RU2499627C2 - Способ проведения процесса абсорбции летучего вещества жидким абсорбентом - Google Patents
Способ проведения процесса абсорбции летучего вещества жидким абсорбентом Download PDFInfo
- Publication number
- RU2499627C2 RU2499627C2 RU2010136666/05A RU2010136666A RU2499627C2 RU 2499627 C2 RU2499627 C2 RU 2499627C2 RU 2010136666/05 A RU2010136666/05 A RU 2010136666/05A RU 2010136666 A RU2010136666 A RU 2010136666A RU 2499627 C2 RU2499627 C2 RU 2499627C2
- Authority
- RU
- Russia
- Prior art keywords
- absorbent
- absorption
- volatile substance
- gas phase
- ionic liquid
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D3/00—Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
- B01D3/34—Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping with one or more auxiliary substances
- B01D3/343—Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping with one or more auxiliary substances the substance being a gas
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K5/00—Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
- C09K5/02—Materials undergoing a change of physical state when used
- C09K5/04—Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
- C09K5/047—Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for absorption-type refrigeration systems
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Combustion & Propulsion (AREA)
- Thermal Sciences (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Gas Separation By Absorption (AREA)
- Treating Waste Gases (AREA)
- Sorption Type Refrigeration Machines (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
Изобретение относится к способу проведения процесса абсорбции летучего вещества, представляющего собой воду, аммиак или диоксид углерода, из газовой фазы жидким абсорбентом, содержащим ионную жидкость и способствующую смачиванию добавку, путем введения газовой фазы в контакт с пленкой абсорбента. Способствующая смачиванию добавка выбрана из группы, включающей неионогенные поверхностно-активные вещества (ПАВ), амфотерные ПАВ и катионактивные ПАВ. Изобретение также относится к абсорбционной холодильной машине, имеющей абсорбер, десорбер, испаритель, конденсатор и рабочее тело из абсорбента и летучего вещества, при этом абсорбер имеет устройство для введения содержащей летучее вещество газовой фазы в контакт с пленкой абсорбента. Изобретение также относится к применению смеси из абсорбента, содержащего способствующую смачиванию добавку и ионную жидкость, и летучего вещества в качестве рабочего тела в абсорбционной холодильной машине. Способ позволяет ускорить при абсорбции массопередачу и повысить ее стабильность во времени, а также позволяет бесперебойно проводить абсорбцию в аппаратах меньших размеров. 3 н. и 11 з.п. ф-лы, 2 табл., 8 пр.
Description
Настоящее изобретение относится к способу проведения процесса абсорбции летучего вещества из газовой фазы жидким абсорбентом, содержащим ионную жидкость и способствующую смачиванию добавку, путем введения газовой фазы в контакт с пленкой абсорбента.
В многочисленных технических процессах используется абсорбция летучих веществ из газовой фазы жидким абсорбентом. Подобная абсорбция применяется во многих методах разделения, таких как процессы экстрактивной дистилляции или ректификации, в которых экстракцию проводят в ректификационной колонне, или процессы газоочистки, в которых абсорбция происходит в газопромывателе и в качестве примера которых можно назвать отделение диоксида углерода от газообразных продуктов сгорания. Помимо этого подобная абсорбция используется также в абсорбционных холодильных машинах.
В таких абсорбционных процессах предпочтительно использовать абсорбент, обладающий лишь низким давлением пара и практически не попадающий в газовую фазу. Поэтому уже было предложено использовать в качестве абсорбента ионную жидкость, поскольку ионные жидкости обладают пренебрежимо низким давлением пара.
В WO 02/074718 описано применение ионных жидкостей в качестве экстрагента в процессах экстрактивной ректификации.
Применение ионных жидкостей в качестве абсорбента диоксида углерода известно из статьи авторов J.F.Brennecke и E.J.Maginn, опубликованной в AIChE Journal, 47, 2001, сс.2384-2389.
В WO 2005/113702, WO 2006/084262 и WO 2006/134015 описано применение ионных жидкостей в качестве абсорбента в абсорбционных холодильных машинах.
Авторами настоящего изобретения было установлено, что для известных из уровня техники способов абсорбции, предполагающих использование ионной жидкости в качестве абсорбента, при проведении абсорбционного процесса в аппарате, в котором газовую фазу для абсорбции вводят в контакт с пленкой абсорбента, характерна лишь неудовлетворительная и часто подверженная также колебаниям во времени массопередача.
Объектом изобретения является способ проведения процесса абсорбции летучего вещества из газовой фазы жидким абсорбентом путем введения газовой фазы в контакт с пленкой абсорбента, заключающийся в том, что в качестве абсорбента используют таковой, содержащий ионную жидкость и способствующую смачиванию добавку.
Предлагаемый в изобретении способ позволяет по сравнению с известными из уровня техники способами ускорить при абсорбции массопередачу и повысить ее стабильность во времени, а также позволяет бесперебойно проводить абсорбцию в аппаратах меньших размеров.
В соответствии с предлагаемым в изобретении способом абсорбент содержит по меньшей мере одну ионную жидкость и по меньшей мере одну способствующую смачиванию добавку. В предпочтительном варианте абсорбент содержит одну или несколько ионных жидкостей в общем количестве от 20 до 99,9 мас.% и одну или несколько способствующих смачиванию добавок в общем количестве от 0,01 до 10 мас.%. Под ионной жидкостью согласно изобретению подразумевается соль или смесь солей из анионов и катионов, при этом такая соль, соответственно смесь солей имеет температуру плавления ниже 100°C.
В предпочтительном варианте ионная жидкость состоит из одной или нескольких солей органических катионов с органическими или неорганическими анионами. Особенно предпочтительны смеси из нескольких солей с разными органическими катионами и одним и тем же анионом.
В качестве органических катионов пригодны прежде всего катионы общих формул (I)-(V)
R1R2R3R4N+ | (I), |
R1R2N+=CR3R4 | (II), |
R1R2R3R4P+ | (III), |
R1R2P+=CR3R4 | (IV), |
R1R2R3S+ | (v), |
в которых
R1, R2, R3, R4 имеют одинаковые или разные значения и представляют собой водород, линейный или разветвленный алифатический или олефиновый углеводородный остаток с 1-30 атомами углерода, циклоалифатический или циклоолефиновый углеводородный остаток с 5-40 атомами углерода, ароматический углеводородный остаток с 6-40 атомами углерода, алкиларильный остаток с 7-40 атомами углерода, прерванный одной или несколькими группами -О-, -NH-, -NR'-, -О-С(О)-, -(О)С-О-, -NH-C(O)-, -(O)C-NH-, -(CH3)N-C(O)-, -(O)C-N(CH3)-, -S(O2)-O-, -O-S(O2)-, -S(O2)-NH-, -NH-S(O2)-, -S(O2)-N(CH3)- или -N(CH3)-S(O2)- линейный или разветвленный алифатический или олефиновый углеводородный остаток с 2-30 атомами углерода, линейный или разветвленный алифатический или олефиновый углеводородный остаток с 1-30 атомами углерода и с концевой функциональной группой ОН, OR', NH2, N(H)R' или N(R')2 или остаток имеющего блочную или статистическую структуру простого полиэфира формулы -(R5-O)n-R6,
R' представляет собой алифатический или олефиновый углеводородный остаток с 1-30 атомами углерода,
R5 представляет собой линейный или разветвленный углеводородный остаток с 2-4 атомами углерода,
n обозначает число от 1 до 200, предпочтительно от 2 до 60,
R6 представляет собой водород, линейный или разветвленный алифатический или олефиновый углеводородный остаток с 1-30 атомами углерода, циклоалифатический или циклоолефиновый углеводородный остаток с 5-40 атомами углерода, ароматический углеводородный остаток с 6-40 атомами углерода, алкиларильный остаток с 7-40 атомами углерода или остаток -C(O)-R7,
R7 представляет собой линейный или разветвленный алифатический или олефиновый углеводородный остаток с 1-30 атомами углерода, циклоалифатический или циклоолефиновый углеводородный остаток с 5-40 атомами углерода, ароматический углеводородный остаток с 6-40 атомами углерода или алкиларильный остаток с 7-40 атомами углерода,
при этом по меньшей мере один из, а предпочтительно каждый из остатков R1, R2, R3 и R4 отличен от водорода.
Равным образом пригодны катионы формул (I)-(V), в которых остатки R1 и R совместно образуют 4-10-членное, предпочтительно 5- или 6-членное, кольцо.
К пригодным относятся также гетероароматические катионы, содержащие в кольце по меньшей мере один четвертичный атом азота, несущий остаток R1 с указанными выше для него значениями, предпочтительно замещенные по атому азота производные пиррола, пиразола, имидазола, оксазола, изоксазола, тиазола, изотиазола, пиридина, пиримидина, пиразина, индола, хинолина, изохинолина, циннолина, хиноксалина или фталазина.
В качестве неорганических анионов пригодны прежде всего тетрафторборат, гсксафторфосфат, нитрат, сульфат, гидросульфат, фосфат, гидрофосфат, дигидрофосфат, гидроксид, карбонат, гидрокарбонат и галогениды, предпочтительно хлорид.
В качестве органических анионов пригодны прежде всего RaOSO3 -, RaSO3 -, RaOPO3 2-, (RaO)2PO2 - , RaPO3 2-, RaCOO-, RaO-, (RaCO)2N-, (RaSO2)2N- и NCN-, где Ra представляет собой линейный или разветвленный алифатический углеводородный остаток с 1-30 атомами углерода, циклоалифатический углеводородный остаток с 5-40 атомами углерода, ароматический углеводородный остаток с 6-40 атомами углерода, алкиларильный остаток с 7-40 атомами углерода или линейный или разветвленный перфторалкильный остаток с 1-30 атомами углерода.
В одном из предпочтительных вариантов ионная жидкость состоит из одной или нескольких солей 1,3-диалкилимидазолия, где алкильные группы в особенно предпочтительном варианте независимо друг от друга выбраны из метила, этила, н-пропила, н-бутила и н-гексила. Наиболее предпочтительные ионные жидкости представляют собой соли одного или нескольких таких катионов, как 1,3-диметилимидазолий, 1-этил-3-метилимидазолий, 1-(н-бутил)-3-метилимидазолий, 1-(н-бутил)-3-этилимидазолий, 1-(н-гексил)-3-метилимидазолий, 1-(н-гексил)-3-этилимидазолий и 1-(н-гексил)-3-бутилимидазолий, с одним из таких анионов, как хлорид, ацетат, метилсульфат, этилсульфат, диметилфосфат и метилсульфонат.
В еще одном предпочтительном варианте ионная жидкость состоит из одной или нескольких четвертичных аммониевых солей с одновалентным анионом и катионами общей формулы (I), в которой
R1 представляет собой алкильный остаток с 1-20 атомами углерода,
R2 представляет собой алкильный остаток с 1-4 атомами углерода,
R3 представляет собой остаток (CH2CHRO)n-H, где n обозначает число от 1 до 200, a R обозначает Н или СН3, и
R4 представляет собой алкильный остаток с 1-4 атомами углерода или остаток (CH2CHRO)n-H, где n обозначает число от 1 до 200, a R обозначает Н или СН3.
Особенно предпочтителен в качестве аниона хлорид, ацетат, метилсульфат, этилсульфат, диметилфосфат или метилсульфонат.
Способы получения ионных жидкостей хорошо известны из уровня техники.
Способствующая смачиванию добавка в предпочтительном варианте состоит из одного или нескольких поверхностно-активных веществ (ПАВ) из группы неионогенных ПАВ, амфотерных ПАВ и катионактивных ПАВ.
К пригодным для применения неионогенным ПАВ относятся алкиламиналкоксилаты, амидоамины, алканоламиды, алкилфосфиноксиды, алкил-N-глюкамиды, алкилглюкозиды, желчные кислоты, алкилалкоксилаты, сорбитаны, этоксилированные сорбитаны, жирные спирты, этоксилированные жирные кислоты, этоксилированные сложные эфиры и полиэфиросилоксаны.
К пригодным для применения амфотерным ПАВ относятся бетаины, алкилглицины, султаины (Sultaine), амфопропионаты, амфоацетаты, третичные аминоксиды и силикобетаины (Silicobetaine).
К пригодным для применения катионактивным ПАВ относятся четвертичные аммониевые соли с одним или двумя заместителями с 8-20 атомами углерода и с температурой плавления выше 100°C, прежде всего соответствующие тетраалкиламмониевые соли, алкилпиридиниевые соли, кватернизованные сложные эфиры, кватернизованные диамидоамины, четвертичные имидазолиниевые соли, четвертичные соли алкоксиалкиламмония, четвертичные соли бензиламмония и кватернизованные кремнийорганические соединения.
В одном из предпочтительных вариантов способствующая смачиванию добавка состоит из одного или нескольких неионогенных ПАВ общей формулы R(OCH2CHR')mOH, где m обозначает число от 4 до 40, R представляет собой алкильный остаток с 8-20 атомами углерода, алкиларильный остаток с 8-20 атомами углерода или полиоксипропиленовый остаток с 3-40 пропиленоксидными звеньями, a R' представляет собой метил или предпочтительно водород.
В еще одном предпочтительном варианте способствующая смачиванию добавка представляет собой сополимер простого эфира и силоксана, содержащий более 10 мас.% [Si(CH3)2O]-звеньев и более 10 мас.% [CH2CHR-O]-звеньев, где R представляет собой водород или метил. Особенно предпочтительны сополимеры простого эфира и силоксана общих формул (VI)-(VIII)
(CH3)3Si-O-[SiR1(CH3)-O]n-Si(CH3)3 | (VI), |
R2O-Ap-[B-A]m-Aq-R2 | (VII), |
R2O-[A-Z]p-[B-Si(CH3)2-Z-O-A-Z]m-B-Si(CH3)2[Z-O-A]qO1-qR2 | (VIII), |
в которых
А представляет собой двухвалентный остаток формулы - [CH2CHR3-O]r-,
В представляет собой двухвалентный остаток формулы - [Si(CH3)2-O]5-,
Z представляет собой двухвалентный линейный или разветвленный алкиленовый остаток с 2-20 атомами углерода, предпочтительно -(CH2)3-,
n обозначает число от 1 до 30,
m обозначает число от 2 до 100,
р, q обозначают число 0 или 1,
r обозначает число от 2 до 100,
s обозначает число от 2 до 100,
от 1 до 5 остатков R1 представляют собой остатки общей формулы - Z-O-A-R2, а остальные остатки R1 представляют собой метил,
R2 представляет собой водород, алифатический или олефиновый алкильный остаток или ацильный остаток с 1-20 атомами углерода и
R3 представляет собой водород или метил.
Способствующие смачиванию добавки уже известны из уровня техники в качестве добавок к водным растворам, и их можно получать известными из уровня техники способами.
Ионную жидкость и способствующую смачиванию добавку, а также их используемое количество предпочтительно выбирать с таким расчетом, чтобы абсорбент образовывал с поверхностью стали марки S235JRG2 на границе раздела с воздухом краевой угол менее 140°. В особенно предпочтительном варианте абсорбент характеризуется краевым углом менее 130°, прежде всего менее 120°. Для определения краевого угла можно использовать имеющиеся в продаже измерительные приборы. Так, например, для определения краевого угла можно использовать систему анализа контура капли типа DSA 100/DSA 100L либо универсальный прибор для измерения краевого угла типа Universal Surface Tester GH100, выпускаемые фирмой KRUSS GmbH.
В предпочтительном варианте абсорбент имеет определяемую в соответствии со стандартом DIN 53019 вязкость при 20°C от 1 до 15000 мПа·с, особенно предпочтительно от 2 до 3000 мПа·с, прежде всего от 5 до 1000 мПа·с.
В соответствии с предлагаемым в изобретении способом газовую фазу, содержащую летучее вещество, вводят в контакт с пленкой абсорбента. Наряду с летучим веществом газовая фаза может при этом содержать и другие вещества, которые не абсорбируются. Газовая фаза равным образом может представлять собой паровую фазу, состоящую в основном только из пара летучего вещества.
При осуществлении предлагаемого в изобретении способа пленку абсорбента можно создавать на любой пригодной для этого поверхности, например, на поверхностях из металла, стекла, эмали или полимеров, таких как полиэтилен. Процесс абсорбции предпочтительно проводить с образованием пленки абсорбента на металлической поверхности, поскольку в этом случае удается повысить эффективность выделяющегося при абсорбции тепла, а используемый для абсорбции аппарат можно выполнить еще меньших размеров.
В одном из предпочтительных вариантов осуществления предлагаемого в изобретении способа пленку абсорбента создают в аппарате с падающей пленкой. Пригодные для реализации этого варианта аппараты известны как испарители или выпарные аппараты с падающей пленкой из области испарительной или выпарной техники.
В еще одном предпочтительном варианте осуществления предлагаемого в изобретении способа пленку абсорбента создают на регулярной (структурированной) насадке. Регулярные насадки известны из области абсорбционной и дистилляционной техники. Регулярная насадка может быть при этом выполнена из любого пригодного для этого материала, такого как металл, керамика или пластмасса. Преимущество, связанное с созданием пленки абсорбента на регулярной насадке, состоит в возможности проведения процесса абсорбции в аппаратах меньшего объема. Предпочтительно использовать регулярные насадки из листового металла либо металлической сетки или ткани, применение которых позволяет выполнить используемый для абсорбции аппарат особо компактным и легким. Вместо регулярных насадок, однако, возможно также применение нерегулярных насадок в виде насыпных слоев из насадочных тел.
При осуществлении предлагаемого в изобретении способа образовавшуюся при абсорбции смесь из летучего вещества и абсорбента затем в ходе последующего процесса десорбции, проводимого при температуре выше температуры, при которой проводят процесс абсорбции, и/или при давлении ниже давления, при котором проводят процесс абсорбции, в предпочтительном варианте вводят в контакт с газовой фазой и таким путем десорбируют по меньшей мере часть летучего вещества из содержащей его смеси, а оставшийся после десорбции летучего вещества абсорбент возвращают в процесс абсорбции. Благодаря этому абсорбент можно многократно использовать для абсорбции.
В варианте с десорбцией летучего вещества ее при осуществлении предлагаемого в изобретении способа предпочтительно проводить с использованием мембраны, позволяющей отделять смесь из летучего вещества и абсорбента от газовой фазы, в которую десорбируется летучее вещество. В этом варианте можно также использовать способствующие смачиванию добавки, интенсифицирующие вспенивание абсорбента, благодаря чему предотвращается пенообразование в процессе десорбции.
В одном из предпочтительных вариантов осуществления предлагаемого в изобретении способа газовая фаза представляет собой азеотропную смесь из двух или более летучих веществ со сходными температурами кипения или азеотропную смесь из двух или более летучих веществ с преимущественной абсорбцией по меньшей мере одного из них. Этот вариант позволяет в процессе дистилляции удалять путем мокрой газоочистки полученного в парообразном виде дистиллята содержащуюся в нем трудно отделяемую дистилляцией примесь.
В другом варианте процесс абсорбции проводят в ректификационной колонне, в которую абсорбент предпочтительно при этом подавать вблизи ее верха и в которой он тем самым действует аналогично экстрагенту.
В еще одном варианте газовая фаза представляет собой газообразные продукты сгорания, а летучим веществом является диоксид углерода, каковой диоксид углерода тем самым отделяют предлагаемым в изобретении способом от газообразных продуктов сгорания.
В одном из предпочтительных вариантов осуществления предлагаемого в изобретении способа с дополнительным процессом десорбции ее проводят при давлении выше давления, при котором проводят процесс абсорбции, десорбированное летучее вещество конденсируют при давлении, используемом для десорбции, полученный при этом конденсат затем испаряют при давлении, которое ниже давления, при котором проводят процесс десорбции, и по меньшей мере не ниже давления, при которой проводят процесс абсорбции, и полученную при испарении конденсата газовую фазу вводят в контакт с пленкой абсорбента. В этом варианте летучим веществом предпочтительно является вода, аммиак или диоксид углерода. В предпочтительном варианте газовая фаза содержит в основном только летучее вещество и не содержит никакие другие вещества, которые не абсорбируются абсорбентом.
В этом варианте предлагаемый в изобретении способ пригоден для его реализации в абсорбционной холодильной машине. В абсорбционной холодильной машине для реализации предлагаемого в изобретении способа по этому варианту его осуществления имеются абсорбер, десорбер, испаритель, конденсатор и рабочее тело из абсорбента и летучего вещества, при этом абсорбер имеет устройство для введения содержащей летучее вещество газовой фазы в контакт с пленкой абсорбента, который содержит ионную жидкость и способствующую смачиванию добавку. Реализация предлагаемого в изобретении способа в таких абсорбционных холодильных машинах позволяет повысить компактность их конструкции и увеличить их коэффициент полезного действия по сравнению с известными из уровня техники абсорбционными холодильными машинами. Помимо этого такие холодильные машины надежнее в работе, а также не чувствительны к сотрясениям и вибрации и поэтому в большей степени пригодны для применения на транспортных средствах, например, на автомобилях и судах.
В предпочтительном варианте в абсорбционной холодильной машине используют рабочее тело, представляющее собой смесь из абсорбента и летучего вещества, при этом абсорбент содержит ионную жидкость и способствующую смачиванию добавку, а летучим веществом является вода, аммиак или диоксид углерода.
Примеры
В ходе экспериментов приготавливали и испытывали несколько пригодных для применения в абсорбционной холодильной машины рабочих тел соответствующего настоящему изобретению состава. Конкретный состав, а также свойства рабочих тел представлены ниже в таблицах 1 и 2. Ионные жидкости EMIM Chlorid (хлорид 1-этил-3-метилимидазолия), EMIM Acetat (ацетат 1-этил-3-метилимидазолия), MMIM DMP (диметилфосфат 1-метил-3-метилимидазолия) и TEGO® IL 2MS (метансульфонат бис-(гидроксиэтил)диметиламмония) под этими названиями выпускаются и поставляются на рынок фирмой Evonik Goldschmidt GmbH. Ингибитор коррозии REWOCOROS® АС 101 и способствующая смачиванию добавка TEGOPREN® 5840 (модифицированный простым полиэфиром полисилоксан) выпускаются и поставляются на рынок фирмой Evonik Goldschmidt GmbH. Рабочие тела, представленные в таблицах 1 и 2, приготавливали путем смешения между собой соответствующей ионной жидкости, воды в качестве хладагента, ингибитора коррозии REWOCOROS АС 101 и способствующей смачиванию добавки TEGOPREN® 5840 в указанных в таблицах 1 и 2 относительных количествах при 25°C. Краевой угол на поверхности стали марки S235JRG2 определяли при 25°C, используя систему анализа контура капли типа DSA 100/DSA 100L.
Таблица 1 | ||||
Пример | 1* | 2 | 3* | 4 |
Ионная жидкость | EMIM Acetat |
EMIM Acetat | EMIM Chlorid | EMIM Chlorid |
Ионная жидкость в мас.% | 90 | 90 | 90 | 90 |
Вода в мас.% | 10,0 | 9,4 | 10,0 | 9,4 |
REWOCOROS® АС 101 в мас.% | 0 | 0,5 | 0 | 0,5 |
TEGOPREN® 5840 в мас.% | 0 | 0,1 | 0 | 0,1 |
Краевой угол | 111 | 105 | 117 | 74 |
Парциальное давление паров воды при 35°C в мбарах | 4,4 | 4,5 | 3,9 | 4,0 |
*Примечание: не соответствует изобретению. |
Таблица 2 | ||||
Пример | 5* | 6 | 7* | 8 |
Ионная жидкость | MMIM DMP | MMIM DMP | TEGO® IL 2MS | TEGO® IL 2MS |
Ионная жидкость в мас.% | 90 | 90 | 90 | 90 |
Вода в мас.% | 10,0 | 9,4 | 10,0 | 9,4 |
REWOCOROS® АС 101 в мас.% | 0 | 0,5 | 0 | 0,5 |
TEGOPREN® 5840 в мас.% | 0 | 0,1 | 0 | 0,1 |
Краевой угол | 96 | 60 | 108 | 104 |
Парциальное давление паров воды при 35°C в мбарах | 5,1 | 5,3 | 15,2 | 15,4 |
*Примечание: не соответствует изобретению. |
Claims (14)
1. Способ проведения процесса абсорбции летучего вещества, представляющего собой воду, аммиак или диоксид углерода, из газовой фазы жидким абсорбентом путем введения газовой фазы к контакт с пленкой абсорбента, отличающийся тем, что используют абсорбент, содержащий способствующую смачиванию добавку из группы, включающей неионогенные поверхностно-активные вещества (ПАВ), амфотерные ПАВ и катионактивные ПАВ, и ионную жидкость, при этом образовавшуюся при абсорбции смесь из летучего вещества и абсорбента затем в ходе последующего процесса десорбции, проводимого при температуре выше температуры, при которой проводят процесс абсорбции, и при давлении выше давления, при котором проводят процесс абсорбции, вводят в контакт с газовой фазой и таким путем десорбируют, по меньшей мере, часть летучего вещества из содержащей его смеси, а оставшийся после десорбции летучего вещества абсорбент возвращают в процесс абсорбции, десорбированное летучее вещество конденсируют при давлении, используемом для десорбции, полученный при этом конденсат затем испаряют при давлении, которое ниже давления, при котором проводят процесс десорбции, и, по меньшей мере, не ниже давления, при котором проводят процесс абсорбции, и полученную при испарении конденсата газовую фазу вводят в контакт с пленкой абсорбента.
2. Способ по п.1, отличающийся тем, что десорбцию проводят с использованием мембраны, отделяющей смесь из летучего вещества и абсорбента от газовой фазы, в которую десорбируется летучее вещество.
3. Способ по п.1 или 2, отличающийся тем, что используют абсорбент, содержащий одну или несколько ионных жидкостей в общем количестве от 20 до 99,9 мас.% и одну или несколько способствующих смачиванию добавок в общем количестве от 0,01 до 10 мас.%.
4. Способ по п.1 или 2, отличающийся тем, что используют абсорбент, который образует с поверхностью стали марки S235JRG2 на границе раздела с воздухом краевой угол менее 140°.
5. Способ по п.1 или 2, отличающийся тем, что используют ионную жидкость, состоящую из солей органических катионов с органическими или неорганическими анионами.
6. Способ по п.1 или 2, отличающийся тем, что используют ионную жидкость, состоящую из одной или нескольких солей 1,3-диалкилимидазолия.
7. Способ по п.1 или 2, отличающийся тем, что используют ионную жидкость, состоящую из одной или нескольких четвертичных аммониевых солей общей формулы R1R2R3R4N+А-, в которой
R1 представляет собой алкильный остаток с 1-20 атомами углерода,
R2 представляет собой алкильный остаток с 1-4 атомами углерода,
R3 представляет собой остаток (СH2СНRО)n-H, где n обозначает число от 1 до 200, а R обозначает H или СН3,
R4 представляет собой алкильный остаток с 1-4 атомами углерода или остаток (CH2CHRO)n-H, где n обозначает число от 1 до 200, а R обозначает H или СН3, и
А- представляет собой одновалентный анион.
R1 представляет собой алкильный остаток с 1-20 атомами углерода,
R2 представляет собой алкильный остаток с 1-4 атомами углерода,
R3 представляет собой остаток (СH2СНRО)n-H, где n обозначает число от 1 до 200, а R обозначает H или СН3,
R4 представляет собой алкильный остаток с 1-4 атомами углерода или остаток (CH2CHRO)n-H, где n обозначает число от 1 до 200, а R обозначает H или СН3, и
А- представляет собой одновалентный анион.
8. Способ по п.1 или 2, отличающийся тем, что используют способствующую смачиванию добавку, состоящую из одного или нескольких неионогенных ПАВ общей формулы R(OCH2CH2)mOH, где m обозначает число от 4 до 40, R представляет собой алкильный остаток с 8-20 атомами углерода, алкиларильный остаток с 8-20 атомами углерода или полиоксипропиленовый остаток с 3-40 пропиленоксидными звеньями.
9. Способ по п.1 или 2, отличающийся тем, что используют способствующую смачиванию добавку, представляющую собой сополимер простого эфира и силоксана, содержащий более 10 мас.% [Si(CH3)2O]-звеньев и более 10 мас.% [СH2СНR-О]-звеньев, где R представляет собой водород или метил.
10. Способ по п.1 или 2, отличающийся тем, что процесс абсорбции проводят с использованием пленки абсорбента на металлической поверхности.
11. Способ по п.1 или 2, отличающийся тем, что пленку абсорбента создают в аппарате с падающей пленкой.
12. Способ по п.1 или 2, отличающийся тем, что пленку абсорбента создают на регулярной насадке, предпочтительно на регулярной насадке из листового металла, либо металлической сетки, или ткани.
13. Абсорбционная холодильная машина для осуществления способа по одному из предыдущих пунктов, имеющая абсорбер, десорбер, испаритель, конденсатор и рабочее тело из абсорбента и летучего вещества, представляющего собой воду, аммиак или диоксид углерода, при этом абсорбер имеет устройство для введения содержащей летучее вещество газовой фазы в контакт с пленкой абсорбента, отличающаяся тем, что абсорбент содержит способствующую смачиванию добавку из группы, включающей неионогенные поверхностно-активные вещества (ПАВ), амфотерные ПАВ и катионактивные ПАВ, и ионную жидкость.
14. Применение смеси из
а) абсорбента, содержащего способствующую смачиванию добавку из группы, включающей неионогенные поверхностно-активные вещества (ПАВ), амфотерные ПАВ и катионактивные ПАВ, и ионную жидкость, и
б) летучего вещества, выбранного из воды, аммиака и диоксида углерода, в качестве рабочего тела в абсорбционной холодильной машине.
а) абсорбента, содержащего способствующую смачиванию добавку из группы, включающей неионогенные поверхностно-активные вещества (ПАВ), амфотерные ПАВ и катионактивные ПАВ, и ионную жидкость, и
б) летучего вещества, выбранного из воды, аммиака и диоксида углерода, в качестве рабочего тела в абсорбционной холодильной машине.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP08101296.5 | 2008-02-05 | ||
EP08101296A EP2087930A1 (de) | 2008-02-05 | 2008-02-05 | Verfahren zur Absorption eines flüchtigen Stoffes in einem flüssigen Absorptionsmittel |
PCT/EP2008/066684 WO2009097930A2 (de) | 2008-02-05 | 2008-12-03 | Verfahren zur absorption eines flüchtigen stoffes in einem flüssigen absorptionsmittel |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2010136666A RU2010136666A (ru) | 2012-06-27 |
RU2499627C2 true RU2499627C2 (ru) | 2013-11-27 |
Family
ID=39885116
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2010136666/05A RU2499627C2 (ru) | 2008-02-05 | 2008-12-03 | Способ проведения процесса абсорбции летучего вещества жидким абсорбентом |
Country Status (10)
Country | Link |
---|---|
US (1) | US8932478B2 (ru) |
EP (1) | EP2087930A1 (ru) |
JP (1) | JP2011510811A (ru) |
KR (1) | KR101449784B1 (ru) |
CN (1) | CN101939067B (ru) |
CA (1) | CA2714427A1 (ru) |
HK (1) | HK1152673A1 (ru) |
IL (1) | IL207379A0 (ru) |
RU (1) | RU2499627C2 (ru) |
WO (1) | WO2009097930A2 (ru) |
Families Citing this family (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102005028451B4 (de) | 2005-06-17 | 2017-02-16 | Evonik Degussa Gmbh | Verfahren zum Transport von Wärme |
EP2088389B1 (de) * | 2008-02-05 | 2017-05-10 | Evonik Degussa GmbH | Absorptionskältemaschine |
DE102009000543A1 (de) | 2009-02-02 | 2010-08-12 | Evonik Degussa Gmbh | Verfahren, Absorptionsmedien und Vorrichtung zur Absorption von CO2 aus Gasmischungen |
DE102009047564A1 (de) | 2009-12-07 | 2011-06-09 | Evonik Degussa Gmbh | Arbeitsmedium für eine Absorptionskältemaschine |
BR112013007941A2 (pt) * | 2010-11-08 | 2016-06-14 | Evonik Degussa Gmbh | meio de trabalho para bombas de absorção de calor |
DE102011077377A1 (de) | 2010-11-12 | 2012-05-16 | Evonik Degussa Gmbh | Verfahren zur Absorption von sauren Gasen aus Gasmischungen |
CN102580462B (zh) * | 2011-01-12 | 2014-11-05 | 北京化工大学 | 一种二氧化碳捕集分离的新方法 |
CN102580342A (zh) * | 2011-01-14 | 2012-07-18 | 北京化工大学 | 一种离子液体再生及吸收物分离回收的工艺方法 |
JP5693368B2 (ja) * | 2011-05-13 | 2015-04-01 | 日立造船株式会社 | 二酸化炭素回収方法における二酸化炭素吸収液の再生方法 |
JP5877961B2 (ja) * | 2011-05-31 | 2016-03-08 | Jx日鉱日石エネルギー株式会社 | 気体分離ゲル膜 |
EP2720780B1 (en) * | 2011-06-14 | 2016-05-25 | VTU Holding GmbH | Process for separating co2 from a gaseous stream |
CN102294169B (zh) * | 2011-06-17 | 2013-07-03 | 沈阳工业大学 | 一种利用水包油离子液体乳化液强化二氧化碳吸收的方法 |
EP2780098A1 (de) | 2011-11-14 | 2014-09-24 | Evonik Degussa GmbH | Verfahren und vorrichtung zur abtrennung von sauren gasen aus einer gasmischung |
DE102012200907A1 (de) | 2012-01-23 | 2013-07-25 | Evonik Industries Ag | Verfahren und Absorptionsmedium zur Absorption von CO2 aus einer Gasmischung |
DE102012207509A1 (de) | 2012-05-07 | 2013-11-07 | Evonik Degussa Gmbh | Verfahren zur Absorption von CO2 aus einer Gasmischung |
NL2009310C2 (en) * | 2012-08-10 | 2014-02-18 | Stichting Energie | Tar-scrubbing liquid. |
CN104755904B (zh) | 2012-10-25 | 2017-11-24 | 开利公司 | 测量气体混合物的浓度的方法 |
EP2735820A1 (de) * | 2012-11-21 | 2014-05-28 | Evonik Industries AG | Absorptionswärmepumpe und Sorptionsmittel für eine Absorptionswärmepumpe umfassend Methansulfonsäure |
CN104208991A (zh) * | 2014-08-26 | 2014-12-17 | 常州大学 | 表面活性催化剂处理焦化煤气中高浓度氨氮装置 |
JP6059187B2 (ja) * | 2014-09-02 | 2017-01-11 | トヨタ自動車株式会社 | 水蒸気吸放出材料、及び、lcst挙動測定方法 |
CN104740975B (zh) * | 2015-04-03 | 2016-08-24 | 中国科学院过程工程研究所 | 一种新型高效可逆离子型氨气吸收剂 |
DE102015212749A1 (de) | 2015-07-08 | 2017-01-12 | Evonik Degussa Gmbh | Verfahren zur Entfeuchtung von feuchten Gasgemischen |
CN105146755B (zh) * | 2015-07-10 | 2019-01-11 | 湖北中烟工业有限责任公司 | 一种聚硅氧烷离子液体卷烟滤嘴添加剂的制备方法 |
JP6694642B2 (ja) * | 2015-12-07 | 2020-05-20 | 国立研究開発法人産業技術総合研究所 | 二酸化炭素吸収液および二酸化炭素分離回収方法 |
DE102016106234B4 (de) * | 2016-04-06 | 2022-03-03 | Fahrenheit Gmbh | Adsorptionswärmepumpe und Verfahren zum Betreiben einer Adsorptionswärmepumpe |
DE102016210484A1 (de) | 2016-06-14 | 2017-12-14 | Evonik Degussa Gmbh | Verfahren zur Entfeuchtung von feuchten Gasgemischen |
EP3257843A1 (en) | 2016-06-14 | 2017-12-20 | Evonik Degussa GmbH | Method of preparing a high purity imidazolium salt |
DE102016210478A1 (de) | 2016-06-14 | 2017-12-14 | Evonik Degussa Gmbh | Verfahren zur Entfeuchtung von feuchten Gasgemischen |
EP3257568B1 (de) | 2016-06-14 | 2019-09-18 | Evonik Degussa GmbH | Verfahren zur entfeuchtung von feuchten gasgemischen mit ionischen flüssigkeiten |
DE102016210483A1 (de) | 2016-06-14 | 2017-12-14 | Evonik Degussa Gmbh | Verfahren und Absorptionsmittel zur Entfeuchtung von feuchten Gasgemischen |
DE102016210481B3 (de) | 2016-06-14 | 2017-06-08 | Evonik Degussa Gmbh | Verfahren zum Reinigen einer ionischen Flüssigkeit |
WO2020114576A1 (en) * | 2018-12-04 | 2020-06-11 | Evonik Operations Gmbh | Process for dehumidifying moist gas mixtures |
CN115151334A (zh) | 2020-02-25 | 2022-10-04 | 国立研究开发法人产业技术综合研究所 | 二氧化碳分离膜用离子液体组合物及保持有该组合物的二氧化碳分离膜、以及具备该二氧化碳分离膜的二氧化碳的浓缩装置 |
CN114797379B (zh) * | 2021-05-31 | 2023-08-29 | 上海宜室建筑环境工程有限公司 | 一种含离子液体的空气净化液及其制备方法和应用 |
CN114950074B (zh) * | 2021-07-15 | 2023-11-14 | 上海宜室建筑环境工程有限公司 | 一种净化车内气体的离子液体组合物及制备方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2101625C1 (ru) * | 1995-10-24 | 1998-01-10 | Марат Шавкатович Гадельшин | Абсорбционный холодильник |
RU2183003C2 (ru) * | 1997-01-08 | 2002-05-27 | Дзе Бок Груп ПЛС | Охладитель для охлаждения жидкости в сосуде для хранения жидкости и сосуд для хранения жидкости |
WO2005113702A1 (de) * | 2004-05-21 | 2005-12-01 | Basf Aktiengesellschaft | Neue arbeitsstoffpaare für absorptionswärmepumpen, absorptionskältemaschinen und wärmetransformatoren |
DE102004053167A1 (de) * | 2004-11-01 | 2006-05-04 | Degussa Ag | Polymere Absorptionsmittel für die Gasabsorption und Absorptionsprozess |
US20060150665A1 (en) * | 2003-05-21 | 2006-07-13 | Makatec Gmbh | Thermodynamic machine and method for absorbing heat |
DE102005013030A1 (de) * | 2005-03-22 | 2006-09-28 | Bayer Technology Services Gmbh | Verfahren zur destillativen Reinigung schwerflüchtiger Fluide |
Family Cites Families (85)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE400488C (de) | 1922-10-24 | 1924-08-11 | Hans Hylander | Absorptionskaeltemaschine |
US1882258A (en) | 1930-09-10 | 1932-10-11 | Randel Bo Folke | Means and method of refrigeration |
DE633146C (de) | 1933-06-01 | 1936-07-20 | Sachsenberg Akt Ges Geb | Absorptionsapparat |
US2516625A (en) | 1946-12-02 | 1950-07-25 | Shell Dev | Derivatives of dihydropyridine |
US2601673A (en) | 1951-04-09 | 1952-06-24 | Shell Dev | Shortstopping the addition polymerization of unsaturated organic compounds |
US2802344A (en) | 1953-07-08 | 1957-08-13 | Eureka Williams Corp | Electrodialysis of solutions in absorption refrigeration |
US3276217A (en) | 1965-11-09 | 1966-10-04 | Carrier Corp | Maintaining the effectiveness of an additive in absorption refrigeration systems |
US3609087A (en) | 1968-02-01 | 1971-09-28 | American Gas Ass Inc The | Secondary alcohol additives for lithium bromide-water absorption refrigeration system |
US3580759A (en) | 1968-06-25 | 1971-05-25 | Borg Warner | Heat transfer additives for absorbent solutions |
AU506199B2 (en) | 1975-06-26 | 1979-12-20 | Exxon Research And Engineering Company | Absorbtion of co2 from gaseous feeds |
SE409054B (sv) | 1975-12-30 | 1979-07-23 | Munters Ab Carl | Anordning vid vermepump i vilken ett arbetsmedium vid en sluten process cirkulerar i en krets under olika tryck och temperatur |
US4022785A (en) | 1976-01-08 | 1977-05-10 | Petrolite Corporation | Substituted pyridines and dihydropyridines |
US4201721A (en) | 1976-10-12 | 1980-05-06 | General Electric Company | Catalytic aromatic carbonate process |
US4152900A (en) | 1978-04-04 | 1979-05-08 | Kramer Trenton Co. | Refrigeration cooling unit with non-uniform heat input for defrost |
US4251494A (en) | 1979-12-21 | 1981-02-17 | Exxon Research & Engineering Co. | Process for removing acidic compounds from gaseous mixtures using a two liquid phase scrubbing solution |
DE3003843A1 (de) | 1980-02-02 | 1981-08-13 | Chemische Werke Hüls AG, 4370 Marl | Verfahren zur herstellung von 4-amino-2,2,6,6-tetramethylpiperidin |
US4360363A (en) | 1982-02-16 | 1982-11-23 | Combustion Engineering, Inc. | Physical solvent for gas sweetening |
US4466915A (en) | 1982-09-29 | 1984-08-21 | The B. F. Goodrich Company | Non-catalytic ketoform syntheses |
JPS61129019A (ja) | 1984-11-26 | 1986-06-17 | Hitachi Ltd | 吸収式温度回生器 |
JPS6273055A (ja) | 1985-09-25 | 1987-04-03 | 日本鋼管株式会社 | 吸収式ヒ−トポンプ |
US4701530A (en) | 1985-11-12 | 1987-10-20 | The Dow Chemical Company | Two-stage process for making trimethyl pyridine |
US5186010A (en) * | 1985-11-18 | 1993-02-16 | Darrel H. Williams | Absorbent-refrigerant solution |
US4714597A (en) | 1986-06-26 | 1987-12-22 | Hylsa, S.A. | Corrosion inhibitor for CO2 absorption process using alkanolamines |
DE3623680A1 (de) | 1986-07-12 | 1988-01-14 | Univ Essen | Stoffsysteme fuer sorptionsprozesse |
US5126189A (en) | 1987-04-21 | 1992-06-30 | Gelman Sciences, Inc. | Hydrophobic microporous membrane |
IT1222394B (it) | 1987-07-30 | 1990-09-05 | Ciba Geigy Spa | Processo per la preparazione di 2,2,6,6 tetrametil 4 piperidilammine |
DD266799A1 (de) | 1987-10-20 | 1989-04-12 | Leuna Werke Veb | Verfahren zur isolierung von hochreinem 4-amino-2,2,6,6-tetramethylpiperidin |
JPH07111287B2 (ja) | 1987-11-18 | 1995-11-29 | 日立電線株式会社 | 吸収器用伝熱管 |
JPH02298767A (ja) | 1989-05-12 | 1990-12-11 | Nissin Electric Co Ltd | 吸収冷凍装置 |
JP2959141B2 (ja) | 1991-02-22 | 1999-10-06 | ダイキン工業株式会社 | 吸収式冷凍装置 |
JPH0784965B2 (ja) | 1991-12-24 | 1995-09-13 | 誠之 渡辺 | 太陽熱冷却装置 |
US5303565A (en) | 1993-03-11 | 1994-04-19 | Conserve Resources, Inc. | Rotary absorption heat pump of improved performance |
JP3236402B2 (ja) * | 1993-04-22 | 2001-12-10 | 大阪瓦斯株式会社 | 吸収式冷凍機 |
JPH07167521A (ja) | 1993-12-15 | 1995-07-04 | Asahi Glass Co Ltd | 吸収式冷凍装置 |
DE19511709A1 (de) | 1995-03-30 | 1996-10-02 | Klement Arne | Verfahren zur Erzeugung von Kälte und Wärme mit Hilfe einer durch Pervaporation angetriebenen Sorptionskältemaschine |
US6331289B1 (en) | 1996-10-28 | 2001-12-18 | Nycomed Imaging As | Targeted diagnostic/therapeutic agents having more than one different vectors |
US6117963A (en) * | 1997-03-26 | 2000-09-12 | Th Goldschmidt Ag | Tetrahydrofuran-containing silicone polyethers |
US5873260A (en) | 1997-04-02 | 1999-02-23 | Linhardt; Hans D. | Refrigeration apparatus and method |
US6184433B1 (en) * | 1997-04-14 | 2001-02-06 | Nippon Shokubai Co., Ltd. | Pressure-resistant absorbent resin, disposable diaper using the resin, and absorbent resin, and method for production thereof |
DE19850624A1 (de) | 1998-11-03 | 2000-05-04 | Basf Ag | Verfahren zur Herstellung von Cyanessigsäureestern |
US6155057A (en) | 1999-03-01 | 2000-12-05 | Arizona Board Of Regents | Refrigerant fluid crystallization control and prevention |
WO2000061698A1 (en) | 1999-04-12 | 2000-10-19 | Arizona Board Of Regents | Two-phase refrigeration fluid for an absorption refrigeration apparatus and a method of preventing corrosion |
DE19949347A1 (de) | 1999-10-13 | 2001-04-19 | Basf Ag | Brennstoffzelle |
JP2001219164A (ja) | 2000-02-08 | 2001-08-14 | Toyobo Co Ltd | 純水製造器および純水製造装置 |
DE50201299D1 (de) | 2001-03-20 | 2004-11-18 | Basf Ag | Ionische flüssigkeiten als selektive zusatzstoffe für die trennung engsiedender oder azeotroper gemische |
DE10208822A1 (de) * | 2002-03-01 | 2003-09-11 | Solvent Innovation Gmbh | Halogenfreie ionische Flüssigkeiten |
JP2004044945A (ja) | 2002-07-12 | 2004-02-12 | Daikin Ind Ltd | 吸収式冷凍装置の吸収促進剤 |
DE10316418A1 (de) | 2003-04-10 | 2004-10-21 | Basf Ag | Verwendung einer ionischen Flüssigkeit |
DE10333546A1 (de) * | 2003-07-23 | 2005-02-17 | Linde Ag | Verfahren zur Olefinabtrennung aus Spaltgasen von Olefinanlagen mittels ionischer Flüssigkeiten |
US20050129598A1 (en) | 2003-12-16 | 2005-06-16 | Chevron U.S.A. Inc. | CO2 removal from gas using ionic liquid absorbents |
DE102004011427A1 (de) | 2004-03-09 | 2005-09-29 | Basf Ag | Absorptionsmittel mit verbesserter Oxidationsbeständigkeit und Verfahren zum Entsäuern von Fluidströmen |
DE102004021129A1 (de) | 2004-04-29 | 2005-11-24 | Degussa Ag | Verfahren zur Isolierung von hochreinem 2-Methoxypropen |
FR2877858B1 (fr) | 2004-11-12 | 2007-01-12 | Inst Francais Du Petrole | Procede de desacidification d'un gaz avec une solution absorbante a regeneration fractionnee |
US7335113B2 (en) * | 2004-11-17 | 2008-02-26 | Callaway Golf Company | Golf club with interchangeable head-shaft connection |
US8715521B2 (en) * | 2005-02-04 | 2014-05-06 | E I Du Pont De Nemours And Company | Absorption cycle utilizing ionic liquid as working fluid |
JP2006239516A (ja) * | 2005-03-01 | 2006-09-14 | Shigeo Fujii | 揮発性有機溶剤の除去用吸収液組成物およびそれを用いる揮発性有機溶剤の除去方法 |
DE102005028451B4 (de) | 2005-06-17 | 2017-02-16 | Evonik Degussa Gmbh | Verfahren zum Transport von Wärme |
US8506839B2 (en) | 2005-12-14 | 2013-08-13 | E I Du Pont De Nemours And Company | Absorption cycle utilizing ionic liquids and water as working fluids |
FR2895273B1 (fr) | 2005-12-22 | 2008-08-08 | Inst Francais Du Petrole | Procede de desacidification d'un gaz avec une solution absorbante a regeneration fractionnee avec controle de la teneur en eau de la solution |
FR2898284B1 (fr) | 2006-03-10 | 2009-06-05 | Inst Francais Du Petrole | Procede de desacidification d'un gaz par solution absorbante avec regeneration fractionnee par chauffage. |
WO2007107407A1 (de) | 2006-03-20 | 2007-09-27 | Basf Se | Nanopartikuläre metallboridzusammensetzung und deren verwendung zum kennzeichnen von kunststoffteilen |
FR2900842B1 (fr) | 2006-05-10 | 2009-01-23 | Inst Francais Du Petrole | Procede de desacidification d'un effluent gazeux avec extraction des produits a regenerer |
FR2900841B1 (fr) | 2006-05-10 | 2008-07-04 | Inst Francais Du Petrole | Procede de desacidification avec extraction des composes reactifs |
FR2900843B1 (fr) | 2006-05-10 | 2008-07-04 | Inst Francais Du Petrole | Procede de desacidification d'un gaz par multiamines partiellement neutralisees |
DE102006036228A1 (de) | 2006-08-03 | 2008-02-07 | Universität Dortmund | Verfahren zum Abtrennen von CO2 aus Gasgemischen |
EP2093278A1 (de) | 2008-02-05 | 2009-08-26 | Evonik Goldschmidt GmbH | Performance-Additive zur Verbesserung der Benetzungseigenschaften von ionischen Flüssigkeiten auf festen Oberflächen |
EP2088389B1 (de) | 2008-02-05 | 2017-05-10 | Evonik Degussa GmbH | Absorptionskältemaschine |
AU2009264387B2 (en) | 2008-06-23 | 2014-01-09 | Basf Se | Absorption medium and method for removing sour gases from fluid streams, in particular from flue gases |
KR20100013716A (ko) | 2008-07-31 | 2010-02-10 | 삼성전자주식회사 | 잉크젯 프린트헤드의 제조방법 |
FR2936165B1 (fr) | 2008-09-23 | 2011-04-08 | Inst Francais Du Petrole | Procede de desacidification d'un gaz par solution absorbante avec controle de la demixtion |
DE102009000543A1 (de) | 2009-02-02 | 2010-08-12 | Evonik Degussa Gmbh | Verfahren, Absorptionsmedien und Vorrichtung zur Absorption von CO2 aus Gasmischungen |
FR2942972B1 (fr) | 2009-03-10 | 2012-04-06 | Inst Francais Du Petrole | Procede de desacidification d'un gaz par solution absorbante avec vaporisation et/ou purification d'une fraction de la solution absorbante regeneree. |
EP2414476A1 (en) | 2009-03-31 | 2012-02-08 | E. I. du Pont de Nemours and Company | Ionic compounds in lithium bromide/water absorption cycle systems |
EP2258460B1 (de) | 2009-06-05 | 2012-02-29 | Evonik Degussa GmbH | Verfahren, Absorptionsmedium und Vorrichtung zur Absorption von CO2 aus Gasmischungen |
DE102009047564A1 (de) | 2009-12-07 | 2011-06-09 | Evonik Degussa Gmbh | Arbeitsmedium für eine Absorptionskältemaschine |
EP2380941A1 (de) | 2010-04-20 | 2011-10-26 | Evonik Degussa GmbH | Absorptionswärmepumpe mit Sorptionsmittel umfassend ein Lithiumsalz und ein organisches Salz mit gleichem Anion |
EP2380940A1 (de) | 2010-04-20 | 2011-10-26 | Evonik Degussa GmbH | Absorptionswärmepumpe mit Sorptionsmittel umfassend Lithiumchlorid und ein organisches Chloridsalz |
BR112013007941A2 (pt) | 2010-11-08 | 2016-06-14 | Evonik Degussa Gmbh | meio de trabalho para bombas de absorção de calor |
DE102011077377A1 (de) | 2010-11-12 | 2012-05-16 | Evonik Degussa Gmbh | Verfahren zur Absorption von sauren Gasen aus Gasmischungen |
EP2532413A1 (de) | 2011-06-10 | 2012-12-12 | Evonik Degussa GmbH | Verfahren zur Absorption von CO2 aus einer Gasmischung |
EP2532414A1 (de) | 2011-06-10 | 2012-12-12 | Evonik Degussa GmbH | Verfahren zur Absorption von CO2 aus einer Gasmischung |
EP2532412A1 (de) | 2011-06-10 | 2012-12-12 | Evonik Degussa GmbH | Absorptionsmedium und Verfahren zur Absorption eines sauren Gases aus einer Gasmischung |
DE102011083974A1 (de) | 2011-10-04 | 2013-04-04 | Evonik Degussa Gmbh | Arbeitsmedium für Absorptionswärmepumpen |
DE102011083976A1 (de) | 2011-10-04 | 2013-04-04 | Evonik Degussa Gmbh | Sorptionsmittel für Absorptionswärmepumpen |
EP2780098A1 (de) | 2011-11-14 | 2014-09-24 | Evonik Degussa GmbH | Verfahren und vorrichtung zur abtrennung von sauren gasen aus einer gasmischung |
-
2008
- 2008-02-05 EP EP08101296A patent/EP2087930A1/de not_active Withdrawn
- 2008-12-03 CN CN200880126176.4A patent/CN101939067B/zh not_active Expired - Fee Related
- 2008-12-03 JP JP2010545368A patent/JP2011510811A/ja active Pending
- 2008-12-03 WO PCT/EP2008/066684 patent/WO2009097930A2/de active Application Filing
- 2008-12-03 US US12/865,787 patent/US8932478B2/en not_active Expired - Fee Related
- 2008-12-03 RU RU2010136666/05A patent/RU2499627C2/ru not_active IP Right Cessation
- 2008-12-03 CA CA2714427A patent/CA2714427A1/en not_active Abandoned
- 2008-12-03 KR KR1020107019643A patent/KR101449784B1/ko not_active IP Right Cessation
-
2010
- 2010-08-03 IL IL207379A patent/IL207379A0/en unknown
-
2011
- 2011-07-04 HK HK11106806.8A patent/HK1152673A1/xx not_active IP Right Cessation
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2101625C1 (ru) * | 1995-10-24 | 1998-01-10 | Марат Шавкатович Гадельшин | Абсорбционный холодильник |
RU2183003C2 (ru) * | 1997-01-08 | 2002-05-27 | Дзе Бок Груп ПЛС | Охладитель для охлаждения жидкости в сосуде для хранения жидкости и сосуд для хранения жидкости |
US20060150665A1 (en) * | 2003-05-21 | 2006-07-13 | Makatec Gmbh | Thermodynamic machine and method for absorbing heat |
WO2005113702A1 (de) * | 2004-05-21 | 2005-12-01 | Basf Aktiengesellschaft | Neue arbeitsstoffpaare für absorptionswärmepumpen, absorptionskältemaschinen und wärmetransformatoren |
DE102004053167A1 (de) * | 2004-11-01 | 2006-05-04 | Degussa Ag | Polymere Absorptionsmittel für die Gasabsorption und Absorptionsprozess |
DE102005013030A1 (de) * | 2005-03-22 | 2006-09-28 | Bayer Technology Services Gmbh | Verfahren zur destillativen Reinigung schwerflüchtiger Fluide |
Also Published As
Publication number | Publication date |
---|---|
CN101939067A (zh) | 2011-01-05 |
KR20100114918A (ko) | 2010-10-26 |
KR101449784B1 (ko) | 2014-10-13 |
JP2011510811A (ja) | 2011-04-07 |
WO2009097930A3 (de) | 2009-11-26 |
WO2009097930A2 (de) | 2009-08-13 |
US20110000236A1 (en) | 2011-01-06 |
IL207379A0 (en) | 2010-12-30 |
CA2714427A1 (en) | 2009-08-13 |
EP2087930A1 (de) | 2009-08-12 |
RU2010136666A (ru) | 2012-06-27 |
US8932478B2 (en) | 2015-01-13 |
HK1152673A1 (en) | 2012-03-09 |
CN101939067B (zh) | 2013-06-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2499627C2 (ru) | Способ проведения процесса абсорбции летучего вещества жидким абсорбентом | |
JP2011510811A5 (ru) | ||
Lunkenheimer et al. | Novel results on the adsorption of ionic surfactants at the air/water interface—sodium-n-alkyl sulphates | |
US8069687B2 (en) | Working media for refrigeration processes | |
RU2547738C2 (ru) | Абсорбция со2 из газовых смесей водным раствором 4-амино-2,2,6,6-тетраметилпиперидина | |
Li et al. | Efficient absorption of ammonia with hydroxyl-functionalized ionic liquids | |
Van den Tempel et al. | Relaxation processes at fluid interfaces | |
US20120080644A1 (en) | Process, absorption medium, and apparatus for absorption of co2 from gas mixtures | |
Wang et al. | Solubility of N2O in alkanolamines and in mixed solvents | |
DE102004053167A1 (de) | Polymere Absorptionsmittel für die Gasabsorption und Absorptionsprozess | |
JP2013513002A (ja) | 吸収式冷凍機用作動媒体 | |
EP3024810A1 (en) | Nitrogen containing hydrofluoroethers and methods of making same | |
CA2850172A1 (en) | Hostile environment stable compositions and drilling and fracturing fluids containing same | |
JP6530167B2 (ja) | 二酸化炭素化学吸収液及び二酸化炭素分離回収方法 | |
JPS599716B2 (ja) | 有機物質の水系ミクロエマルジヨン | |
US3266220A (en) | Process for removing acidic constituents from gaseous mixtures | |
NO171208B (no) | Fremgangsmaate for fremstilling av eventuelt kvaternerniserte estere og deres anvendelse | |
Wang et al. | Constructing ternary deep eutectic solvents with multiple sites for ammonia storage | |
US3681015A (en) | Purification of gases | |
Staszak et al. | Synthesis and interfacial activity of novel sulfobetaines in aqueous solutions | |
CN103403133A (zh) | 含有氟代环氧乙烷的润滑剂组合物 | |
Ahmadova et al. | Influence of head-group composition and (chloro) propoxy units disposition consequency on properties of surfactants based on lauric acid, propylene oxide, epichlorohydrin and ethanolamines | |
Wang et al. | Solubilities and diffusivities of N2O and CO2 in aqueous sulfolane solutions | |
Álvarez et al. | Surface Tension of N-Methyldiethanolamine in Methanol or in Methanol Aqueous Solutions as a Solvent at Temperatures from 293.15 to 323.15 K | |
JP2012518524A5 (ru) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20151204 |