives the output of an electronic device, it is a malfunction that it can be determined that there is an abnormality.
  • the voltage, power, frequency, frequency bandwidth, continuous wave or pulse wave of the first AC signal and the second AC signal output by the signal generator 10 are used as parameters. There is a method to measure the presence or absence of
  • This embodiment provides a method of evaluating an IC before an electronic device is completed.
  • the frequencies of the first AC signal and the second AC signal applied from the outside are By varying the amplitude and measuring the output signal of IC 51, a response map representing the waveform of the output signal at each frequency and each amplitude is created.
  • FIG. 11 is a flow chart showing the steps of the IC noise tolerance detection method according to the second embodiment.
  • step S201 the first probe 40 and the second probe 41 are placed close to the IC51.
  • step S202 the signal generator 10 sets the frequency f to an initial value f0 and the amplitude V to an initial value V0.
  • step S203 the signal generator 10 outputs the first AC signal and the second AC signal having a frequency of f, an amplitude of V, and different phases as noise.
  • a first AC signal and a second AC signal are injected into IC 51 by first probe 40 and second probe 41 .
  • step S204 the determination device 70 detects the output signal of the IC51.
  • step S205 the determination device 70 writes the waveform of the output signal in the grid corresponding to the frequency f and the amplitude V in the response map.
  • step S206 when the frequency f is the end value fn, the process proceeds to step S208, and when the frequency f is not the end value fn, the process proceeds to step S207.
  • step S207 the signal generator 10 increases the frequency f by the step size ⁇ f.
  • step S208 if the amplitude V is the end value Vn, the process ends, and if the amplitude V is not the end value Vn, the process proceeds to step S209.
  • FIG. 12 is a diagram showing an example of a response map according to the second embodiment.
  • the horizontal axis of FIG. 12 represents the frequencies of the first AC signal and the second AC signal input to the input terminal of IC51.
  • the vertical axis in FIG. 12 represents the amplitude of the first AC signal and the second AC signal input to the input terminal of IC51.
  • a grid is formed by dividing the horizontal and vertical axes.
  • the response map contains the output waveform at each grid. This output waveform shows frequency characteristics. Although the frequencies on the horizontal axis of the response map are shown at equal intervals, they may not be equally spaced, and may be true values or logarithms.
  • the amplitudes on the vertical axis of the response map are also shown at regular intervals, they may not be at regular intervals, and may be true values or logarithms.
  • the amplitude on the vertical axis changes depending on the types of the signal generator 10, the first probe 40 and the second probe 41.
  • the amplitude on the vertical axis can be the amplitude of any signal that can be injected into the IC as an electrical signal, such as voltage, current, power, electric field, or magnetic field.
  • an electrical signal such as voltage, current, power, electric field, or magnetic field.
  • the input method and the output method either a contact probe or a non-contact probe may be used.
  • the measured output waveform be a signal waveform corrected for the internal circuit components of the probe, and when using a non-contact probe, the signal waveform should be corrected by the antenna factor. is desirable. Furthermore, if circuit parts other than the IC51, such as a noise filter or a coil, are mounted on the terminals of the IC51, the frequency characteristics of those parts are measured in advance, and the measured output waveform is It is desirable to correct the signal waveform to the one that does not exist.
  • the number of grids is 4 ⁇ 4 on both the frequency axis and the amplitude axis, but it is not limited to this and any number of divisions may be used. It is not always necessary to divide each axis at equal intervals, and the grid may be cut finely near frequencies and voltages where malfunctions are particularly likely to occur. In a band where such malfunctions are likely to occur, if the manner of malfunction differs depending on the bandwidth, the grids may overlap. Furthermore, the frequency axis may be displayed logarithmically, and the amplitude axis may be displayed antilogarithmically. In this case, it is desirable that the signal generator 10 changes the output signal logarithmically in the frequency direction and antilogarithmically in the amplitude direction.
  • the antilogarithm may be used in many cases, although it depends on the characteristics of the IC.
  • the frequency and amplitude at which malfunction occurs can be grasped with a single response map.
  • a single response map may be created for the first IC to be measured, and a response map may be created for the second IC connected to the first IC.
  • the first IC is an IC, such as a switching power supply IC, whose malfunction cannot be determined by itself.
  • the second IC is an IC that can determine malfunction.
  • FIG. 13 is a flow chart showing the procedure of a malfunction condition determination method using two response maps.
  • FIG. 14 is a diagram representing the response map for the second IC.
  • FIG. 15 is a diagram for explaining a method of identifying malfunction conditions using two response maps.
  • step S601 a response map is created for the first IC.
  • step S602 a response map is created for a second IC that is connected to the first IC.
  • step S603 a combination of frequency (f1) and amplitude (amp1) that serve as malfunction conditions in the response map for the second IC is extracted.
  • step S604 of the output signals in the response map for the first IC, the frequency and amplitude in the response map for the first IC of the output signal containing the combination of the extracted frequency (f1) and amplitude (amp1) is specified as the malfunction condition of the first IC.
  • the output waveform of grid A of the response map for the first IC includes amplitude (amp1) and frequency (f1), so that frequency f2 and amplitude amp2 of grid A are the same as those of the first IC. Identified as a malfunction condition.
  • the output waveform of grid B of the response map for the first IC includes amplitude (amp1) and frequency (f1), frequency f3 and amplitude amp2 of grid B are specified as malfunction conditions of the first IC. be.
  • the malfunction is determined by the third IC connected to the second IC. As described above, this method is applied only when the presence or absence of malfunction of the first IC cannot be determined. If malfunction can be determined by the first IC alone, it is not necessary to use such a technique. However, since the second IC may malfunction even if the first IC does not malfunction as described above, this method can be used even when the IC can be evaluated alone.
  • the measurement time can be shortened by using signals having a bandwidth of at least 1 kHz as the first AC signal and the second AC signal output from the signal generator 10 .
  • a bandwidth of 9 kHz or more is often used in standard tests such as CISPR11, this is because a bandwidth narrower than that can more accurately capture the malfunctioning band.
  • the measurement time can be shortened.
  • the response map is cut into grids and the waveform of the output signal is written in the grids of the corresponding conditions.
  • a response map can also be created by outputting a trapezoidal wave signal in which at least the amplitude, rise time, fall time, cycle, ON time, and duty ratio are determined from the signal generator 10 .
  • a trapezoidal wave having such a wide frequency band can be used for an IC that malfunctions due to power, in which a wide band signal needs to be injected at the same time.
  • a response map for a signal similar to an impulse signal can also be generated by a conduction transient test (FET/B test) or the like.
  • the output signal written in each grid of the response map may not be the frequency characteristic, but may be a time signal using an oscilloscope or a spectrogram using a real-time spectrum analyzer.
  • the determination device 70 may obtain the frequency characteristic by Fourier transforming the trapezoidal wave. Instead of the trapezoidal wave, the signal generator 10 may apply a wideband signal to the measurement target by using a waveform having a Gaussian distribution having a bandwidth from the center frequency.
  • FIG. 16 is a flow chart showing steps of an IC noise tolerance detecting method according to a modification of the second embodiment.
  • step S901 the first probe 40 and the second probe 41 are placed close to the IC51.
  • step S902 the signal generator 10 sets the terminal number P of the IC 51 to 0, the frequency f to the initial value f0, and the amplitude V to the initial value V0.
  • step S903 the signal generator 10 outputs the first AC signal and the second AC signal having a frequency of f, an amplitude of V, and different phases as noise.
  • a first AC signal and a second AC signal are injected into the terminal of terminal number PN of IC 51 by first probe 40 and second probe 41 .
  • step S904 the determination device 70 detects the output signal of the IC51.
  • step S905 the determination device 70 writes the waveform of the output signal in the grid corresponding to the frequency f, amplitude V, and terminal number P in the response map.
  • step S906 if the frequency f is the end value fn, the process proceeds to step S908, and if the frequency f is not the end value fn, the process proceeds to step S907.
  • step S907 the signal generator 10 increases the frequency f by the step size ⁇ f.
  • step S908 if the amplitude V is the end value Vn, the process proceeds to step S910, and if the amplitude V is not the end value Vn, the process proceeds to step S909.
  • step S909 the signal generator 10 increases the amplitude V by the step size ⁇ V.
  • step S910 if the terminal number P is the end value Pn, the process ends, and if the terminal number P is not the end value Pn, the process proceeds to step S911.
  • step S911 the signal generator 10 increases the terminal number P by one.
  • FIG. 17 is a diagram illustrating an example of a response map according to a modification of the second embodiment
  • the response map of the modified example of the second embodiment shows the waveform of the output signal in the combination of the frequency of the AC signal injected into the IC, the amplitude of the AC signal injected into the IC, and the terminal of the IC through which the AC signal is injected. written.
  • Embodiment 3 This embodiment relates to measurement of the internal impedance of the output terminal of IC51.
  • a circuit is formed inside each of the IC and the terminal of the IC.
  • the internal impedance differs between the terminals of the IC.
  • the internal impedance of the input terminal is 0 ⁇ , that is, when it is close to a short circuit, no excitation voltage is generated in the circuit inside the IC, so the output is small, and the circuit that malfunctions due to the voltage is less likely to malfunction.
  • the internal impedance of the input terminal is, for example, 1 M ⁇ , that is, when it is close to an open circuit, the excitation voltage increases, so the output increases.
  • the internal impedance of the terminals of an IC is somewhere between a short and an open.
  • the internal impedance of an IC has not only resistance components but also inductance components, capacitance components, and nonlinear components such as diodes. Due to the characteristics of the internal impedance, the amplitude of the voltage generated inside the IC by an externally applied signal changes.
  • FIG. 18 is a flow chart showing the steps of a method for measuring the internal impedance of the output terminal of an IC according to the third embodiment.
  • step S301 the output of the signal generator 10 is set to be stopped.
  • step S302 an electric field probe is placed near the output terminal PO where the output signal of the IC in the operating state does not change or changes with periodicity, and the electric field E generated by the output terminal PO is measured by the electric field probe. do.
  • step S303 a magnetic field probe is placed at the same place where the electric field probe is placed, and the magnetic field H generated by the output terminal PO is measured by the magnetic field probe.
  • the measured electric and magnetic fields may be converted to electric and magnetic fields at the probe position using the antenna factor of the electric field probe and the antenna factor of the magnetic field probe.
  • the distance to the measurement object may differ from the calibration value of each probe.
  • the determination device 70 calculates the impedance Z from the electric field E and the magnetic field H using the following formula.
  • the impedance Z can be regarded as the internal impedance of the output terminal PO of IC51. For example, when the internal impedance of the IC is high, no current flows, so the magnetic field H becomes small, and the voltage rises, so the electric field E becomes large. As a result, the impedance Z becomes a large value.
  • the impedance frequency characteristics of components such as damping resistors connected to the wiring between ICs are known or can be measured, use a circuit simulator or the like to consider their impedance characteristics, voltage division, and current division. can also be used to determine the impedance of the object to be measured.
  • the internal impedance of the IC may be calculated from the rate of change by intentionally mounting a known impedance on the wiring.
  • any connection destination via the wiring of the IC terminal does not matter, but a passive circuit that can measure the frequency characteristics of the impedance is desirable.
  • simultaneous equations of current and voltage are established by an equivalent circuit with the internal impedance as an unknown.
  • the frequency characteristics of the internal impedance can be estimated by solving the simultaneous equations as overriding equations using the least-squares method, that is, by a solution method according to the generalized inverse matrix.
  • the circuit constants connected to the IC are unknown, the above method of obtaining the electric field and magnetic field is performed again, and if the internal impedance of each IC is an unknown value, four simultaneous The equation holds.
  • Each internal impedance can be estimated by solving these simultaneous equations as overdetermined equations using the method of least squares.
  • the measured value is frequency data, and if the inside of the IC is composed of R, L, and C, a theoretical solution may be calculated using an equivalent circuit model.
  • the frequency characteristics are output so as to match the grid for each frequency of the response map. However, if the grid is large, data may be stored as a separate matrix as frequency characteristics.
  • the present invention is not limited to this.
  • a probe that can obtain a value proportional to current or voltage by correcting the probe characteristics, an optical electric field probe, a current probe, or the like may be used instead.
  • FIG. 19 is a diagram showing an example of a response map including description of internal impedance. As shown in FIG. 19, by measuring the internal impedance at each frequency and describing it in a response map, it is possible to accurately calculate the amplitude of the signal excited at each terminal of the IC regardless of the type of IC to be connected. can be done. In this case, it is desirable to create a response map that includes frequency characteristics of the internal impedance not only at the output terminal but also at all terminals of the IC.
  • such a response map can be used in the following cases.
  • the internal impedance of the terminals of the first IC and the internal impedance of the terminals of the second IC connected to the terminals of the first IC are each extracted from the response map.
  • the internal impedance of the terminals of the first IC and the internal impedance of the second IC can be used to back estimate the input signal of the first IC when the malfunction voltage of the second IC is excited. This makes it possible to estimate the noise tolerance for the first IC.
  • Circuit simulators and general optimization techniques can be used to calculate the inverse estimation of the input signal of the first IC, since the internal impedance and output waveform include frequency characteristics.
  • Embodiment 4 This embodiment relates to the measurement of the internal impedance of the input terminal of IC51.
  • FIG. 20 is a flow chart representing the procedure of the internal impedance measuring method according to the fourth embodiment.
  • step S401 the output of the signal generator 10 is set to a stopped state.
  • step S402 an electric field probe is placed near the input terminal PI of the operating IC, and the amplitude V0 of the voltage applied to the input terminal PI is measured by the electric field probe without contact.
  • step S403 the signal generator 10 outputs a known pseudo-random number signal or modulated signal having an amplitude V1 smaller than the amplitude V0 of the measured voltage.
  • a first probe 40 is used to inject a known pseudo-random signal or modulated signal into input terminal PI of IC 51 . Since it is obvious that the IC 51 malfunctions if noise having the same amplitude as the amplitude V0 of the signal input to the input terminal PI is injected into the input terminal PI, the amplitude V1 of the signal applied as noise is made smaller than V0. This can prevent the IC 51 from malfunctioning due to noise.
  • step S404 an electric field probe is placed near the input terminal PI of the IC 51, and the electric field E generated by the input terminal PI is measured by the electric field probe without contact.
  • An oscilloscope or spectrum analyzer is desirable for measuring the signal of the electric field probe. If necessary, the signal may be amplified with a preamplifier or attenuated with an attenuator. The distance between the object to be measured and the electric field probe shall be adjusted to satisfy the measurement conditions of the measuring instrument.
  • step S405 a magnetic field probe is placed at the same place as the electric field probe, and the magnetic field H generated by the input terminal PI is measured without contact by the magnetic field probe.
  • the measured electric field and magnetic field may be corrected to the electric field and magnetic field at the probe position using the antenna factor of the electric field probe and the antenna factor of the magnetic field probe.
  • the distance to the measurement object may differ from the calibration value of each probe.
  • the determination device 70 may determine the voltage V from the measured electric field E and the current I from the measured magnetic field H.
  • the impedance Z can be regarded as the internal impedance of the input terminal PI of the IC.
  • the impedance Z of another IC connected to the terminal of the IC 51 through wiring may be obtained by the above method, and the impedance of the desired IC may be obtained from the circuit calculation.
  • the impedance Z is obtained by the above method at the input/output terminals of the passive circuit components, and the impedance of the desired IC is obtained by circuit calculation. You can guess.
  • the impedance of the IC or passive circuit is used as an unknown quantity, and the above measurement results are solved as a voltage or current equation. be able to.
  • the above method is effective for IC terminals that receive or output signals, but terminals that do not receive or output signals cannot be measured. .
  • a method of applying a signal from the outside and estimating the impedance inside the IC 51 is used.
  • the IC 51 itself malfunctions, so the impedance inside the IC 51 cannot be measured.
  • the output signal of the IC 51 is large, the signal applied from the outside is buried, so the impedance cannot be measured accurately.
  • a modulated signal is used as used in wireless communication, or a known pseudo-random number (a signal generated by a signal generator on the receiver side such as an M-sequence signal is known) is generated.
  • a known pseudo-random number a signal generated by a signal generator on the receiver side such as an M-sequence signal is known
  • the internal impedance can be estimated from the correlation between the transmission signal (that is, the output signal of the signal generator 10) and the reception signal (that is, the electric field E or magnetic field H detected by the determination device 70).
  • the impedance of each frequency may be obtained for each band having a bandwidth so as to match the grid of the response map described in Embodiment 2, and the result may be written in the response map.
  • Embodiment 5 This embodiment relates to a method of confirming malfunction by paying attention to the temperature change of the IC 51 .
  • the voltage of the semiconductor element inside the IC 51 exceeds the threshold value and malfunction occurs.
  • noise may enter the feedback wiring for monitoring the voltage of the switching power supply, causing the output voltage to change from the designed value, or noise to be superimposed on the output voltage.
  • the equipment stops or the stopped equipment starts to operate.
  • the temperature drops, and when the device is activated, the IC 51 always undergoes a temperature change such as heat generation.
  • the feedback wiring of the power supply when a drop in the output voltage is detected by the applied noise signal, processing for increasing the output voltage is performed by increasing the duty ratio. When an increase in output voltage is detected, the output voltage is lowered by decreasing the duty ratio.
  • the power consumption also changes because the output energy also changes. Therefore, by observing the temperature of the object to be measured, malfunction can be observed without bringing the measuring device close to the object to be measured and without affecting the measurement system at all.
  • FIG. 21 is a diagram showing the configuration of an IC noise tolerance detector according to the fifth embodiment.
  • the IC noise tolerance detection device of the fifth embodiment includes a temperature detector 91 .
  • the temperature detector 91 detects temperature changes in the IC 51 or an IC different from the IC 51 connected to the IC 51 .
  • An infrared camera or a non-contact thermometer can be used as the temperature detector 91 . This allows the temperature to be measured remotely in real time. In particular, since it is necessary to observe temperature changes, it is desirable to wait until the object to be measured becomes thermally stable in an environment without wind and at a constant temperature before starting measurement. In such a measurement object and measurement environment, the amplitude and frequency of the first AC signal and the second AC signal applied from the outside by the signal generator 10 are changed, and the temperature is measured by the infrared camera or the non-contact thermometer. to observe.
  • the determination device 70 determines whether the IC 51 is malfunctioning based on the temperature change of the IC 51 or an IC different from the IC 51 connected to the IC 51 . Although the temperature change differs depending on the IC 51, the determination device 70 may determine that the IC 51 is malfunctioning when a temperature change of 5 degrees or more is detected, for example. Since the temperature of the IC 51 tends to rise rapidly immediately before the IC 51 is destroyed, the destruction of the IC 51 can be prevented by stopping the output of the signal generator 10 when the temperature change of the IC 51 is detected.
  • FIG. 22 is a diagram showing the configuration of an IC noise tolerance detection device according to a modification of the fifth embodiment.
  • the IC noise tolerance detection device of the modification of Embodiment 5 includes an antenna 92 instead of the temperature detector 91 .
  • Antenna 92 detects electromagnetic waves emitted from IC 51 .
  • the antenna 92 is arranged far from the IC 51 .
  • the determination device 70 determines whether the IC 51 is malfunctioning based on the change in the received voltage at the antenna 92 in the frequency band other than the frequency bands of the first AC signal and the second AC signal.
  • a long distance is, for example, a distance of about 1m.
  • the far distance may be a distance that is one or more wavelengths away from the frequency.
  • the antenna 92 at a position about 3 m away from the IC 51 .
  • increasing the distance reduces the S/N ratio, making it difficult to observe changes in the radio wave environment due to changes in the IC 51 .
  • an antenna having high directivity such as a parabolic antenna or a phased array antenna may be used as the antenna 92 .
  • the antenna 92 may be arranged at a distance of one wavelength or less with respect to the frequency. It is also desirable to conduct the test in a shielded room, a shielded tent, or an anechoic chamber that is free from disturbance noise from radios, televisions, mobile phones, and the like.
  • FIG. 23 is a diagram showing the configuration of an IC noise tolerance detector according to the sixth embodiment.
  • the signal generator 10 of the IC noise tolerance detector of the sixth embodiment includes a signal generator 11, a coaxial cable 20, and a balun 30.
  • Signal generator 11 and balun 30 are connected by coaxial cable 20 .
  • a signal generator 11 generates a test signal that is electromagnetic noise.
  • the signal generator 11 is, for example, a signal generator or a function generator.
  • the balun 30 From the test signal generated by the signal generator 11, the balun 30 generates a first AC signal and a second AC signal that are equal in amplitude and 180 degrees out of phase.
  • the balun 30 separates the test signal generated by the signal generator 11 into a differential signal (also called differential mode or normal mode) or an in-phase signal (also called common mode).
  • the balun 30 used in this embodiment is a coupler also called a 180-degree hybrid coupler. Balun 30 allows two AC signals of equal amplitude and 180 degrees out of phase from a single test signal generated by signal generator 11 to be produced. Half of the power input to the balun 30 is output from two ports. Therefore, when the insertion loss is taken into consideration, the power becomes 1/2 or less. Since the balun 30 is composed of an analog circuit, a common-mode signal of about -30 dB is generated with respect to the differential signal, depending on the frequency and internal circuitry of the balun 30 .
  • the balun 30 is a common one used when making a dipole antenna. Since dipole antennas are also used as transmitting antennas, there are many dipole antennas that can receive large currents, large voltages, or large powers required for signal application in this embodiment. Furthermore, the signal generator 11 may have a bandpass filter or the like so that only a specific band can be output.
  • the balun 30 has one input port and two output ports P1 and P2.
  • the output port P1 of balun 30 is connected to first probe 40 via first coaxial cable 21 .
  • the output port P2 of balun 30 is connected to second probe 41 via second coaxial cable 22 . Thereby, the signal output from the signal generator 11 can be output as a differential signal generated between the first probe 40 and the second probe 41 .
  • the signal generator 10, the first probe 40, and the second probe 41 constitute differential signal injection means for injecting a differential signal into the IC 51 on the printed circuit board 50.
  • the electrical length from the balun 30 to the first probe 40 should be equal to the electrical length from the balun 30 to the second probe 41 .
  • noise current can flow through the IC 51 and the printed circuit board 50 .
  • the balun 30 is used to generate a differential signal, and also has the effect of protecting the signal generator 11 and making it less likely to affect the measurement target.
  • the noise of the object to be measured may be large, and noise may be superimposed on the signal generator 11 via the probes 40 and 41 .
  • the common mode component is consumed by the termination resistor provided in the balun 30 (generally a 50 ⁇ resistor is used), the loss inside the balun 30, or the reflection to the probes 40, 41, and the signal It does not mix with the generator 11 .
  • the signal generator 11 can be protected.
  • the reason for not affecting the measurement system is the same. If the signal of the printed circuit board 50 propagates to the signal generator 11, a signal propagation path different from that during normal operation is formed. Since the presence of the balun 30 makes it difficult to create such a propagation path, it is possible to reduce the influence on the measurement system.
  • the phases of the two AC signals input to the first probe 40 and the second probe 41 are different by 180 degrees.
  • the voltage applied to the first probe 40 is +1V and the voltage applied to the second probe 41 is -1V.
  • the electromagnetic field output from the first probe 40 and the electromagnetic field output from the second probe 41 may have the same amplitude and opposite phases. In such a case, an electric line of force is generated from the first probe 40 toward the second probe 41, thereby generating a potential difference. As a result, current flows between the first probe 40 and the second probe 41 .
  • the first probe 40 and the second probe 41 are connected by electric lines of force generated via the conductor. can be transferred to the conductor.
  • This embodiment is particularly desirable because the differential signal can create the maximum potential difference between the first probe 40 and the second probe 41 .
  • the electrical length from the signal generator 10 to the first probe 40 and the electrical length from the signal generator 10 to the second probe 41 are not equal, the difference between the phase of the first AC signal and the phase of the second AC signal is not 180 degrees. In such cases, a common mode signal is generated.
  • the electrical length of the first coaxial cable 21 and the electrical length of the second coaxial cable 22 length must be equal.
  • measure S11 reflection characteristics
  • measure the time domain reflectance with an oscilloscope that has a TDR (Time Domain Reflectometry) function grasp the electrical length, and generate It is desirable to measure after estimating the common mode.
  • the common mode signal is the signal conventionally used when injecting an IC using a single probe.
  • the signal output from the coaxial core wire 44 is applied to the IC.
  • the applied signal returns to the coaxial outer conductor 49 via parasitic capacitance (also called stray capacitance).
  • parasitic capacitance also called stray capacitance
  • the signal is transmitted via the power supply line.
  • the parasitic capacitance is easily affected by the arrangement of probes and measuring instruments, and has a problem of low measurement reproducibility.
  • the measurement environment changes depending on the routing of the system power supply, so it is susceptible to the measurement environment and other devices connected to the power line, making it difficult to obtain measurement reproducibility.
  • An attenuator, amplifier, or phase shifter may be used for one wiring to change the amplitude or phase. Furthermore, in the case of three-phase alternating current, by applying a first alternating signal and a second alternating signal having a phase difference of 120 degrees to the first probe 40 and the second probe 41, respectively, noise It is possible to measure the malfunction resistance to
  • the IC noise tolerance detection device may include a movable part and a control part for controlling the scanning of the first probe 40 and the second probe 41 .
  • the distance between the object to be measured and the first probe 40 and the second probe 41 can always be kept constant.
  • the noise that can be mixed into the IC 51 to be measured from the first probe 40 and the second probe 41 can be kept unchanged.
  • the movable part moves the first probe 40 and the second probe 41 in the X (horizontal), Y (vertical), Z (height), and ⁇ (directivity) directions of the printed circuit board 50 .
  • the control section controls scanning of the movable section in the XYZ ⁇ directions.
  • a scanning means for moving the position of the terminal to be measured of the IC 51 on the printed circuit board 50 is constituted by the movable part and the control part.
  • the scanning means may be a robot controllable by a servomotor or the like.
  • This control unit may further control the frequency of the AC signal output by the signal generator 11, or perform malfunction confirmation processing.
  • the control unit may restart a device that malfunctions and does not automatically recover.
  • FIG. 24 is a diagram showing the configuration of an IC noise tolerance detector according to Modification 1 of Embodiment 6.
  • the signal generating section 10 of this IC noise tolerance detection device includes an amplifier 31 arranged between the signal generator 11 and the balun 30 .
  • the amplifier 31 and balun 30 are connected by a coaxial cable 23 .
  • Amplifier 31 amplifies the test signal generated by signal generator 11 . It is desirable to use the amplifier 31 when the level of the test signal as electromagnetic noise injected into the IC 51 is weak and the IC 51 does not malfunction even if the output voltage and frequency of the signal generator 11 are changed.
  • An attenuator may be placed between the signal generator 11 and the amplifier 31 when the gain of the amplifier 31 is fixed.
  • the output power of the amplifier 31 has an upper limit, and the output may be distorted near the upper limit. Therefore, it is desirable to separately measure the output waveform of the amplifier 31 with a measuring instrument such as an oscilloscope, spectrum analyzer, or VNA (Vector Network Analyzer).
  • a measuring instrument such as an oscilloscope, spectrum analyzer, or VNA (Vector Network Analyzer).
  • VNA Vector Network Analyzer
  • FIG. 25 is a diagram showing the configuration of an IC noise tolerance detector according to Modification 2 of Embodiment 6.
  • the signal generating section 10 of this IC noise tolerance detection device includes a first amplifier 31 , a second amplifier 32 , a coaxial cable 24 and a coaxial cable 25 .
  • the first amplifier 31 is arranged between the balun 30 and one end of the first coaxial cable 21 .
  • the first amplifier 31 amplifies the first AC signal output from the balun 30 .
  • a second amplifier 32 is arranged between the balun 30 and one end of the second coaxial cable 22 .
  • a second amplifier 32 amplifies the second AC signal output from the balun 30 .
  • balun 30 and the first amplifier 31 are connected by a coaxial cable 24.
  • Balun 30 and second amplifier 32 are connected by coaxial cable 25 .
  • the allowable output power of the first amplifier 31 and the second amplifier 32 is The breakdown voltage and current allowance are not strict. However, since it is necessary to adjust the difference between the phase of the output signal of the first amplifier 31 and the phase of the output signal of the second amplifier 32, calibration of the first amplifier 31 and the second amplifier 32 is required. becomes.
  • FIG. 26 is a diagram showing the configuration of an IC noise tolerance detector according to Modification 3 of Embodiment 6.
  • the signal generator 10 of this IC noise immunity detection device includes a directional coupler 34 arranged between the amplifier 31 and the balun 30 .
  • Directional coupler 34 and balun 30 are connected by coaxial cable 26 .
  • the directional coupler 34 By using the directional coupler 34, noise can be suppressed from flowing into the amplifier 31 and the signal generator 11. By providing the directional coupler 34, the measuring device side appears to have a high impedance for the printed circuit board 50 to be measured and the IC 51 on the printed circuit board 50. FIG. As a result, it becomes possible to measure the noise tolerance of the IC without affecting the measurement system. By providing the directional coupler 34, even when a strong signal is injected into the amplifier 31, distortion of the output of the amplifier 31 and damage to the amplifier 31 can be prevented. Besides placing the directional coupler 34 between the amplifier 31 and the balun 30, a directional coupler 34 is also placed between each of the balun 30 and the first probe 40 and the balun 30 and the second probe 41. A similar effect can be obtained by arranging them.
  • the composite wave of the traveling wave and the reflected wave is measured.
  • the directional coupler 34 it is possible to take out a signal corresponding only to the forward wave power, or to separately take out signals corresponding to the forward wave power and the reflected wave power respectively. Therefore, power can be reliably measured even in the presence of reflected waves.
  • FIG. 27 is a diagram showing part of an IC noise tolerance detection device according to a seventh embodiment.
  • the IC noise tolerance detection device of Embodiment 7 differs from the IC noise tolerance detection device of the above-described embodiments in that the first probe 40 is a contact type probe.
  • the second probe 41 is arranged without contact with the IC 51 as in the first embodiment.
  • the first probe 40 is a coaxial probe.
  • a coaxial core wire 44 of the first probe 40 is placed in contact with the ground terminal 53 of the IC 51 .
  • the coaxial core wire 44 of the first probe 40 contacts the ground terminal 53, the ground terminal 53 is insulated from the low impedance outer conductor. As a result, it is possible to prevent the signal from propagating through the ground with low impedance. In addition, due to the internal resistance of the balun 30 and the signal generator 11, the signal is less likely to flow through the core wire 44. FIG. Therefore, even if the coaxial core wire 44 of the first probe is brought into contact with the ground terminal of the IC 51, the influence on the operation of the object to be measured can be reduced.
  • the feedback wiring or the like is configured by connecting one of the two wirings for transmitting the differential signal to the ground terminal of the IC 51 and not connecting the other of the two wirings for transmitting the differential signal to the IC 51 . Noise can be injected.
  • FIG. 28 is a diagram showing measurement results when noise is applied to the printed circuit board 50.
  • the printed board 50 is an FR-4 (Flame Retardant Type 4) board.
  • the printed circuit board 50 has a characteristic impedance of 50 ⁇ and a dielectric of 0.8 mm.
  • Embodiment 7 show the differential signal input when the contact probe is connected to the GND plane of the microstrip line and the core wire of the coaxial probe is arranged at a distance of 60 ⁇ m without contact with the microstrip line. It shows the coupling amount of the microstrip line.
  • the noise injection amount increases by about 10 dB to 40 dB in the seventh embodiment.
  • the noise injection amount increases by about 5 dB to 10 dB in the seventh embodiment.
  • FIG. 29 is a diagram showing measurement results when using a non-contact coaxial probe (electric field probe) and measurement results when using a magnetic field probe.
  • the diameter of the magnetic field probe is 10 mm.
  • the magnetic field probe was oriented in the direction in which the magnetic flux of the magnetic field probe most excites the microstrip line.
  • the amount of coupling between the differential signal and the microstrip line is about -60 dB when a magnetic field probe is used.
  • the amount of coupling can be increased by about 10 dB compared to when a coaxial probe is used.
  • FIG. 30 is a diagram showing measurement results of the normal output (1.35 V) and abnormal output of the IC51 when noise is applied to the power supply IC51.
  • the drive frequency of the power supply IC 51 is 650 kHz.
  • a signal of 10 V at 650 kHz was injected into the enable signal of the power supply IC 51 by the method according to the seventh embodiment.
  • the output of IC51 changes to 2.25V or 0.6V in an abnormal state.
  • FIG. 31 is a diagram showing the result when a 10V signal is injected into the feedback terminal of the power supply IC.
  • the drive frequency of the power supply IC is 650 kHz.
  • a signal of 10 V at 650 Hz was injected into the feedback terminal of the power supply IC by the method according to this embodiment.
  • a signal with a frequency different from that of the injected signal is also generated.
  • the noise increases by about 20 dB at 10 kHz to 100 kHz.
  • unintended noise may occur in the state immediately before the malfunction.
  • Such noise may cause an IC that supplies power to malfunction.
  • Such a problem can be reduced by using this embodiment mode.
  • FIG. 32 is a diagram showing first probe 40 of Modification 1 of Embodiment 7.
  • FIG. 32 is a diagram showing first probe 40 of Modification 1 of Embodiment 7.
  • the first probe 40 which is a coaxial probe that contacts the ground terminal of the IC 51, has a matching circuit Ma such as a capacitor attached to the tip of the coaxial core wire 44.
  • a matching circuit Ma such as a capacitor attached to the tip of the coaxial core wire 44.
  • a laminated ceramic capacitor is desirable for the capacitor.
  • the impedance matching between the first probe 40 and the signal generator 11 can be achieved by the matching circuit Ma. Even when a signal generator 11 such as a function generator that can be used only in a 50 ⁇ system is used, it is possible to prevent generation of reflected waves.
  • the direct-current component and low-frequency component of the object to be measured are less likely to mix into the first probe 40, thereby preventing the signal generator 11 from malfunctioning or breaking down due to overvoltage. can be prevented.
  • a method of arranging a matching circuit Ma in parallel between them may be used.
  • the signal generator 11 uses a bipolar power supply capable of outputting a signal of 1 MHz or higher regardless of the impedance on the first probe 40 side.
  • the upper limit of the frequency of the output of the bipolar power supply is about several 50 MHz, the above function generator or power amplifier can be used for higher frequencies.
  • FIG. 33 is a diagram showing a configuration of a part of the IC noise tolerance detector of the eighth embodiment.
  • the IC noise tolerance detection device of the eighth embodiment differs from the IC noise tolerance detection device of the above-described embodiments in that the first probe 40 and the second probe 41 are contact type probes. be.
  • the first probe 40 and the second probe 41 are coaxial probes.
  • a coaxial core wire 44 of the first probe 40 is placed in contact with the first terminal of the IC 51 .
  • a coaxial core wire 45 of the second probe 41 is placed in contact with the second terminal of the IC 51 .
  • the eighth embodiment since the reference potential of the signal generator 10 and the reference potential of the printed circuit board 50 or IC 51 to be measured are not directly connected, the first probe 40 and the second probe 41 are brought into contact with each other. By this, it is possible to reduce the malfunction of the measurement target.
  • the noise tolerance detection device of Embodiment 8 is particularly effective when measuring differential signals. That is, by bringing the coaxial core wire 44 of the first probe 40 and the coaxial core wire 45 of the second probe 41 into contact with the wiring for transmitting the differential signal, the differential signal is injected into the IC 51 to malfunction can be determined.
  • a differential signal has the feature of being less susceptible to contact-type probes. It is desirable that the two contact probes (the first probe 40 and the second probe 41) have the same shape, and that the electrical length from the signal generator 10 to each contact probe be the same.
  • FIG. 34 is a diagram showing measurement results of malfunction conditions when noise is applied to the differential wiring.
  • the differential wiring used is the differential wiring of the PHY chip connected to the Ethernet (registered trademark) cable. As shown in FIG. 34, it can be seen that in a specific frequency band (20 MHz to 60 MHz), malfunction occurs even if the applied level is low.
  • coaxial core wire 44 of the first probe 40 may be arranged in contact with the first terminal of the IC 51, it may be arranged in contact with the wiring on the printed circuit board 50 on which the IC 51 is mounted.
  • coaxial core wire 45 of the second probe 41 may be placed in contact with the wiring on the printed circuit board 50 on which the IC 51 is mounted.
  • the first probe 40 includes a matching circuit Ma such as a capacitor attached to the tip of the coaxial core wire 44 .
  • the second probe 41 may include a matching circuit Ma such as a capacitor attached to the tip of the coaxial core wire 44 .
  • FIG. 35 is a diagram showing a partial configuration of an IC noise tolerance detection device according to a ninth embodiment.
  • the IC noise tolerance detection device of the ninth embodiment differs from the IC noise tolerance detection device of the above-described embodiments as follows.
  • the first probe 40 and the second probe 41 are coaxial probes.
  • the IC noise tolerance detector of the ninth embodiment includes a connection cable 80 that connects the coaxial outer conductor of the first probe 40 and the coaxial outer conductor of the second probe 41 .
  • the length of the first coaxial cable 21 and the second coaxial cable 22 A standing wave is generated in the outer conductor due to the change in the impedance of the tip. As a result, it may not be possible to measure correctly depending on the frequency.
  • that the first coaxial cable 21 and the second coaxial cable 22 are longer than the wavelengths of the first AC signal and the second AC signal means that they are longer than about 1/10 wavelength.
  • the frequencies of the first AC signal and the second AC signal are 300 MHz, the wavelength is 1 m. Since the wavelength is shortened by the dielectric of the printed circuit board 50 to about 0.5 m, the 1/10 wavelength is about 5 cm.
  • the outer conductors are brought to the same potential through the signal generator 11 and the balun 30, so standing waves are not generated in the outer conductors. If the coaxial cables 21 and 22 are longer than the wavelength by 1/10 wavelength or more, the influence of the standing wave increases. In such a case, the influence of the coaxial cables 21, 22 can be reduced by providing the connection cable 80 for connecting the outer conductors to the first probe 40 and the second probe 41 in the immediate vicinity. Moreover, since the residual inductance of the connection cable 80 itself affects depending on the frequency, it is desirable that the connection cable 80 is thick and short. Furthermore, by soldering between the outer conductors instead of point connection like the connection cable 80, it is possible to measure up to a higher frequency without generating a standing wave.
  • FIG. 36 is a diagram showing the configuration of an IC noise tolerance detector according to the tenth embodiment.
  • the IC noise tolerance detector includes a signal generator 10, a first probe 40, second probes 41a and 41b, a determination device 70, a first coaxial cable 21, a second coaxial cable 22a, 22b.
  • the signal generator 10 outputs the first AC signal and the second AC signal with different phases as noise.
  • the first alternating signal and the second alternating signal may be differential signals.
  • the first coaxial cable 21 transmits a first AC signal.
  • the second coaxial cables 22a, 22b transmit second AC signals.
  • the first probe 40 is connected with the first coaxial cable 21 .
  • the first probe 40 is placed close to the IC 51 on the printed circuit board 50 and injects a first AC signal into the IC 51 .
  • the first probe 40 may be arranged without contacting the IC 51 on the printed circuit board 50 .
  • the second probe 41a is connected to the second coaxial cable 22a.
  • a second probe 41 a is placed close to the IC on the printed circuit board 50 and injects a second AC signal into the IC 51 .
  • the second probe 41b is connected with the second coaxial cable 22b.
  • the second probe 41b is placed close to the IC on the printed circuit board 50 and injects a second AC signal into the IC51.
  • the second probes 41a and 41b may be arranged without contacting the IC 51 on the printed circuit board 50 .
  • the determination device 70 determines whether the IC 51 is malfunctioning based on the state of the IC 51 after injection of the first AC signal and the second AC signal. For example, the determination device 70 may determine whether or not the IC 51 is malfunctioning based on the output signal of the IC 51 .
  • the signal generator 10 includes a signal generator 11, a balun 30, an amplifier 31, and a power splitter 33. Since the characteristic impedance of the probe is not necessarily 50 ⁇ , the power splitter 33 may be a power divider, balun, or any other type of distributor that distributes high-frequency signals or power.
  • a signal generator 11 generates a test signal that is electromagnetic noise.
  • the balun 30 From the test signal generated by the signal generator 11, the balun 30 generates a first AC signal and a second AC signal that are equal in amplitude and 180 degrees out of phase.
  • a port for outputting the first AC signal of the balun 30 is connected to the first coaxial cable 21 .
  • Amplifier 31 amplifies the second AC signal.
  • Power splitter 33 is connected to the output of amplifier 31 .
  • a power splitter 33 branches the output of the amplifier 31 .
  • the two outputs of power splitter 33 are connected to second coaxial cables 22a and 22b.
  • noise can be injected into multiple points of the IC at the same time.
  • noise can be injected into the op amp signal and power supply at the same time.
  • an amplifier may be placed immediately before the first probe 40 or the second probes 41a and 41b placed near the signal line. Furthermore, the first probe 40 and the second probes 41a, 41b may be contact probes. For example, if it is known that the circuit inside the IC 51 includes a comparator, a method such as attaching a contact probe to the GND and wiring for transmitting differential signals and attaching a non-contact probe to the power supply may be adopted. do not have.
  • the first probe 40 and the second probes 41a, 41b may be current probes, Rogowski coils, or the like. Not all probes need be close to IC 51 or printed circuit board 50 . Noise may be injected into the connector connected to the printed circuit board 50 .
  • the IC 51 may have a plurality of power supply terminals with the same potential in order to secure current capacity.
  • a second probe 41a is placed proximate to one power terminal of IC 51
  • a second probe 41b is placed proximate another power terminal of IC 51
  • first probe 40 is placed proximate to another power terminal of IC 51.
  • signals can be simultaneously injected into a plurality of power supply terminals, and noise can be efficiently injected into the IC 51 .
  • Embodiment 11 Since there are many measurement parameters such as frequencies, amplitudes, combinations of IC terminals, etc., it is necessary to shorten the measurement time. Most of the measurement time is spent scanning the probe. In the above embodiment, two probes for applying noise and one probe for signal detection are used. Therefore, the probes may become entangled with each other, making automatic measurement impossible.
  • a probe for applying noise and a probe for detecting an output signal are arranged in advance near the IC to be measured, and the probe for applying noise and the probe for detecting are switched mechanically or electrically. thereby solving the above problem.
  • FIG. 37 is a diagram showing the configuration of an IC noise tolerance detector according to the eleventh embodiment.
  • the IC noise tolerance detector includes a signal generator 10, a plurality of first coaxial cables 21, a plurality of second coaxial cables 22, a plurality of third coaxial cables 96, and a plurality of first probes. 40 , a plurality of second probes 41 , a plurality of third probes 61 , a first switch 93 , a second switch 94 and a third switch 95 .
  • the signal generator 10 outputs the first AC signal and the second AC signal with different phases as noise.
  • the first coaxial cable 21 transmits a first AC signal.
  • a second coaxial cable 22 transmits a second AC signal.
  • the first probe 40 is connected with the corresponding first coaxial cable 21 .
  • the first probe 40 is placed close to the IC 51 on the printed circuit board 50 and injects a first AC signal into the IC 51 .
  • the second probe 41 is connected with the corresponding second coaxial cable 22 .
  • a second probe 41 is placed close to IC 51 on printed circuit board 50 and injects a second AC signal into IC 51 .
  • the third probe 61 is arranged close to the IC51 on the printed circuit board 50 and measures the output signal of the IC51.
  • the third coaxial cable 96 is connected to the corresponding third probe 61 and transmits the output signal of the IC51.
  • the determination device 70 determines whether the IC 51 is malfunctioning based on the output signal of the IC 51 input from the third probe 61 after the injection of the first AC signal and the second AC signal.
  • the first switch 93 is provided between the multiple first coaxial cables 21 and the signal generator 10 .
  • the first switch 93 switches one first coaxial cable 21 connected to the signal generator 10 .
  • a second switch 94 is provided between the plurality of second coaxial cables 22 and the signal generator 10 .
  • the second switch 94 switches one second coaxial cable 22 connected to the signal generator 10 .
  • a third switch 95 is provided between the plurality of third coaxial cables 96 and the determination device 70 .
  • a third switch 95 switches one third coaxial cable 96 connected to the determination device 70 .
  • the first probe 40, the second probe 41, and the third probe 61 may be non-contact probes or contact probes.
  • the first probe 40, the second probe 41, and the third probe 61 may be of the same type or of different types.
  • the probe to be used can be switched by switching the switch with an electric signal, so the noise tolerance of the IC 51 can be detected in a short time. Scanning the probe can reduce the possibility that the probe and coaxial cable will become entangled, causing the robot arm to stop or fail, and the possibility of shorting the probe and the measurement target. Especially in the case of coaxial probes, since the electric field is concentrated at the tip, interference between multiple coaxial probes is small, and high-precision measurement can be performed even when multiple coaxial probes are closely arranged according to IC terminals. can be done.
  • the distance between the tip of each probe and the measurement target is desirable to make the distance between the tip of each probe and the measurement target shorter than the distance between the tips of the probes. By doing so, parasitic capacitance and mutual inductance are likely to occur between the probe and the object to be measured. As a result, the amount injected into the measurement object can be increased more than the amount of the signal returned to the signal generator 10 or the determination device 70 via other probes.
  • Impedance measurement can also be measured with a device that uses a similar signal switching device.
  • switching between the electric field probe and the magnetic field probe can be performed without exchanging the probes by opening or short-circuiting the tip of the probe with an external switch made of a semiconductor element.
  • an external switch it must be arranged so that the signal does not affect the equipment.
  • the probe considering the directivity of the probe, it is desirable to place the probe in the direction that maximizes the amount of binding between the probe and the measurement target, as in the above-described embodiments.
  • Embodiment 12 in order to measure the internal impedance of the IC 51, it is necessary to place the electric field probe and the magnetic field probe at the same position on the object to be measured. However, physically moving the electric field probe and the magnetic field probe requires time required for movement. Also, since the size of the tip of the electric field probe and the size of the tip of the magnetic field probe are not necessarily the same, these probes cannot always be arranged at the same position.
  • FIG. 38 is a diagram showing an electromagnetic field probe according to the twelfth embodiment. This electromagnetic field probe is used to measure the electric and magnetic fields at the terminals of IC51. This electromagnetic field probe is a coaxial probe having an outer conductor 49 and a core wire 44 .
  • the tip of the core wire 45 and the outer conductor 49 are connected via a diode D46.
  • a switch SW such as a duplexer or a switch for switching whether or not to apply a DC voltage from a DC power supply such as a battery is provided.
  • the switch SW When the switch SW is on, the resistance value of the diode D46 becomes small, so the electromagnetic field probe of FIG. 38 functions as a magnetic field probe.
  • the switch SW is off, the resistance of the diode D46 increases, so the electromagnetic field probe in FIG. 38 functions as an electric field probe.
  • the electromagnetic field probe can be electrically switched only by an external signal to operate as an electric field probe or as a magnetic field probe, it is possible to solve the problem of travel time and probe size as described above. can.
  • the signal speed is 1 MHz, for example, switching on/off at 100 MHz using the switch or diode described above will measure the electric and magnetic fields before the electrical properties of the object to be measured change. can do.
  • the timing of measurement may overlap with the timing of switching on/off of the object to be measured. , the electric field and the magnetic field can be equivalently measured at the same position and at the same time.
  • This electromagnetic field probe can be used not only to detect noise, but also as a probe to apply noise as in the first embodiment. At this time, it is desirable to use a duplexer such as a bias tee to superimpose the high frequency signal on the DC signal.
  • a passive circuit such as a DC cut may be used to remove the DC component for input to the measuring instrument.
  • FIG. 39 is a diagram showing an electromagnetic field probe in a modification of the twelfth embodiment.
  • the electromagnetic field probe of this modification includes a reed switch 48 instead of the diode D46 and a magnet MG that controls the reed switch 48.
  • the magnet MG be a permanent magnet.
  • the reed switch 48 can be switched between opening and closing by moving the permanent magnet toward or away from the reed switch 48 .
  • the magnet MG is an electromagnet.
  • the reed switch 48 can be switched between open and closed.
  • the electromagnetic field probe has been described as a detection probe for detecting an electric field and a magnetic field.
  • Embodiment 13 relates to a method of utilization for actual electronic equipment.
  • the above embodiment relates to a general IC evaluation method, but when a specific noise source can be assumed, the technique of this embodiment can be effectively utilized. Specific examples are described below.
  • ESD tests electrostatic tests
  • EMC Electromagnetic Compatibility
  • EFT/B fast transient burst tests
  • lightning surge tests Since the output waveforms of these noise sources from the tester can be measured with an oscilloscope or the like, the frequency characteristics of the noise sources can be grasped. Propagation from the noise source to the desired IC is via conduction and/or spatial propagation paths.
  • the frequency characteristics of the noise immunity of the IC are known by the methods described in Embodiments 1 to 12. Therefore, if the propagation path from the noise source to the IC can be predicted, It is possible to grasp the frequency characteristics of the applied noise.
  • the propagation of noise from the signal generator that generates noise to the terminal of the IC that malfunctions. properties can be estimated.
  • This technique is known as a method of combining the amplification and attenuation characteristics of individual components as a level diagram in the design of radio equipment and the like. This method is an extension of the level diagram in radio design.
  • the characteristics of each component for example, a component that includes a noise injection device and a probe, or a printed circuit board to which noise is applied
  • This method is called a noise level diagram in the present embodiment.
  • a noise level diagram unlike radio equipment design, it is important to combine phase characteristics because it is necessary to consider the propagation delay time for each frequency and the reflection and transmission characteristics at the coupling part of components. is.
  • this noise level diagram By combining this noise level diagram with the frequency characteristics of the signal level of the signal generator, it is possible to estimate the frequency characteristics of the noise level applied to the terminal of the IC where the malfunction occurs. Furthermore, by comparing the frequency characteristics of the noise level applied to the terminals of this IC with the malfunction frequency characteristics of the noise shown in the above embodiments, it is possible to determine whether or not there is a malfunction.
  • EMS design examples include electronic devices that are touched by humans, such as elevator operation panels with touch panels and buttons, FA equipment operation devices, and electronic devices with touch panels such as smartphones. By using this method, it is possible to design a device that can prevent malfunction and destruction.
  • electromagnetic noise is mixed into the communication cable described in this embodiment due to magnetic coupling, and the system It may be mixed into the power cable via the power supply.
  • it is possible to minimize the influence of noise on the IC at the design stage.
  • an electromagnetic shield, a varistor, an arrester, a capacitor to ground, or the like as necessary, it is possible to provide a path for escaping noise.
  • instantaneous power failures and malfunctions can be fatal, so the design method according to this method is highly effective.
  • Embodiment 14 A specific calculation method for estimating the impedance using the non-contact measurement results of the electric field and the magnetic field shown in the third embodiment, and the result of calculating the actual measurement result using that method will be shown.
  • the measurement was performed under the condition that the impedance was known.
  • a signal generator specifically, a vector network analyzer
  • Electric and magnetic fields were measured with open and short terminations. Specifically, the electric field and magnetic field were measured at another port of the vector network analyzer.
  • the ratio between the electric field and the magnetic field is calibrated using a correction coefficient calculated using the known impedance Z0.
  • the frequency characteristic of the received voltage of the electric field probe is V1(f)
  • the frequency characteristic of the received voltage of the magnetic field probe is V2(f).
  • V1(f) ⁇ 1(f) ⁇ E(f) (2)
  • V2(f) ⁇ 2(f) ⁇ E(f) (3)
  • Impedance Z(f) to be estimated is represented by the following equation. ⁇ 1(f), ⁇ 2(f), ⁇ (f) are frequency dependent complex coefficients. ⁇ 1(f) and ⁇ 2(f) are known complex coefficients. ⁇ (f) is an unknown complex correction factor.
  • An unknown complex correction coefficient ⁇ (f) can be calculated by a known impedance element Z0[ ⁇ ]. Specifically, ⁇ (f) is calculated by the following formula. In order to obtain the complex correction coefficient ⁇ (f), when measuring the electric field E(f) and the magnetic field H(f), the positional relationship between the electric field probe and the measurement target, and the position of the magnetic field probe and the measurement target It is desirable to keep the relationship constant.
  • FIG. 40 is a diagram showing estimation results of the internal impedance Z(f) in the fourteenth embodiment.
  • the internal impedance Z(f) under short-circuit conditions is approximately 1 ⁇
  • the internal impedance Z(f) under open conditions is approximately 1 k ⁇ .
  • FIG. 41 is a diagram showing the frequency characteristics of the estimated value of the internal impedance Z(f) with respect to the 50 ⁇ termination when calibration is performed using the correction complex coefficient ⁇ (f) according to Embodiment 14 and when calibration is not performed. .
  • the internal impedance Z(f) is a constant value (50 ⁇ ). If the calibration is not performed, that is, if the internal impedance Z(f) is simply calculated from the ratio of the electric field and the magnetic field, the internal impedance Z(f) will not be a constant value (50 ⁇ ). This time, 50 ⁇ was used as the known impedance Z0, but by using a known impedance Z0 that is considered to be close to the impedance Z(f) of the input terminal to be measured, the internal impedance Z(f ) can be improved.
  • the calibration according to this embodiment has the advantage of being able to use phase components. Since the phase component in the frequency band indicates the time difference in the time domain, including the phase component makes it possible to measure changes in impedance over time, which was not possible with conventional techniques that do not use calibration. This makes it possible to estimate the internal impedance of a power semiconductor, which is a type of IC, in a non-contact state in the transition state between ON and OFF. As a result, it is possible to perform highly accurate design in circuit simulation, which is the initial stage of design.
  • FIG. 42 is a flow chart showing the procedure of the internal impedance measuring method according to the fourteenth embodiment.
  • step S501 an electric field probe is placed in the vicinity of the input terminal PI(0) of the known impedance Z0 of the operating IC 51, and the electric field E(f) generated by the input terminal PI of the known impedance Z0 is detected by the electric field probe. is measured without contact.
  • step S502 a magnetic field probe is placed at the same place as the electric field probe, and the magnetic field H(f) generated by the input terminal PI(0) with a known impedance Z0 is measured without contact. do.
  • step S503 the determination device 70 calculates the voltage V1(f) from the electric field E(f) measured in step S501 according to Equation (2). Determining device 70 calculates voltage V2(f) from magnetic field H(f) measured in step S502 according to equation (3). Determining device 70 uses calculated V1(f) and V2(f) and known impedance Z0 to calculate complex correction coefficient ⁇ (f) according to equation (5).
  • step S504 an electric field probe is placed near the input terminal PI to be measured of the operating IC 51, and the electric field E(f) generated by the input terminal PI to be measured is measured by the electric field probe without contact.
  • step S505 a magnetic field probe is placed at the same place where the electric field probe is placed, and the magnetic field H(f) generated by the input terminal PI to be measured is measured without contact by the magnetic field probe.
  • step S503 the determination device 70 calculates the voltage V1(f) from the electric field E(f) measured in step S504 according to Equation (2). Determining device 70 calculates voltage V2(f) from magnetic field H(f) measured in step S505 according to equation (3). Using the calculated V1(f) and V2(f) and the complex correction coefficient ⁇ (f) measured in step S503, the determination device 70 calculates the internal impedance of the input terminal PI to be measured according to the equation (4).

Abstract

信号発生部(10)は、異なる位相の第1の交流信号および第2の交流信号をノイズとして出力する。第1の同軸ケーブル(21)は、第1の交流信号を伝送する。第2の同軸ケーブル(22)は、第2の交流信号を伝送する。第1のプローブ(40)は、第1の同軸ケーブル(21)と接続され、プリント基板(50)上のIC(51)に近接して配置され、第1の交流信号をIC(51)に印加する。第2のプローブ(41)は、第2の同軸ケーブル(22)と接続され、IC(51)に近接して配置され、第2の交流信号をIC(51)に印加する。判定装置(70)は、第1の交流信号および第2の交流信号の印加後のIC(51)の状態に基づいて、IC(51)が誤動作しているか否かを判定する。

Description

ICのノイズ耐量検出装置、ICのノイズ耐量検出方法、およびICの内部インピーダンス測定方法
 本開示は、ICのノイズ耐量検出装置、ICのノイズ耐量検出方法、およびICの内部インピーダンス測定方法に関する。
 IC(Integrated Circuit)の外部から伝搬してくる電磁ノイズによって、ICが誤動作(瞬停や動作異常)または破壊されることが知られている。電磁ノイズを模擬した試験が行われて、ICを含む機器の出荷前に誤動作または破壊の有無が調査されている。電磁ノイズを模擬した試験には、EFT/B(Electrical Fast Transient/Burst)試験、ESD(Electro Static Discharge)試験、伝導イミュニティ試験、放射イミュニティ試験、または雷サージ試験などがある。試験の結果規格を満足できない場合は、再設計が行われる。誤動作の原因であるICの耐電磁ノイズ評価法には、IEC(International Electrotechnical commission)621132の中のIEC62132-4によって定められているDPI(Direct Power Injection)法、またはIEC62132-9によって定められている表面走査法などがある。
 以下の4つの過程によって、ICのノイズ耐量を検出するICのノイズ耐量検出装置が知られている(例えば特許文献1を参照)。
 第1過程では、ICのノイズ耐量検出装置は、ノイズ源が電子製品に備えられた伝送線路へ周波数を掃引しながらコモンモードノイズを注入する。
 第2過程では、ICのノイズ耐量検出装置は、伝送線路を介して電子製品に備えられたデバイスの端子に注入されたコモンモードノイズの各周波数におけるノイズレベルを示す周波数特性を測定する。
 第3過程では、ICのノイズ耐量検出装置は、デバイスに誤動作が発生する各ノイズ周波数におけるノイズレベルを示す耐久特性を取得する。
 第4過程では、ICのノイズ耐量検出装置は、周波数特性と耐久特性とから電子製品に誤動作を発生させるコモンモードノイズの周波数帯を特定する。
 一方、測定系への影響が小さくなるように、非接触で測定対象となるICにノイズを印加し、誤動作を確認する方法が知られている(例えば非特許文献1を参照)。
特開2020-30073号公報(6頁15~22行、図1)
Investigation of Semi-Rigid Coaxial Test Probes as RF Injection Devices for Immunity Tests at PCB Level, IEEE open Access, VOLUME8, 2020
 ICの誤動作条件を測定するためには、測定対象となるICの端子に外部から信号を印加し、印加した信号の伝搬経路を定める必要がある。
 従来の非接触プローブを用いる手法では、電界または磁界を印加することができる。しかしながら、印加した電界または磁界によって生じる電流源または電圧源により、キルヒホッフの法則に従って電流のリターン経路が生じる。リターン経路は、空間の距離および構造などに依存する電界結合および磁界結合などの寄生成分によって生じる。よって、非接触プローブを配置するだけでは伝搬経路が定まらない。
 測定対象のICに接触型プローブを接触させて、リターン経路を設けると伝搬経路を定めることができる。しかしながら、接触させることによって測定対象のICの動作条件が変化するので、ICの実際の動作状態における誤動作する条件(以下、誤動作条件)を正確に測定するのは困難である。
 それゆえに、本開示の目的は、ICの誤動作条件を正確に測定することができるICのノイズ耐量検出装置、ICのノイズ耐量検出方法、およびICの内部インピーダンス測定方法を提供することである。
 本開示のICのノイズ耐量検出装置は、異なる位相の第1の交流信号および第2の交流信号をノイズとして出力する信号発生部と、第1の交流信号を伝送するための第1の同軸ケーブルと、第2の交流信号を伝送するための第2の同軸ケーブルと、第1の同軸ケーブルにおいて、信号発生部とは反対側の端部に接続され、プリント基板上のICに近接して配置される第1のプローブと、第2の同軸ケーブルにおいて、信号発生部と反対側の端部に接続され、ICに近接して配置される第2のプローブと、第1の交流信号および第2の交流信号を印加した後のICまたは、ICが実装された装置の動作状態に基づいて、ICが誤動作しているか否かを判定する判定装置とを備える。
 本開示のICのノイズ耐量検出装置は、異なる位相の第1の交流信号および第2の交流信号を出力する信号発生部と、各々が、第1の交流信号を伝送するための複数の第1の同軸ケーブルと、各々が、第2の交流信号を伝送するための複数の第2の同軸ケーブルと、各々が、対応する第1の同軸ケーブルと接続され、プリント基板上のICに近接して配置され、第1の交流信号をICに印加するための複数の第1のプローブと、各々が、対応する第2の同軸ケーブルと接続され、ICに近接して配置され、第2の交流信号をICに印加するための複数の第2のプローブと、各々が、ICに近接して配置されて、ICの出力信号を計測するための複数の第3のプローブと、各々が、対応する第3のプローブと接続され、ICの出力信号を伝送するための複数の第3の同軸ケーブルと、第1の交流信号および第2の交流信号の印加後に、第3のプローブから入力されるICの出力信号に基づいて、ICが誤動作しているか否かを判定する判定装置と、複数の第1の同軸ケーブルと信号発生部との間に設けられて、信号発生部と接続する1つの第1の同軸ケーブルを切り替えるための第1のスイッチと、複数の第2の同軸ケーブルと信号発生部との間に設けられて、信号発生部と接続する1つの第2の同軸ケーブルを切り替える第2のスイッチと、複数の第3の同軸ケーブルと判定装置との間に設けられて、判定装置と接続する1つの第3の同軸ケーブルを切り替えるための第3のスイッチとを備える。
 本開示のICのノイズ耐量検出方法は、異なる位相の第1の交流信号および第2の交流信号を出力するように構成された信号発生部と、第1の交流信号を伝送するための第1の同軸ケーブルと、第2の交流信号を伝送するための第2の同軸ケーブルと、第1の同軸ケーブルと接続される第1のプローブと、第2の同軸ケーブルと接続される第2のプローブと、判定装置、とを備えたICのノイズ耐量検出装置におけるノイズ耐量検出方法である。本開示のICのノイズ耐量検出方法は、第1のプローブおよび第2のプローブをICに近接して配置するステップと、信号発生部が、第1の交流信号および第2の交流信号を出力するステップと、判定装置が、IC、またはICが実装されたプリント基板、またはICが実装されたプリント基板に接続される異なるプリント基板の状態に基づいて、ICが誤動作しているか否かを判定するステップとを備える。
 本開示のICの内部インピーダンス測定方法は、電界プローブを用いて、動作状態のICにおける出力信号が変化しない出力端子が生成する電界を測定するステップと、磁界プローブを用いて、出力端子が生成する磁界を測定するステップと、測定された電界と測定された磁界とに基づいて、ICの出力端子の内部インピーダンスを算出するステップとを含む。
 本開示のICの内部インピーダンス測定方法は、動作状態のICの測定対象の入力端子に印加されている電圧を測定するステップと、電圧の振幅よりも小さい振幅を有する既知の擬似乱数の信号、または変調信号を入力端子に注入するステップと、電界プローブを用いて、入力端子が生成する電界を測定するステップと、磁界プローブを用いて、入力端子が生成する磁界を測定するステップと、測定された電界と測定された磁界とに基づいて、入力端子の内部インピーダンスを算出するステップとを含む。
 本開示のICの内部インピーダンス測定方法は、電界プローブを用いて、既知のインピーダンスの入力端子が生成する電界を測定するステップと、磁界プローブを用いて、既知のインピーダンスの入力端子が生成する磁界を測定するステップと、既知のインピーダンスと、既知のインピーダンスの入力端子が生成する電界および磁界とを用いて、複素補正係数の周波数特性を算出するステップと、電界プローブを用いて、測定対象の入力端子が生成する電界を測定するステップと、磁界プローブを用いて、測定対象の入力端子が生成する磁界を測定するステップと、複素補正係数の周波数特性と、測定対象の入力端子が生成する電界および磁界とを用いて、測定対象の入力端子の内部インピーダンスを算出するステップとを備える。
 本開示によれば、ICの誤動作条件を正確に測定することができる。
実施の形態1のICのノイズ耐量検出装置の構成を表わす図である。 IC51への第1の交流信号および第2の交流信号の注入を説明するための図である。 判定装置70の構成例を表わす図である。 同軸プローブの例を表わす図である。 実施の形態1のICのノイズ耐量検出方法の手順を表わすフローチャートである。 実施の形態1の第1の測定方法の概略図である。 実施の形態1の第2の測定方法の概略図である。 実施の形態1の第3の測定方法の概略図である。 従来の測定装置の概略図である。 従来の別の測定装置の概略図である。 実施の形態2のICのノイズ耐量検出方法の手順を表わすフローチャートである。 実施の形態2の応答マップの例を表わす図である。 2つの応答マップによる誤動作条件の判定方法の手順を表わすフローチャートである。 第2のICについての応答マップを表わす図である。 2つの応答マップを用いた、誤動作条件の特定方法を説明するための図である。 実施の形態2の変形例のICのノイズ耐量検出方法の手順を表わすフローチャートである。 実施の形態2の変形例の応答マップの例を表わす図である。 実施の形態3におけるICの出力端子の内部インピーダンスの測定方法の手順を表わすフローチャートである。 内部インピーダンスの記載を含む応答マップの例を表わす図である。 実施の形態4におけるICの入力端子の内部インピーダンスの測定方法の手順を表わすフローチャートである。 実施の形態5のICのノイズ耐量検出装置の構成を表わす図である。 実施の形態5の変形例のICのノイズ耐量検出装置の構成を表わす図である。 実施の形態6に係るICのノイズ耐量検出装置の構成を表わす図である。 実施の形態6の変形例1のICのノイズ耐量検出装置の構成を表わす図である。 実施の形態6の変形例2のICのノイズ耐量検出装置の構成を表わす図である。 実施の形態6の変形例3のICのノイズ耐量検出装置の構成を表わす図である。 実施の形態7のICのノイズ耐量検出装置の一部を示す図である。 プリント基板50にノイズを印加した場合の測定結果を示す図である。 非接触の同軸プローブ(電界プローブ)を用いた場合の測定結果と、磁界プローブを用いた場合の測定結果とを示す図である。 電源IC51にノイズ印加した場合の、IC51の正常出力(1.35V)と異常出力の測定結果を示す図である。 電源ICのフィードバック端子に10Vの信号を注入したときの結果を示す図である。 実施の形態7の変形例1の第1のプローブ40を表わす図である。 実施の形態8のICのノイズ耐量検出装置の一部の構成を表わす図である。 差動配線にノイズを印加した場合における誤動作条件の測定結果を示す図である。 実施の形態9のICのノイズ耐量検出装置の一部の構成を表わす図である。 実施の形態10のICのノイズ耐量検出装置の構成を表わす図である。 実施の形態11のICのノイズ耐量検出装置の構成を表わす図である。 実施の形態12における電磁界プローブを表わす図である。 実施の形態12の変形例における電磁界プローブを表わす図である。 実施の形態14における内部インピーダンスZ(f)の推定結果を表わす図である。 実施の形態14による補正複素係数β(f)による校正を実行する場合と、校正を実行しない場合の50Ω終端に対する内部インピーダンスZ(f)の推定値の周波数特性を示す図である。 実施の形態14における内部インピーダンスの測定方法の手順を表わすフローチャートである。
 以下、実施の形態について、図面を参照して説明する。
 実施の形態1.
 図1は、実施の形態1のICのノイズ耐量検出装置の構成を表わす図である。このICのノイズ耐量検出装置は、プリント基板50上のIC51のノイズ耐量を検出する。ノイズとは、一般に測定対象となる機器の内部または外部において生じて、配線または空間を伝搬する信号のことであるが、本実施の形態においては特に記載がない限りは外部から意図的に印加する信号をノイズと呼ぶ。ただし、評価基板などにおいて、基板設計時にプリント基板に信号源を組み込んだ場合には、この信号源をノイズの発生源としても構わない。
 ノイズ耐量検出装置は、信号発生部10と、第1のプローブ40と、第2のプローブ41と、判定装置70と、第1の同軸ケーブル21と、第2の同軸ケーブル22とを備える。
 信号発生部10は、異なる位相の第1の交流信号および第2の交流信号をノイズとして出力する。たとえば、信号発生部10は、1つの帯域幅あたり10周期以上の第1の交流信号および第2の交流信号を出力するものとしてもよい。
 第1の同軸ケーブル21は、第1の交流信号を伝送する。第2の同軸ケーブル22は、第2の交流信号を伝送する。第1の交流信号および第2の交流信号の位相差は、180度とすることができる。すなわち、第1の交流信号および第2の交流信号は、差動信号とすることができる。あるいは、第1の交流信号および第2の交流信号の位相差は、120度としてもよい。
 第1のプローブ40は、第1の同軸ケーブル21と接続される。第1のプローブ40は、プリント基板50上のIC51に近接して配置され、第1の交流信号をIC51に注入する。第1のプローブ40は、プリント基板50上のIC51に非接触で配置されるものとしてもよい。
 第2のプローブ41は、第2の同軸ケーブル22と接続される。第2のプローブ41は、プリント基板50上のICに近接して配置され、第2の交流信号をIC51に注入する。第2のプローブ41は、プリント基板50上のIC51に非接触で配置されるものとしてもよい。
 判定装置70は、第1の交流信号および第2の交流信号の注入後のIC51の状態に基づいて、IC51が誤動作しているか否かを判定する。たとえば、判定装置70は、IC501の出力信号に基づいて、IC51が誤動作しているか否かを判定するものとしてもよい。
 第1の交流信号および第2の交流信号を注入する端子は、IC51の信号入力端子または信号入出力端子とし、IC51からの出力信号を観測する端子は、IC51の信号出力端子または信号入出力端子としてもよい。
 (信号発生部10)
 信号発生部10は、評価用の2つの信号を発生する。2つの信号は、位相の異なる第1の交流信号および第2の交流信号である。信号発生部10が生成した第1の交流信号が第1の同軸ケーブル21を介して、第1のプローブ40に注入される。信号発生部10が生成した第2の交流信号が第2の同軸ケーブル22を介して、第2のプローブ41に注入される。
 例えば、信号発生部10は、2出力のシグナルジェネレータまたはファンクションジェネレータ、または2台のシグナルジェネレータまたはファンクションジェネレータによって構成されている。
 信号発生部10が2台のジェネレータによって構成される場合には、外部から各々のジェネレータを制御することによって、両者を同期させて位相が異なる第1の交流信号および第2の交流信号を出力させてもよい。
 1台のジェネレータからカプラ、分配器、または移相器などを介して、2出力以上の信号が生成されるものとしてもよい。また、180度ハイブリッドカプラ(別名:バラン)などを用いて位相の異なる信号の一例である差動信号を生成することもできる。第1の同軸ケーブル21の電気長と第2の同軸ケーブル22の電気長とを異ならせることによって、位相の異なる第1の交流信号および第2の交流信号を生成することも可能である。ただし、電気長で調整する場合、信号発生部10から出力される信号の周波数に応じて、第1の交流信号と第2の交流信号の位相差が変化する。したがって、第1の同軸ケーブル21の電気長と、第2の同軸ケーブル22の電気長を等しくし、信号発生部10の2出力を異なるようにすることによって第1の交流信号と第2の交流信号の位相差を作るのが望ましい。
 上記のように評価用の2つの信号の位相が異なるのではなく、評価用の2つの信号の振幅が異なるものであっても良く、位相および振幅が異なるものであってもよい。
 同軸ケーブル21、22およびプローブ40、41については、一般に同じ材料の誘電体が用いられている場合には、同じ長さのものを用いれば良い。より正確には、ベクトルネットワークアナライザ(VNA)の反射特性または透過特性を測定し、または時間領域反射率測定法(TDR)を用いて伝搬遅延時間または反射率を測定することによって、電気長の正確な測定をすることが可能となる。特に1GHz以上の周波数信号を含む信号を信号発生部10から出力する場合には、同軸ケーブル21、22の個体差を考慮して電気長を測定してから本実施の形態による測定を実施するのが望ましい。電気長の測定の結果、位相または振幅が異なる場合には、位相器またはアッテネータなどによって、信号発生部10の出力を調整すればよい。
 (プローブ)
 同軸ケーブル21、22の第1端には、信号発生部10が出力した信号が入力される。同軸ケーブル21、22の第2端には、第1のプローブ40、及び第2のプローブ41がそれぞれ接続されている。第1のプローブ40と第2のプローブ41は、同じ種類のプローブであっても異なる種類のプローブであっても構わない。ただし、異なる種類のプローブを用いた場合には、電気長が異なり、および測定対象との結合量の周波数特性が異なる。よって、理由がない限りは同じ種類のプローブを用いるのが望ましい。
 プローブには、電界プローブと磁界プローブとがある。
 電界プローブは、同軸の芯線と、同軸の芯線の先端に付された導体とを有する。この導体は、アンテナとして機能する。電界プローブとして、例えばパッチ構造の電界プローブまたは同軸プローブが用いられる。電界プローブの同軸の芯線の先端を開放端とすることによって、同軸の芯線の先端部と測定対象となるICの端子または配線との間に電位差を発生させるようにして、測定対象に電界を重畳する。これによって、測定対象に電力が注入される。
 磁界プローブは、同軸の芯線と、同軸の芯線の先端に接続された同軸の外導体とを有する。あるいは、磁界プローブは、同軸の芯線と、同軸の外導体と、同軸の芯線の先端と同軸の外導体との間の50Ωの抵抗部材とを有する。同軸の芯線の先端を同軸の外導体と短絡、またはインピーダンス素子経由で短絡することによって、同軸の芯線の先端に電流が流れるようにして、測定対象に磁界を加える。これによって、測定対象に電力が注入される。磁界プローブは、同軸の芯線を備えずに、ループ状に巻かれた被覆線を備えるものであってもよい。被覆線の両端に電圧が印加される。磁界プローブの場合、同軸ケーブルの芯線にカップリングコンデンサ(芯線に直列に設けるコンデンサでDCカットコンデンサとも呼ばれる)を設けてもよい。例えば、後述するバイポーラ電源をアンプとして用いる場合においては、バイポーラ電源の短絡保護回路が働き、高周波成分が重畳できない場合がある。そのような場合においてカップリングコンデンサを磁界プローブとバイポーラ電源の間に設けることによって、短絡保護回路が働かず、必要な高周波信号を磁界プローブに重畳することができる。また、短パルス発生器のようなパルス状信号を発生させる装置においても、振幅成分の大きい低周波成分(一般的には60Hzの30倍の高調波である1.8kHz以下とされるが、本実施の形態では100kHz以下の帯域)において、磁界プローブまたは信号発生器に過電流が流れることがあり、カップリングコンデンサはこのような過電流を防ぐことができる。また、カップリングコンデンサ以外にもハイパスフィルタ、バンドパスフィルタ、またはバンドリジェクトフィルタなどのフィルタを用いて低域を除去しても構わない。
 電界プローブまたは磁界プローブには、意図的に指向性を増加させているものと、意図的に無指向性に近づけたものとがある。
 ICの端子などのように配線の向きが分かっているものに関しては、指向性のプローブを用いて結合量を大きくすることによって、信号発生部10の出力電力を下げることができる。指向性のプローブを用いると、信号発生部10の出力電力を小さくできるだけでなく、プローブに印加する電圧を小さくできる。指向性の磁界プローブを用いた場合には、流せる電流を小さくすることができるため、配線を細くできるとともに、磁界プローブも小さくできる。その結果、印加位置の分解能を向上させることができる。よって、指向性のプローブを用いるのが望ましい。
 IC自体にノイズを印加する場合にはIC内部の配線、およびボンディングワイヤの向きが分からないため、無指向性のプローブを用いるのが望ましい。ただし、指向性プローブをICに対して回転させることによって、結合量が大きくなる向きを見出すことができる場合、あるいはIC内部の配線、およびボンディングワイヤの向きが事前に分かっている場合には、指向性プローブを用いるのが望ましい。
 電界プローブまたは磁界プローブである第1のプローブ40および第2のプローブ41をプリント基板50上のIC51に近接して配置させる。IC51の端子間の距離に応じて決まる必要なプローブの位置分解能、及び印加電圧による絶縁破壊距離にも依存するが、通常は、測定対象のIC51の端子から10mm以内に第1のプローブ40および第2のプローブ41を近接させるのが望ましい。
 さらには、第1のプローブ40および第2のプローブ41のうちの一方のプローブの先端箇所が絶縁されている場合には、一方のプローブの先端をIC51の端子に接触させて配置するのが望ましい。このようにすることによって、一方のプローブから放射される電磁界成分が測定対象となるIC51に注入しやすくなり、注入効率を上げることができる。その結果、信号発生部10から振幅の大きな電圧を出力する必要がないため、信号発生部10を小型化することができるとともに、信号発生部10と接続する配線および一方のプローブの耐圧および電流定格を下げることができる。
 IC51がリードフレームタイプの場合には、IC51の端子またはIC51の端子に接続される配線に近接して、第1のプローブ40および第2のプローブ41のうちの一方のプローブを配置するのが望ましい。
 第1のプローブ40および第2のプローブ41のうちの一方のプローブをIC51の上部に配置し、IC51内部のボンディングワイヤに外部から信号(ノイズ)を印加することができる。IC51が、ワイヤーボンディングを使わないフリップチップタイプのIC、およびTAB(Tape Automated Bonding)タイプのICのように、下部に端子が出ている場合には、IC51の端子に接続されている配線に近接して、あるいはIC51の上部に第1のプローブ40および第2のプローブ41のうちの一方のプローブを近接して配置する。このようにすることによって、IC51の内部の半導体にノイズを印加することができるので、IC51自体、すなわちIC51の内部のノイズ耐性を測定することができる。IC51の内部のダイおよびパッケージの配線が把握できるのであれば、それらに対してノイズを印加することもできる。
 上記では、第1のプローブ40および第2のプローブ41のうちの一方のプローブについて説明を行ったが他方のプローブの配置について説明する。他方のプローブも測定対象のIC51に近接して配置される。測定対象となる1つのIC51に対して、第1のプローブ40および第2のプローブ41を配置するのが望ましい。幾つかの実例を用いて、説明する。
 第1の例として、スイッチング電源の電源入力端子にノイズを印加したい場合には、一方のプローブを測定対象のIC51の電源入力端子の近傍(例えば高さ1mmの位置)、他方のプローブを測定対象IC51の電流経路であるGND端子の近傍に配置する。このように一方のプローブを測定対象となるIC51のGND端子の近傍に配置することは、シングルエンドの高速信号線、またはセンサ信号に対しても適用することができる。
 第2の例として、半導体内部のブロック図がスペックシート等で分かる場合においては、コンパレータ、オペアンプ、またはダイオードが実装された配線間に、2つのプローブを配置することによって、IC51のそれぞれの端子間での耐ノイズ性能を調べることができる。
 第3の例として、位相の異なる信号の一例として差動信号を用いた場合についても同様の方法で耐ノイズ性能を評価することができる。すなわち、差動信号の片側の線路に一方のプローブを近接して配置し、その対となる差動線路に他方のプローブを近接して配置する。このようにすることによって、差動線路に対して位相差が異なる信号、または振幅が等しく位相差が180度異なる差動信号を注入することができるため、差動線路に対して非接触で外部から差動信号を注入することができる。これにより、2つのプローブが近接した配線間に電圧を印加すること、または、上記の配線間に電流を流すことができるため、入力した信号の伝搬経路を一意に決めることができる。なぜなら、一方のプローブから印加された信号が、他方のプローブに抜けていく経路が生成されるためである。この時、IC51の出力端子よりもIC51の入力端子、または入出力端子に2つのプローブを近接させるのが望ましい。なぜなら、IC51の入力端子の方が信号を受信する必要があるため、高感度に設計されており、ノイズの影響を受けやすいためである。
 第4の例として、3相交流を扱う場合には、配線間の位相差が120度となる。このような場合においては、位相が120度異なる信号を第1のプローブ40と第2のプローブ41に印加することで、ノイズに対する誤動作耐性を測定することができる。なお、従来のように、1つのプローブしか用いない手法では、印加する端子の間に意図したノイズを印加することができなかったため、このように位相が異なる信号が伝送される配線に対して測定することは困難であった。
 図2は、IC51への第1の交流信号および第2の交流信号の注入を説明するための図である。
 図2には、2つのプローブ40、41を用いて第1のノイズ印加部54および第2のノイズ印加部55に第1の交流信号および第2の交流信号を注入している様子が示されている。図2に示されるように、第1のノイズ印加部54とおよび第2のノイズ印加部55に接続されるIC51の内部のインピーダンス56を介してノイズの伝搬経路が形成される。図2には記載されていないが、測定対象のIC51に別のICが接続されている場合には、その別のICの内部インピーダンスも電流経路となるため、各々のICの内部インピーダンスを介した電流の経路が形成される。このような測定対象に対して、第1のプローブ40と第1のノイズ印加部54とは、寄生容量と相互インダクタンスとによって、空間を経由して接続される。第2のプローブ41と第2のノイズ印加部55とは、寄生容量と相互インダクタンスとによって、空間を経由して接続される。第1のプローブ40および第2のプローブ41として、電界プローブを用いた場合は寄生容量成分が支配的であり、磁界プローブを用いた場合は相互インダクタンス成分が支配的である。
 第1のプローブ40と第2のプローブ41との間に位相が異なる信号が注入されるため、一方のプローブから他方のプローブに向かって、IC51の内部インピーダンス56を経由して信号が流れる。先行技術(非特許文献1)で示されるように、1つのプローブを用いて測定する場合には電流の経路が決まらず、プローブから各端子に対する寄生容量、および測定系の電源経由で印加信号の伝搬経路が形成されるため、測定条件、系統電源に接続される機器、および周囲の電子機器などの測定環境によって動作が変化しやすい。その結果、測定の再現性を確保するのが難しい。
 本実施の形態によれば、電流の経路を固定することができるので、測定の再現性を向上させることができる。更に、信号の伝搬経路を形成することによって、電流のリターン経路が形成されるため信号が回路に注入しやすくなる。
 外部から信号を印加する測定では、IC51が動作した状態で行うのが望ましい。なぜなら、IC51は半導体であるため、動作時と非動作時において内部のインピーダンスが異なるためである。図2におけるIC51の内部インピーダンス56がIC51のオンとオフとで変化する。
 IC51の動作周波数に応じた測定時間を設けるのが望ましい。例えばスイッチング電源のように100kHzで動作するICの周期は10μsecである。この場合、1周期以上、望ましくは10周期すなわち100μsec程度の間、同じ周波数で第1の交流信号および第2の交流信号を印加するのが望ましい。ただし、周波数はアナログ値であるので、特定の周波数の帯域についてはこの方法でも良いが、一般的には以下に述べるような帯域幅を設定して網羅的に測定するのが望ましい。すなわち、信号発生部10が帯域幅を設定することができるタイプの場合には、複数の帯域幅を設定することによって測定を行う。例えば、信号発生部10は、1MHzまでは1kHz間隔の帯域幅、100MHzまでは1MHz間隔の帯域幅、1GHzまでは10MHz間隔の帯域幅で第1の交流信号および第2の交流信号を出力する。帯域幅が数kHz~数100kHzと狭いため、信号発生部10が、1つの周波数ずつしか第1の交流信号および第2の交流信号を発生することができない場合には、信号発生部10が、第1の交流信号および第2の交流信号の周波数を掃引させながら、ICのノイズ耐量が測定されるものとしてもよい。ただし、その場合においてもIC51が直ちに誤動作しない場合があるため、信号発生部10は、1つの帯域幅について10周期以上、またはIC51の動作周波数よりも第1の交流信号および第2の交流信号の掃引速度を10倍以上遅くして、1つの周波数の第1の交流信号および第2の交流信号を出力するのが望ましい。
 (判定装置)
 判定装置70は、第1のプローブ40および第2のプローブ41によってノイズとして印加された第1の交流信号および第2の交流信号による誤動作を検出する。判定装置70として最も単純なものは、電子機器が動作しなくなったことを知らせる、例えばパイロットランプ、またはスピーカなどを有する装置である。このような装置は、電子機器が動作しなくなると、音が鳴ったり、点灯していたパイロットランプが消えたり、点灯したり、点滅したりする。特に測定対象となるIC51と上記の動作しなくなったことを知らせる装置とが実装されている場合には、追加の装置は不要である。
 測定対象のIC51、または測定対象に直接または間接的に接続されて誤動作を検出する機能があるICは、USB(Universal Serial Bus)コネクタなどのコネクタを介して、ケーブルを経由で外部のPC(Personal Computer)などに誤動作を知らせる信号を送信してもよい。そのようなICは、ケーブル経由でなくても無線または超音波などの電波または音波を経由して誤動作を知らせる信号を送信してもよい。ただし、IC51の内部の判定装置が正常動作していない限り、IC51が誤動作していても誤った判定がされてしまうことがある。更に、IC51の内部の判定装置が正常に動作する場合でも、IC51が誤動作を判定するまでに時間がかかり、誤った結果となることがある。
 図3は、判定装置70の構成例を表わす図である。
 判定装置70は、計測部71、演算部72、および表示部73を備える。このような判定装置70の代表的なものは、オシロスコープ、またはリアルタイムスペクトラムアナライザである。計測用ケーブル60は、IC51に直接接続されている。計測用ケーブル60は、IC51が異常信号を検知して特定の出力信号を出力するコネクタを有する場合に適用できる。一方、IC51がこのようなコネクタを有さない場合には、判定装置70は、IC51の出力端子、出力端子に接続される配線の出力、または外部信号による出力信号の変化を観測することによって、IC51の誤動作を判定することができる。測定する端子は出力端子だけでなく、入力端子、または入出力端子であっても構わないが、出力端子と入出力端子に絞ることによって測定時間を短くすることができる。または、判定装置70は、IC51に接続されるICとは異なるICの動作状態の変化をもって、誤動作と判定しても構わない。例えば、判定装置70は、IC51が電源ICであった場合には電源ICからの電力供給をされて動作するCPUまたはFPGAなどの他のICの動作状態を監視することで、電源ICの誤動作状態を判定しても構わない。また、ノイズを印加する対象と、誤動作状態を監視する対象とが必ずしも同一基板上に配置されている必要はない。例えばPHYによってプリント基板が接続されている場合、判定装置70は、一方のプリント基板のPHYにノイズを印加し、他方のプリント基板のPHYの動作状態を監視することで、ノイズを印加したPHYの誤動作状態を判定しても構わない。更に装置Aが、電波、超音波または光などの信号を空間に伝搬する場合において、判定装置70は、それらの信号を受信した装置Bの動作状態によって、装置Aの動作状態を監視しても構わない。
 測定に用いるプローブとして、シングルエンドのパッシブプローブ、FET(Field Effect Transistor)プローブ(アクティブプローブとも呼ばれる)、または差動プローブなどの接触型のハイインピーダンスプローブを用いることができる。あるいは、測定に用いるプローブとして、電流プローブまたはロゴスキーコイルなどの非接触プローブを用いることができる。更に信号を受信する際には、光電界プローブなどの光プローブ、またはE/O変換装置を備えた装置を使うことによって出力信号がプローブによって歪む影響も小さくすることができる。ただし、IC51の出力信号は、電気信号だけでなく、映像、音、振動、熱、光などであってもよい。IC51の出力信号は、IC51が接続される周辺機器の動作異常などであってもよい。特に、直流を出力するICの場合においては上記のような装置は必ずしも必要はなく、テスタによって直流電圧を測定してもよい。
 表示部73は、オシロスコープまたはテスタのモニタである。判定装置70が、表示部73(モニタ)を有さない場合には、判定装置70にPCなどを接続して、PCによって観測することができる。
 (測定方法)
 以下にプローブを用いた測定方法の一例を説明する。
 プリント基板50上の配線のリターン経路がプリント基板50のグラウンドとなるシングルエンドの信号線であれば、IC51の出力位置に接触または非接触のプローブを接続すればよい。上記の測定には測定器が必要であるが、時間変化を見ることができるためオシロスコープが最も望ましく、出力が足りない場合、および大きすぎる場合には適宜プリアンプ、アッテネータ、フィルタ(ローパスフィルタ、ハイパスフィルタ、バンドパスフィルタ、またはバンドリジェクトフィルタ)、またはDCカットなどを用いても良い。また、オシロスコープの他にもリアルタイムスペクトラムアナライザを用いればGHz帯などの高い周波数帯域においても大きなダイナミックレンジ(例えば16ビット)で時間変化をとらえることができる。更に、ノイズを印加したときのIC51の挙動、および誤動作発生時の周波数特性が事前に分かっている場合においては、スペクトラムアナライザのゼロスパンモードで時間変化を見ても構わない。また、誤動作を観測するIC51の端子は、IC51の出力信号を出力する端子だけでも構わない。これは、誤動作する原因の多くが出力信号にノイズが混入することによる変化か、あるいはIC51自体が所望の信号を出力できなくなることによるものであるからである。判定装置70は、IC51の出力信号をフーリエ変換、またはショートタイムフーリエ変換してもよい。
 IC51にノイズを印加して、IC51に誤動作、または異常が発生した場合は、直ちに信号発生部10の出力を停止する、あるいは出力信号の振幅を低下させるのが望ましい。IC51の状態、およびIC51に書き込まれたファームウェアの状態に応じて対応が異なるものの、自動復旧できるIC51に関しては、IC51が自動復旧してから、判定装置70の出力を観測し、その結果をフィードバックして信号発生部10の信号の出力を再開してもよい。
 IC51が自動で復旧できない場合においては、測定対象のIC51の電源を停止させて再起動する必要がある。また、測定対象のIC51に接続される周辺回路、または別のプリント基板がある場合においても、IC51を含む機器を再起動するのが望ましい。また、機器によっては再起動後に、すぐにIC51が動作し始めるものばかりでない。よって、電源および駆動用ソフトウェアが起動してから、IC51が動作を開始するまで待ち、その後、判定装置70によって、IC51が誤動作する前の状態に戻っているか否かを確認してから機器を再起動するのが望ましい。また、再起動してもIC51が正常動作に戻らない場合には、機器が破壊された状態であるため新しい機器で測定を再開するか、アラートを上げて作業者に交換を促すのが望ましい。
 IC51の誤動作が検出されたときには、信号発生部10の出力を停止する、あるいは出力信号の振幅を低下させるのが望ましい。なぜなら、IC51の破壊は、多くの電流が配線および回路部品に流れることによって発生する熱によって引き起こされるからである。上記のような破壊に至る信号が流れる原因には、第1のプローブ40および第2のプローブ41からIC51に直接励起する電流がある。また、例えば電源ICのフィードバック配線が誤動作した場合においては、単位時間当たりの電流を多く流し続けることが可能であり、放熱よりも発熱が大きくなることでIC51内部のボンディングワイヤなどを融解させ、破壊に至る。また、同様の理由でパワー半導体などは絶縁破壊電圧を発生させることで破壊に至る場合もある。そのため、測定時に必ずしも、機器が誤動作するまで出力電圧を上げなくても、判定装置70の出力波形が変化した時点で測定を終えても構わない。
 なお、信号発生部10から出力する第1の交流信号および第2の交流信号の振幅および周波数、第1のプローブ40および第2のプローブ41の位置および向き、誤動作の判定の有無、および機器の再起動などを自動機によって制御し、連続的に測定を行ってもよい。特に、ロボットアームなどを具備した自動機によって、第1のプローブ40および第2のプローブ41と測定対象との距離、および第1のプローブ40および第2のプローブ41の指向性を考慮した向きが一定となるように設定することとしてもよい。また、測定対象のIC51が破壊に至る前に誤動作を判定するには、信号発生部10の出力電圧を徐々に変化させ、判定装置70の出力の変化を観測するのが望ましい。それらの制御を自動機で連続的に行うことによって、測定対象のIC51の誤動作を早期に発見できるので、破壊が起こる前の条件(具体的には電圧および電力)で測定を止めることができる。また、プローブとして非接触プローブを用いる場合には、測定対象のIC51との空間結合量を一定にするため、測定対象のIC51と非接触プローブとの距離を一定に維持する必要がある。機械的な手段で非接触プローブの移動を制御することによって、測定の再現性を上げることができる。プローブとして接触プローブを使用する場合には、測定する端子に対して接触プローブの位置がずれることがない。よって、短絡などが発生しにくく、安全な測定が可能となる。
 以下では、本実施の形態における各部品について詳細に述べる。
 <測定対象>
 測定対象のIC51は動作状態であることが望ましい。そのため、電源を入れると動作するプリント基板50に実装されたIC51が評価対象となる。IC51の電源がオフの場合には、IC51に含まれる半導体素子自体も常時オン状態、または常時オフ状態となっている。半導体素子がオンのときには、半導体素子は低インピーダンスとなる。半導体素子がオフの時には、半導体素子は高インピーダンスになる。IC51の電源がオン時とオフ時とで、IC51のインピーダンスが異なる。また、ワイドバンドギャップ半導体の1つであるGaN(窒化ガリウム)を用いた半導体素子のようにノーマリーオンの半導体素子の場合には、上記のインピーダンスは逆になる。いずれの場合においても印加した信号の伝搬経路も変化することから、IC51の印加した信号に対する周波数特性の変化を正しく把握することができない。
 そのため、例えば、IC51の評価基板、試作基板、または製品搭載されたIC51を測定するのが望ましい。特にFPGA(Field Programmable Gate Array)などのようにソフトウェアで回路を書き換えられるものについては、ファームウェアが実際の製品に近いものである状態が望ましい。IC51の評価基板のように外部から書き換えが可能なものについては、実際の製品に近い状態で評価するのが望ましい。
 ノーマルモードチョークコイル、コモンモードチョークコイル、線間コンデンサ、対地間コンデンサ、ダンピング抵抗などのノイズフィルタ、およびICの端子に接続される配線長が、試作品と実際の製品とでは異なる場合がある。そのような条件下においては共振周波数などが変化してしまう。しかし、本実施の形態に従うと意図したIC51の端子間にのみ電圧を印加して、電流を流すことができるため、IC51の外部の配線および部品の状況によって変化しにくい測定をすることができる。
 受動部品のインピーダンス特性を測定し、寄生容量または残留インダクタンスなどの寄生成分を含む等価回路に変換した後、一般的な直並列の回路方程式を解く後処理によってIC51の内部に印加されるノイズを算出しても構わない。また、これらの処理は回路シミュレータに上記の等価回路を入力し、内部に印加されるノイズを算出しても構わない。
 評価する対象となるIC51は、スイッチング電源などのフィードバック制御が必要なIC、PHY(PHYsical layer)チップのような通信用IC、センサ、SDメモリカードなどの人の手が触れる外部カードリーダ、DDR SDRAM(Double Data Rate Synchronous Dynamic Random Access Memory)またはCPUなどの高速信号を扱うIC、ASIC(Application Specific Integrated Circuit)、またはFPGAなど特殊な機能を有するICなどが含まれる。ただし、これに限定されるものではなく、リニアレギュレータなど上記に含まれないICであっても構わない。
 <信号発生部の出力信号>
 次に、信号発生部10から出力する試験信号の使い方の一例について説明する。
 第1ステップにおいて、試験信号である第1の交流信号および第2の交流信号を入力する第1のプローブ40および第2のプローブ41を操作して所望のIC51またはIC51の端子の近くに配置する。
 第2ステップにおいて、信号発生部10が出力する第1の交流信号および第2の交流信号の振幅を最小にして、第1の交流信号および第2の交流信号の周波数を例えば100kHzから1GHzまで10秒かけてスイープさせる。これでIC51に誤動作が起きないことを確認する。
 第3ステップにおいて、信号発生部10が出力する第1の交流信号および第2の交流信号の振幅を徐々に上げて、同様の周波数帯で測定を行い、IC51に誤動作が起こる振幅まで変化させる。IC51に誤動作が発生しない場合は、第1のプローブ40および第2のプローブ41の位置を変更する。
 第4ステップにおいて、誤動作が起きた場合には、信号発生部10が出力する第1の交流信号および第2の交流信号の振幅を固定して周波数帯を変化させる。周波数帯は例えば10MHz毎に100回に分けて100kHzから1GHzまでをスイープする。1帯域当たり10秒程度でスイープすれば1000秒、すなわち15分程度で測定を終えることができる。周波数帯の刻み幅は、10MHzであるが、その刻みで十分な場合にはここで検討を終了する。
 第5ステップにおいて、より小さな帯域におけるIC51の誤動作が発生する最低電圧を観測するために、上記のように誤動作が発生した帯域内で更に帯域と印加電圧(振幅)を変化させて誤動作の判定を行う。
 上記の測定をすることによって、周波数ごとのIC51の誤動作する電圧(振幅)を把握することができる。上記において1つの周波数あたり10周期以上の信号を測定対象に印加することによって、通信回路のように誤動作するまでに時間がかかるICを評価することが可能となる。なぜなら、通信回路は、再送要求をするなどによって、誤動作と判断されるまでに時間を要するため、ノイズを短時間印加しただけでは誤動作は発生しないことが多いからである。
 更に、自然界で発生する多数のランダム過程の効果を模倣する加算性白色ガウス雑音(AWGN:Additive White Gaussian Noise)は帯域幅を有する信号として考えることができるため、このような信号を信号発生部10から出力してもよい。信号発生部10は、正弦波をパルス変調することによって、特定の帯域幅を有する信号を出力することができる。なお、上記の信号を発生させる信号発生部10の一例として、Keysight社のベクトル信号発生器E8267Dなどを用いることができる。ただし、信号発生部10の出力が小さい場合は、信号発生部10の出力をアンプによって増幅してもよい。周波数が50MHz以下程度の場合には、バイポーラ電源を信号発生部10として用いても構わない。信号発生部10がバイポーラ電源の場合には、第1のプローブ40、第2のプローブ41のインピーダンスに関係なく、一定電圧または一定電流をIC51に注入することができる。
 本実施の形態においては、信号発生部10を電圧源としているが、電流源を用いても良い。更に分布定数として考える必要がある周波数帯域(例えば100MHz以上)においては、信号発生部10を電力源としてもよい。また、印加電圧であっても、印加電流であっても、印加電力であっても、第1のプローブ40および第2のプローブ41のインピーダンスの周波数特性は一意に決まるため、相互に変換することができる。よって、信号発生部10は、どのような信号源および単位系であっても構わない。
 <第1のプローブおよび第2のプローブ>
 第1のプローブ40および第2のプローブ41は、電界プローブ、磁界プローブ、または電界と磁界の両方を送受信できるプローブなど、どのようなものでも構わない。ただし、IC51によっては端子の間隔が100μm程度であることもあるので、第1のプローブ40および第2のプローブ41の印加部の寸法が端子の間隔と同程度の寸法であることが望ましい。ただし、信号発生部10からの印加電圧および印加電流が高い場合には、第1のプローブ40および第2のプローブ41を構成する配線は、電流容量を有し、最大定格電流を流せるものでなければならない。導電率および使用環境によって変わるが、配線として一般的な銅線を用いた場合は、1mm2(1平方ミリメートル)あたり1A程度の電流を流すことができる。第1のプローブ40および第2のプローブ41を構成する同軸の芯線と外導体との距離は、絶縁破壊距離以上にする必要がある。一般的な絶縁破壊距離は距離1mmあたり1kV程度である。より詳しくはパッシェンの法則、または修正パッシェンの法則に従うが、絶縁破壊電圧は再現性が高くないこと、および構造に起因するため、参考値である。特に、同軸の芯線と外導体の間に鋭利な箇所が存在する場合には、絶縁破壊距離をこれ以上に大きくする必要があり、通常、安全率(例えば3以上)を考慮して絶縁破壊電圧を用いる。
 本実施の形態に従うと、電流の経路を第1のプローブ40と第2のプローブ41とによって作り出すことができるため、測定点間のインピーダンスが低くなり、第1の交流信号および第2の交流信号が測定対象に混入しやすくなる。その結果、信号発生部10から出力する第1の交流信号および第2の交流信号の電圧、電流、および電力を小さくすることができるので、第1のプローブ40および第2のプローブ41を小さくすることができる。さらに、第1のプローブ40および第2のプローブ41が小さくなることによって、IC51、またはIC51の端子に近接させる第1のプローブ40の箇所および第2のプローブ41の箇所を小さくすることができる。その結果、従来の方法に比べ、印加箇所の位置分解能を向上させることができる。また、同じ印加電圧を得るために第1のプローブ40および第2のプローブ41を測定対象から離しても良く、測定対象へのプローブの影響を小さくすることができる。
 近接する箇所を小さくできるプローブの例として、電界プローブとしては同軸プローブ、磁界プローブとしてはループプローブがある。
 図4は、同軸プローブの例を表わす図である。
 同軸プローブが電界プローブの場合には、細線同軸、またはセミリジッドケーブルの芯線44が外導体49から数100μm~数mmだけ突出する。この同軸プローブには、電流が流れず、芯線を細くできるため小型化できる。例えば特性インピーダンスが50Ωの細線同軸の場合には、芯線44の太さを直径40μm、外導体49の直径を200μmとすることができる。その結果、同軸プローブをIC51の微細な端子の近傍にも配置することができるので、IC51の特定端子のみにノイズを印加することができる。セミリジッドケーブルの場合には、芯線44の太さを直径0.1mm、外導体49の直径を1mm以下にすることができる。細線同軸、セミリジッドケーブル、または同軸ケーブルの先端にプローブを取り付けてもよい。
 同軸プローブが磁界プローブの場合には、芯線44と外導体49との間にループ構造を形成できるため、上記の細線同軸、またはセミリジッドケーブルを利用すれば容易に作成可能である。ただし、上述のとおり電流容量を満たす配線である必要がある。
 第1のプローブ40および第2のプローブ41と測定対象となるIC51、またはIC51の端子との距離は近いことが望ましい。たとえば、距離は、1mm以下であるのが望ましい。第1のプローブ40および第2のプローブ41の先端に導体部が露出している場合には、プリント基板50上の銅箔などと接触しても導通しないように、導体部が誘電体で覆われていることが望ましい。誘電体で覆われた第1のプローブ40および第2のプローブ41を用いる場合、または測定対象の表面が絶縁されている場合には、第1のプローブ40および第2のプローブ41を測定対象のIC51の表面の絶縁材料に接触させて測定するのが望ましい。例えば、カプトンテープなどの絶縁材料の場合には、10μm~100μm程度の印加位置の分解能を向上できる。
 図5は、実施の形態1のICのノイズ耐量検出方法の手順を表わすフローチャートである。
 ステップS101において、第1のプローブ40および第2のプローブ41をIC51に近接して配置する。
 ステップS102において、信号発生部10が、位相が相違する第1の交流信号および前記第2の交流信号をノイズとして出力する。
 ステップS103において、判定装置70が、IC51の状態に基づいて、IC51が誤動作しているか否かを判定する。
 図6は、実施の形態1の第1の測定方法の概略図である。
 第1のプローブ40をIC51の1つの端子の近傍に配置し、第2のプローブ41をIC51の他の端子の近傍に配置する。信号発生部10から第1の交流信号および第2の交流信号を出力することによって、IC51の2つの端子間にノイズを印加することができる。
 図7は、実施の形態1の第2の測定方法の概略図である。
 第1のプローブ40をIC51の端子の近傍に配置する。第2のプローブ41をIC51の内部の半導体素子またはボンディングワイヤの近傍に配置する。この方法は、IC51の端子が基板上に見えないBGA(Ball Grid Array)タイプに対しても有効な方法である。この方法であれば、BGAタイプのIC51の信号配線とGND端子との間に電位差を加えることができる。
 図8は、実施の形態1の第3の測定方法の概略図である。
 IC51の端子に接続されるプリント基板50上の配線に、第1のプローブ40と第2のプローブ41とを配置する。IC51の端子に接続されるプリント基板50上の配線にノイズを印加することができる。この方法では、IC51の端子が小さい場合、またはBGAタイプのようにIC51の端子が直接プリント基板表面に見えない場合に、IC51の端子に接続される配線にノイズを印加することができる。
 図6~図8によるプローブの位置の組合せは、ノイズ印加方法の一例を示したものであって、ここに示したものに限られず、どのような組合せであっても構わない。
 さらに、測定条件を減らして評価を簡易化したい場合においては、信号発生部10から第1の交流信号および第2の交流信号を注入する箇所は測定対象となるIC51の入力端子または入出力端子とし、IC51の出力信号を検出する箇所は測定対象となるIC51の出力端子または入出力端子とする。また、シングルエンドの信号については一方のプローブを測定対象となるIC51のGND端子の近傍に配置し、他方のプローブを測定対象となるIC51の信号端子の近傍に配置することによって、組合せの数を減らし、IC51の評価を効率的に行うことができる。
 入力端子または入出力端子のみに外部から信号を印加する箇所を絞っても良い。それらの端子は高感度であること、アナログ信号などのように閾値を有さない信号を検出するような構成を有するためである。一方、出力端子はそのような構成を有していない場合が多いこと、出力端子自身の出力信号によって誤動作しないように保護回路などによってノイズに対して頑強になっている場合が多いためである。
 測定対象に対して結合量が最大となるようにプローブの向きを変更するのが望ましい。磁界プローブの一種であるループプローブの場合には、ループ面とIC51の端子の向きか配線の向きの少なくともどちらか一方とを平行にすることによって結合量を最大とすることで印加対象へのノイズの印加量を最大にすることができる。同軸プローブまたはパッチプローブの場合には、測定対象に対して対向面積が最大となる直角の向き、かつ測定対象との距離が最小となるようにプローブを配置することで結合量を最大とすることで印加対象へのノイズの印加量を最大にすることができる。このように結合量を最大にすることによって、信号発生部10の出力を小さくできるため、第1のプローブ40および第2のプローブ41を小型化することができる。また、予め既知の測定対象について結合量を把握しておき、その結合量を補正することとしてもよい。
 <判定装置>
 判定装置70は、望ましくは測定対象の電子機器全体の誤動作を検出する。その理由としては、特定のICのみが誤動作したとしても、測定対象の電子機器が誤動作しなければ問題とはならないためである。ただし、全体の特性だけを観測する場合においては測定対象が誤動作する兆候を検知するのが難しく、測定対象が破壊に至る場合もある。よって、信号発生部10は出力電圧を少しずつ上昇させ、判定装置70は、全体の誤動作を測定しながら、信号を印加しているIC51の出力波形を観測するのが望ましい。
 ただし、誤動作だけでなく誤動作に至る兆候を測定するだけであっても良い。具体的には、判定装置70は、外部から信号を印加したときの出力信号を観測し、印加した信号の電圧および電力、周波数を変化させたときの条件とともに測定する。印加する信号によって出力波形の変化を観測することができ、それらの変化が急峻な条件で誤動作が発生する場合が多い。
 IC51の状態を測定するために、電磁界プローブ(電界プローブまたは磁界プローブ)、電流プローブ(電流プローブまたはロゴスキーコイル)、光電界プローブなどの非接触プローブを用いることができる。これにより、測定対象の電磁環境に影響を与えにくくすることができる。このような非接触プローブの測定が有効なのは、測定対象の内部のインピーダンスが高い場合であり、一般的に入力信号を受け取るICの端子が該当する。一例としてスイッチング電源のフィードバック配線、水晶発振器の出力端子が接続されるCPU、またはメモリ(DDR)の入力端子などがある。
 更に、測定用のプローブは、ノイズ印加用の第1のプローブ40および第2のプローブ41と同様に、指向性を有するものとすることができる。具体的には、測定対象に対して結合量が最大となるように測定用のプローブの向きを変更するのが望ましい。例えばループプローブの場合にはループ面と、IC51の端子の向きまたは配線の向きとを平行にすることによって、結合量を最大とすることができる。
 <従来の測定法>
 参考のために、従来のICのノイズ耐量の測定法の一例であるDPI(Direct Power Injection)法について説明する。
 図9は、従来の測定装置の概略図である。図9に示すように、信号発生部10と接続される同軸ケーブル21がIC51の近傍に配置される。同軸ケーブル21の芯線と測定対象のICの端子との間に1000pFのコンデンサC42が配置される。
 図10は、従来の別の測定装置の概略図である。図10に示すように、同軸ケーブル21の芯線とIC51の端子と間のコンデンサC42に加えて、IC51のGND端子53と同軸ケーブル21の外導体49との間にもコンデンサC43が配置される。このようにすることで、コンデンサC42から伝搬したノイズがコンデンサC43に流れる構造を作ることができるため、本実施の形態で述べた方法に近い特性を得ることができる。なお、コンデンサC42やコンデンサC43は積層セラミックコンデンサなどの物理的なコンデンサであり、寄生容量によるコンデンサではない。
 しかしながら、同軸ケーブルの外導体49とプリント基板50の基準電位となるGNDの電位が異なる場合においては、本実施の形態とは異なる結果となる。本実施の形態においては、同軸ケーブルの外導体とプリント基板50のGNDとが接続されることはないため、両者に電位差があっても測定できる。一方、従来手法においては、両者の電位が異なる場合において、一方の導体から他方の導体に信号が伝搬してしまう。その結果、IC51が正常に動作している時とは異なる条件で測定が行われる。また、信号を注入していないプローブを取り付けるだけで誤動作する場合、またはIC51が起動しない場合がある。例えば、プリント基板50がバッテリーなどの内部電池で動作しており、信号発生部10が商用電源に接続される場合には、DCバイアスを含めて両者のGNDの電位は必ずしも一致しない。また、電子機器が商用電源に接続された場合、またはグランドに対してアースされた場合においても、直流としては同電位になるものの、交流としては寄生成分により、必ずしも電子機器内の基準電位はグランドと同電位とはならない。そのため、多くの場合において、プローブのGNDと測定対象となる電子機器とを接続することによって、測定対象を正常に動作させることは難しい。本実施の形態は、そのような誤動作を発生させる要因を取り除くことができるため、従来の手法と比べると、どのようなICおよびプリント基板に対しても、同じように測定することができる。
 実施の形態2.
 本実施の形態は、ICの誤動作の判定法に関する。
 電子機器の最も明確な誤動作は、機器が動作しなくなることである。しかし、停止しているはずの電子機器が動作を始めること、電子機器が瞬間停止すること、または信号に遅延が生じることも誤動作に該当する。すなわち、電子機器の出力を人または他の電子機器が受け取ったときに、異常と判定できることが誤動作となる。この誤動作を試験環境で模擬する方法として、信号発生部10が出力する第1の交流信号および第2の交流信号の電圧、電力、周波数、周波数帯域幅、連続波またはパルス波をパラメータとして、誤動作の有無を計測する方法がある。
 ただし、上記の方法を用いることができるのは、プリント基板などのハードウェアの実装、およびそれらを制御するソフトウェアの実装が完了し、電子機器として完成した状態のみである。また、この状態においてIC51の誤動作が分かったとしても、少なくとも試作が完了した状態であるので、ICの変更などの大幅な修正をすることができない場合が多い。本実施の形態においては電子機器が完成する前の段階において、ICの評価を実施する方法を提供する。
 具体的には、本実施の形態のノイズ耐量測定方法では、測定対象となるIC51が搭載された電子機器が動作状態において、外部から印加する第1の交流信号および第2の交流信号の周波数と振幅とを変化させて、IC51の出力信号を測定することによって、各周波数と各振幅における出力信号の波形を表わす応答マップを作成する。
 図11は、実施の形態2のICのノイズ耐量検出方法の手順を表わすフローチャートである。
 ステップS201において、第1のプローブ40および第2のプローブ41をIC51に近接して配置する。
 ステップS202において、信号発生部10が、周波数fを初期値f0、振幅Vを初期値V0に設定する。
 ステップS203において、信号発生部10が、周波数がfで、振幅がVで、位相が相違する第1の交流信号および前記第2の交流信号をノイズとして出力する。第1のプローブ40および第2のプローブ41によって、IC51に第1の交流信号および第2の交流信号を注入する。
 ステップS204において、判定装置70が、IC51の出力信号を検出する。
 ステップS205において、判定装置70が、応答マップにおける周波数f、振幅Vに対応するグリッドに出力信号の波形を書き込む。
 ステップS206において、周波数fが終了値fnである場合には、処理がステップS208に進み、周波数fが終了値fnでない場合には、処理がステップS207に進む。
 ステップS207において、信号発生部10は、周波数fを刻み幅Δfだけ増加させる。
 ステップS208において、振幅Vが終了値Vnである場合には、処理が終了し、振幅Vが終了値Vnでない場合には、処理がステップS209に進む。
 ステップS209において、信号発生部10は、振幅Vを刻み幅ΔVだけ増加させる。
 図12は、実施の形態2の応答マップの例を表わす図である。図12の横軸は、IC51の入力端子に入力する第1の交流信号および第2の交流信号の周波数を表わす。図12の縦軸は、IC51の入力端子に入力する第1の交流信号および第2の交流信号の振幅を表わす。横軸と縦軸とを区切ることによって、グリッドが形成される。応答マップは、各グリッドにおける出力波形を含む。この出力波形は、周波数特性を示す。応答マップの横軸の周波数は等間隔で記しているが等間隔でなくてもよく、更には真値または対数であっても良い。応答マップの縦軸の振幅についても等間隔で記しているが等間隔でなくてもよく、真値または対数でも良い。縦軸の振幅は、信号発生部10、第1のプローブ40および第2のプローブ41の種類によって変わる。縦軸の振幅は、電圧、電流、電力、電界、または磁界などのICに電気信号として注入できるものであればどのような信号の振幅であってもよい。入力方法および出力方法については、接触型のプローブを用いても、非接触型のプローブを用いても構わない。ただし、接触型プローブを用いる場合は、測定した出力波形をプローブの内部回路成分を補正した信号波形とするのが望ましく、非接触型プローブを用いる場合にはアンテナファクタで補正した信号波形とするのが望ましい。さらに、IC51の端子にノイズフィルタ、またはコイルなどのような、IC51以外の回路部品が実装されている場合は、それらの部品の周波数特性を事前に測定し、計測した出力波形をそれらの部品がない場合の信号波形に補正するのが望ましい。
 図12において、グリッドの数は周波数軸、振幅軸ともに4×4であるが、この限りでなく、どのような分割数でもよい。必ずしも各軸に対して等間隔で分割する必要はなく、特に誤動作が発生しやすい周波数、及び電圧付近においてグリッドを細かく切ってもよい。そのような誤動作が発生しやすい帯域において、帯域幅により誤動作の仕方が異なる場合においては、グリッドがオーバーラップしていても構わない。更に、周波数軸に対して対数で表示し、振幅軸に対して真数で表示してもよい。この場合には、信号発生部10は、周波数方向に対しては対数で、振幅方向に対して真数で出力信号を変化させることも望ましい。周波数方向に対数とすることで低い周波数帯域から高い周波数帯域まで大まかな特性を把握することができる。また、振幅方向はICのしきい値電圧となるなど、真数に比例することが多いため、ICの特性にもよるが、多くの場合は真数で構わない。
 単一のICで誤動作が判定できる場合においては、単一の応答マップで誤動作する周波数と振幅とを把握する。ただし、例えばスイッチング電源ICのように外部からの信号によって出力電圧が変わるものなど、誤動作とは言えないものが発生する。測定対象である第1のICについて応答マップを作成し、第1のICに接続される第2のICについて応答マップを作成すればよい。第1のICは、スイッチング電源ICのような単体では誤動作を判定できないICである。第2のICは、誤動作の判定ができるICである。
 図13は、2つの応答マップによる誤動作条件の判定方法の手順を表わすフローチャートである。図14は、第2のICについての応答マップを表わす図である。図15は、2つの応答マップを用いた、誤動作条件の特定方法を説明するための図である。
 ステップS601において、第1のICについての応答マップを作成する。
 ステップS602において、第1のICと接続される第2のICについての応答マップを作成する。
 ステップS603において、第2のICについての応答マップ内の誤動作条件となる周波数(f1)および振幅(amp1)の組み合わせを抽出する。
 ステップS604において、第1のICについての応答マップ内の出力信号のうち、抽出した周波数(f1)および振幅(amp1)の組み合わせを含む出力信号の第1のICについての応答マップ内の周波数および振幅の組み合わせを第1のICの誤動作条件として特定する。図15に示すように、第1のICについての応答マップのグリッドAの出力波形が振幅(amp1)と周波数(f1)とを含むので、グリッドAの周波数f2および振幅amp2が第1のICの誤動作条件として特定される。また、第1のICについての応答マップのグリッドBの出力波形が振幅(amp1)と周波数(f1)とを含むので、グリッドBの周波数f3および振幅amp2が第1のICの誤動作条件として特定される。
 第2のICによって誤動作の判定ができない場合には、第2のICに接続される第3のICによって誤動作を判定する。前述のとおり、この手法は、第1のICの誤動作の有無が判定できない場合にのみ適用されるものである。第1のIC単体で誤動作を判定できるものであれば、このような手法を必ずしも用いる必要はない。ただし、上述のとおり第1のICが誤動作しなくても第2のICが誤動作することはありうるので、IC単体で評価できる場合においても本手法を用いることができる。
 応答マップにおいて、周波数帯域の分割は細かく、例えば1Hz毎などに設定するのが望ましいが、測定時間が膨大であり、現実的な時間で測定することは困難である。そこで、信号発生部10から出力する第1の交流信号および第2の交流信号を少なくとも1kHz以上の帯域幅を有する信号とすることによって測定時間を短縮することができる。CISPR11などの規格試験においては9kHz以上の帯域幅が用いられることが多いが、それよりも狭い帯域幅にすることで誤動作する帯域をより正確にとらえることができるためである。
 1つまたは複数の正弦波を重ね合わせた連続波を信号発生部10から出力することによって測定時間を短縮することができる。この場合においても、応答マップをグリッドに切って、対応する条件のグリッド内に出力信号の波形を書き込めばよい。
 信号発生部10から少なくとも振幅、立ち上がり時間、立ち下がり時間、周期、オン時間、およびDuty比が決まった台形波信号を出力することによって、応答マップを作ることもできる。例えば、電力によって誤動作するICには、広い帯域の信号を同時に注入する必要があるが、このように広い周波数帯域を有する台形波を用いることができる。
 伝導過渡試験(FET/B試験)などによって、インパルス信号に類似した信号に対する応答マップを生成することもできる。この場合には応答マップの各グリッド内に書き込む出力信号は周波数特性でなくても良く、オシロスコープを用いた時間信号、またはリアルタイムスペクトラムアナライザを用いたスペクトログラムであっても良い。判定装置70は、上記の台形波をフーリエ変換して周波数特性を求めても良い。信号発生部10は、台形波の代わりに、中心周波数から帯域幅を有するガウス分布を有する波形を用いることによって広帯域の信号を測定対象に印加してもよい。
 従来は、電子機器に複数のICが含まれている場合に、これらの複数のICの組合せに対して、誤動作条件を評価する必要があった。それゆえ、複数のICの組合せおよび接続関係が変わると、誤動作条件を再評価しなければならなかった。本実施の形態においては、IC毎に応答マップを事前に作っておくことによって、複数のICの組合せおよび接続関係が変わったとしても誤動作条件の再評価が不要となる。各々の応答マップを事前に用意しておくことによって、設計変更が容易な設計初期段階で誤動作の発生の有無を定量的に評価することができる。
 実施の形態2の変形例.
 図16は、実施の形態2の変形例のICのノイズ耐量検出方法の手順を表わすフローチャートである。
 ステップS901において、第1のプローブ40および第2のプローブ41をIC51に近接して配置する。
 ステップS902において、信号発生部10が、IC51の端子番号Pを0、周波数fを初期値f0、振幅Vを初期値V0に設定する。
 ステップS903において、信号発生部10が、周波数がfで、振幅がVで、位相が相違する第1の交流信号および前記第2の交流信号をノイズとして出力する。第1のプローブ40および第2のプローブ41によって、IC51の端子番号PNの端子に第1の交流信号および第2の交流信号を注入する。
 ステップS904において、判定装置70が、IC51の出力信号を検出する。
 ステップS905において、判定装置70が、応答マップにおける周波数f、振幅V、端子番号Pに対応するグリッドに出力信号の波形を書き込む。
 ステップS906において、周波数fが終了値fnである場合には、処理がステップS908に進み、周波数fが終了値fnでない場合には、処理がステップS907に進む。
 ステップS907において、信号発生部10は、周波数fを刻み幅Δfだけ増加させる。
 ステップS908において、振幅Vが終了値Vnである場合には、処理がステップS910に進み、振幅Vが終了値Vnでない場合には、処理がステップS909に進む。
 ステップS909において、信号発生部10は、振幅Vを刻み幅ΔVだけ増加させる。
 ステップS910において、端子番号Pが終了値Pnである場合には、処理が終了し、端子番号Pが終了値Pnでない場合には、処理がステップS911に進む。
 ステップS911において、信号発生部10は、端子番号Pを1だけ増加させる。
 図17は、実施の形態2の変形例の応答マップの例を表わす図である。
 実施の形態2の変形例の応答マップは、ICに注入される交流信号の周波数、ICに注入される交流信号の振幅、およびICの交流信号を注入する端子の組合せにおける、出力信号の波形が書き込まれる。
 実施の形態3.
 本実施の形態は、IC51の出力端子の内部インピーダンスの測定に関する。
 ICおよびICの端子には、それぞれ、内部に回路が形成されている。内部インピーダンスがICの端子間で異なる。たとえば、入力端子の内部インピーダンスが0Ω、すなわち短絡に近い場合には、IC内部の回路に励起電圧が発生しないため出力は小さく、電圧起因で誤動作している回路の場合においては誤動作しにくい。一方、入力端子の内部インピーダンスが例えば1MΩ、すなわち開放に近い場合には、励起電圧が大きくなるため、出力は大きくなる。通常、ICの端子の内部インピーダンスは短絡と開放の中間にある。ICの内部インピーダンスは、抵抗成分のみでなくインダクタンス成分、キャパシタンス成分、およびダイオードなどの非線形成分も有する。このような内部インピーダンスの特性によって外部から印加された信号が、ICの内部に生成する電圧振幅が変化する。
 図18は、実施の形態3におけるICの出力端子の内部インピーダンスの測定方法の手順を表わすフローチャートである。
 ステップS301において、信号発生部10の出力を停止した状態に設定する。
 ステップS302において、動作状態のICにおける出力信号が変化しない、または周期性を持って変化する出力端子POの近傍に電界プローブを配置して、電界プローブによって、出力端子POが生成する電界Eを測定する。
 ステップS303において、電界プローブを配置した箇所と同一の箇所に磁界プローブを配置して、磁界プローブによって、出力端子POが生成する磁界Hを測定する。
 測定された電界と磁界は、電界プローブのアンテナファクタと、磁界プローブのアンテナファクタとを用いて、プローブ位置における電界と磁界とに変換してもよい。特に電界に関しては、近傍領域(具体的にはフレネル領域、または極近傍領域に属し、おおよそ1~3波長程度以下の領域)で用いるため、測定対象との距離が各プローブの校正値と異なる場合には、マイクロストリップ線路などの既知の測定対象に対してアンテナファクタを算出しておくのが望ましい。
 ステップS304において、判定装置70は、電界Eと磁界HとからインピーダンスZを以下の式によって算出する。インピーダンスZをIC51の出力端子POの内部インピーダンスとみなすことができる。例えば、ICの内部インピーダンスが高い場合には、電流が流れないので磁界Hは小さくなり、電圧が上昇するので電界Eは大きくなる。その結果インピーダンスZは大きな値になる。
 Z=E/H・・・(1)
 簡単のためIC1とIC2だけが接続された配線を考えると、IC1の端子に流れる電流と、IC2の端子に流れる電流は等しくなる。しかし、IC1の内部インピーダンスとIC2の内部インピーダンスとが異なる場合にはIC1の端子に印加される電圧とIC2の端子に印加される電圧が異なるため、IC1の端子の近傍の電界分布とIC2の端子の近傍の電界分布とが異なる。すなわち、内部インピーダンスが高い方の励起電圧が高くなるため電界が大きくなり、内部インピーダンスが低い方の励起電圧が低くなるため電界が小さくなる。この情報と磁界プローブによって測定した磁界から、各ICの端子の内部インピーダンスを予測することができる。
 更に、IC間の配線に接続されているダンピング抵抗などの部品のインピーダンスの周波数特性が既知、または測定できる場合においては、回路シミュレータなどを用いて、それらのインピーダンス特性、分圧および分流を考慮して、測定対象のインピーダンスを決めることもできる。また、既知のインピーダンスを配線に意図的に実装して変化率からICの内部インピーダンスを算出しても構わない。
 IC端子の配線を介しての接続先はどのようなものでも構わないが、インピーダンスの周波数特性を測定できる受動回路が望ましい。具体的にはICに繋がる先の回路定数が分かっている場合には等価回路によって、内部インピーダンスを未知数として、電流と電圧の連立方程式が成立する。この連立方程式を優決定方程式として最小二乗法を用いて解くこと、すなわち一般逆行列に従った解法によって内部インピーダンスの周波数特性を推定することができる。一方、ICに繋がる先の回路定数が未知の場合には、上記の電界と磁界を求める方法を再度実施し、各ICの内部インピーダンスを未知数とすると、各測定結果の電界と磁界から4つの連立方程式が成立する。この連立方程式を優決定方程式として最小二乗法を用いて解くことによってそれぞれの内部インピーダンスを推定することができる。また、測定値は周波数データであり、R、L、CでICの内部が構成されているのであれば、等価回路モデルを用いて理論解を算出しても良い。なお、周波数特性は応答マップの周波数ごとのグリッドに合うように出力する。ただし、グリッドが大きい場合には、周波数特性として別の行列としてデータを保存しても構わない。
 なお、上記では電界プローブと磁界プローブとを用いて、ICの内部インピーダンスを測定する方法を述べたが、これに限定されるものではない。プローブの特性を補正すれば電流または電圧に比例した値を取得できるプローブ、光電界プローブ、または電流プローブなどを代わりに用いても構わない。
 図19は、内部インピーダンスの記載を含む応答マップの例を表わす図である。図19に示すように、各周波数において内部インピーダンスを測定し、応答マップに記載することによって、どのようなICを接続する場合においても精度良くICの各端子に励起される信号振幅を算出することができる。この場合において、出力端子だけでなくICの全ての端子において内部インピーダンスの周波数特性を含む応答マップを作成することが望ましい。
 たとえば、このような応答マップは、以下のような場合に用いることができる。
 第1のICの端子の内部インピーダンスと、第1のICの端子に接続する第2のICの端子の内部インピーダンスとをそれぞれ応答マップから抽出する。第1のICの端子の内部インピーダンスと第2のICの内部インピーダンスとを用いて、第2のICの誤動作電圧が励起された時の第1のICの入力信号を逆推定することができる。これによって、第1のICに対するノイズの耐量を推定することができる。内部インピーダンスおよび出力波形に周波数特性を含むため、第1のICの入力信号の逆推定の計算には、回路シミュレータおよび一般的な最適化手法を用いることができる。
 実施の形態4.
 本実施の形態は、IC51の入力端子の内部インピーダンスの測定に関する。
 図20は、実施の形態4における内部インピーダンスの測定方法の手順を表わすフローチャートである。
 ステップS401において、信号発生部10の出力を停止した状態に設定する。
 ステップS402において、動作状態のICの入力端子PIの近傍に電界プローブを配置して、電界プローブによって、入力端子PIに印加されている電圧の振幅V0を非接触で測定する。
 ステップS403において、信号発生部10は、測定された電圧の振幅V0よりも小さい振幅V1を有する既知の擬似乱数の信号、または変調信号を出力する。たとえば、第1のプローブ40を用いて、既知の擬似乱数の信号または変調信号をIC51の入力端子PIに注入する。入力端子PIに入力される信号の振幅V0と同じ振幅のノイズを入力端子PIに注入すれば、IC51が誤動作することは明らかであるので、ノイズとして与える信号の振幅V1をV0よりも小さくする。これによって、IC51がノイズによって誤動作することを避けることができる。
 ステップS404において、IC51の入力端子PIの近傍に電界プローブを配置して、電界プローブによって、入力端子PIが生成する電界Eを非接触で測定する。
 電界プローブの信号を測定する測定器はオシロスコープ、またはスペクトラムアナライザなどが望ましい。必要に応じてプリアンプなどで信号を増幅すること、またはアッテネータで信号を減衰させてもよい。測定対象と電界プローブとの距離を調整して測定器の測定条件を満たす測定を行うものとする。
 ステップS405において、電界プローブを配置した箇所と同一の箇所に磁界プローブを配置して、磁界プローブによって、入力端子PIが生成する磁界Hを非接触で測定する。
 測定された電界と磁界は、電界プローブのアンテナファクタと、磁界プローブのアンテナファクタとを用いて、プローブ位置における電界と磁界とに補正してもよい。特に電界に関しては、近傍領域(具体的にはフレネル領域、または極近傍領域に属し、おおよそ1~3波長程度以下の領域)で用いるため、測定対象との距離が各プローブの校正値と異なる場合には、マイクロストリップ線路などの既知の測定対象に対してアンテナファクタを算出しておくのが望ましい。判定装置70は、測定された電界Eから電圧Vを求め、測定された磁界Hから電流Iを求めてもよい。
 ステップS406において、判定装置70は、電界Eと磁界HとからインピーダンスZ(=E/H)を算出する。インピーダンスZをICの入力端子PIの内部インピーダンスとみなすことができる。判定装置70は、電界Eに基づく電圧Vと、磁界Hに基づく電流IとからインピーダンスZ(=V/I)を算出してもよい。
 更に、上記のIC51の端子に配線を通して接続される別のICに対しても上記の方法でインピーダンスZを求め、回路計算から所望のICのインピーダンスを求めても良い。IC51の端子に接続される抵抗、コンデンサ、コイル、ダイオードなどの受動回路部品に対しても受動回路部品の入出力端において、上記の方法でインピーダンスZを求め、回路計算によって所望のICのインピーダンスを推定しても構わない。
 回路計算では、上記のICまたは受動回路のインピーダンスを未知数として、上記の測定結果から電圧または電流の式として解き、測定条件が上記の未知数以上となれば優決定方程式として、上記の未知数を算出することができる。
 上記の方法は、信号を受信しているか、または出力しているICの端子に対しては有効な方法であるが、信号を受信していない端子および出力していない端子を測定することができない。そのような場合においては、外部から信号を印加してIC51の内部のインピーダンスを推定する方法を用いる。ただし、インピーダンスを測定するためにIC51の端子の電圧よりも大きな電圧を外部から入力するとIC51自体が誤動作するため、IC51の内部のインピーダンスを測定することができない。一方でIC51の出力信号が大きいと外部から印加した信号が埋もれてしまうため、インピーダンスを正確に測定することができない。本実施の形態では、無線通信で用いられるように変調信号を用いること、あるいは既知の擬似乱数(M系列信号などの受信機側が信号発生器側で生成した信号が分かっている信号)を生成することによって送信信号(すなわち、信号発生部10の出力信号)と受信信号(すなわち、判定装置70によって検出された電界Eまたは磁界H)との相関から内部のインピーダンスを推定することもできる。
 なお、実施の形態2で述べた応答マップのグリッドに合わせるように帯域幅を有する帯域ごとに各周波数のインピーダンスを求めて、その結果を応答マップに書き込むこととしてもよい。
 実施の形態5.
 本実施の形態は、IC51の温度変化に注目して、誤動作を確認する方法に関する。
 IC51に外部からノイズを印加して誤動作が発生する際には、IC51の内部では半導体素子の電圧が閾値を超えて誤動作が発生する。例えば、スイッチング電源の電圧をモニタするためのフィードバック配線にノイズが混入して、出力電圧が設計した値から変化する、あるいは出力電圧にノイズが重畳することがある。その結果、機器が停止したり、停止していた機器が駆動したりする。機器が停止した場合には、温度が低下し、機器が駆動した場合は、発熱するなど、必ずIC51に温度変化が生じる。電源のフィードバック配線に関しては、印加したノイズの信号によって、出力電圧の低下が検出された場合に、Duty比を増加させることによって、出力電圧を増加させる処理が行われる。出力電圧の増加が検出された場合に、Duty比を減少させることによって、出力電圧が低下する。出力電圧が変化する場合において、出力エネルギーも変化するため消費電力が変化する。そのため、測定対象の温度を観測することによって、測定対象に測定機器を近接させず、測定系に全く影響を与えることなく誤動作を観測することができる。
 図21は、実施の形態5のICのノイズ耐量検出装置の構成を表わす図である。
 実施の形態5のICのノイズ耐量検出装置は、温度検出器91を備える。
 温度検出器91は、IC51、またはIC51に接続されるIC51とは異なるICの温度変化を検出する。温度検出器91として、赤外線カメラまたは非接触温度計を用いることができる。これにより、リアルタイムで温度を遠方から測定することができる。特に温度変化を見る必要があるため、風のない、温度が一定の環境で、測定対象が熱的に安定になるまで待ってから測定を開始するのが望ましい。そのような測定対象および測定環境において、信号発生部10によって外部から印加する第1の交流信号および第2の交流信号の振幅および周波数を変化させて、上記の赤外線カメラまたは非接触温度計によって温度を観測する。
 判定装置70は、IC51、またはIC51に接続されるIC51とは異なるICの温度変化に基づいて、IC51が誤動作しているか否かを判定する。IC51によって温度変化は異なるが、判定装置70は、たとえば5度以上のICの温度変化が検出された場合には、IC51が誤動作していると判断すれば良い。IC51が破壊する直前はIC51が急激に高温になる傾向があるため、IC51の温度変化を検出したときには、信号発生部10が出力を停止することによって、IC51の破壊を未然に防ぐこともできる。
 実施の形態5の変形例1.
 図22は、実施の形態5の変形例のICのノイズ耐量検出装置の構成を表わす図である。
 実施の形態5の変形例のICのノイズ耐量検出装置は、温度検出器91の代わりに、アンテナ92を備える。
 アンテナ92は、IC51から放射される電磁波を検出する。アンテナ92は、IC51の遠方に配置される。
 判定装置70は、第1の交流信号および第2の交流信号の周波数帯以外の周波数帯におけるアンテナ92における受信電圧の変化に基づいて、IC51が誤動作しているか否かを判定する。
 遠方とは、例えば1m程度の距離である。あるいは、遠方は、周波数に対して1波長以上遠い距離としてもよい。例えば100MHzの信号を測定するには、IC51から3m程度離れた位置にアンテナ92を設置するのがよい。ただし、そのように距離を離すことによって、S/N比が減少し、IC51の変化による電波環境の変化を観測しにくくなる。そのような場合には、アンテナ92として、パラボラアンテナまたはフェイズドアレーアンテナなど高い指向性を有するアンテナを用いても良い。また、IC51の状態の変化を捕えるだけであれば、相対変化だけで良いため、周波数に対して1波長以下の距離にアンテナ92を配置してもよい。また、ラジオまたはテレビ、携帯電話などの外乱ノイズが入らないシールドルームまたはシールドテント、電波暗室内で行うことも望ましい。
 実施の形態6.
 図23は、実施の形態6に係るICのノイズ耐量検出装置の構成を表わす図である。
 実施の形態6のICのノイズ耐量検出装置の信号発生部10は、信号生成器11、同軸ケーブル20、およびバラン30を含む。
 信号生成器11とバラン30とは、同軸ケーブル20によって接続される。
 信号生成器11は、電磁ノイズである試験信号を生成する。信号生成器11は、例えばシグナルジェネレータまたはファンクションジェネレータなどである。
 バラン30は、信号生成器11によって生成された試験信号から、振幅が等しく、かつ位相が180度相違する第1の交流信号および第2の交流信号を生成する。
 バラン30は、信号生成器11によって生成された試験信号を差動信号(ディファレンシャルモード、またはノーマルモードとも呼ばれる)、または同相信号(コモンモードとも呼ばれる)に分離する。本実施の形態で使用するバラン30は、180度ハイブリッドカプラとも呼ばれるカプラである。バラン30によって、信号生成器11によって生成された1つの試験信号から、振幅が等しく位相が180度相違する2つの交流信号を作り出すことができる。バラン30に入力された電力が半分ずつ2つのポートから出力される。よって、挿入損失を考慮すると電力は、それぞれ1/2以下になる。バラン30は、アナログ回路で構成されているため、周波数およびバラン30の内部の回路にも依存するが、差動信号に対して-30dB程度の同相信号が生成される。
 バラン30は、ダイポールアンテナを作る際に使われる一般的なものである。ダイポールアンテナは、送信アンテナとしても使われるため、本実施の形態において信号印加に求められる大きな電流、大きな電圧、または大きな電力を入力できるものは多く存在する。さらに、信号生成器11がバンドパスフィルタなどを有し、特定の帯域だけを出力できるようにしてもよい。
 バラン30は、1つの入力ポートと、2つの出力ポートP1、P2とを有する。バラン30の出力ポートP1は第1の同軸ケーブル21を介して第1のプローブ40に接続される。バラン30の出力ポートP2は第2の同軸ケーブル22を介して第2のプローブ41に接続される。これによって、信号生成器11から出力された信号を第1のプローブ40と第2のプローブ41との間に生じる差動信号として出力することができる。
 信号発生部10、第1のプローブ40、および第2のプローブ41によって、プリント基板50上のIC51に対して差動信号を注入する差動信号注入手段が構成される。差動信号を作るためには、バラン30から第1のプローブ40までの電気長と、バラン30から第2のプローブ41までの電気長とを等しくする必要がある。第1のプローブ40と第2のプローブ41との間に電位差が発生することによって、ノイズ電流をIC51およびプリント基板50に流すことができる。
 バラン30は、差動信号を生成するために用いられるが、さらに、信号生成器11を保護すること、測定対象に影響を与えにくくする効果もある。信号生成器11を保護することに関しては、測定対象によっては測定対象のノイズが大きく、プローブ40、41を介して信号生成器11にノイズが重畳してしまう恐れがある。バラン30を用いることによって、2つのプローブ40、41の差動(ノーマル)モード成分のみが同軸ケーブル21、22を介して信号生成器11に混入する。バラン30に設けられた終端抵抗(一般的に用いられるのは50Ω抵抗)、バラン30の内部の損失、またはプローブ40、41への反射によって、同相成分(コモンモード成分)は消費されて、信号生成器11には混入しない。このような理由で、信号生成器11を保護することができる。一方、測定系に影響を与えないのも同様の理由であり、信号生成器11にプリント基板50の信号が伝搬してしまうと、正常な動作時とは異なる信号の伝搬経路が形成される。バラン30があることによって、そのような伝搬経路を作りにくくすることができるので、測定系への影響を小さくすることができる。
 <差動信号>
 本実施の形態における差動信号は、第1のプローブ40と第2のプローブ41に入力する2つの交流信号の位相が180度相違する。例えば、ある時刻の、ある周波数の電圧を見たときに第1のプローブ40に印加される電圧が+1Vで、第2のプローブ41に印加される電圧が-1Vとなる。更に望ましくは、第1のプローブ40から出力される電磁界と第2のプローブ41から出力される電磁界とが同振幅で、かつ逆位相となるようにしてもよい。このような場合には、第1のプローブ40から第2のプローブ41に向かって電気力線ができるため電位差が発生する。その結果、第1のプローブ40と第2のプローブ41との間に電流が流れる。また、第1のプローブ40と第2のプローブ41との間に配線、またはICなどの導体がある場合においては、導体経由で電気力線が発生することによって、第1のプローブ40と第2のプローブ41との間の電位差を導体に伝えることができる。
 本実施の形態では、差動信号によって、第1のプローブ40と第2のプローブ41との間に最大の電位差を作ることができるため、特に望ましい。
 第1の同軸ケーブル21の長さと第2の同軸ケーブル22の長さとが異なるなどが原因で、信号発生部10から第1のプローブ40までの電気長と、信号発生部10から第2のプローブ41までの電気長とが等しくない場合には、第1の交流信号の位相と第2の交流信号の位相との差が180度ではない。このような場合には、コモンモード信号が発生する。
 異なる種類の第1の同軸ケーブル21と第2の同軸ケーブル22とを用いて、1GHz以上の周波数を測定する場合には、第1の同軸ケーブル21の電気長と第2の同軸ケーブル22の電気長とを等しくする必要がある。電気長の測定にはネットワークアナライザを用いてS11(反射特性)を測定すること、またはTDR(Time Domain Reflectometry)機能を有するオシロスコープなどによって時間領域反射率を測定し、電気長を把握し、発生するコモンモードを予測してから測定するのが望ましい。
 <同相信号>
 同相信号は、従来において、1つのプローブを用いてICに注入するときに用いられる信号である。例えば、図4のような同軸プローブを用いた場合には、同軸の芯線44から出力された信号はICに印加される。印加された信号は、同軸の外導体49に寄生容量(浮遊容量とも呼ばれる)を介して戻ってくる。さらに、測定対象または信号発生部10が同じ電源系統を用いている場合において、電源線経由で信号が伝送する。さらに、その他の寄生容量で構成される信号の伝搬経路が存在する。ただし、寄生容量は、プローブおよび測定器の配置などの影響を受けやすく、測定再現性が低いという問題がある。電源線経由の場合、測定環境が系統電源の引き回しで変わるため、測定環境および電源線に接続された他の機器の影響を受けやすく、測定再現性が得にくい。
 本実施の形態では特に理由がなければ差動信号のみを発生させるのが望ましく、同相信号を発生させないことによって、測定環境および測定系の配置に依存しない測定をすることができる。
 なお、一方の配線にアッテネータ、アンプ、または位相器を用いて、振幅または位相を変化させても構わない。更に、3相交流のような場合には、位相が120度相違する第1の交流信号および第2の交流信号をそれぞれ第1のプローブ40と第2のプローブ41とに印加することで、ノイズに対する誤動作耐性を測定することができる。
 <制御装置>
 ICのノイズ耐量検出装置は、第1のプローブ40および第2のプローブ41の走査を制御するための可動部および制御部を備えてもよい。
 これにより、測定対象と第1のプローブ40および第2のプローブ41との距離を常に一定に保つことができる。距離が一定に保たれることによって、第1のプローブ40および第2のプローブ41から測定対象のIC51に混入させることができるノイズを変化しないようにすることができる。
 可動部は、第1のプローブ40および第2のプローブ41をプリント基板50のX(横)、Y(縦)、Z(高さ)、およびθ(指向性)方向に移動させる。制御部は、可動部のXYZθ方向の走査を制御する。可動部および制御部によって、プリント基板50上のIC51の測定する端子の位置を移動させる走査手段が構成される。走査手段は、サーボモータなどで制御可能なロボットであってもよい。この制御部は、さらに、信号生成器11が出力する交流信号の周波数を制御したり、誤動作の確認処理を行なってもよい。制御部は、誤動作が発生して自動復帰しない機器に関しては、機器を再起動させてもよい。
 実施の形態6の変形例1.
 図24は、実施の形態6の変形例1のICのノイズ耐量検出装置の構成を表わす図である。このICのノイズ耐量検出装置の信号発生部10は、信号生成器11とバラン30との間に配置されるアンプ31を備える。アンプ31とバラン30とは、同軸ケーブル23によって接続される。
 アンプ31は、信号生成器11によって生成された試験信号を増幅する。
 IC51に注入される電磁ノイズとしての試験信号のレベルが弱く、信号生成器11の出力電圧および周波数を変化させても、IC51が誤動作しない場合に、アンプ31を用いるのが望ましい。
 アンプ31のゲインが固定されている場合には、信号生成器11とアンプ31の間にアッテネータを配置してもよい。アンプ31の出力電力には上限があり、上限近くにおいては出力が歪んでしまう可能性がある。よって、アンプ31の出力波形を別途、オシロスコープ、スペクトラムアナライザ、またはVNA(Vector Network Analyzer)などの測定器によって測定するのが望ましい。アンプ31の出力電圧が大きい場合、またはアンプ31の出力電流が大きい場合においては、アンプ31とバラン30との間の同軸ケーブル23として、大電圧用の同軸ケーブルなどを用いてもよい。
 実施の形態6の変形例2.
 図25は、実施の形態6の変形例2のICのノイズ耐量検出装置の構成を表わす図である。このICのノイズ耐量検出装置の信号発生部10は、第1のアンプ31と、第2のアンプ32と、同軸ケーブル24と、同軸ケーブル25とを備える。
 第1のアンプ31は、バラン30と、第1の同軸ケーブル21の一端との間に配置される。第1のアンプ31は、バラン30から出力された第1の交流信号を増幅する。第2のアンプ32は、バラン30と、第2の同軸ケーブル22の一端との間に配置される。第2のアンプ32は、バラン30から出力された第2の交流信号を増幅する。
 バラン30と、第1のアンプ31とは、同軸ケーブル24によって接続される。バラン30と、第2のアンプ32とは、同軸ケーブル25によって接続される。
 第1のアンプ31および第2のアンプ32は、バラン30によって、電力が半分となった信号を増幅するため、第1のアンプ31および第2のアンプ32の出力電力の許容値、バラン30の耐圧および電流許容量が厳しくならない。しかしながら、第1のアンプ31の出力信号の位相と第2のアンプ32の出力信号の位相との差を調整する必要があるため、第1のアンプ31および第2のアンプ32のキャリブレーションが必要となる。
 実施の形態6の変形例3.
 図26は、実施の形態6の変形例3のICのノイズ耐量検出装置の構成を表わす図である。このICのノイズ耐量検出装置の信号発生部10は、アンプ31とバラン30との間に配置される方向性結合器34を備える。方向性結合器34とバラン30とは、同軸ケーブル26によって接続される。
 方向性結合器34を用いることによって、アンプ31および信号生成器11にノイズが流れ込むのを抑制することができる。方向性結合器34を設けることによって、測定対象であるプリント基板50、およびプリント基板50上のIC51にとって測定器側は高いインピーダンスに見える。その結果、測定系に影響を与えずにICのノイズ耐量の測定が可能となる。方向性結合器34を設けることによって、アンプ31に強い信号が注入された場合にも、アンプ31の出力の歪み、およびアンプ31の破損を防止することができる。アンプ31とバラン30との間に方向性結合34を配置する以外にも、バラン30と第1のプローブ40、及びバラン30と第2のプローブ41との各々の間に方向性結合器34を配置しても同様の効果を得ることができる。
 伝送線路上を伝搬する信号の反射波が大きい場合、すなわち負荷のVSWRが高い場合、あるいはリターン・ロスが小さい場合には、進行波と反射波との合成波を測定することになる。このような場合に、方向性結合器34を用いることで、進行波電力のみに対応する信号を取り出し、あるいは進行波電力と反射波電力のそれぞれに対応する信号を別々に取り出すことができる。よって、反射波がある状態でも電力の測定を確実に行なうことができる。
 実施の形態7.
 図27は、実施の形態7のICのノイズ耐量検出装置の一部を示す図である。
 実施の形態7のICのノイズ耐量検出装置が、上述の実施形態のICのノイズ耐量検出装置と相違する点は、第1のプローブ40が接触型のプローブである点である。
 第2のプローブ41は、実施の形態1と同様に、IC51に非接触で配置される。
 第1のプローブ40は、同軸プローブである。第1のプローブ40の同軸の芯線44がIC51のグランド端子53に接触して配置される。
 従来では、プローブの外導体または基準電位をIC51のグランド端子に接続していたため、インピーダンスが低いグランド経由で信号が伝搬するという問題がある。
 本実施の形態においては、第1のプローブ40の同軸の芯線44がグランド端子53に接触するため、グランド端子53は、インピーダンスが低い外導体と絶縁される。その結果、インピーダンスが低いグランド経由で信号が伝搬するのを防止できる。また、バラン30および信号生成器11の内部抵抗のため、信号が芯線44経由で流れにくい。そのため、第1のプローブの同軸の芯線44をIC51のグランド端子に接触させても測定対象の動作への影響を小さくすることができる。
 第1のプローブ40をグランド端子53に接触させることによって、第1のプローブ40をIC51に対して非接触に配置するときと比べて、IC51にノイズを効率よく注入することができる。また、差動信号を伝送する2つの配線の一方をIC51のグランド端子に接続し、差動信号を伝送する2つの配線の他方をIC51に接続しないようにすることによって構成されるフィードバック配線などにノイズを注入することができる。
 図28は、プリント基板50にノイズを印加した場合の測定結果を示す図である。プリント基板50は、FR-4(Flame Retardant Type 4)基板である。プリント基板50の特性インピーダンスは50Ωであり、誘電体は0.8mmである。
 従来の結果は、マイクロストリップ線路に対して非接触で60μmの距離に同軸プローブの芯線を配置した場合における同軸プローブとマイクロストリップ線路の結合量を示す。実施の形態7の結果は、接触型プローブをマイクロストリップ線路のGND面に接続するとともに、マイクロストリップ線路に対して非接触で60μmの距離に同軸プローブの芯線を配置した場合における差動信号入力に対するマイクロストリップ線路の結合量を示す。図27に示すように、100kHz~3MHzにおいて、実施の形態7では、10dB~40dB程度、ノイズ注入量が増加している。3MHz~200MHzにおいては、実施の形態7では、約5dB~10dB程度ノイズ注入量が増加している。
 図29は、非接触の同軸プローブ(電界プローブ)を用いた場合の測定結果と、磁界プローブを用いた場合の測定結果とを示す図である。磁界プローブの直径は10mmである。磁界プローブの磁束がマイクロストリップ線路に最も励起する向きに磁界プローブの向きを定めた。図28に示すように、10MHzまでにおいて、磁界プローブを用いた場合に、差動信号とマイクロストリップ線路との結合量は、約-60dBである。磁界プローブを用いた場合には、同軸プローブを用いた場合に比べて10dB程度結合量を大きくすることができる。
 図30は、電源IC51にノイズ印加した場合の、IC51の正常出力(1.35V)と異常出力の測定結果を示す図である。電源IC51の駆動周波数が650kHzである。実施の形態7による方法によって、電源IC51のイネーブル信号に650kHzで10Vの信号を注入した。図30に示す波形のように、異常時は、IC51の出力が2.25Vまたは0.6Vに変化する。
 図31は、電源ICのフィードバック端子に10Vの信号を注入したときの結果を示す図である。電源ICの駆動周波数が650kHzである。本実施の形態による方法によって、電源ICのフィードバック端子に650Hzで10Vの信号を注入した。
 図31に示すように、注入した信号とは異なる周波数の信号も発生している。特に10kHz~100kHzにおいて20dB程度のノイズが増加していえる。このように、誤動作に至る直前の状態においては、意図しないノイズが発生していることがある。このようなノイズによって、電源を供給するICが誤動作する恐れがある。本実施の形態を用いることで、このような問題を低減することができる。
 実施の形態7の変形例.
 図32は、実施の形態7の変形例1の第1のプローブ40を表わす図である。
 IC51のグランド端子と接触する同軸プローブである第1のプローブ40は、同軸の芯線44の先端に取り付けられたコンデンサなどの整合回路Maを備える。コンデンサは、積層セラミックコンデンサが望ましい。
 整合回路Maによって、第1のプローブ40と信号生成器11とのインピーダンス整合を取ることができる。50Ω系でしか使えないファンクションジェネレータなどの信号生成器11を用いた場合でも、反射波が発生しないようにすることができる。
 さらに、出力信号の振幅が大きい測定対象の場合には、測定対象の直流成分および低周波成分が第1のプローブ40に混入しにくくなるため、信号生成器11が過電圧によって誤動作または破壊するのを防止することができる。
 第1のプローブ40の同軸の芯線44の先端と測定対象との間に整合回路Maを直列に配置する方法だけでなく、第1のプローブ40の同軸の芯線44の先端と外導体49との間に整合回路Maを並列に配置する方法を用いてもよい。
 また、信号生成器11は、第1のプローブ40側のインピーダンスによらずに、1MHz以上の信号を出力可能なバイポーラ電源を用いるのが望ましい.ただし、バイポーラ電源の出力の周波数は、数50MHz程度が上限であるため、それより高い周波数においては、上記のファンクションジェネレータまたはパワーアンプなどを用いることができる。
 実施の形態8.
 図33は、実施の形態8のICのノイズ耐量検出装置の一部の構成を表わす図である。
 実施の形態8のICのノイズ耐量検出装置が、上述の実施形態のICのノイズ耐量検出装置と相違する点は、第1のプローブ40および第2のプローブ41が接触型のプローブである点である。
 第1のプローブ40および第2のプローブ41は、それぞれ同軸プローブである。第1のプローブ40の同軸の芯線44がIC51の第1端子に接触して配置される。第2のプローブ41の同軸の芯線45がIC51の第2端子に接触して配置される。
 実施の形態8において、信号発生部10の基準電位と、測定対象となるプリント基板50またはIC51の基準電位とは、直接接続されないため、第1のプローブ40および第2のプローブ41を接触させることによって、測定対象の誤動作を低減することができる。
 実施の形態8のノイズ耐量検出装置は、差動信号を測定する場合において、特に効果を発揮する。すなわち、差動信号を伝送する配線に、第1のプローブ40の同軸の芯線44と第2のプローブ41の同軸の芯線45とを接触させることによって、差動信号をIC51に注入して、IC51の誤動作を判定することができる。差動信号は接触型のプローブの影響を受けにくいという特徴を有する。2つの接触型プローブ(第1のプローブ40および第2のプローブ41)の形状が等しいのが望ましく、信号発生部10から各接触プローブまでの電気長が等しいことが望ましい。
 図34は、差動配線にノイズを印加した場合における誤動作条件の測定結果を示す図である。使用した差動配線は、イーサネット(登録商標)ケーブルに繋がるPHYチップの差動配線である。図34に示すように、特定の周波数帯(20MHz~60MHz)において、印加レベルが小さくても誤動作することがわかる。
 なお、第1のプローブ40の同軸の芯線44がIC51の第1端子に接触して配置される代わりに、IC51が実装されたプリント基板50上の配線に接触して配置されるものとしてもよい。第2のプローブ41の同軸の芯線45がIC51の第2端子に接触して配置される代わりに、IC51が実装されたプリント基板50上の配線に接触して配置されるものとしてもよい。
 実施の形態8の変形例.
 実施の形態7の変形例と同様に、第1のプローブ40は、同軸の芯線44の先端に取り付けられたコンデンサなどの整合回路Maを備える。第2のプローブ41は、同軸の芯線44の先端に取り付けられたコンデンサなどの整合回路Maを備えるものとしてもよい。
 実施の形態9.
 図35は、実施の形態9のICのノイズ耐量検出装置の一部の構成を表わす図である。
 実施の形態9のICのノイズ耐量検出装置が、上述の実施形態のICのノイズ耐量検出装置と相違する点は、以下である。
 実施の形態9において、第1のプローブ40および第2のプローブ41は、それぞれ同軸プローブである。実施の形態9のICのノイズ耐量検出装置は、第1のプローブ40の同軸の外導体と、第2のプローブ41の同軸の外導体とを接続する接続ケーブル80を備える。
 第1の同軸ケーブル21および第2の同軸ケーブル22が、第1の交流信号および第2の交流信号の波長に対して長い場合には、第1の同軸ケーブル21および第2の同軸ケーブル22の先端のインピーダンスが変化することよって、外導体に定在波が発生する。その結果、周波数によっては正しく測定できない場合がある。ここで、第1の同軸ケーブル21および第2の同軸ケーブル22が、第1の交流信号および第2の交流信号の波長に対して長いとは、約1/10波長以上長いこととを意味する。第1の交流信号および第2の交流信号の周波数が300MHzの場合には、波長が1mである。プリント基板50の誘電体による波長短縮により波長が0.5m程度となるので、1/10波長は、約5cmとなる。
 同軸ケーブル21、22が波長に対して短い場合には、信号生成器11およびバラン30を通じて、外導体は同電位となるので、外導体に定在波が発生しない。同軸ケーブル21、22が波長よりも1/10波長以上長いと、定在波の影響が大きくなる。そのような場合においては、外導体を第1のプローブ40および第2のプローブ41の直近で接続するための接続ケーブル80を設けることによって、同軸ケーブル21、22の影響を低減することができる。また、周波数によっては接続ケーブル80自体の残留インダクタンスが影響するため、接続ケーブル80は太く、短いことが望ましい。さらには、接続ケーブル80のように点接続でなく、外導体間をはんだ付けすることによって、より高い周波数まで、定在波を発生させることなく測定が可能となるようにしてもよい。
 実施の形態10.
 図36は、実施の形態10のICのノイズ耐量検出装置の構成を表わす図である。
 ICのノイズ耐量検出装置は、信号発生部10と、第1のプローブ40と、第2のプローブ41a、41bと、判定装置70と、第1の同軸ケーブル21と、第2の同軸ケーブル22a、22bとを備える。
 信号発生部10は、異なる位相の第1の交流信号および第2の交流信号をノイズとして出力する。第1の交流信号および第2の交流信号は、差動信号とすることができる。
 第1の同軸ケーブル21は、第1の交流信号を伝送する。
 第2の同軸ケーブル22a、22bは、第2の交流信号を伝送する。
 第1のプローブ40は、第1の同軸ケーブル21と接続される。第1のプローブ40は、プリント基板50上のIC51に近接して配置され、第1の交流信号をIC51に注入する。第1のプローブ40は、プリント基板50上のIC51に非接触で配置されるものとしてもよい。
 第2のプローブ41aは、第2の同軸ケーブル22aと接続される。第2のプローブ41aは、プリント基板50上のICに近接して配置され、第2の交流信号をIC51に注入する。第2のプローブ41bは、第2の同軸ケーブル22bと接続される。第2のプローブ41bは、プリント基板50上のICに近接して配置され、第2の交流信号をIC51に注入する。第2のプローブ41a、41bは、プリント基板50上のIC51に非接触で配置されるものとしてもよい。
 判定装置70は、第1の交流信号および第2の交流信号の注入後のIC51の状態に基づいて、IC51が誤動作しているか否かを判定する。たとえば、判定装置70は、IC51の出力信号に基づいて、IC51が誤動作しているか否かを判定するものとしてもよい。
 信号発生部10は、信号生成器11と、バラン30と、アンプ31と、パワースプリッタ33とを含む。なお、プローブの特性インピーダンスは必ずしも50Ωでないため、パワースプリッタ33はパワーディバイダやバランなどの高周波の信号または電力を分配する分配器であればどのようなものを用いても構わない。信号生成器11は、電磁ノイズである試験信号を生成する。
 バラン30は、信号生成器11によって生成された試験信号から、振幅が等しく、かつ位相が180度相違する第1の交流信号および第2の交流信号を生成する。バラン30の第1の交流信号を出力するポートは、第1の同軸ケーブル21と接続される。
 アンプ31は、第2の交流信号を増幅する。
 パワースプリッタ33は、アンプ31の出力と接続される。パワースプリッタ33は、アンプ31の出力を分岐する。
 パワースプリッタ33の2つの出力は、第2の同軸ケーブル22aおよび22bと接続される。
 本実施の形態によれば、ICの複数点に同時にノイズを注入することができる。例えばオペアンプの信号と電源とに同時にノイズを注入することができる。
 信号線がノイズに強く、電源線がノイズに弱い場合においては、信号線近傍に配置する第1のプローブ40または第2のプローブ41a、41bの直前にアンプを配置してもよい。さらに、第1のプローブ40、第2のプローブ41a、41bは、接触型プローブであってもよい。例えばIC51の内部の回路がコンパレータを含むことが分かっている場合に、GNDと差動信号を伝送する配線に接触型プローブを取り付け、電源には非接触プローブを取り付けるなどの方法を取っても構わない。
 第1のプローブ40および第2のプローブ41a、41bは、電流プローブ、またはロゴスキーコイルなどでもよい。すべてのプローブをIC51またはプリント基板50に近接させる必要はない。プリント基板50に接続されるコネクタにノイズを注入してもよい。例えば、電流容量を確保するためにIC51が同電位の複数の電源端子が備える場合がある。そのような場合には、第2のプローブ41aをIC51の1つの電源端子に近接して配置し、第2のプローブ41bをIC51の別の電源端子に近接して配置し、第1のプローブ40をIC51のグランド端子に近接して配置することとしてもよい。これによって、複数の電源端子に信号を同時に注入することができ、IC51にノイズを効率的に注入することができる。
 実施の形態11.
 周波数、振幅、ICの端子の組み合わせ等、測定パラメータが多いため、測定時間の短縮が必要である。測定時間の大部分は、プローブを走査する時間である。上記の実施形態では、ノイズ印加用の2つのプローブと、1つの信号検出用のプローブを用いることになるため、プローブ同士が絡み合い、自動測定できなくなることがある。
 本実施の形態では、ノイズを印加するプローブと、出力信号を検出するプローブとを測定対象であるICの近傍に予め配置しておき、印加するプローブおよび検出するプローブを機械的または電気的に切り替えることによって、上記の問題を解決する。
 図37は、実施の形態11のICのノイズ耐量検出装置の構成を表わす図である。
 ICのノイズ耐量検出装置は、信号発生部10と、複数の第1の同軸ケーブル21と、複数の第2の同軸ケーブル22と、複数の第3の同軸ケーブル96と、複数の第1のプローブ40と、複数の第2のプローブ41と、複数の第3のプローブ61と、第1のスイッチ93と、第2のスイッチ94と、第3のスイッチ95とを備える。
 信号発生部10は、異なる位相の第1の交流信号および第2の交流信号をノイズとして出力する。
 第1の同軸ケーブル21は、第1の交流信号を伝送する。
 第2の同軸ケーブル22は、第2の交流信号を伝送する。
 第1のプローブ40は、対応する第1の同軸ケーブル21と接続される。第1のプローブ40は、プリント基板50上のIC51に近接して配置され、第1の交流信号をIC51に注入する。
 第2のプローブ41は、対応する第2の同軸ケーブル22と接続される。第2のプローブ41は、プリント基板50上のIC51に近接して配置され、第2の交流信号をIC51に注入する。
 第3のプローブ61は、プリント基板50上のIC51に近接して配置されて、IC51の出力信号を計測する。
 第3の同軸ケーブル96は、対応する第3のプローブ61と接続され、IC51の出力信号を伝送する。
 判定装置70は、第1の交流信号および第2の交流信号の注入後に、第3のプローブ61から入力されるIC51の出力信号に基づいて、IC51が誤動作しているか否かを判定する。
 第1のスイッチ93は、複数の第1の同軸ケーブル21と信号発生部10との間に設けられる。第1のスイッチ93は、信号発生部10と接続する1つの第1の同軸ケーブル21を切り替える。
 第2のスイッチ94は、複数の第2の同軸ケーブル22と信号発生部10との間に設けられる。第2のスイッチ94は、信号発生部10と接続する1つの第2の同軸ケーブル22を切り替える。
 第3のスイッチ95は、複数の第3の同軸ケーブル96と判定装置70との間に設けられる。第3のスイッチ95は、判定装置70と接続する1つの第3の同軸ケーブル96を切り替える。
 第1のプローブ40、第2のプローブ41、および第3のプローブ61は、非接触型プローブであっても、接触型プローブであってもよい。第1のプローブ40、第2のプローブ41、および第3のプローブ61は、同一の種類であっても、異なる種類であってもよい。
 本実施の形態では、スイッチを電気信号によって切り替えることによって、使用するプローブを切り替えることができるため、IC51のノイズ耐量の検出を短時間で実施することができる。プローブの走査によってプローブと同軸ケーブルとが絡みあってロボットアームが停止または故障する可能性、およびプローブと測定対象とが短絡する可能性を低減することができる。特に同軸プローブの場合には先端部に電界が集中するため、複数の同軸プローブ間の干渉が小さく、ICの端子に合わせて複数の同軸プローブを密に配置しても精度の高い測定をすることができる。一方、ループプローブの場合にはプローブのループ面に直交する向きに磁界が出るため、近くに別のループプローブがあると複数のプローブ間の間で干渉が発生し、誤動作特性把握がしにくくなる。そのような場合においては、複数のプローブの間の距離を離すこと、または、それぞれのループプローブのループ面が直交するように複数のプローブを配置することで干渉を低減することができる。そのため、微細なICを測定するときには、上記の理由から同軸プローブが望ましい。ただし、誤動作しやすい端子を探すなど、測定対象の特性が未知の場合には大まかな位置を把握可能な磁界プローブを用いのが望ましい。
 プローブ間の干渉を減らすためにプローブの先端間の距離よりも、各プローブの先端と測定対象間の距離を短くするのが望ましい。このようにすることによって、寄生容量および相互インダクタンスがプローブと測定対象間で発生しやすい。その結果、他のプローブを介して信号が信号発生部10または判定装置70に戻る量よりも、測定対象に注入される量を増やすことができる。
 インピーダンス測定に関しても同様の信号切り替え機を用いた装置で測定することができる。また、電界プローブと磁界プローブとの切り替えに関しても半導体素子からなる外部スイッチによって、プローブの先端を開放または短絡するようにすることによって、プローブを入れ替えることなく測定することができる。ただし、外部スイッチを用いる場合においては、その信号が機器に影響を与えないように配置する必要がある。
 プローブの指向性を考慮した配置に関しては、上述の実施の形態と同様に、プローブと測定対象の結合量が最大となる向きに配置するのが望ましい。
 実施の形態12.
 実施の形態4において、IC51の内部インピーダンス測定法を行うためには、電界プローブと磁界プローブとを測定対象の同一の位置に配置する必要がある。しかしながら、電界プローブおよび磁界プローブを物理的に移動させると、移動に要する時間が必要となる。また、電界プローブの先端部の大きさと磁界プローブの先端部の大きさとが必ずしも同であるとは限らないため、これらのプローブを同一の位置に配置できるとは限らない。
 図38は、実施の形態12における電磁界プローブを表わす図である。
 この電磁界プローブは、IC51の端子の電界および磁界を測定するために用いられる。この電磁界プローブは、外導体49と芯線44とを有する同軸プローブである。
 芯線45の先端部と外導体49とがダイオードD46を介して接続される。
 同軸プローブの芯線44の先端部と外導体49との間に電池などの直流電源からの直流電圧を印加するか否かを切り替えるスイッチまたはデュプレクサなどの切替器SWが設けられる。切替器SWがオンのときには、ダイオードD46の抵抗値が小さくなるため、図38の電磁界プローブは、磁界プローブとして機能する。切替器SWがオフのときには、ダイオードD46の抵抗値は大きくなるため、図38の電磁界プローブは、電界プローブとして機能する。
 電磁界プローブを電界プローブとして動作させるか、磁界プローブとして動作させるかを外部の信号のみによって電気的に切り替えることができるため、上記のように移動時間、およびプローブの寸法の問題を解決することができる。インピーダンス測定の際は、同一の位置で同一の時刻に電界と磁界とを測定するのが最も望ましい。しかし、これは、物理的に不可能である。ただし、例えば信号の速度が1MHzである場合に、上記のスイッチまたはダイオードを用いてオン/オフの切替えを100MHzで行うと、測定対象の電気的な特性が変化する前に電界と磁界とを測定することができる。ただし、1度の試行では、測定タイミングが、測定対象のオン/オフが切り替わるタイミングと重なることもあるため、複数回測定し、統計的または同一の特性が現れた場合のみの平均を求めることで、電界と磁界とを等価的に同一の位置で同一時刻に測定することができる。
 この電磁界プローブはノイズを検出するだけでなく、実施の形態1のようにノイズを印加するプローブとしても用いることができる。この際、直流信号に高周波信号を重畳するものとしてバイアス・ティーなどのデュプレクサを用いるのが望ましい。また、測定器に入力するために直流成分を除くには、DCカットなどの受動回路を用いればよい。
 実施の形態12の変形例.
 図39は、実施の形態12の変形例における電磁界プローブを表わす図である。
 この変形例の電磁界プローブは、ダイオードD46の代わりにリードスイッチ48と、リードスイッチ48を制御する磁石MGとを備える。
 たとえば、磁石MGを永久磁石とする。リードスイッチ48に対して永久磁石を近づけ、あるいは遠ざけることによって、リードスイッチ48の開閉を切り替えることができる。
 あるいは、磁石MGを電磁石とする。リードスイッチ48の近傍に電磁石を配置し、電磁石に電流を流すことによって、リードスイッチ48の開閉を切り替えることができる。上記において、電磁界プローブは、電界及び磁界検出のための検出用プローブとして説明したが、実施の形態1に示すように測定対象へのノイズ印加用のプローブとして用いても構わない。
 実施の形態13.
 本実施の形態は、実際の電子機器への活用法に関する。上記の実施の形態は、一般的なICの評価法に関するものであるが、具体的なノイズ源が想定できる場合には、本実施の形態の手法を効果的に活用することができる。以下に具体例を述べる。
 実際の使用環境を模擬した試験として、EMC(Electromagnetic Compatibility)分野で用いられる静電気試験(ESD試験)、ファーストトランジェントバースト(EFT/B)試験、または雷サージ試験などがある。これらのノイズ源となる試験器の出力波形はオシロスコープなどで測定することができるため、ノイズ源の周波数特性を把握することができる。ノイズ源から所望のICへの伝搬は、伝導、または空間、またはその両方の伝搬経路を経由する。
 ノイズ源が既知である場合に、実施の形態1~12で述べた手法によりICのノイズ耐量の周波数特性は既知であるため、ノイズ源からICまでの伝搬経路を予測することができれば、ICに印加されるノイズの周波数特性を把握することができる。
 Ansys社のHFSS、CST社のCSTStudoなどの電磁界シミュレータを使えば、ノイズ源から所望のICの端子までの伝搬特性、具体的にはSパラメータを算出することができる。
 更に、実施の形態3で述べたようにICの各端子の内部インピーダンスを把握することによって、より正確な伝搬特性を把握することができる。そして、入力信号となるノイズ源の周波数特性と伝搬経路の周波数特性とを組み合わせることで、ICに印加される電圧および電力を推定することができる。
 具体的には電磁界シミュレータまたは実測を通じて算出したSパラメータを、Sパラメータのフローグラフ(またはシグナルフローグラフ)で結合することで、ノイズを発生させる信号発生装置から誤動作が起こるICの端子への伝搬特性を推定することができる。この手法は無線機などの設計においてはレベルダイヤグラムとして個々の部品の増幅および減衰特性を組み合わせる方法として知られている。本手法は、無線設計におけるレベルダイヤグラムを拡張したものとなる。特に各部品(例えば、ノイズ印加装置からプローブまでをひとまとめとした部品、またはノイズが印加されるプリント基板など)の特性が周波数の振幅特性、および位相特性を有するとともに、増幅はなく減衰特性のみで構成されることから、本実施の形態においては、この手法をノイズのレベルダイヤグラムと呼ぶ。ノイズのレベルダイヤグラムでは、無線機設計とは異なり、周波数ごとの伝搬遅延時間と、部品の結合部での反射と透過特性を含めて考慮する必要があるため位相特性を含めて結合することが重要である。このノイズのレベルダイヤグラムと、信号発生器の信号レベルの周波数特性とを結合することで、誤動作が発生するICの端子に印加されるノイズレベルの周波数特性を推定することができる。さらに、このICの端子に印加されるノイズレベルの周波数特性と、上記の実施の形態で示したノイズの誤動作周波数特性とを比較することで、誤動作の有無を判定することができる。
 上記のICに印加される電圧および電力と、実施の形態1~12に記載したICのノイズ耐量評価装置とを用いて評価した結果を比較することによって、ICの誤動作を試作することなくフロントローディング設計でEMSすなわちノイズ耐量を正確に予測できる。
 具体的にEMS設計が必要な例として、タッチパネルやボタンを有するエレベータの操作パネルやFA機器の操作装置やスマートフォンのようなタッチパネルを有する電子機器など、人が触れる電子機器において本実施の形態で述べた手法を用いることで、誤動作や破壊を防ぐことができる設計が可能となる。
 発電所または工場など、電磁ノイズ環境を乱す機器が周囲および近接するケーブルに流れている場所においては、磁気結合によって、電磁ノイズが、本実施の形態で述べた通信用ケーブルに混入すること、系統電源を介して電源ケーブルに混入することなどが起こる。そのような場合において、本実施の形態で述べた方法に従うと、設計段階においてICに与えるノイズの影響を最小限に抑える設計ができる。必要に応じて電磁シールドや、バリスタ、アレスタ、または対地間コンデンサなどを配置することによって、ノイズを逃がす経路を設けることも可能となる。発電所または工場などにおいては、瞬停および誤動作が致命的になりうるため、本手法に従った設計法は高い効果を有する。
 また、自立して動作する宇宙産業、防衛産業、自動車産業(特に自動アシスト、または自動運転)においては、ジャミング等により機器が誤動作または破壊をする。人の判断が瞬時に効かないために致命的な結果をもたらす可能性がある。本手法を適用することで、ジャミング等に強い電子機器を作ることができるため、上記のような問題を起こしにくくすることができる。
 他にも例えば空調機のような民生機器においても、誘導雷による機器の破壊は低減すべき課題である。誘導雷による機器の破壊の多くは、例えば近隣の送電線に雷が誘導されたことに起因する。そのため、電源線経由で誘導雷起因のノイズが混入する経路が生じる。理想的には、機器にノイズを混入させる前に、対地間コンデンサなどでアースに電流を流すことである。しかし、雷も交流信号であるため残留インダクタンスの影響を受けるので、全てをアースに流すことはできない。そのため、一部が機器の内部に混入することになる。本手法では、そのような経路を試作前に予測することができる。
 本手法でノイズ耐量を評価して、半導体素子自体の外乱ノイズへの耐量を向上するのは良い方法である。特に、応答マップなどをスペックシート等に記載し、プリント基板設計者と共有することによって、トラブルの少ない開発が可能となる。
 また、プリント基板設計者においては、本手法で評価した結果を受けて、ノイズに影響を受けやすいICを選定しないことが可能となる。更に、回路図のICの各端子に対して、外乱ノイズへの影響度を追記するのは望ましい設計方法である。特に、ノイズ耐性が低くノイズに気を付けなければならない帯域を記載し、ノイズフィルタ部品の追加および配線の引き回しに注意するよう記載することで、設計後に起こりうるEMSトラブルを最小に留めることができる。
 実施の形態14.
 実施の形態3に示した非接触での電界と磁界の測定結果を用いて、インピーダンスを推定する具体的な計算方法と、その方法を用いて実測結果を計算した結果を示す。評価結果を示すためにインピーダンスが既知である条件で測定を行った。具体化には、誘電体厚0.8mmのFR-4基板を用いた特性インピーダンス50Ωのマイクロストリップ線路の一端に信号発生器(具体的には、ベクトルネットワークアナライザ)を接続した。終端が開放の場合と短絡の場合とにおいて、電界および磁界を測定した。具体的には、ベクトルネットワークアナライザの別ポートで電界および磁界を測定した。
 インピーダンスの推定について、単に電界と磁界の比を取る方法が考えられる。ただし、この方法では推定精度が低くなることが分かった。そこで、本実施の形態においては、既知のインピーダンスZ0を用いて算出される補正係数によって、電界と磁界の比を校正する。具体的には、電界プローブの受信電圧の周波数特性をV1(f)、磁界プローブの受信電圧の周波数特性をV2(f)とし、以下の式が成り立つ。
 V1(f)=α1(f)×E(f)・・・(2)
 V2(f)=α2(f)×E(f)・・・(3)
 推定したいインピーダンスZ(f)は以下の式で表される。α1(f)、α2(f)、β(f)は、周波数に依存する複素係数である。α1(f)およびα2(f)は、既知の複素係数である。β(f)は、未知の複素補正係数である。
Figure JPOXMLDOC01-appb-M000001

 未知の複素補正係数β(f)を既知のインピーダンス素子Z0[Ω]によって算出することができる。具体的には以下の式によってβ(f)を算出する。複素補正係数β(f)を求めるために、電界E(f)と磁界H(f)とを測定する際には、電界プローブと測定対象との位置関係、および磁界プローブと測定対象との位置関係を一定するのが望ましい。
Figure JPOXMLDOC01-appb-M000002

 図40は、実施の形態14における内部インピーダンスZ(f)の推定結果を表わす図である。
 図40には、既知のインピーダンスZ0=50Ωの入力端子を用いて算出した複素補正係数β(f)を用いて、内部インピーダンスZ(f)を算出した結果が表されている。100kHz~100MHzにおいて、短絡条件での内部インピーダンスZ(f)は、1Ω程度であり、開放条件での内部インピーダンスZ(f)は1kΩ程度である。
 図41は、実施の形態14による補正複素係数β(f)による校正を実行する場合と、校正を実行しない場合の50Ω終端に対する内部インピーダンスZ(f)の推定値の周波数特性を示す図である。
 校正を実行した場合には、内部インピーダンスZ(f)は、一定値(50Ω)である。校正を実行しない場合、すなわち単に電界と磁界の比によって内部インピーダンスZ(f)を算出する場合においては、内部インピーダンスZ(f)は、一定値(50Ω)とはならない。今回は、既知のインピーダンスZ0として50Ωを用いたが、測定対象の入力端子のインピーダンスZ(f)と近いと考えられる既知のインピーダンスZ0を用いることで、測定対象の入力端子の内部インピーダンスZ(f)の推定精度を向上させることができる。
 本実施の形態による校正によって、位相成分を用いることができるメリットがある。周波数帯域での位相成分は、時間領域では時間差を示すものであるため、位相成分を含めることによって校正を用いない従来技術はできなかった、インピーダンスの時間変化を測定することが可能となる。これによって、ICの一種であるパワー半導体のオン時とオフ時、その遷移状態での内部インピーダンスを非接触で推定できる。その結果、設計初期段階である回路シミュレーションにおいて、精度の高い設計をすることが可能となる。
 図42は、実施の形態14における内部インピーダンスの測定方法の手順を表わすフローチャートである。
 ステップS501において、動作状態のIC51の既知のインピーダンスZ0の入力端子PI(0)の近傍に電界プローブを配置して、電界プローブによって、既知のインピーダンスZ0の入力端子PIが生成する電界E(f)を非接触で測定する。
 ステップS502において、電界プローブを配置した箇所と同一の箇所に磁界プローブを配置して、磁界プローブによって、既知のインピーダンスZ0の入力端子PI(0)が生成する磁界H(f)を非接触で測定する。
 ステップS503において、判定装置70は、ステップS501において測定された電界E(f)から式(2)に従って、電圧V1(f)を算出する。判定装置70は、ステップS502において測定された磁界H(f)から式(3)に従って、電圧V2(f)を算出する。判定装置70は、算出したV1(f)およびV2(f)と、既知のインピーダンスZ0とを用いて、式(5)に従って、複素補正係数β(f)を算出する。
 ステップS504において、動作状態のIC51の測定対象の入力端子PIの近傍に電界プローブを配置して、電界プローブによって、測定対象の入力端子PIが生成する電界E(f)を非接触で測定する。
 ステップS505において、電界プローブを配置した箇所と同一の箇所に磁界プローブを配置して、磁界プローブによって、測定対象の入力端子PIが生成する磁界H(f)を非接触で測定する。
 ステップS503において、判定装置70は、ステップS504において測定された電界E(f)から式(2)に従って、電圧V1(f)を算出する。判定装置70は、ステップS505において測定された磁界H(f)から式(3)に従って、電圧V2(f)を算出する。判定装置70は、算出したV1(f)およびV2(f)と、ステップS503において測定された複素補正係数β(f)と用いて、式(4)に従って、測定対象の入力端子PIの内部インピーダンスを算出する。
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本開示の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。
 10 信号発生部、11 信号生成器、20,21,22,22a,22b,23,24,25,26,96 同軸ケーブル、30 バラン、31,32 アンプ、33 パワースプリッタ、34 方向性結合器、40,41,41a,41b,61 プローブ、44,45 芯線、48 リードスイッチ、49 外導体、50 プリント基板、51 IC、53 グランド端子、54 第1のノイズ印加部、55 第2のノイズ印加部、60 計測用ケーブル、70 判定装置、71 計測部、72 演算部、73 表示部、80 接続ケーブル、91 温度検出器、92 アンテナ、93 第1のスイッチ、94 第2のスイッチ、95 第3のスイッチ、C42,C43 コンデンサ、D46 ダイオード、Ma 整合回路、P1,P2 出力ポート、SW 切替器。

Claims (29)

  1.  異なる位相の第1の交流信号および第2の交流信号をノイズとして出力する信号発生部と、
     前記第1の交流信号を伝送するための第1の同軸ケーブルと、
     前記第2の交流信号を伝送するための第2の同軸ケーブルと、
     前記第1の同軸ケーブルにおいて、前記信号発生部とは反対側の端部に接続され、プリント基板上のICに近接して配置される第1のプローブと、
     前記第2の同軸ケーブルにおいて、前記信号発生部と反対側の端部に接続され、前記ICに近接して配置される第2のプローブと、
     前記第1の交流信号および前記第2の交流信号を印加した後の前記ICまたは、前記ICが実装された装置の動作状態に基づいて、前記ICが誤動作しているか否かを判定する判定装置、とを備えたICのノイズ耐量検出装置。
  2.  前記第1の交流信号および前記第2の交流信号の位相差は、180度である、請求項1記載のICのノイズ耐量検出装置。
  3.  前記第1の交流信号および前記第2の交流信号の位相差は、120度である、請求項1記載のICのノイズ耐量検出装置。
  4.  前記判定装置は、前記ICまたは、前記ICに接続される前記ICとは異なるICの出力信号に基づいて、前記ICが誤動作しているか否かを判定する、請求項1記載のICのノイズ耐量検出装置。
  5.  前記ICの温度を検出する温度検出器をさらに備え、
     前記判定装置は、前記ICまたは、前記ICに接続される前記ICとは異なるICの温度変化に基づいて、前記ICが誤動作しているか否かを判定する、請求項1記載のICのノイズ耐量検出装置。
  6.  前記ICから放射される電磁波を検出するアンテナをさらに備え、
     前記判定装置は、前記第1の交流信号および前記第2の交流信号の周波数帯以外の周波数帯における前記アンテナにおける受信電圧の変化に基づいて、前記ICが誤動作しているか否かを判定する、請求項1記載のICのノイズ耐量検出装置。
  7.  前記信号発生部は、
     試験信号を生成する信号生成器と、
     前記試験信号から、振幅が等しく、かつ位相が180度相違する前記第1の交流信号および前記第2の交流信号を生成する信号分配器と、を含む請求項1記載のICのノイズ耐量検出装置。
  8.  前記信号発生部は、さらに、
     前記信号生成器と前記信号分配器との間に配置され、前記信号生成器によって生成された前記試験信号を増幅するアンプを、含む請求項7記載のICのノイズ耐量検出装置。
  9.  前記信号発生部は、さらに、前記アンプと、前記信号分配器との間、または前記信号分配器と、前記第1のプローブと前記第2のプローブとの各々の間に配置された方向性結合器を、含む請求項8記載のICのノイズ耐量検出装置。
  10.  前記信号発生部は、さらに、
     前記信号分配器と前記第1の同軸ケーブルの一端との間に配置され、前記信号分配器から出力された前記第1の交流信号を増幅する第1のアンプと、
     前記信号分配器と前記第2の同軸ケーブルの一端との間に配置され、前記信号分配器から出力された前記第2の交流信号を増幅する第2のアンプと、を含む請求項7記載のICのノイズ耐量検出装置。
  11.  前記第1の交流信号および前記第2の交流信号を印加する端子は、前記ICの信号入力端子または信号入出力端子であり、
     前記ICからの出力信号を観測する端子は前記ICの信号出力端子または信号入出力端子である、請求項1記載のICのノイズ耐量検出装置。
  12.  前記第1のプローブおよび前記第2のプローブは、前記ICに非接触で配置される、請求項1記載のICのノイズ耐量検出装置。
  13.  前記第1のプローブは、同軸プローブであり、
     前記同軸プローブの同軸の芯線が前記ICのグランド端子に接触して配置され、
     前記第2のプローブは、前記ICに非接触で配置される、請求項1記載のICのノイズ耐量検出装置。
  14.  前記第1のプローブおよび前記第2のプローブは、それぞれ同軸プローブであり、
     前記第1のプローブの同軸の芯線が前記ICの第1端子に接触して配置され、
     前記第2のプローブの同軸の芯線が前記ICの第2端子に接触して配置される、請求項2記載のICのノイズ耐量検出装置。
  15.  前記同軸プローブの先端に取り付けられた整合回路を、さらに備える、請求項13または14記載のICのノイズ耐量検出装置。
  16.  前記第1のプローブおよび前記第2のプローブは、それぞれ同軸プローブであり、
     前記第1のプローブの同軸の外導体と、前記第2のプローブの同軸の外導体とを接続するケーブルをさらに備える、請求項1~3のいずれか1項に記載のICのノイズ耐量検出装置。
  17.  前記信号発生部は、
     試験信号を生成する信号生成器と、
     前記試験信号から、振幅が等しく、かつ位相が180度相違する前記第1の交流信号および前記第2の交流信号を出力する第1の信号分配器と、
     前記第2の交流信号を増幅するアンプと、
     前記アンプの出力と接続される第2の信号分配器と、を含み、
     前記第2の信号分配器の出力と接続される2つの前記第2の同軸ケーブルと、
     各々が、対応する前記第2の同軸ケーブルと接続される2つの前記第2のプローブと、を備える、請求項1記載のICのノイズ耐量検出装置。
  18.  前記ICの端子の電界および磁界を測定するための電磁界プローブをさらに備え、
     前記電磁界プローブは、外導体と芯線とを有する同軸プローブであり、
     前記芯線の先端部と前記外導体とはダイオードを介して接続され、
     前記芯線の先端部と前記外導体の間に直流電圧印加のオン/オフを制御する切替器をさらに備える、請求項1記載のICのノイズ耐量検出装置。
  19.  前記ICの端子の電界および磁界を測定するための電磁界プローブをさらに備え、
     前記電磁界プローブは、外導体と芯線とを有する同軸プローブであり、
     前記芯線の先端部と前記外導体とはリードスイッチを介して接続され、
     前記リードスイッチを制御するための磁石と、をさらに備える請求項1記載のICのノイズ耐量検出装置。
  20.  異なる位相の第1の交流信号および第2の交流信号を出力する信号発生部と、
     各々が、前記第1の交流信号を伝送するための複数の第1の同軸ケーブルと、
     各々が、前記第2の交流信号を伝送するための複数の第2の同軸ケーブルと、
     各々が、対応する前記第1の同軸ケーブルと接続され、プリント基板上のICに近接して配置され、前記第1の交流信号を前記ICに印加するための複数の第1のプローブと、
     各々が、対応する前記第2の同軸ケーブルと接続され、前記ICに近接して配置され、前記第2の交流信号を前記ICに印加するための複数の第2のプローブと、
     各々が、前記ICに近接して配置されて、前記ICの出力信号を計測するための複数の第3のプローブと、
     各々が、対応する前記第3のプローブと接続され、前記ICの出力信号を伝送するための複数の第3の同軸ケーブルと、
     前記第1の交流信号および前記第2の交流信号の印加後に、前記第3のプローブから入力される前記ICの出力信号に基づいて、前記ICが誤動作しているか否かを判定する判定装置と、
     複数の前記第1の同軸ケーブルと前記信号発生部との間に設けられて、前記信号発生部と接続する1つの前記第1の同軸ケーブルを切り替えるための第1のスイッチと、
     複数の前記第2の同軸ケーブルと前記信号発生部との間に設けられて、前記信号発生部と接続する1つの前記第2の同軸ケーブルを切り替える第2のスイッチと、
     複数の前記第3の同軸ケーブルと前記判定装置との間に設けられて、前記判定装置と接続する1つの前記第3の同軸ケーブルを切り替えるための第3のスイッチと、を備えたICのノイズ耐量検出装置。
  21.  異なる位相の第1の交流信号および第2の交流信号を出力するように構成された信号発生部と、前記第1の交流信号を伝送するための第1の同軸ケーブルと、前記第2の交流信号を伝送するための第2の同軸ケーブルと、前記第1の同軸ケーブルと接続される第1のプローブと、前記第2の同軸ケーブルと接続される第2のプローブと、判定装置、とを備えたICのノイズ耐量検出装置におけるノイズ耐量検出方法であって、
     前記第1のプローブおよび前記第2のプローブを前記ICに近接して配置するステップと、
     前記信号発生部が、前記第1の交流信号および前記第2の交流信号を出力するステップと、
     前記判定装置が、前記IC、または前記ICが実装されたプリント基板、または前記ICが実装されたプリント基板に接続される異なるプリント基板の状態に基づいて、前記ICが誤動作しているか否かを判定するステップと、を備えた、ICのノイズ耐量検出方法。
  22.  前記信号発生部は、特定の周波数を選択して出力可能な装置であり、
     前記出力するステップは、前記信号発生部が、1つの帯域幅あたり10周期以上の前記第1の交流信号および前記第2の交流信号を出力するステップを含む、請求項21記載のICのノイズ耐量検出方法。
  23.  前記信号発生部から出力される前記第1の交流信号および前記第2の交流信号の周波数および振幅を変化させるステップと、
     前記第1の交流信号および前記第2の交流信号の周波数、および前記第1の交流信号および前記第2の交流信号の振幅の組み合わせにおける前記ICの出力信号を示す応答マップを作成するステップと、を備えた、請求項21記載のICのノイズ耐量検出方法。
  24.  前記第1の交流信号および前記第2の交流信号を印加する前記ICの端子を変化させるステップを、さらに備え、
     前記応答マップを作成するステップは、前記ICの端子または端子間、前記第1の交流信号および前記第2の交流信号の周波数、および前記第1の交流信号および前記第2の交流信号の振幅の組み合わせにおける前記ICの出力信号を示す応答マップを作成するステップを含む、請求項23記載のICのノイズ耐量検出方法。
  25.  前記信号発生部が出力する前記第1の交流信号および前記第2の交流信号は、少なくとも1kHz以上の帯域幅を有する、請求項23または24に記載のICのノイズ耐量検出方法。
  26.  第1のICについての応答マップを作成するステップと、
     前記第1のICと接続される第2のICについての応答マップを作成するステップと、
     前記第2のICについての応答マップ内の誤動作条件となる周波数および振幅の組み合わせを抽出するステップと、
     前記第1のICについての応答マップ内の出力信号のうち、前記抽出した周波数および振幅の組み合わせを含む出力信号の前記第1のICについての応答マップ内の周波数および振幅の組み合わせを前記第1のICの誤動作条件として特定するステップと、を含む請求項23に記載のICのノイズ耐量検出方法。
  27.  電界プローブを用いて、動作状態のICにおける周期性を有する出力信号が生成する電界を測定するステップと、
     磁界プローブを用いて、前記出力信号が生成する磁界を測定するステップと、
     前記測定された電界と前記測定された磁界とに基づいて、前記ICの出力端子の内部インピーダンスを算出するステップと、を含む、ICの内部インピーダンス測定方法。
  28.  動作状態のICの測定対象の入力端子に印加されている電圧を測定するステップと、
     前記電圧の振幅よりも小さい振幅を有する既知の擬似乱数の信号、または変調信号を前記入力端子に注入するステップと、
     電界プローブを用いて、前記入力端子が生成する電界を測定するステップと、
     磁界プローブを用いて、前記入力端子が生成する磁界を測定するステップと、
     前記測定された電界と前記測定された磁界とに基づいて、前記入力端子の内部インピーダンスを算出するステップと、を含む、ICの内部インピーダンス測定方法。
  29.  電界プローブを用いて、既知のインピーダンスの入力端子が生成する電界を測定するステップと、
     磁界プローブを用いて、前記既知のインピーダンスの入力端子が生成する磁界を測定するステップと、
     前記既知のインピーダンスと、前記既知のインピーダンスの入力端子が生成する前記電界および前記磁界とを用いて、複素補正係数の周波数特性を算出するステップと、
     電界プローブを用いて、測定対象の入力端子が生成する電界を測定するステップと、
     磁界プローブを用いて、前記測定対象の入力端子が生成する磁界を測定するステップと、
     前記複素補正係数の周波数特性と、前記測定対象の入力端子が生成する前記電界および前記磁界とを用いて、前記測定対象の入力端子の内部インピーダンスを算出するステップと、を備えたICの内部インピーダンス測定方法。
PCT/JP2021/019384 2021-05-21 2021-05-21 Icのノイズ耐量検出装置、icのノイズ耐量検出方法、およびicの内部インピーダンス測定方法 WO2022244246A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2021/019384 WO2022244246A1 (ja) 2021-05-21 2021-05-21 Icのノイズ耐量検出装置、icのノイズ耐量検出方法、およびicの内部インピーダンス測定方法
KR1020237039051A KR20230170949A (ko) 2021-05-21 2021-05-21 Ic의 노이즈 내량 검출 장치 및 ic의 노이즈 내량 검출 방법
DE112021007695.7T DE112021007695T5 (de) 2021-05-21 2021-05-21 Ic-rauschimmunitätserkennungsvorrichtung, ic-rauschimmunitätserkennungsverfahren und ic-innenimpedanzmessverfahren
CN202180098282.1A CN117321429A (zh) 2021-05-21 2021-05-21 Ic的噪声耐量检测装置、ic的噪声耐量检测方法及ic的内部阻抗测定方法
JP2021559707A JP7053969B1 (ja) 2021-05-21 2021-05-21 Icのノイズ耐量検出装置、icのノイズ耐量検出方法、およびicの内部インピーダンス測定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/019384 WO2022244246A1 (ja) 2021-05-21 2021-05-21 Icのノイズ耐量検出装置、icのノイズ耐量検出方法、およびicの内部インピーダンス測定方法

Publications (1)

Publication Number Publication Date
WO2022244246A1 true WO2022244246A1 (ja) 2022-11-24

Family

ID=81260042

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/019384 WO2022244246A1 (ja) 2021-05-21 2021-05-21 Icのノイズ耐量検出装置、icのノイズ耐量検出方法、およびicの内部インピーダンス測定方法

Country Status (5)

Country Link
JP (1) JP7053969B1 (ja)
KR (1) KR20230170949A (ja)
CN (1) CN117321429A (ja)
DE (1) DE112021007695T5 (ja)
WO (1) WO2022244246A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116318381A (zh) * 2023-05-22 2023-06-23 电子科技大学 一种微波段时间光子晶体的时间维度拓扑边界态观测方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023223414A1 (ja) * 2022-05-17 2023-11-23 日本電信電話株式会社 周波数帯域推定装置、周波数帯域推定方法、ems試験方法、及び、周波数帯域推定プログラム

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04270969A (ja) * 1991-02-27 1992-09-28 Ando Electric Co Ltd Ic回路の入力インピーダンス測定回路
JP2000314755A (ja) * 1999-04-28 2000-11-14 Ricoh Co Ltd 近傍電磁界検知プローブシステム
JP2003107116A (ja) * 2001-09-28 2003-04-09 Hitachi Ltd 電磁波波源探査法および電磁波波源探査のためのプログラムならびに電磁波波源探査に用いる探査用アンテナ
US20030160622A1 (en) * 2001-12-18 2003-08-28 Duensing G. Randy Method and apparatus for noise tomography
JP2004085477A (ja) * 2002-08-28 2004-03-18 Nec Corp ノイズイミュニティ評価装置及びノイズイミュニティ評価方法
JP2004150840A (ja) * 2002-10-29 2004-05-27 Hitachi Ltd 半導体集積回路の不良解析装置、システムおよび検出方法
JP2011041209A (ja) * 2009-08-18 2011-02-24 Panasonic Corp 半導体装置
JP2013137222A (ja) * 2011-12-28 2013-07-11 Tokyo Denshi Koeki Kk 静電気放電検出装置、静電気放電検出方法、変動電界耐性検査装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7075121B2 (ja) 2018-08-21 2022-05-25 地方独立行政法人東京都立産業技術研究センター 電子製品の評価方法および評価装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04270969A (ja) * 1991-02-27 1992-09-28 Ando Electric Co Ltd Ic回路の入力インピーダンス測定回路
JP2000314755A (ja) * 1999-04-28 2000-11-14 Ricoh Co Ltd 近傍電磁界検知プローブシステム
JP2003107116A (ja) * 2001-09-28 2003-04-09 Hitachi Ltd 電磁波波源探査法および電磁波波源探査のためのプログラムならびに電磁波波源探査に用いる探査用アンテナ
US20030160622A1 (en) * 2001-12-18 2003-08-28 Duensing G. Randy Method and apparatus for noise tomography
JP2004085477A (ja) * 2002-08-28 2004-03-18 Nec Corp ノイズイミュニティ評価装置及びノイズイミュニティ評価方法
JP2004150840A (ja) * 2002-10-29 2004-05-27 Hitachi Ltd 半導体集積回路の不良解析装置、システムおよび検出方法
JP2011041209A (ja) * 2009-08-18 2011-02-24 Panasonic Corp 半導体装置
JP2013137222A (ja) * 2011-12-28 2013-07-11 Tokyo Denshi Koeki Kk 静電気放電検出装置、静電気放電検出方法、変動電界耐性検査装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116318381A (zh) * 2023-05-22 2023-06-23 电子科技大学 一种微波段时间光子晶体的时间维度拓扑边界态观测方法
CN116318381B (zh) * 2023-05-22 2023-07-21 电子科技大学 一种微波段时间光子晶体的时间维度拓扑边界态观测方法

Also Published As

Publication number Publication date
KR20230170949A (ko) 2023-12-19
JP7053969B1 (ja) 2022-04-12
JPWO2022244246A1 (ja) 2022-11-24
CN117321429A (zh) 2023-12-29
DE112021007695T5 (de) 2024-03-07

Similar Documents

Publication Publication Date Title
JP6267918B2 (ja) ノイズ源を含むデバイスの評価方法
WO2022244246A1 (ja) Icのノイズ耐量検出装置、icのノイズ耐量検出方法、およびicの内部インピーダンス測定方法
CN103116045B (zh) Dc-ac探针卡拓扑
US6798212B2 (en) Time domain reflectometer probe having a built-in reference ground point
Liu et al. A low‐cost and high‐performance self‐trigger method for high‐voltage transient measurement
US9989570B2 (en) Method for evaluating device including plurality of electric circuits
zur Nieden et al. Circuit models for ESD-generator-cable field coupling configurations based on measurement data
Shinde et al. Investigation of interference in a mobile phone from a DC-to-DC converter
Boyer et al. Evaluation of the near-field injection method at integrated circuit level
CN106990277A (zh) 时域电压测量装置、测量校准装置及测量校准验证装置
CN109782101A (zh) 一种用于汽车电子传导抗扰度测试的校验装置及校验方法
Caignet et al. Dynamic system level ESD current measurement using magnetic field probe
US9417274B2 (en) Electric circuit evaluation method
US9470735B2 (en) Electric circuit evaluation method and electric circuit
Tamminen et al. Charged device ESD threats with high speed RF interfaces
Furqon et al. Design of ultrawide band partial discharge detector using Pi attenuator and ultrawide band amplifier
Uddin et al. Switchable double-sensor integrated active probe for near-field scanner
US9400300B2 (en) Electric circuit evaluation method
US20140379286A1 (en) Method for estimating pcb radiated emissions
JP2015001517A (ja) 電気回路の評価方法
US9709601B2 (en) Conducted type current probe
Yang Passive harmonic generation at spring contacts
Ovidiu-Catalin et al. Modeling and Simulation of a Compensation PCB for Oscilloscope Probes
Atanasković et al. Study of Loop Probe Dimensions Influence on a Probe Calibration Factor in Near-Field Measurements
Fellner et al. Detection and Localization of CDM like ESD using a novel Sensor derived from Leaky-Coax

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021559707

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21940859

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237039051

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237039051

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 112021007695

Country of ref document: DE