RU2494792C2 - Диспергирующее устройство распылительного сушильного абсорбера - Google Patents
Диспергирующее устройство распылительного сушильного абсорбера Download PDFInfo
- Publication number
- RU2494792C2 RU2494792C2 RU2010138605/02A RU2010138605A RU2494792C2 RU 2494792 C2 RU2494792 C2 RU 2494792C2 RU 2010138605/02 A RU2010138605/02 A RU 2010138605/02A RU 2010138605 A RU2010138605 A RU 2010138605A RU 2494792 C2 RU2494792 C2 RU 2494792C2
- Authority
- RU
- Russia
- Prior art keywords
- spray drying
- dispersants
- dispersant
- drying chamber
- process gas
- Prior art date
Links
- 239000006096 absorbing agent Substances 0.000 title claims abstract description 91
- 238000000034 method Methods 0.000 claims abstract description 50
- 230000008569 process Effects 0.000 claims abstract description 40
- 239000000126 substance Substances 0.000 claims abstract description 14
- 239000000356 contaminant Substances 0.000 claims abstract description 4
- 239000002270 dispersing agent Substances 0.000 claims description 180
- 238000001694 spray drying Methods 0.000 claims description 144
- 239000007921 spray Substances 0.000 claims description 40
- 239000007788 liquid Substances 0.000 claims description 37
- 230000009931 harmful effect Effects 0.000 claims description 14
- 230000000694 effects Effects 0.000 abstract description 4
- 238000010327 methods by industry Methods 0.000 abstract 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 57
- 239000003546 flue gas Substances 0.000 description 57
- 239000007789 gas Substances 0.000 description 45
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 11
- RAHZWNYVWXNFOC-UHFFFAOYSA-N Sulphur dioxide Chemical compound O=S=O RAHZWNYVWXNFOC-UHFFFAOYSA-N 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 8
- 238000001035 drying Methods 0.000 description 8
- 230000008901 benefit Effects 0.000 description 4
- 238000009434 installation Methods 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 3
- 239000003245 coal Substances 0.000 description 3
- 239000000428 dust Substances 0.000 description 3
- 239000012717 electrostatic precipitator Substances 0.000 description 3
- 239000000446 fuel Substances 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 239000003921 oil Substances 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 235000019738 Limestone Nutrition 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 239000007900 aqueous suspension Substances 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- 230000003116 impacting effect Effects 0.000 description 2
- 239000006028 limestone Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 241001640558 Cotoneaster horizontalis Species 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000002737 fuel gas Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000003415 peat Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/46—Removing components of defined structure
- B01D53/48—Sulfur compounds
- B01D53/50—Sulfur oxides
- B01D53/501—Sulfur oxides by treating the gases with a solution or a suspension of an alkali or earth-alkali or ammonium compound
- B01D53/505—Sulfur oxides by treating the gases with a solution or a suspension of an alkali or earth-alkali or ammonium compound in a spray drying process
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2251/00—Reactants
- B01D2251/40—Alkaline earth metal or magnesium compounds
- B01D2251/404—Alkaline earth metal or magnesium compounds of calcium
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- General Chemical & Material Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Biomedical Technology (AREA)
- Analytical Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Gas Separation By Absorption (AREA)
- Treating Waste Gases (AREA)
- Drying Of Solid Materials (AREA)
- Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
Abstract
Изобретение относится к распылительному сушильному абсорберу для удаления газообразных загрязняющих веществ из горячего технологического газа. Распылительный сушильный абсорбер содержит по меньшей мере два диспергатора. Каждый такой диспергатор служит для диспергирования части горячего технологического газа вокруг соответствующего распылителя и для придания соответствующей части горячего технологического газа вращательного движения вокруг распылителя. По меньшей мере один определенный диспергатор служит для придания газу, проходящему через этот определенный диспергатор, вращательного движения в направлении (FC), противоположном направлению (FCC) вращательного движения соответствующей части горячего технологического газа, диспергируемой по меньшей мере одним другим диспергатором, расположенным наиболее близко к этому определенному диспергатору. Обеспечивается повышаение эффективности удаления загрязнений и снижение капиталовложений. 2 н. и 4 з.п. ф-лы, 11 ил.
Description
ОБЛАСТЬ ИЗОБРЕТЕНИЯ
Настоящее изобретение относится к распылительному сушильному абсорберу, который служит для удаления газообразных загрязняющих веществ из горячего технологического газа и включает распылительную сушильную камеру и по меньшей мере два диспергатора, смонтированных на крыше распылительной сушильной камеры, где каждый такой диспергатор служит для диспергирования части горячего технологического газа вокруг соответствующего распылителя, который распыляет поглощающую жидкость, причем каждый диспергатор снабжен устройством направления потока, которое придает части горячего технологического газа вращательное движение вокруг распылителя, если смотреть с верха распылительной сушильной камеры.
Настоящее изобретение относится далее к способу удаления газообразных вредных веществ из горячего технологического газа посредством распылительного сушильного абсорбера.
ПРЕДПОСЫЛКИ СОЗДАНИЯ ИЗОБРЕТЕНИЯ
При сжигании топлива, такого как уголь, нефть, торф, отходы и т.д. на установках сжигания, таких как силовые установки, образуется горячий технологический газ, такой горячий технологический газ, часто называемый дымовым газом, содержит вредные вещества, включая кислые газы, такие как двуокись серы, SO2. Необходимо удалить насколько возможно больше кислых газов из дымового газа, прежде чем дымовой газ сможет быть выпущен в окружающую атмосферу. Для удаления кислых газов, включая двуокись серы, из дымового газа может быть использован распылительный сушильный абсорбер.
Пример распылительного сушильного абсорбера можно найти в US 4755366. Распылительный сушильный абсорбер включает камеру, которая снабжена вращающимся распылителем, имеющим распыляющее колесо. Во вращающийся распылитель подают водную суспензию, иногда называемую взвесью, которая включает абсорбент, такой как известняк. Колесо распылителя вращается с большим числом оборотов в минуту и распыляет водную суспензию так, что образуются очень мелкие капли. Мелкие капли поглощают кислые газовые компоненты из дымового газа и затем образуют твердый остаток благодаря эффекту сушки в распылительном сушильном абсорбере.
Проблемой распылительного сушильного абсорбера по US 4755366 является то, что трудно увеличить пропускную способность единичного распылительного сушильного абсорбера по отношению к расходу дымового газа. Одной из причин этого затруднения является то, что очень высокое число оборотов распыляющего колеса создает механические препятствия увеличению его размера. Таким образом, часто становится необходимо соорудить два, три или более параллельных абсорбционных камер распылительной сушки для того, чтобы приспособиться к более высоким расходам дымового газа.
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
Задачей настоящего изобретения является предложить распылительный сушильный абсорбер, который может быть рассчитан на более высокие расходы дымового газа, чем распылительный сушильный абсорбер и по прототипу.
Эта задача достигается посредством распылительного сушильного абсорбера, который служит для удаления газообразных загрязняющих веществ из горячего технологического газа и включает распылительную сушильную камеру и по меньшей мере два диспергатора, смонтированных на крыше распылительной сушильной камеры, где каждый такой диспергатор служит для диспергирования части горячего технологического газа вокруг соответствующего распылителя, который распыляет поглощающую жидкость, причем каждый диспергатор снабжен устройством направления потока, которое придает соответствующей части горячего технологического газа вращательное движение вокруг распылителя, если смотреть сверху распылительной сушильной камеры, где распылительный сушильный абсорбер отличается тем, что указанные по меньшей мере два диспергатора расположены на практически одинаковом расстоянии от периферии распылительной сушильной камеры, устройство направления потока по меньшей мере одного определенного диспергатора из указанных по меньшей мере двух диспергаторов служит для придания указанной части горячего технологического газа, проходящей через этот определенный диспергатор, вращательного движения в направлении, которое противоположно направлению вращательного движения соответствующей части горячего технологического газа, диспергируемой по меньшей мере одним другим диспергатором, расположенным наиболее близко к указанному по меньшей мере одному определенному диспергатору, если смотреть по периферии распылительной сушильной камеры.
Преимуществом этого распылительного сушильного абсорбера является то, что два или более диспергатора могут быть установлены в одной и той же распылительной сушильной камере без того, чтобы эти диспергаторы влияли друг на друга отрицательным образом. Следовательно, пропускная способность по отношению к потоку дымового газа и по отношению к потоку поглощающей жидкости одного распылительного сушильного абсорбера может быть повышена, еще сохраняя эффективную сушку капель жидкости и эффективное удаление газообразных вредных веществ.
Согласно одному осуществлению распылительного сушильного абсорбера включает по меньшей мере три диспергатора, где максимум два следующих друг за другом диспергатора из указанных по меньшей мере трех диспергаторов, если смотреть по периферии распылительной сушильной камеры, работают для придания подаваемого туда горячего технологического газа вращательного движения в одном и том же направлении. Преимуществом этого осуществления является то, что минимизируется вредное влияние на смешение между процессным газом и каплями жидкости, которое может быть вызвано соседними диспергаторами, придающими поступающему к ним газу одинаковое направление вращательного движения. Предпочтительно, когда общее число диспергаторов является четным, таким как в распылительном сушильном абсорбере с суммарно 4, 6 или 8 диспергаторами, каждый определенный диспергатор придает поступающему туда газу направление вращательного движения, которое противоположно направлению вращательного движения, придаваемому соответствующим частям процессного газа, поступающим к ближайшим соседним к этому определенному диспергатору диспергаторам. Если общее число диспергаторов нечетно, как в распылительных сушильных абсорберах с суммарно 3, 5, 7 или 9 диспергаторами, случаи наличия двух следующих друг за другом диспергаторов, придающих поступающему в них процессному газу одинаковое направление вращательного движения, минимизируют, чтобы иметь в этом распылительном сушильном абсорбере только один случай двух следующих друг за другом диспергаторов, придающих процессному газу одинаковое направление вращательного движения.
Согласно одному осуществлению распылительная сушильная камера является круговой, если смотреть сверху. Преимуществом этого осуществления является то, что можно избежать вредных эффектов, связанных с потоком газа в углах абсорбера. Кроме того, круговая распылительная сушильная камера позволяет легче расположить диспергаторы в подходящих положениях относительно друг друга в отношении свойств газового потока.
Согласно одному осуществлению общее число диспергаторов составляет от 2 до 9. Было найдено, что такое число дает распылительный сушильный абсорбер, который эффективен и в отношении капиталовложений, и в отношении удаления газообразных вредных веществ.
Следующей задачей настоящего изобретения является предложить способ удаления газообразных вредных веществ из больших объемов горячего технологического газа посредством распылительного сушильного абсорбера, более эффективный в отношении капиталовложений и эффективности удаления загрязнений, чем способы прототипа.
Эта задача достигается посредством способа удаления газообразных вредных веществ из горячего технологического газа посредством распылительного сушильного абсорбера, включающего распылительную сушильную камеру и по меньшей мере два диспергатора, смонтированных на крыше распылительной сушильной камеры, где каждый такой диспергатор служит для диспергирования части горячего технологического газа вокруг соответствующего распылителя, который распыляет поглощающую жидкость, причем каждый диспергатор снабжен устройством направления потока, которое придает соответствующей части горячего технологического газа вращательное движение вокруг распылителя, если смотреть с верху распылительной сушильной камеры, где способ отличается тем, что заставляет соответствующую часть горячего технологического газа, проходящую через по меньшей мере один определенный диспергатор из указанных по меньшей мере двух диспергаторов приобрести вращательное движение в направлении, которое противоположно направлению вращательного движения соответствующей части горячего технологического газа, диспергируемой по меньшей мере одним другим диспергатором, расположенным наиболее близко к указанному по меньшей мере одному определенному диспергатору, если смотреть по периферии распылительной сушильной камеры.
Преимуществом этого способа является то, что риск получения нежелательных эффектов, таких как образование крупных капель, ослабление вращательного движения и т.д., уменьшен в тех областях, где взаимодействуют поля течения диспергаторов, расположенных смежно друг к другу. Это повышает эффективность удаления газообразных вредных веществ из горячего технологического газа и сушки капель поглощающей жидкости.
Согласно одному осуществлению способа указанный распылительный сушильный абсорбер включает по меньшей мере три диспергатора, где максимум два следующих друг за другом диспергатора из указанных по меньшей мере трех диспергаторов, если смотреть по периферии распылительной сушильной камеры, работают для придания подаваемому туда дымовому газу вращательного движения в том же направлении.
Следующие задачи и характерные признаки настоящего изобретения должны быть ясны из описания и формулы изобретения.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
Изобретение будет теперь описано более подробно со ссылкой на прилагаемые рисунки, в которых:
Фиг.1 представляет схематически вид сбоку силовой установки;
Фиг.2 представляет схематически трехмерную проекцию диспергатора;
Фиг.3а представляет трехмерную проекцию распылительного сушильного абсорбера в соответствии с прототипом;
Фиг.3b представляет вид сверху распылительного сушильного абсорбера с фиг.3а;
Фиг.4а представляет трехмерную проекцию распылительного сушильного абсорбера в соответствии с первым осуществлением настоящего изобретения;
Фиг.4b представляет вид сверху распылительного сушильного абсорбера с фиг.4а;
Фиг.5 представляет вид сверху следующего распылительного сушильного абсорбера в соответствии с прототипом;
Фиг.6 представляет вид сверху распылительного сушильного абсорбера в соответствии со вторым осуществлением настоящего изобретения;
Фиг.7 представляет вид сверху распылительного сушильного абсорбера в соответствии с третьим осуществлением настоящего изобретения;
Фиг.8 представляет вид сбоку и иллюстрирует траектории капель жидкости осуществления с фиг.7 в сравнении с осуществлениями прототипа с фиг.3а и 3b;
Фиг.9 представляет вид сверху еще одного распылительного сушильного абсорбера в соответствии с прототипом;
Фиг.10 представляет вид сверху распылительного сушильного абсорбера в соответствии с четвертым осуществлением настоящего изобретения;
Фиг.11 представляет диаграмму, показывающую количество жидкости, попадающей на стенку соответствующего распылительного сушильного абсорбера в различных осуществлениях.
ОПИСАНИЕ ПРЕДПОЧТИТЕЛЬНЫХ ОСУЩЕСТВЛЕНИЙ
Фиг.1 представляет схематически вид сбоку и показывает силовую установку 1. Силовая установка 1 включает котел 2, в котором сжигается топливо, такое как уголь или нефть. Сгорание топлива генерирует горячий технологический газ в виде дымового газа 2. Сернистые вещества, содержащиеся в угле или нефти, будут образовывать двуокись серы, которая будет образовывать часть дымового газа. Дымовой газ поступает из котла 2 в электростатический осадитель 4 через канал 6. Электростатический осадитель 4, пример которого описан в US 4502872, служит для удаления частиц пыли из дымового газа.
Дымовой газ, из которого удалена большая часть частиц пыли, направляют в распылительный сушильный абсорбер 8 через канал 10. Распылительный сушильный абсорбер 8 включает распылительную сушильную камеру 12 и четыре диспергатора 14, 16, 18, 20, которые смонтированы на крыше 22 распылительной сушильной камеры 12. Каждый из диспергаторов 14, 16, 18, 20 включает распылитель 24. Распылители 24 могут быть распылителями так называемого центробежного типа, в которых вращающееся с большой скоростью колесо служит для распыления поглощающей жидкости. В этом отношении в качестве пояснения, а не ограничения, может быть сделана ссылка, например, на центробежный распылитель, описанный в US 4755366, идеи которого настоящим введены сюда ссылкой. Следующей альтернативой является использование в качестве распылителей 24 распылительных форсунок, которые распыляют подаваемую в них поглощающую жидкость под давлением.
Каждый диспергатор 14, 16, 18, 20 снабжен устройством 26, 28, 30, 32 направления потока. Распределительный канал 34 служит для снабжения каждого из диспергаторов 14, 16, 18, 20 порцией дымового газа, подаваемого по каналу 10. Каждое из устройств 26, 28, 30, 32 направления потока служит для придания соответствующей части дымового газа вращательного движения вокруг распылителя 24 соответствующего диспергатора 14, 16, 18, 20. Два из устройств направления потока, а именно направляющие 26 и 30 диспергаторов 14 и 18, служат для придания соответствующей части дымового газа, подаваемой в них, вращательного движения вокруг соответствующего распылителя 24 в направлении по часовой стрелке, если смотреть с верха распылительной сушильной камеры 12.
Два из устройств направления движения потока, а именно направляющие 28 и 32 диспергаторов 16 и 20 служат для придания соответствующей части дымового газа, подаваемой в них, вращательного движения вокруг соответствующего распылителя 24 в направлении против часовой стрелки, если смотреть с верха распылительной сушильной камеры 12.
Резервуар 36 служит для снабжения каждого из распылителей 24 потоком поглощающей жидкости через распределительный трубопровод 38; такая поглощающая жидкость включает, например, известняковую суспензию (взвесь).
Действие соответствующих диспергаторов 14, 16, 18, 20 приводит в результате к смешению дымового газа с поглощающей жидкостью. Результатом является то, что поглощающая жидкость поглощает газообразные вредные вещества, такие как двуокись серы, SO2 из дымового газа. В то же время поглощающая жидкость высушивается горячим дымовым газом, давая в результате сухой продукт, который собирается у днища 40 распылительной сушильной камеры 12. Сухой продукт удаляют для захоронения через трубопровод 42. Дымовой газ, из которого была удалена большая часть газообразных вредных веществ, проходит практически вертикально вниз из диспергаторов 14, 16, 18, 20 в распылительную сушильную камеру 12 и покидает распылительный сушильный абсорбер 8 через канал 44. Дымовой газ направляют посредством канала 44 во второй фильтр, которым может быть, например, электростатический осадитель 46. Как альтернатива, вторым фильтром может быть рукавный фильтр или любое другое подходящее фильтрующее устройство. Второй фильтр 46 удаляет большую часть оставшихся частиц пыли и все высушенные остатки поглощающей жидкости. Очищенный дымовой газ может быть затем выпущен в окружающую атмосферу через канал чистого газа 48.
Фиг.2 показывает диспергатор 16 более подробно. Диспергатор 16 показан в виде снизу под углом. Направляющее поток устройство 28 диспергатора 16 включает множество наружных направляющих лопаток 50 и множество внутренних направляющих лопаток 52. Часть дымового газа, входящая в диспергатор 16 из распределительного канала 34, показанного на фиг.1, имеет общее нисходящее направление, как показано на фиг.2 стрелкой F. Все направляющие лопатки 50, 52 имеют такое направление, чтобы они принуждали часть дымового газа начать вращаться вокруг распылителя 24. Стрелки FCC показывают как направляющие лопатки 50, 52 будут отклонять дымовой газ так, чтобы было сформировано вращение потока дымового газа по нисходящей спирали вокруг распылителя 24. Было найдено, что такое вращение дымового газа должно быть весьма эффективно для смешения дымового газа с поглощающей жидкостью, распыленной распылителем 24. Направление вращения такого потока дымового газа FCC будет, если смотреть с верха распылительной сушильной камеры 12, показанной на фиг.1, движением против часовой стрелки для диспергатора 16.
Должно быть ясно, что диспергатор 20 будет иметь конструкцию, подобную диспергатору 16, показанному на фиг.2. Устройства 26, 30 направления потока диспергаторов 14 и 18, показанных на фиг.1, должны, с другой стороны, иметь направляющие лопатки, которые имеют противоположную установку по сравнению с направляющими лопатками 50, 52 устройства 28 направления потока, показанного на фиг.2, так, чтобы направление вращения потока дымового газа из диспергаторов 14, 18 было, если смотреть с верха распылительной сушильной камеры 12, показанной на фиг.1, движением по часовой стрелке.
Фиг.3а показывает распылительный сушильный абсорбер 108 в соответствии с конструкцией прототипа. Этот распылительный сушильный абсорбер 108 имеет распылительную сушильную камеру 112 и крышу 122. На своей крыше распылительный сушильный абсорбер 108 снабжен тремя диспергаторами 116. Каждый из этих диспергаторов 116 имеет конструкцию, подобную диспергатору 16, описанному здесь выше со ссылкой на фиг.2. Фиг.3b показывает вид сверху распылительного сушильного абсорбера 108 в соответствии с конструкцией прототипа. Поскольку каждый из диспергаторов 116 имеет конструкцию, подобную диспергатору 16, описанному здесь выше со ссылкой на фиг.2, потоку дымового газа, подаваемого в каждый из диспергаторов 116, будет придаваться вращательное движение в направлении против часовой стрелки, если смотреть с верха распылительного сушильного абсорбера 108. Это показано на фиг.3b посредством стрелок FCC. Было, однако, найдено, что работа распылительного сушильного абсорбера 108 по прототипу, показанного на фиг.3а и 3b, приводит в результате к серьезным проблемам с попаданием поглощающей жидкости на стенку распылительной сушильной камеры 112, например, в месте Х, показанном на фиг.3b. Попадание поглощающей жидкости на стенку распылительной сушильной камеры 112 может привести в результате к образованию крупных агрегатов, вызывая затруднения в работе распылительного сушильного абсорбера 108. Кроме того, было найдено, что во время работы распылительного сушильного абсорбера 108 образуются крупные капли поглощающей жидкости. Для высыхания таких крупных капель требуется много времени. Поэтому капли, которые не полностью высохли, могут попасть на дно распылительной сушильной камеры 112 или в выходной фильтр, приводя в результате к затруднениям в работе.
Фиг.4а показывает распылительный сушильный абсорбер 6 в соответствии с первым осуществлением настоящего изобретения, которое было пояснено ранее со ссылками на фиг.1 и фиг.2. На фиг.4а ясно показано как распылительная сушильная камера 12 оборудована на ее крыше 22 четырьмя диспергаторами 14, 16, 18, 20.
Фиг.4b показывает распылительный сушильный абсорбер 8 в виде сверху. Как описано здесь выше со ссылкой на фиг.2, диспергаторы 16 и 20 придают подаваемому в них дымовому газу вращательное движение против часовой стрелки, если смотреть сверху, как показано на фиг.4b. На фиг.4b это вращение против часовой стрелки показано посредством стрелок FCC. Далее, диспергаторы 14 и 18 имеют другую конструкцию по сравнению с диспергаторами 16 и 20 и придают поступающему в них дымовому газу вращательное движение по часовой стрелке, если смотреть с верха, как показано на фиг.4b. На фиг.4b это вращение по часовой стрелке показано посредством стрелок FC.
Каждый из диспергаторов 14, 16, 18, 20 расположен на практически одинаковом расстоянии D от периферии Р распылительной сушильной камеры 12. Рассматривая диспергатор 16, направляющее движение потока устройство этого диспергатора, обозначенное как 50 и 52 и показанное подробно на фиг.2, служит для придания части дымового газа, проходящей через этот определенный диспергатор 16, вращательного движения в направлении против часовой стрелки, если смотреть сверху, которое противоположно направлению вращательного движения по часовой стрелке, если смотреть сверху, соответствующих частей дымового газа, диспергируемых двумя диспергаторами 14 и 18, расположенными наиболее близко, если смотреть по периферии Р распылительной сушильной камеры 12, к этому определенному диспергатору 16. Подобным образом диспергатор 14, придающий подаваемой через него части топливного газа вращательное движение по часовой стрелке, если смотреть сверху, имеет своими ближайшими "соседями" два диспергатора, 16 и 20, которые придают дымовому газу вращательное движение против часовой стрелки. Как следствие, каждый из диспергаторов 14, 16, 18, 20 имеет своими ближайшими "соседями" два диспергатора, которые придают дымовому газу противоположное направление движения по сравнению с вращательным движением, придаваемым дымовому газу этим определенным диспергатором.
В качестве примера, в точке N1, где диспергаторы 14 и 16 расположены ближе всего друг к другу, поля потока от обоих диспергаторов 14 и 16 будут иметь одинаковое направление. Подобное поведение потока будет воспроизводиться и в точках N2, N3 и N4. Следовательно, для всех четырех точек N1, N2, N3, N4, где поля потоков двух смежных диспергаторов 14, 16, 18, 20 могут взаимодействовать, поля потоков этих двух диспергаторов всегда будут иметь одинаковое направление в отличие от конструкции прототипа показанной на фиг.3а и фиг.3b.
Конструкция, показанная на фиг.4а и 4b, по-видимому создает ситуацию, где число столкновений между каплями жидкости, произошедших из любых двух соседних диспергаторов, намного уменьшено. Результатом является уменьшение образования больших капель по сравнению с прототипом, показанным на фиг.3а и 3b, Далее, в распылительном сушильном абсорбере 8, показанном на фиг.4а и 4b, вращательное движение дымового газа, вызванное диспергаторами 14, 16, 18, 20, по-видимому продолжается в течение более длительного времени, приводя в результате к улучшенному контакту между каплями поглощающей жидкости и дымовым газом; такой улучшенный контакт приводит в результате к улучшенному удалению газообразных вредных веществ и к более короткому времени сушки капель жидкости. Риск образования крупных агрегатов на стенке распылительной сушильной камеры 12 также по-видимому уменьшается по сравнению с конструкцией прототипа.
Фиг.5 показывает распылительный сушильный абсорбер 208 в соответствии с еще одной конструкцией прототипа. Распылительный сушильный абсорбер 208 имеет распылительную сушильную камеру 212 и крышу 222. На своей крыше 222 распылительный сушильный абсорбер 208 оборудован пятью диспергаторами 216. Каждый из этих диспергаторов 216 будет иметь конструкцию, подобную диспергатору 16, описанному здесь ранее со ссылкой на фиг.1, следовательно, конструкцию, подобную диспергатору 16, описанному здесь выше со ссылкой на фиг.2. Пять диспергаторов 216 размещены в соответствии с аналогичными принципами, как три диспергатора 116 распылительного сушильного абсорбера 108. Как следствие, дымовому газу, подаваемому в каждый из пяти диспергаторов 216, будет придаваться вращательное движение в направлении против часовой стрелки, если смотреть с верха распылительного сушильного абсорбера, обозначенное на фиг.5 как FCC. В фиг.5 были включены также траектории капель Т, показанные как линии, начинающиеся от соответствующих диспергаторов 216. Эти траектории Т показывают пути, проходимые отдельными каплями распыленной жидкости в течение одной секунды после того, как они покинут соответствующий распылитель соответствующего диспергатора 216, описанного здесь выше со ссылкой на фиг.2. Траектории Т основаны на компьютерных гидроаэродинамических расчетах. Конец траектории указывает место, в котором почти вся жидкость оказывается высушенной. Из фиг.6 можно видеть, что траектории Т попадают на стенку распылительной сушильной камеры 212, в особенности в местах, обозначенных буквой Х. Это показывает, что капли, которые не высохли, попадают на стенку распылительной сушильной камеры 212 в этих местах, что может привести в результате к образованию агрегатов, вызывающему большие затруднения в работе распылительного сушильного абсорбера 208.
Фиг.6 показывает распылительный сушильный абсорбер 308 в соответствии со вторым осуществлением настоящего изобретения в виде сверху. Как можно видеть, распылительный сушильный абсорбер 308 имеет распылительную сушильную камеру 312, имеющую крышу 322. Крыша 322 оборудована пятью диспергаторами 314, 316, 318, 320 и 321, расположенные на одинаковых расстояниях от периферии камеры 312. Как следствие, и как можно видеть из фиг.6, пять диспергаторов 314, 316, 318, 320 и 321 расположены по кольцу. Первый диспергатор 314 и четвертый диспергатор 320, если смотреть по периферии камеры 312, установлены, чтобы придать поступающему в них дымовому газу направление вращения по часовой стрелке, показанное на фиг.6 символом FC. Второй диспергатор 316, третий диспергатор 318 и пятый диспергатор 321 установлены, чтобы придать поступающему в них дымовому газу направление вращения против часовой стрелки, показанное на фиг.6 символом FCC. Следовательно, диспергаторы 316, 318 и 321 сконструированы подобно диспергатору 16, показанному подробно на фиг.2, в то время как диспергаторы 314 и 320 имеют направляющие лопатки, имеющие противоположную установку для придания дымовому газу противоположного направления вращения, подобно диспергатору 14, описанному со ссылкой на фиг.1.
Следовательно, при конструкции как на фиг.6, максимум два идущих друг за другом, если смотреть по периферии распылительной сушильной камеры 312, диспергатора, а именно, диспергаторы 316 и 318, придают подаваемому в них дымовому газу вращательное движение в одном и том же направлении FCC.
На фиг.6 траектории Т показывают расчетные пути капель жидкости в течение одной секунды после того, как они покинут соответствующий распылитель 24 соответствующего диспергатора 314, 316, 318, 320 и 321. Как можно видеть из фиг 6, ни одна траектория не попадает на стенку распылительной сушильной камеры 312. Следовательно, при таком размещении будет намного меньше проблем с образованием агрегатов.
Фиг.7 показывает распылительный сушильный абсорбер 408 в соответствии с третьим осуществлением настоящего изобретения в виде сверху. Как можно видеть, распылительный сушильный абсорбер 408 имеет распылительную сушильную камеру 412, имеющую крышу 422. Крыша 422 оборудована тремя диспергаторами 414, 416 и 418. Как можно видеть из фиг.7, три диспергатора 414, 416 и 418 расположены подобно трем диспергаторам 116 распылительного сушильного абсорбера 108 по прототипу, показанному здесь ранее со ссылкой на фиг.3а и фиг.3b. Однако, возвращаясь к фиг.7, первый диспергатор 414 и второй диспергатор 416 устроены так, чтобы придать поступающему в них дымовому газу направление вращения против часовой стрелки, показанное на фиг.7 символом FCC. Третий диспергатор 418 устроен, чтобы придать поступающему в него дымовому газу направление вращения по часовой стрелке, показанное на фиг.7 символом FC. Следовательно, диспергаторы 414 и 416 сконструированы подобно диспергатору 16, показанному подробно на фиг.2, в то время как диспергатор 418 имеет направляющие лопатки, имеющие противоположную установку для придания дымовому газу противоположного направления вращения, подобно диспергатору 14, описанному со ссылкой на фиг.1.
Фиг.8 показывает работу распылительного сушильного абсорбера 408, описанного со ссылкой на фиг.7, в сравнении с работой распылительного сушильного абсорбера 108 по прототипу, описанного со ссылкой на фиг.3a и 3b. Траектории Т показывают расчетные пути отдельных капель распыленной жидкости в течение одной секунды после того, как они покинут соответствующий распылитель 24 соответствующего диспергатора 414, 416, 418 и 116, соответственно, распылительных сушильных абсорберов 408 и 108, где распылительные сушильные абсорберы 408 и 108,показаны на фиг.8 в виде сбоку. Как можно видеть, обращаясь к фиг.8, траектории Т распылительного сушильного абсорбера 408 все предпочтительно собираются к центру распылительной сушильной камеры 412. Как следствие, проблемы капель жидкости, попадающих на стенку и образующих агрегаты в распылительном сушильном абсорбере 408 сильно ограничены. С другой стороны, траектории Т, сформированные в распылительном сушильном абсорбере 108 по прототипу, являются намного более беспорядочными, и существенная часть капель попадает на стенки распылительной сушильной камеры 112, например, в месте Х, где вероятно возникновение твердых агрегатов. Как следствие, можно ожидается, что распылительный сушильный абсорбер 408 обеспечивает намного более устойчивую работу с меньшими эксплуатационными проблемами, чем распылительный сушильный абсорбер 108 по прототипу.
Фиг.9 показывает распылительный сушильный абсорбер 508 в соответствии с еще одной конструкцией прототипа. Распылительный сушильный абсорбер 508 имеет распылительную сушильную камеру 512 и крышу 522. На своей крыше 522 распылительный сушильный абсорбер 508 оборудован двумя диспергаторами 514. Каждый из этих диспергаторов 514 будет иметь конструкцию, подобную диспергатору 14, описанному здесь ранее со ссылкой на фиг.1, следовательно, конструкцию, подобную диспергатору 16, показанному на фиг.2, но с направляющими лопатками, имеющими противоположную установку. Эти два диспергатора 514 расположены симметрично вокруг центра крыши 522 и, следовательно, одинаковых расстояниях от периферии распылительной сушильной камеры 512. Дымовому газу, подаваемому в каждый из двух диспергаторов 514, будет придаваться вращательное движение по направлению часовой стрелки, показанное на фиг.9 как FC, если смотреть с верха распылительного сушильного абсорбера 508. Траектории Т показывают пути, проходимые отдельными каплями распыленной жидкости в течение одной секунды после того, как они покинут соответствующий распылитель соответствующего диспергатора 514, после этой одной секунды почти вся жидкость будет высушена дымовым газом. Траектории Т основаны на компьютерных гидроаэродинамических расчетах. Из фиг.9 можно видеть, что траектории Т попадают на стенку распылительной сушильной камеры 512, в особенности в месте, обозначенном буквой Х. Это может привести в результате к образованию агрегатов, вызывающему большие затруднения в работе распылительного сушильного абсорбера 508.
Фиг.10 показывает распылительный сушильный абсорбер 608 в соответствии с четвертым осуществлением настоящего изобретения в виде сверху. Как можно видеть, распылительный сушильный абсорбер 608 имеет распылительную сушильную камеру 612, имеющую крышу 622. Крыша 622 оборудована двумя диспергаторами 614 и 616. Как можно видеть на фиг.10, два диспергатора 614, 616 расположены симметрично вокруг центра крыши 622 и на одинаковом расстоянии от периферии стенки камеры 612. Первый диспергатор 614 устроен так, чтобы придать поступающему в него газу направление вращения по часовой стрелке, показанное обозначением FC на фиг.10. Второй диспергатор 616 устроен так, чтобы придать поступающему в него газу направление вращения против часовой стрелки, показанное обозначением FCC на фиг.10. Как следствие, диспергатор 616 сконструирован подобно диспергатору 16, показанному подробно на фиг.2, тогда как диспергатор 614 имеет направляющие лопатки, имеющие противоположную установку, чтобы придать дымовому газу противоположное направление вращения, подобно диспергатору 14, описанному со ссылкой на фиг.1.
Траектории Т показывают расчетные пути капель жидкости в течение одной секунды после того, как они покинут соответствующий распылитель 24 соответствующего диспергатора 614 или 616, после этой одной секунды почти вся жидкость будет высушена дымовым газом. Как можно видеть из фиг 10, ни одна траектория не попадает на стенку распылительной сушильной камеры 612. Следовательно, при таком размещении будет намного меньше проблем с образованием агрегатов на стенке по сравнению с осуществлением прототипа на фиг.8.
Фиг.11 представляет столбчатую диаграмму, показывающую количество распыленной жидкости, воды, попадающей на стенку распылительной сушильной камеры в различных осуществлениях. Следовательно, для каждого осуществления столбик показывает количество воды (в кг/с) из распыленной жидкости, попадающей на стенку распылительной сушильной камеры, рассчитанное посредством компьютерных гидродинамических расчетов. Чем ниже количество воды, попадающей на стенку, тем меньше риск образования на стенке агрегатов.
Из фиг.11 можно видеть, что распылительный сушильный абсорбер 508 по прототипу, имеющий два диспергатора 514, как показано на фиг.9, генерирует поток в примерно 0,125 кг/с воды, ударяющийся о стенки распылительной сушильной камеры 512, в то время как распылительный сушильный абсорбер 608, имеющий два диспергатора 614, 616, как показано на фиг.10, генерирует поток только в примерно 0,035 кг/с воды, ударяющийся о стенки распылительной сушильной камеры 612, составляя только 28% от количества в распылительной сушилке 508 по прототипу.
Далее, распылительный сушильный абсорбер 108 по прототипу, имеющий три диспергатора 116, как показано на фиг.3b, генерирует поток в примерно 0,130 кг/с воды, ударяющийся о стенки распылительной сушильной камеры 112, в то время как распылительный сушильный абсорбер 408, имеющий три диспергатора 414, 416, 418, как показано на фиг.7, генерирует поток только в примерно 0,07 кг/с воды, ударяющийся о стенки распылительной сушильной камеры 412, составляя только 54% от количества в распылительной сушилке 108 по прототипу.
Далее, были сделаны также расчеты для распылительного сушильного абсорбера 708 по прототипу, имеющему четыре диспергатора. Распылительный сушильный абсорбер 708 по прототипу не был показан подробно, но имел конструкцию, подобную распылительному сушильному абсорберу 8, показанному со ссылкой на фиг.4b, за исключением того факта, что все четыре диспергатора распылительного сушильного абсорбера 708 по прототипу придавали поступающему в них дымовому газу противоточное направление движения. Распылительный сушильный абсорбер 708 по прототипу, имеющий четыре противоточно направленных диспергатора, генерирует поток в примерно 0,08 кг/с воды, ударяющийся о стенки распылительной сушильной камеры, в то время как распылительный сушильный абсорбер 8, имеющий четыре диспергатора 14, 16, 18, 20, как показано на фиг.4b, генерирует поток только в примерно 0,015 кг/с воды, ударяющийся о стенки распылительной сушильной камеры 12, составляя только 19% от количества в распылительной сушилке 708 по прототипу.
Наконец, распылительный сушильный абсорбер 208 по прототипу, имеющий пять диспергаторов, как показано на фиг.5, генерирует поток в примерно 0,205 кг/с воды, ударяющийся о стенки распылительной сушильной камеры 212, в то время как распылительный сушильный абсорбер 308, имеющий пять диспергаторов 314, 316, 318, 320 и 321, как показано на фиг.6, генерирует поток только в примерно 0,015 кг/с воды, ударяющийся о стенки распылительной сушильной камеры 412, составляя только 7% от количества в распылительной сушилке 208 по прототипу.
Следовательно, для каждого конкретного числа диспергаторов распылительного сушильного абсорбера неожиданно намного лучше в отношении риска образования агрегатов на стенках распылительной сушильной камеры размещать эти диспергаторы в соответствии с принципами настоящего изобретения по сравнению с размещением их согласно прототипу.
Должно быть ясно, что многочисленные модификации описанных выше осуществлений возможны в рамках объема прилагаемой формулы изобретения.
Выше было описано, что распылительный сушильный абсорбер 8, 308, 408, 608 может быть снабжен 2, 3, 4 или 5 диспергаторами. Должно быть ясно, что такой же эффект может быть достигнут с другим количеством диспергаторов от двух и более, расположенных на таком же расстоянии D от периферии Р распылительной сушильной камеры 12. Обычно распылительный сушильный абсорбер, спроектированный в соответствии с настоящим изобретением, должен иметь от 2 до 9 диспергаторов, расположенных на практически одинаковом расстоянии D от периферии Р распылительной сушильной камеры.
Выше было описано, что в распылительном сушильном абсорбере, имеющем по меньшей мере три диспергатора, предпочтительно, чтобы максимум два идущих друг за другом диспергатора из этих по меньшей мере трех диспергаторов работали для придания поступающему в них дымовому газу вращательного движения в одинаковом направлении. Следовательно, в распылительном сушильном абсорбере, имеющем пять диспергаторов и спроектированном в соответствии со следующим осуществлением настоящего изобретения, должно быть возможно, в качестве примера, иметь четыре из этих диспергаторов, придающими газу вращение против часовой стрелки (FCC), и только один диспергатор, придающий газу вращение по часовой стрелке (FC), или, в качестве следующего примера, иметь три следующих друг за другом диспергатора, придающих газу вращение против часовой стрелки (FCC), и два следующих друг за другом диспергатора, придающих газу вращение по часовой стрелке (FC). Однако эти альтернативные осуществления обычно менее предпочтительны, чем те, которые показаны на фиг.6, где максимум два диспергатора, т.е. диспергаторы 316 и 318 придают подаваемому в них газу вращательное движение в одинаковом направлении, FCC.
Суммируя, распылительный сушильный абсорбер служит для удаления газообразных вредных веществ из горячего технологического газа и включает по меньшей мере два диспергатора. Каждый такой диспергатор служит для диспергирования части горячего технологического газа вокруг соответствующего распылителя и для придания соответствующей части горячего технологического газа вращательного движения вокруг распылителя. По меньшей мере один определенный диспергатор служит для придания проходящему через этот определенный диспергатор газу горячего процесса вращательного движения в направлении, которое противоположно направлению вращательного движения соответствующей части горячего технологического газа, диспергируемой по меньшей мере одним другим диспергатором, расположенным наиболее близко к этому определенному диспергатору.
Хотя изобретение было описано со ссылкой на ряд предпочтительных осуществлений, специалисту должно быть понятно, что могут быть сделаны разнообразные изменения и их элементы могут быть заменены эквивалентами без отклонения от объема изобретения. Кроме того, могут быть сделаны многие модификации для того, чтобы приспособить конкретную ситуацию или конкретный материал к идеям и изобретения без отклонения от его основной сферы. Поэтому подразумевается, что изобретение не является ограниченным конкретными осуществлениями, раскрытыми как наилучший способ, предлагаемый для реализации изобретения, но изобретение должно включать все осуществления, попадающие в объем прилагаемой формулы изобретения. Кроме того, использование терминов "первый", "второй" и т.д. не обозначает какой-либо порядок важности, а скорее термины "первый", "второй" и т.д. использованы для того, чтобы отличить один элемент от другого.
Claims (6)
1. Распылительный сушильный абсорбер (8; 308; 408; 608) для удаления газообразных загрязняющих веществ из горячего технологического газа, содержащий распылительную сушильную камеру (12; 312; 412; 612) и по меньшей мере два диспергатора (14, 16; 314, 316; 416, 418; 614, 616), смонтированных на крыше (22; 322; 422; 622) распылительной сушильной камеры, причем каждый такой диспергатор предназначен для диспергирования части горячего технологического газа вокруг соответствующего распылителя (24) поглощающей жидкости, причем каждый диспергатор снабжен устройством (50, 52) направления потока, которое придает соответствующей части горячего технологического газа вращательное движение вокруг распылителя (24), если смотреть сверху распылительной сушильной камеры (12; 312; 412; 612), отличающийся тем, что указанные по меньшей мере два диспергатора (14, 16; 314, 316; 416, 418; 614, 616) расположены на практически одинаковом расстоянии (D) от периферии (Р) распылительной сушильной камеры (12; 312; 412; 612), устройство направления потока по меньшей мере одного определенного диспергатора (14; 314; 418; 614) из указанных по меньшей мере двух диспергаторов предназначено для придания указанной части горячего технологического газа, проходящей через этот определенный диспергатор (14; 314; 418; 614), вращательного движения в направлении (FC), противоположном направлению (FCC) вращательного движения соответствующей части горячего технологического газа, диспергируемой по меньшей мере одним другим диспергатором (16; 316; 416; 616), расположенным наиболее близко к указанному по меньшей мере одному определенному диспергатору (14; 314; 418; 614), если смотреть по периферии (Р) распылительной сушильной камеры (12; 312; 412; 612).
2. Распылительный сушильный абсорбер по п.1, в котором распылительный сушильный абсорбер (8; 308; 408) содержит по меньшей мере три диспергатора (14, 16, 18, 20; 314, 316, 318, 320, 321; 414, 416, 418), причем максимум два следующих друг за другом диспергатора (316, 318; 414, 416) из указанных по меньшей мере трех диспергаторов, если смотреть по периферии распылительной сушильной камеры (312, 412), предназначены для придания подаваемому туда горячему технологическому газу вращательного движения в том же направлении (FCC).
3. Распылительный сушильный абсорбер по п.1 или 2, в котором распылительная сушильная камера (12; 312; 412; 612) является круговой, если смотреть сверху.
4. Распылительный сушильный абсорбер по п.1 или 2, в котором общее число диспергаторов составляет от 2 до 9.
5. Способ удаления газообразных вредных веществ из горячего технологического газа посредством распылительного сушильного абсорбера (8; 308; 408; 608), содержащего распылительную сушильную камеру (12; 312; 412; 612) и по меньшей мере два диспергатора (14, 16; 314, 316; 416, 418; 614, 616), смонтированные на крыше (22; 322; 422; 622) распылительной сушильной камеры, причем каждый такой диспергатор предназначен для диспергирования части горячего технологического газа вокруг соответствующего распылителя (24) поглощающей жидкости и снабжен устройством (50, 52) направления потока, придающим соответствующей части горячего технологического газа вращательное движение вокруг распылителя (24), если смотреть сверху распылительной сушильной камеры (12; 312; 412; 612), отличающийся тем, что соответствующую часть горячего технологического газа, проходящую через по меньшей мере один определенный диспергатор (14; 314; 418; 614) из указанных по меньшей мере двух диспергаторов, вынуждают приобрести вращательное движение в направлении (FC), противоположном направлению (FCC) вращательного движения соответствующей части горячего технологического газа, диспергируемой по меньшей мере одним другим диспергатором (16; 316; 416; 616), расположенным наиболее близко к указанному по меньшей мере одному определенному диспергатору (14; 314; 418; 614), если смотреть по периферии распылительной сушильной камеры (12; 312; 412; 612).
6. Способ по п.5, в котором распылительный сушильный абсорбер (8; 308; 408) содержит по меньшей мере три диспергатора (14, 16, 18, 20; 314, 316, 318, 320, 321; 414, 416, 418), причем максимум два следующих друг за другом диспергатора (316, 318; 414, 416) из указанных по меньшей мере трех диспергаторов, если смотреть по периферии распылительной сушильной камеры (312, 412), придают подаваемому туда горячему технологическому газу вращательное движение в том же направлении (FCC).
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| EP08151663.5 | 2008-02-20 | ||
| EP08151663A EP2098278B1 (en) | 2008-02-20 | 2008-02-20 | A spray dryer absorber disperser arrangement. |
| PCT/EP2009/000638 WO2009103407A1 (en) | 2008-02-20 | 2009-01-30 | A spray dryer absorber disperser arrangement |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| RU2010138605A RU2010138605A (ru) | 2012-03-27 |
| RU2494792C2 true RU2494792C2 (ru) | 2013-10-10 |
Family
ID=39608211
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| RU2010138605/02A RU2494792C2 (ru) | 2008-02-20 | 2009-01-30 | Диспергирующее устройство распылительного сушильного абсорбера |
Country Status (16)
| Country | Link |
|---|---|
| US (1) | US20100319538A1 (ru) |
| EP (2) | EP2098278B1 (ru) |
| JP (1) | JP2011512251A (ru) |
| KR (1) | KR101144701B1 (ru) |
| CN (1) | CN101952013B (ru) |
| AR (1) | AR070619A1 (ru) |
| AT (1) | ATE528061T1 (ru) |
| AU (1) | AU2009217042B2 (ru) |
| BR (1) | BRPI0907759A2 (ru) |
| CA (1) | CA2715705C (ru) |
| CL (1) | CL2009000378A1 (ru) |
| ES (1) | ES2375239T3 (ru) |
| MX (1) | MX2010008212A (ru) |
| PL (2) | PL2098278T3 (ru) |
| RU (1) | RU2494792C2 (ru) |
| WO (1) | WO2009103407A1 (ru) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| RU2846864C2 (ru) * | 2022-08-08 | 2025-09-17 | Сакми Кооператива Мекканики Имола Сочиета Кооператива | Распылительная сушилка для получения тонкодиспергированного керамического порошка из водной суспензии керамического материала |
Families Citing this family (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP2143476B1 (en) * | 2008-07-10 | 2012-02-01 | Alstom Technology Ltd | A disperser arrangement for a spray dryer absorber |
| KR101251503B1 (ko) | 2010-12-01 | 2013-04-05 | 현대자동차주식회사 | 수동변속기용 변속 조작기구 |
| US9289790B2 (en) | 2014-01-13 | 2016-03-22 | Alstom Technology Ltd | Spray dryer absorber vibrator device and method |
| US9403123B2 (en) * | 2014-06-24 | 2016-08-02 | Alstom Technology Ltd | High rotational momentum disperser and use |
| JP6666231B2 (ja) * | 2016-11-14 | 2020-03-13 | 三菱日立パワーシステムズ株式会社 | 噴霧乾燥システム |
| KR101929928B1 (ko) | 2017-01-17 | 2018-12-18 | 주식회사 지에스나노셀 | 나노 셀룰로오스 건조장치 |
| CN107596901A (zh) * | 2017-11-10 | 2018-01-19 | 贵州红太阳环保厂 | 一种吸收塔以及多级吸收系统 |
| KR102458355B1 (ko) | 2020-04-02 | 2022-10-25 | 주식회사 지에스나노셀 | 나노셀룰로오스 농축 및 응축 시스템 |
| CN113479960A (zh) * | 2021-07-26 | 2021-10-08 | 南方电网电力科技股份有限公司 | 一种喷雾干燥塔 |
| CN119457112A (zh) * | 2025-01-14 | 2025-02-18 | 江西悦安新材料股份有限公司 | 一种具备雾化喷嘴结构的羰基铁粉雾化热解设备 |
Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4452765A (en) * | 1980-07-30 | 1984-06-05 | The Babcock & Wilcox Company | Method for removing sulfur oxides from a hot gas |
| US4755366A (en) * | 1985-02-04 | 1988-07-05 | A/S Niro Atomizer | Process for cleaning hot waste gas occuring in varying amounts |
| RU2001661C1 (ru) * | 1991-07-02 | 1993-10-30 | Юрий Аркадиевич Головачевский | Щелевой разбрызгиватель |
| US5639430A (en) * | 1994-10-07 | 1997-06-17 | The Babcock & Wilcox Company | Low pressure drop, turbulent mixing zone dry scrubber |
| RU2240976C1 (ru) * | 2003-09-22 | 2004-11-27 | Открытое акционерное общество "Научно-исследовательский институт по удобрениям и инсектофунгицидам им. проф. Я.В.Самойлова" | Абсорбционная башня |
| RU2304017C2 (ru) * | 2005-08-11 | 2007-08-10 | Открытое Акционерное Общество "Корпорация Всмпо-Ависма" | Способ очистки газов от хлора и хлорида водорода и устройство для его осуществления |
Family Cites Families (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4502872A (en) | 1983-03-31 | 1985-03-05 | Combustion Engineering, Inc. | Discharge electrode wire assembly for electrostatic precipitator |
| US4519990A (en) * | 1983-05-24 | 1985-05-28 | Rockwell International Corporation | Spray dryer for the purification of a gas |
| DE3508260A1 (de) * | 1985-03-08 | 1986-09-18 | Heinz Dipl.-Ing. 4390 Gladbeck Hölter | Spruehabsorber |
| JPH04929Y2 (ru) * | 1987-11-04 | 1992-01-13 | ||
| DE19651074A1 (de) * | 1996-12-09 | 1998-06-10 | Abb Research Ltd | Verfahren und Einrichtung zur nassen Rauchgasentschwefelung |
| EP2143476B1 (en) * | 2008-07-10 | 2012-02-01 | Alstom Technology Ltd | A disperser arrangement for a spray dryer absorber |
-
2008
- 2008-02-20 EP EP08151663A patent/EP2098278B1/en not_active Not-in-force
- 2008-02-20 PL PL08151663T patent/PL2098278T3/pl unknown
- 2008-02-20 AT AT08151663T patent/ATE528061T1/de not_active IP Right Cessation
- 2008-02-20 ES ES08151663T patent/ES2375239T3/es active Active
-
2009
- 2009-01-30 CA CA2715705A patent/CA2715705C/en not_active Expired - Fee Related
- 2009-01-30 MX MX2010008212A patent/MX2010008212A/es active IP Right Grant
- 2009-01-30 JP JP2010547076A patent/JP2011512251A/ja active Pending
- 2009-01-30 RU RU2010138605/02A patent/RU2494792C2/ru not_active IP Right Cessation
- 2009-01-30 CN CN200980106561.7A patent/CN101952013B/zh not_active Expired - Fee Related
- 2009-01-30 BR BRPI0907759-6A patent/BRPI0907759A2/pt not_active Application Discontinuation
- 2009-01-30 WO PCT/EP2009/000638 patent/WO2009103407A1/en not_active Ceased
- 2009-01-30 US US12/867,574 patent/US20100319538A1/en not_active Abandoned
- 2009-01-30 AU AU2009217042A patent/AU2009217042B2/en not_active Ceased
- 2009-01-30 PL PL09711598T patent/PL2257361T3/pl unknown
- 2009-01-30 EP EP09711598.4A patent/EP2257361B1/en not_active Not-in-force
- 2009-01-30 KR KR1020107019910A patent/KR101144701B1/ko not_active Expired - Fee Related
- 2009-02-19 CL CL2009000378A patent/CL2009000378A1/es unknown
- 2009-02-20 AR ARP090100602A patent/AR070619A1/es not_active Application Discontinuation
Patent Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4452765A (en) * | 1980-07-30 | 1984-06-05 | The Babcock & Wilcox Company | Method for removing sulfur oxides from a hot gas |
| US4755366A (en) * | 1985-02-04 | 1988-07-05 | A/S Niro Atomizer | Process for cleaning hot waste gas occuring in varying amounts |
| RU2001661C1 (ru) * | 1991-07-02 | 1993-10-30 | Юрий Аркадиевич Головачевский | Щелевой разбрызгиватель |
| US5639430A (en) * | 1994-10-07 | 1997-06-17 | The Babcock & Wilcox Company | Low pressure drop, turbulent mixing zone dry scrubber |
| RU2240976C1 (ru) * | 2003-09-22 | 2004-11-27 | Открытое акционерное общество "Научно-исследовательский институт по удобрениям и инсектофунгицидам им. проф. Я.В.Самойлова" | Абсорбционная башня |
| RU2304017C2 (ru) * | 2005-08-11 | 2007-08-10 | Открытое Акционерное Общество "Корпорация Всмпо-Ависма" | Способ очистки газов от хлора и хлорида водорода и устройство для его осуществления |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| RU2846864C2 (ru) * | 2022-08-08 | 2025-09-17 | Сакми Кооператива Мекканики Имола Сочиета Кооператива | Распылительная сушилка для получения тонкодиспергированного керамического порошка из водной суспензии керамического материала |
Also Published As
| Publication number | Publication date |
|---|---|
| JP2011512251A (ja) | 2011-04-21 |
| ATE528061T1 (de) | 2011-10-15 |
| EP2257361A1 (en) | 2010-12-08 |
| CA2715705A1 (en) | 2009-08-27 |
| PL2098278T3 (pl) | 2012-03-30 |
| CN101952013A (zh) | 2011-01-19 |
| KR101144701B1 (ko) | 2012-05-24 |
| CN101952013B (zh) | 2014-01-08 |
| EP2098278A1 (en) | 2009-09-09 |
| CA2715705C (en) | 2013-04-09 |
| AU2009217042A1 (en) | 2009-08-27 |
| MX2010008212A (es) | 2010-09-30 |
| PL2257361T3 (pl) | 2017-09-29 |
| ES2375239T3 (es) | 2012-02-28 |
| AU2009217042B2 (en) | 2012-02-23 |
| RU2010138605A (ru) | 2012-03-27 |
| WO2009103407A1 (en) | 2009-08-27 |
| US20100319538A1 (en) | 2010-12-23 |
| EP2257361B1 (en) | 2017-03-29 |
| KR20100121640A (ko) | 2010-11-18 |
| BRPI0907759A2 (pt) | 2015-07-21 |
| AR070619A1 (es) | 2010-04-21 |
| EP2098278B1 (en) | 2011-10-12 |
| CL2009000378A1 (es) | 2010-09-21 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| RU2494792C2 (ru) | Диспергирующее устройство распылительного сушильного абсорбера | |
| CN102089064B (zh) | 喷雾干燥器吸收器的分散器布置 | |
| EP2959960B1 (en) | High rotational momentum disperser and use | |
| KR101992290B1 (ko) | 가스 흐름 패턴의 개선을 통해 SOx 제거 효율을 높인 반건식 반응탑 | |
| CN103338841A (zh) | 清洁过程气体的湿式洗涤器和方法 | |
| CA2929106C (en) | Device and method for heat and mass exchange between gas and liquid | |
| KR101686153B1 (ko) | 조대 입자들이 동반되는 배가스를 위한 분무 건조 흡착 공정 | |
| CN103990374A (zh) | 一种新型燃煤烟气脱硫、脱硝、脱碳、除尘净化联合装置 | |
| CN205700139U (zh) | 一种锅炉废气净化除雾装置 | |
| US9227157B2 (en) | Spray dryer absorption apparatus with flat-bottomed chamber | |
| JP2006122862A (ja) | 排ガス処理装置 | |
| CN205988640U (zh) | 雾式荷电超净化装置 | |
| CN105833710A (zh) | 离心反应塔 | |
| CN105935549A (zh) | 垃圾焚烧烟气处理设备 | |
| CN206508792U (zh) | 一种利用干雾技术的除尘装置 | |
| CN110255651B (zh) | 一种双u行程废水喷雾干燥塔 | |
| KR20020026988A (ko) | 배가스 유입구 부분을 개선한 기-액 흡수탑 | |
| CN113443674A (zh) | 一种喷雾干燥塔 | |
| JPH09308816A (ja) | 排ガス処理方法 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PD4A | Correction of name of patent owner | ||
| MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20180131 |