RU2010149870A - Способ контроля измерительного прибора и измерительный прибор - Google Patents

Способ контроля измерительного прибора и измерительный прибор Download PDF

Info

Publication number
RU2010149870A
RU2010149870A RU2010149870/28A RU2010149870A RU2010149870A RU 2010149870 A RU2010149870 A RU 2010149870A RU 2010149870/28 A RU2010149870/28 A RU 2010149870/28A RU 2010149870 A RU2010149870 A RU 2010149870A RU 2010149870 A RU2010149870 A RU 2010149870A
Authority
RU
Russia
Prior art keywords
measuring device
electronic unit
housing
measuring
circuit
Prior art date
Application number
RU2010149870/28A
Other languages
English (en)
Other versions
RU2502961C2 (ru
Inventor
Гернот ЭНГСТЛЕР (CH)
Гернот ЭНГСТЛЕР
Оле КАУДАЛЬ (CH)
Оле КАУДАЛЬ
Христиан МАТТ (CH)
Христиан МАТТ
Ганс ПОЛЬ (DE)
Ганс ПОЛЬ
Original Assignee
Эндресс+Хаузер Флоутек Аг (Ch)
Эндресс+Хаузер Флоутек Аг
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Эндресс+Хаузер Флоутек Аг (Ch), Эндресс+Хаузер Флоутек Аг filed Critical Эндресс+Хаузер Флоутек Аг (Ch)
Publication of RU2010149870A publication Critical patent/RU2010149870A/ru
Application granted granted Critical
Publication of RU2502961C2 publication Critical patent/RU2502961C2/ru

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • G01F1/8409Coriolis or gyroscopic mass flowmeters constructional details
    • G01F1/8431Coriolis or gyroscopic mass flowmeters constructional details electronic circuits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
    • G01F15/06Indicating or recording devices
    • G01F15/061Indicating or recording devices for remote indication
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F25/00Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume
    • G01F25/10Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume of flowmeters

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Measuring Volume Flow (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)

Abstract

1. Способ контроля, выполненного, в частности, в виде измерительного прибора и/или прибора управления промышленных средств измерения и автоматизации, и/или электронного измерительного прибора, который имеет, по меньшей мере, частично помещенный, в частности, в заземленный и/или металлический корпус (100) измерительный преобразователь (MW), а также, по меньшей мере, периодически связанный с измерительным преобразователем электронный блок (ME) измерительного прибора, содержащий следующие этапы: ! - образование разности потенциалов (ΔU12) между корпусом и электронным блоком измерительного прибора для инициирования тока (IL) утечки, который протекает как через электронный блок измерительного прибора, так и через сосуществующее с этой разностью потенциалов, в частности, нежелательное и/или образованное посредством поразившего корпус отложения и/или посредством конденсата, электропроводящее соединение (RF) между корпусом и электронным блоком измерительного прибора, ! - регистрацию тока утечки, протекающего вследствие имеющейся, по меньшей мере, в данный момент времени между корпусом и электронным блоком измерительного прибора разности потенциалов, а также имеющегося, по меньшей мере, в данным момент времени электропроводящего соединения (RF), ! - генерирование, по меньшей мере, одного выражающего собой в данный момент времени, в частности, неправильное рабочее состояние измерительного прибора, в частности, цифрового параметра (Z) состояния, с учетом зарегистрированного тока утечки. ! 2. Способ по п.1, характеризующийся тем, что разность потенциалов (ΔU12) между корпусом и электронным блоком измерительного прибора образован

Claims (35)

1. Способ контроля, выполненного, в частности, в виде измерительного прибора и/или прибора управления промышленных средств измерения и автоматизации, и/или электронного измерительного прибора, который имеет, по меньшей мере, частично помещенный, в частности, в заземленный и/или металлический корпус (100) измерительный преобразователь (MW), а также, по меньшей мере, периодически связанный с измерительным преобразователем электронный блок (ME) измерительного прибора, содержащий следующие этапы:
- образование разности потенциалов (ΔU12) между корпусом и электронным блоком измерительного прибора для инициирования тока (IL) утечки, который протекает как через электронный блок измерительного прибора, так и через сосуществующее с этой разностью потенциалов, в частности, нежелательное и/или образованное посредством поразившего корпус отложения и/или посредством конденсата, электропроводящее соединение (RF) между корпусом и электронным блоком измерительного прибора,
- регистрацию тока утечки, протекающего вследствие имеющейся, по меньшей мере, в данный момент времени между корпусом и электронным блоком измерительного прибора разности потенциалов, а также имеющегося, по меньшей мере, в данным момент времени электропроводящего соединения (RF),
- генерирование, по меньшей мере, одного выражающего собой в данный момент времени, в частности, неправильное рабочее состояние измерительного прибора, в частности, цифрового параметра (Z) состояния, с учетом зарегистрированного тока утечки.
2. Способ по п.1, характеризующийся тем, что разность потенциалов (ΔU12) между корпусом и электронным блоком измерительного прибора образована посредством того, что корпус подводят к первому электрическому базовому потенциалу (U1), а, по меньшей мере, один компонент электронного блока измерительного прибора, в частности измерительный канал (20А) для регистрации, по меньшей мере, одного генерированного посредством измерительного преобразователя, первичного сигнала (s1), по меньшей мере, периодически подводят к отличному от первого электрического базового потенциала, второму электрическому базовому потенциалу (U2).
3. Способ по п.2, характеризующийся тем, что корпус для образования первого электрического базового потенциала заземляют и/или, электронный блок измерительного прибора периодически также находится на первом электрическом базовом потенциале.
4. Способ по любому из пп.1-3, характеризующийся тем, что содержит этап, в частности, скачкообразного, и/или ступенчатого, и/или периодического изменения, по меньшей мере, одного базового потенциала электронного блока измерительного прибора для образования разности потенциалов между корпусом и электронным блоком измерительного прибора.
5. Способ по любому из пп.1-3, характеризующийся тем, что содержит этап гальванического соединения выхода предусмотренной внутри электронного блока измерительного прибора, подающей, в частности, по меньшей мере, периодически, в основном постоянное и/или тактовое, и/или импульсное выходное напряжение схемы (QS) источника питания с корпусом, в частности, при промежуточном подключении ограничивающей ток и/или напряжение фильтрующей схемы (FS), для образования разности потенциалов между корпусом и электронным блоком измерительного прибора.
6. Способ по любому из пп.1-3, характеризующийся тем, что содержит этап использования, по меньшей мере, одного параметра состояния для генерирования сигнала тревоги, который сигнализирует о возникновении обусловленной, в частности, посредством нежелательного образования электропроводящих отложений внутри корпуса ошибки в работе измерительного прибора.
7. Способ по любому из пп.1-3, характеризующийся тем, что содержит этап использования, по меньшей мере, одного параметра состояния для настойки, по меньшей мере, периодически, в частности в данный момент времени сообщающегося с электронным блоком измерительного прибора, в частности, также визуализирующего генерированные измерительным прибором сообщения об ошибке, элемента (АЕ) отображения.
8. Способ по любому из пп.1-3, характеризующийся тем, что содержит этап сравнения, по меньшей мере, одного параметра состояния, по меньшей мере, с одним заданным для этого, в частности, также контролируемым предельным значением.
9. Способ по любому из пп.1-3, характеризующийся тем, что электронный блок измерительного прибора содержит, по меньшей мере, один приводимый в действие посредством имеющегося внутри измерительного прибора полезного напряжения (UN), измерительный канал (20А) для регистрации, по меньшей мере, одного генерированного посредством измерительного преобразователя первичного сигнала (s1), причем разность потенциалов между корпусом и электронным блоком измерительного прибора, по меньшей мере, периодически настроена на величину 50% от внутреннего полезного напряжения.
10. Способ по любому из пп.1-3, характеризующийся тем, что разность потенциалов между корпусом и электронным блоком измерительного прибора для проведения тока утечки отрегулирована на величину 40В или менее, в частности менее 32В.
11. Способ по любому из пп.1-3, характеризующийся тем, что содержит этап выработки, по меньшей мере, одного первичного сигнала (s1) среды посредством измерительного преобразователя, который соответствует, по меньшей мере, одному измеренному параметру проведенной, в частности, в электрически заземленном трубопроводе и/или, в частности, в электрически заземленном резервуаре.
12. Измерительный прибор для измерения и/или контроля, по меньшей мере, одного измеряемого параметра, проведенной в трубопроводе и/или резервуаре среды, содержащий
- по меньшей мере, частично помещенный, в частности, в заземленный и/или в металлический корпус (100) измерительный преобразователь (MW) для регистрации, по меньшей мере, одного измеряемого параметра, а также
- по меньшей мере, периодически электрически связанный с измерительным преобразователем электронный блок (ME) измерительного прибора, который содержит:
- по меньшей мере, один измерительный канал для регистрации и дальнейшей обработки, по меньшей мере, одного генерированного посредством измерительного преобразователя первичного сигнала (s1), а также
- схему (20В) для измерения тока для регистрации протекающих внутри измерительного прибора электрических токов,
- причем в схеме для измерения тока предусмотрено, по меньшей мере, эпизодическое, предпочтительно периодическое регистрирование электрического тока (IL) утечки, который течет вследствие, по меньшей мере, периодически имеющейся между корпусом и электронным блоком измерительного прибора разности потенциалов (ΔU12), а также имеющегося между корпусом и электронным блоком измерительного прибора, в частности, нежелательного и/или образованного посредством поразившего корпус отложения, электропроводящего соединения (Rf).
13. Измерительный прибор по п.12, характеризующийся тем, что разность потенциалов между корпусом и электронным блоком измерительного прибора образована посредством того, что корпус подведен к первому электрическому базовому потенциалу (U1), а, по меньшей мере, один компонент электронного блока измерительного прибора, в частности, измерительный канал, по меньшей мере, периодически подведен к отличному от первого электрического базового потенциала, второму электрическому базовому потенциалу (U2).
14. Измерительный прибор по п.13, характеризующийся тем, что корпус для образования первого электрического базового потенциала (U1) заземлен и/или, причем электронный блок (ME) измерительного прибора периодически также подведен к первому электрическому базовому потенциалу (U1).
15. Измерительный прибор по любому из пп.12-14, характеризующийся тем, что содержит, по меньшей мере, одну схему (QS) источника питания, подающую на выходе, в частности, по меньшей мере, периодически, в основном, постоянное и/или тактовое, и/или импульсное выходное напряжение.
16. Измерительный прибор по п.15, характеризующийся тем, что выход схемы (QS) источника питания для создания между корпусом и электронным блоком измерительного прибора разности потенциалов в процессе работы, по меньшей мере, периодически, в частности долговременно электрически соединен с корпусом.
17. Измерительный прибор по п.15, характеризующийся тем, что в схеме источника предусмотрено изменение ее выходного напряжения, в частности, скачкообразно и/или ступенчато.
18. Измерительный прибор по п.15, характеризующийся тем, что в схеме источника питания предусмотрено переменное выходное напряжение, в частности, изменяемой частоты.
19. Измерительный прибор по п.15, характеризующийся тем, что электронный блок измерительного прибора содержит фильтрующую схему (FS), образованную посредством служащей в качестве делителя напряжения и/или в качестве ограничителя тока сети сопротивления и/или посредством служащей в качестве выпрямителя напряжения и/или в качестве ограничителя напряжения диодной схемы, причем фильтрующая схема (FS), посредством переключателя в процессе работы, по меньшей мере, периодически, в частности, долговременно электрически подсоединена как в выходу схемы источника питания, так и к корпусу.
20. Измерительный прибор по п.15, характеризующийся тем, что электронный блок измерительного прибора содержит служащую в качестве делителя напряжения и/или в качестве ограничителя тока схему сопротивления, которая, в частности, посредством переключателя в процессе работы, по меньшей мере, периодически, в частности долговременно электрически подсоединена как в выходу схемы источника питания, так и к корпусу.
21. Измерительный прибор по п.15, характеризующийся тем, что электронный блок измерительного прибора содержит служащую в качестве выпрямителя напряжения и/или в качестве ограничителя напряжения диодную схему, которая, в частности, посредством переключателя в процессе работы, по меньшей мере, периодически, в частности долговременно электрически подсоединена как в выходу схемы источника питания, так и к корпусу.
22. Измерительный прибор по п.15, характеризующийся тем, что, по меньшей мере, один измерительный канал приводится в действие посредством имеющегося внутри измерительного прибора полезного напряжения (UN),
- причем схема источника питания выполнена таким образом, что ее выходное напряжение и/или разность потенциалов между корпусом и электронным блоком измерительного прибора, по меньшей мере, периодически настроена на величину 50% от внутреннего полезного напряжения.
23. Измерительный прибор по п.22, характеризующийся тем, что полезное напряжение служит для приведения в действие схемы источника питания.
24. Измерительный прибор по п.15, характеризующийся тем, что в схеме источника питания предусмотрено, что ее служащее для образования разности потенциалов между корпусом и электронным блоком измерительного прибора выходное напряжение составляет максимально 40В, в частности менее 32В, и/или, а служащая для проведения тока утечки разность потенциалов между корпусом и электронным блоком измерительного прибора постоянно удерживается менее 40В, в частности составляет максимум 32В.
25. Измерительный прибор по любому из пп.12-14, характеризующийся тем, что способствующее току утечки электропроводящее соединение между корпусом и электронным блоком измерительного прибора имеет электрическое сопротивление, которое, в частности, более чем на десяток меньше, чем первоначальное сопротивление изоляции между корпусом и электронным блоком измерительного прибора, и/или которое меньше 1 Мом, в частности меньше 500 ком.
26. Измерительный прибор по любому из пп.12-14, характеризующийся тем, что первоначальное сопротивление изоляции между корпусом и электронным блоком измерительного прибора больше 1 Мом, в частности больше, чем 10 Мом.
27. Измерительный прибор по любому из пп.12-14, характеризующийся тем, что схема для измерения тока содержит сенсорное сопротивление (RS), через которое проходит ток утечки, посредством которого в основном пропорциональное току утечки напряжение снижается.
28. Измерительный прибор по любому из пп.12-14, характеризующийся тем, что электронный блок измерительного прибора имеет, по меньшей мере, один компаратор для сравнения зарегистрированного тока утечки, по меньшей мере, с одним, заданным для этого, в частности также изменяемым, предельным значением.
29. Измерительный прибор по любому из пп.12-14, характеризующийся тем, что электронный блок измерительного прибора выполнен с возможностью генерирования сигнала тревоги, базируясь на токе утечки, зарегистрированном посредством схемы измерения тока, причем сигнал тревоги свидетельствует о возникновении обусловленной, в частности, нежелательным образованием электропроводящих отложений внутри корпуса, ошибки в работе измерительного прибора.
30. Измерительный прибор по любому из пп.12-14, характеризующийся тем, что содержит элемент (АЕ) отображения для визуализации генерированных внутри измерительного прибора сообщений об ошибке, в частности, базирующегося на токе утечки, зарегистрированном посредством схемы для измерения тока, генерированного сигнала тревоги.
31. Измерительный прибор по любому из пп.12-14, характеризующийся тем, что электронный блок измерительного прибора выполнен с возможностью генерирования, по меньшей мере, одного, в частности, цифрового параметра (Z) состояния, который выражает собой, в частности, неправильное рабочее состояние измерительного прибора в данный момент времени, базируясь на токе утечки, зарегистрированном посредством схемы для измерения тока.
32. Измерительный прибор по п.31, характеризующийся тем, что электронный блок измерительного прибора выполнен с возможностью генерирования, базируясь на параметре состояния сигнала тревоги, который сигнализирует о возникновении обусловленной, в частности, посредством нежелательного образования электропроводящих отложений внутри корпуса, ошибки в работе измерительного прибора.
33. Измерительный прибор по любому из пп.12-14, характеризующийся тем, что электронный блок измерительного прибора содержит сообщающийся, по меньшей мере, периодически со схемой для измерения тока и/или, по меньшей мере, периодически со схемой источника питания, микрокомпьютер (µС).
34. Измерительный прибор по п.33, характеризующийся тем, что схема для измерения тока содержит, по меньшей мере, один аналого-цифровой преобразователь для оцифровки зарегистрированного тока утечки, который, по меньшей мере, периодически подает на выходе выражающий собой в цифровом виде зарегистрированный ток утечки, цифровой сигнал.
35. Измерительный прибор по п.31, характеризующийся тем, что
- схема для измерения тока содержит, по меньшей мере, один аналого-цифровой преобразователь для оцифровки зарегистрированного тока утечки,
- электронный блок измерительного прибора содержит, по меньшей мере, периодически сообщающийся со схемой для измерения тока через аналого-цифровой преобразователь микрокомпьютер, выполненный с возможностью генерирования, базируясь на зарегистрированном посредством схемы для измерения тока и оцифрованном токе утечки, по меньшей мере, одного параметра состояния.
RU2010149870/28A 2008-05-06 2009-04-23 Способ контроля измерительного прибора и измерительный прибор RU2502961C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102008022373.5 2008-05-06
DE102008022373A DE102008022373A1 (de) 2008-05-06 2008-05-06 Meßgerät sowie Verfahren zum Überwachen eines Meßgeräts
PCT/EP2009/054870 WO2009135764A1 (de) 2008-05-06 2009-04-23 Messgerät sowie verfahren zum überwachen eines messgeräts

Publications (2)

Publication Number Publication Date
RU2010149870A true RU2010149870A (ru) 2012-06-20
RU2502961C2 RU2502961C2 (ru) 2013-12-27

Family

ID=40933808

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2010149870/28A RU2502961C2 (ru) 2008-05-06 2009-04-23 Способ контроля измерительного прибора и измерительный прибор

Country Status (6)

Country Link
US (1) US7886614B2 (ru)
EP (1) EP2274582B1 (ru)
CN (1) CN202119489U (ru)
DE (1) DE102008022373A1 (ru)
RU (1) RU2502961C2 (ru)
WO (1) WO2009135764A1 (ru)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010030924A1 (de) 2010-06-21 2011-12-22 Endress + Hauser Flowtec Ag Elektronik-Gehäuse für ein elektronisches Gerät bzw. damit gebildetes Gerät
DE102011088495A1 (de) 2011-12-14 2013-06-20 Endress + Hauser Flowtec Ag Gehäusedeckel für ein Elektronik-Gehäuse bzw. damit gebildetes Elektronik-Gehäuse
DE102012102979A1 (de) * 2012-04-05 2013-10-24 Endress + Hauser Flowtec Ag Durchflussmessgerät, Messrohr sowie Verfahren zur Herstellung eines Durchflussmessgeräts
US9170140B2 (en) * 2012-05-04 2015-10-27 Cameron International Corporation Ultrasonic flowmeter with internal surface coating and method
NO2948624T3 (ru) * 2013-03-15 2018-03-31
JP6283174B2 (ja) * 2013-06-14 2018-02-21 ローム株式会社 電気回路の評価方法
DE102013107964A1 (de) * 2013-07-03 2015-01-08 Endress + Hauser Conducta Gesellschaft für Mess- und Regeltechnik mbH + Co. KG Messanordnung
DE102013110243A1 (de) 2013-09-17 2015-04-02 Endress + Hauser Flowtec Ag Verfahren zur Überwachung eines Messgerätes der Automatisierungstechnik
DE102014119260A1 (de) 2014-12-19 2016-06-23 Endress + Hauser Flowtec Ag Anschlußvorrichtung für ein Elektronik-Gehäuse sowie Meßwandler bzw. Feldgerät mit einer solchen Anschlußvorrichtung
US9182261B1 (en) * 2014-12-24 2015-11-10 Finetek Co., Ltd. Thermal mass flow meter
DE102015121462A1 (de) 2015-12-09 2017-06-14 Endress + Hauser Flowtec Ag Anschlußvorrichtung zum mechanischen Verbinden eines Elektronik-Gehäuses und eines Meßwandler-Gehäuses, Meßwandler mit einer einer solchen Anschlußvorrichtung bzw. damit gebildetes Feldgerät
CN111742196A (zh) * 2017-12-29 2020-10-02 Abb瑞士股份有限公司 电磁流量计上的夹具
WO2023061718A1 (de) * 2021-10-13 2023-04-20 Endress+Hauser Flowtec Ag Prüfmodul, prüfsystem bzw. prüfanordnung für ein basismodul und/oder eine messsystemelektronik eines modularen vibronischen messsystems
DE102022100349A1 (de) 2022-01-10 2023-07-13 Phoenix Contact Gmbh & Co. Kg Steckverbinder mit einem ersten und einem zweiten Sensorelement zur Erfassung eines Kriechstroms, Anordnung mit zwei Steckverbindern und Verfahren zur Erkennung eines Kriechstroms in einem Steckverbinder
LU501224B1 (de) 2022-01-10 2023-07-10 Phoenix Contact Gmbh & Co Steckverbinder mit einem ersten und einem zweiten Sensorelement zur Erfassung eines Kriechstroms, Anordnung mit zwei Steckverbindern und Verfahren zur Erkennung eines Kriechstroms in einem Steckverbinder

Family Cites Families (110)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3878725A (en) 1973-09-25 1975-04-22 Fischer & Porter Co Cross-flexure pivot for electronic differential pressure transmitter
DE2901516C2 (de) 1979-01-16 1985-01-24 VEGA Grieshaber GmbH & Co, 7620 Wolfach Anordnung zur Erzeugung eines einer Kapazität proportionalen Signals
US4308754A (en) 1979-10-19 1982-01-05 Panametrics, Inc. Ultrasonic flowmeter
DE3127637C2 (de) * 1980-08-01 1988-08-18 Endress U. Hauser Gmbh U. Co, 7867 Maulburg Anordnung zur Feststellung des Füllstands in einem Behälter
DE8216324U1 (de) 1982-06-04 1982-09-23 Endress U. Hauser Gmbh U. Co, 7867 Maulburg Sonde zur kapazitiven messung des fuellstands in einem behaelter, insbesondere von heissem fuellgut
US4468971A (en) 1982-07-16 1984-09-04 Fischer And Porter Company Ultrasonic flowmeter for clean and dirty fluids
US4524610A (en) 1983-09-02 1985-06-25 National Metal And Refining Company, Ltd. In-line vibratory viscometer-densitometer
DE3336991A1 (de) 1983-10-11 1985-05-02 Endress U. Hauser Gmbh U. Co, 7867 Maulburg Vorrichtung zur feststellung und/oder ueberwachung eines vorbestimmten fuellstands in einem behaelter
US4617607A (en) 1985-12-10 1986-10-14 Kavlico Corporation High pressure capacitive transducer
DE3544198A1 (de) 1985-12-13 1987-06-19 Flowtec Ag Wirbelstroemungsmesser
US4656353A (en) 1986-01-21 1987-04-07 The Babcock & Wilcox Company Variable pulse rate led electronics for a fiber optic vortex shedding flowmeter
US4926340A (en) 1986-07-10 1990-05-15 Rosemount Inc. Low power process measurement transmitter
DE3632800A1 (de) 1986-09-26 1988-04-07 Flowtec Ag Nach dem coriolisprinzip arbeitendes massendurchflussmessgeraet
DE3633047A1 (de) 1986-09-29 1988-04-07 Endress Hauser Gmbh Co Fuellstandmessgeraet zur messung des fuellstandes von explosiblen oder aggresiven medien in einem behaelter
AU601501B2 (en) 1986-10-03 1990-09-13 Micro Motion, Inc. Coriolis mass flow metering
WO1988002853A1 (en) 1986-10-09 1988-04-21 Micro Motion, Inc. Apparatus and methods for measuring the density of an unknown fluid using a coriolis meter
GB2203556B (en) 1987-04-06 1991-04-17 Rosemount Ltd Two-wire loop electric circuit arrangement
DE3711754A1 (de) 1987-04-07 1988-10-27 Heinrichs Messgeraete Josef Explosionsgeschuetztes magnetisch-induktives durchflussmessgeraet
EP0378651B1 (de) 1988-07-08 1993-10-13 Endress + Hauser Flowtec AG Verfahren und anordnung zur durchflussmessung mittels ultraschallwellen
CA1311032C (en) 1989-03-31 1992-12-01 Stanley Chlebda Two-wire telemetering system including power regulated transmitting device
US4930356A (en) * 1989-04-20 1990-06-05 The United States Of America As Represented By The United States Department Of Energy Flowmeter for gas-entrained solids flow
DE3933474C2 (de) 1989-10-06 1994-01-27 Endress Hauser Gmbh Co Füllstandsmeßgerät
FR2656705B1 (fr) 1989-12-28 1992-04-17 Telemecanique Detecteur du type deux fils a tension regulee.
DE59007347D1 (de) 1990-05-19 1994-11-03 Flowtec Ag Messerwertaufnehmer für ein Ultraschall-Volumendurchfluss-Messgerät.
US5373745A (en) 1991-02-05 1994-12-20 Direct Measurement Corporation Single path radial mode Coriolis mass flow rate meter
DE59200669D1 (de) * 1991-02-25 1994-12-01 Claas Ohg Vorrichtung zur Messung eines Massestromes mit einem Messkondensator.
DE4121961A1 (de) 1991-06-28 1993-01-07 Siemens Ag Schaltungsanordnung zur energieversorgung von feldgeraeten
US5231884A (en) 1991-07-11 1993-08-03 Micro Motion, Inc. Technique for substantially eliminating temperature induced measurement errors from a coriolis meter
US5207101A (en) 1991-09-06 1993-05-04 Magnetrol International Inc. Two-wire ultrasonic transmitter
EP0631662B1 (en) 1992-03-20 1997-10-22 Micro Motion Incorporated Improved viscometer for sanitary applications
WO1994004019A1 (de) * 1992-08-22 1994-03-03 Claas OHG beschränkt haftende offene Handelsgesellschaft Vorrichtung zur messung eines massestromes
MX9306152A (es) 1992-10-05 1994-05-31 Fisher Controls Int Sistema de comunicacion y metodo.
US5416723A (en) 1993-03-03 1995-05-16 Milltronics Ltd. Loop powered process control transmitter
US5796011A (en) 1993-07-20 1998-08-18 Endress + Hauser Flowtech Ag Coriolis-type mass flow sensor
US5349872A (en) 1993-08-20 1994-09-27 Micro Motion, Inc. Stationary coils for a coriolis effect mass flowmeter
RU2076989C1 (ru) * 1993-09-29 1997-04-10 Государственное малое предприятие "Трубопрогресс" Способ определения координат места повреждения изоляции подземного трубопровода
US5463904A (en) * 1994-02-04 1995-11-07 The Foxboro Company Multimeasurement vortex sensor for a vortex-generating plate
DE4412388A1 (de) 1994-06-08 1995-12-14 Hoenicke Helmut Prof Dipl Ing Leistungssparende Elektronikschaltung zur Stromversorgung elektro-pneumatischer Stellungsregler mit Mikrocontroller
US5535243A (en) 1994-07-13 1996-07-09 Rosemount Inc. Power supply for field mounted transmitter
US5469748A (en) 1994-07-20 1995-11-28 Micro Motion, Inc. Noise reduction filter system for a coriolis flowmeter
DE59409796D1 (de) 1994-11-11 2001-08-09 Endress Hauser Gmbh Co Anordnung zur Linearisierung und Temperaturkompensation von Sensorsignalen
US5706007A (en) 1995-01-03 1998-01-06 Smar Research Corporation Analog current / digital bus protocol converter circuit
DE59509491D1 (de) 1995-05-24 2001-09-13 Endress Hauser Gmbh Co Anordnung zur leitungsgebundenen Energieversorgung eines Signalgebers vom Singnalempfänger
US5672975A (en) 1995-06-07 1997-09-30 Rosemount Inc. Two-wire level transmitter
DE59509980D1 (de) 1995-09-28 2002-02-07 Endress Hauser Gmbh Co Elektronikgehäuse
US5687100A (en) 1996-07-16 1997-11-11 Micro Motion, Inc. Vibrating tube densimeter
EP0849568B1 (de) 1996-12-11 1999-06-02 Endress + Hauser Flowtec AG Coriolis-Massendurchfluss-/-Dichte-Aufnehmer mit einem einzigen geraden Messrohr
DE19723645B4 (de) 1997-06-05 2006-04-13 Endress + Hauser Gmbh + Co. Kg Anordnung zur Signalübertragung zwischen einer Geberstelle und einer Empfangsstelle
US5959372A (en) 1997-07-21 1999-09-28 Emerson Electric Co. Power management circuit
US6311136B1 (en) 1997-11-26 2001-10-30 Invensys Systems, Inc. Digital flowmeter
GB2332527B (en) 1997-12-19 2002-10-30 Abb Kent Taylor Ltd Electromagnetic flowmeter
US6014100A (en) 1998-02-27 2000-01-11 Vega Grieshaber Kg Two-wire RADAR sensor with intermittently operating circuitry components
DK0945714T3 (da) 1998-03-17 2011-01-31 Endress & Hauser Deutschland Ag & Co Kg Elektronisk udstyr til brug i eksplosionsudsatte områder
US6397683B1 (en) 1998-07-22 2002-06-04 Flowtec Ag Clamp-on ultrasonic flowmeter
US6352000B1 (en) 1998-08-12 2002-03-05 Flowtec Ag Vortex flow sensor
EP0984248B1 (de) 1998-09-02 2004-06-09 Endress + Hauser GmbH + Co. KG Messaufnehmer
US6539819B1 (en) 1998-09-02 2003-04-01 Endress + Hauser Gmbh + Co. Sensor with moisture protection
DE19840782C2 (de) 1998-09-08 2001-09-06 Krohne Messtechnik Kg Massendurchflußmeßgerät
US6236322B1 (en) 1998-09-09 2001-05-22 Endress + Hauser Gmbh + Co. Apparatus for establishing and/or monitoring a predetermined filling level in a container
US6285094B1 (en) 1998-09-16 2001-09-04 Otto P. Fest, Sr. Loop-powered current-loop controller and method
WO2000026739A1 (en) 1998-11-03 2000-05-11 Drexelbrook Controls, Inc. High efficiency power supply for a two-wire loop powered device
JP2002529742A (ja) * 1998-11-06 2002-09-10 オンガード システムズ,インク. 電子回路
US6513392B1 (en) 1998-12-08 2003-02-04 Emerson Electric Co. Coriolis mass flow controller
JP3545344B2 (ja) 1998-12-11 2004-07-21 エンドレス ウント ハウザー フローテック アクチエンゲゼルシャフト コリオリ質量流量/比重計
DE19905071A1 (de) 1999-02-08 2000-08-10 Siemens Ag Meßumformer sowie Verfahren zur Diagnose der Versorgung eines Meßumformers
US6640308B1 (en) 1999-04-16 2003-10-28 Invensys Systems, Inc. System and method of powering and communicating field ethernet device for an instrumentation and control using a single pair of powered ethernet wire
EP1058093B1 (de) 1999-05-29 2003-01-29 MTL Instruments GmbH Verfahren und Schaltungsanordnung zur Spannungsversorgung und Funktionsüberwachung zumindest eines Messwertumformers
DE19925943A1 (de) 1999-06-08 2000-12-21 Krohne Messtechnik Kg Schaltungsanordnung zur Meßwerterfassung, -übertragung und -auswertung
US6327915B1 (en) 1999-06-30 2001-12-11 Micro Motion, Inc. Straight tube Coriolis flowmeter
US6487507B1 (en) 1999-10-15 2002-11-26 Micro Motion, Inc. Remote signal conditioner for a Coriolis flowmeter
US6854055B1 (en) 1999-10-18 2005-02-08 Endress + Hauser Flowtec Ag Method and system for switching active configuration memory during on-line operation of programmable field mounted device
DE10059815A1 (de) 2000-12-01 2002-06-13 Grieshaber Vega Kg Elektronische Messvorrichtung zur Erfassung einer Prozessvariablen, insbesondere Radar- oder Ultraschall-Füllstandsmessvorrichtung und Verfahren zum Betreiben einer solchen Messvorrichtung
RU2157424C1 (ru) * 2000-01-31 2000-10-10 Южно-Уральский государственный университет Система катодной защиты и диагностики трубопровода
US6556447B2 (en) 2000-03-01 2003-04-29 Endress + Hauser Flowtec Ag Electronic apparatus with an enclosure
EP1340972B1 (de) 2000-04-27 2019-07-17 Endress + Hauser Flowtec AG Vibrations-Messgerät und Verfahren zum Messen einer Viskosität eines Fluids
US6484591B2 (en) 2000-05-04 2002-11-26 Flowtec Ag Mass flow rate/density sensor with a single curved measuring tube
US6574515B1 (en) 2000-05-12 2003-06-03 Rosemount Inc. Two-wire field-mounted process device
US6711958B2 (en) 2000-05-12 2004-03-30 Endress + Hauser Flowtec Ag Coriolis mass flow rate/density/viscoy sensor with two bent measuring tubes
US6476522B1 (en) 2000-05-31 2002-11-05 Micro Motion, Inc. Method and apparatus to control power drawn by a measurement device
DE10034684A1 (de) 2000-07-17 2002-01-31 Endress Hauser Gmbh Co Meßeinrichtung zur Messung einer Prozeßvariablen
US6480131B1 (en) 2000-08-10 2002-11-12 Rosemount Inc. Multiple die industrial process control transmitter
DE10041166C2 (de) 2000-08-21 2002-11-14 Ifm Electronic Gmbh Elektronisches Schaltgerät
US6535161B1 (en) 2000-11-28 2003-03-18 Mcewan Technologies, Llc Loop powered radar rangefinder
EP1253408A1 (de) 2001-04-24 2002-10-30 Endress + Hauser Flowtec AG Messwandler vom Vibrationstyp
US6666098B2 (en) 2001-05-23 2003-12-23 Endress + Hauser Flowtec Ag Vibratory transducer
WO2002103327A1 (de) 2001-06-19 2002-12-27 Endress + Hauser Flowtec Ag Viskositäts-messgerät
US6662120B2 (en) 2001-06-19 2003-12-09 Endress + Hauser Flowtec Ag Excitation circuits for coriolis mass flowmeters
US7032045B2 (en) 2001-09-18 2006-04-18 Invensys Systems, Inc. Multi-protocol bus device
US6776053B2 (en) 2001-11-26 2004-08-17 Emerson Electric, Inc. Flowmeter for the precision measurement of an ultra-pure material flow
US7211990B2 (en) 2001-11-30 2007-05-01 Invensys Systems, Inc. 4-20 mA interface circuit
DE10200768B4 (de) 2001-12-06 2004-03-11 Krohne Ag Massendurchflussmessgerät und Verfahren zum Betrieb eines Massendurchflussmessgerätes
US6946299B2 (en) * 2002-04-25 2005-09-20 Home Diagnostics, Inc. Systems and methods for blood glucose sensing
DE10235047A1 (de) 2002-07-31 2004-02-12 Endress + Hauser Gmbh + Co. Kg Elektronikgehäuse mit integriertem Wärmeverteiler
DE10256623A1 (de) 2002-12-03 2004-06-24 Krohne Meßtechnik GmbH & Co KG Elektrisches Gerät und Verfahren zum Betreiben eines elektrischen Geräts
DE10315106A1 (de) * 2003-04-02 2004-10-14 Endress + Hauser Flowtec Ag, Reinach Vorrichtung zur Überwachung eines Meßumformers eines Feldgeräts
US7133727B2 (en) 2003-08-01 2006-11-07 Invensys Systems, Inc. System and method for continuous online safety and reliability monitoring
DE10351311B3 (de) 2003-10-31 2005-06-30 Abb Patent Gmbh Coriolis-Massendurchflussmessgerät
DE10356629C5 (de) 2003-12-01 2010-06-02 Krohne Meßtechnik GmbH & Co KG Verfahren zum Betreiben eines elektronischen Meßgeräts
US7073396B2 (en) 2004-05-26 2006-07-11 Krohne Ag Coriolis mass flowmeter
TWI280383B (en) * 2004-06-29 2007-05-01 Japan Ae Power Systems Corp Partial discharge detecting sensor, and detecting device, and gas insulated electric apparatus provided with a partial discharge detecting sensor
DE102004056235A1 (de) 2004-10-29 2006-05-04 Krohne Ag Verfahren zum Betreiben eines Massendurchflußmeßgeräts
DE102005014058B4 (de) 2004-11-23 2010-04-08 Krohne Ag Verfahren zum Betreiben eines Massendurchflußmeßgeräts
DE102005013770B4 (de) 2004-12-01 2007-09-06 Krohne Ag Verfahren zum Betreiben eines Massendurchflussmessgeräts
DE102005032808A1 (de) 2004-12-13 2007-01-18 Krohne Ag Meßgerät
US7200503B2 (en) 2004-12-29 2007-04-03 Endrss + Hauser Flowtec Ag Field device electronics fed by an external electrical energy supply
DE102005012505B4 (de) 2005-02-16 2006-12-07 Krohne Ag Verfahren zum Betreiben eines Massendurchflußmeßgeräts
DE102006009827B4 (de) 2006-03-01 2013-08-08 KROHNE Meßtechnik GmbH & Co. KG Nichteigensicher gespeistes Meßgerät
JP2007263845A (ja) * 2006-03-29 2007-10-11 Yokogawa Electric Corp 流量計測装置及び流量計測方法
CA2650549C (en) 2006-05-01 2013-04-02 Micro Motion, Inc. A balancing structure for a single curved tube coriolis flow meter
JP2007303890A (ja) * 2006-05-09 2007-11-22 Toshiba Corp 絶縁性液体の電荷密度診断装置およびその方法

Also Published As

Publication number Publication date
CN202119489U (zh) 2012-01-18
EP2274582B1 (de) 2021-06-09
DE102008022373A1 (de) 2009-11-12
US7886614B2 (en) 2011-02-15
EP2274582A1 (de) 2011-01-19
WO2009135764A1 (de) 2009-11-12
RU2502961C2 (ru) 2013-12-27
US20090277278A1 (en) 2009-11-12

Similar Documents

Publication Publication Date Title
RU2010149870A (ru) Способ контроля измерительного прибора и измерительный прибор
US8046194B2 (en) Method for predictive maintenance and/or method for determining electrical conductivity in a magneto-inductive flow-measuring device
US7619418B2 (en) Magnetic flowmeter output verification
CN101517420B (zh) 用于腐蚀测量的现场设备
CN106858724B (zh) 电子吸烟器的温度控制装置
JP2018105850A5 (ja) 非接触測定システムおよび操作方法
CN102472779B (zh) 混合模式磁通门电流换能器
EP2307880B1 (en) Method and device for detecting failures in inductive conductivity measurements of a fluid medium
SE447305B (sv) Anordning for faststellande av pafyllningsnivan i en behallare
KR19980086710A (ko) 회로내의 저항 및 전류측정용 회로
GB2348964A (en) Testing of an electromagnetic flowmeter by monitoring the current rise time in a coil
US9507006B2 (en) Method for calibrating a current transducer of the rogowski type
JP2012122909A (ja) 静電容量型水分計および水位計
CN106164695B (zh) 具有故障检测机构的电力计以及故障检测方法
US7445703B2 (en) Water conductivity monitoring circuit for use with a steam generator
CN103983295A (zh) 基于信号和环境激励的传感器故障诊断系统和诊断方法
RU2529598C1 (ru) Электромагнитный расходомер и способ контроля измерения расхода текучих сред
JP4424511B2 (ja) 電磁流量計及び電磁流量計のシステム
Xu et al. Loss current studies of partial discharge activity
US20140218005A1 (en) Anode depletion sensor hardware circuit
US20140074303A1 (en) Two-wire transmitter terminal power diagnostics
CN108981772B (zh) 一种用于计量表的非接触式无磁防拆检测方法
CN109884478A (zh) 一种带电作业绝缘工器具绝缘性能检测装置及方法
CN209495753U (zh) 一种时域反射料位计
RU2620194C1 (ru) Измерительное устройство электромагнитного расходомера