RU2491532C2 - Способ управления технологическим процессом паровой конверсии - Google Patents

Способ управления технологическим процессом паровой конверсии Download PDF

Info

Publication number
RU2491532C2
RU2491532C2 RU2010101005/28A RU2010101005A RU2491532C2 RU 2491532 C2 RU2491532 C2 RU 2491532C2 RU 2010101005/28 A RU2010101005/28 A RU 2010101005/28A RU 2010101005 A RU2010101005 A RU 2010101005A RU 2491532 C2 RU2491532 C2 RU 2491532C2
Authority
RU
Russia
Prior art keywords
stream
nir
components
process stream
range
Prior art date
Application number
RU2010101005/28A
Other languages
English (en)
Other versions
RU2010101005A (ru
Inventor
Дейвид ЛАЙТОУЛЕРС
Алаздэр Айан Томсон
Original Assignee
Бп Кемикэлз Лимитед
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Бп Кемикэлз Лимитед filed Critical Бп Кемикэлз Лимитед
Publication of RU2010101005A publication Critical patent/RU2010101005A/ru
Application granted granted Critical
Publication of RU2491532C2 publication Critical patent/RU2491532C2/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/359Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using near infrared light
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/16Controlling the process
    • C01B2203/1642Controlling the product
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/16Controlling the process
    • C01B2203/1642Controlling the product
    • C01B2203/1671Controlling the composition of the product
    • C01B2203/1676Measuring the composition of the product
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/16Controlling the process
    • C01B2203/169Controlling the feed
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/15Preventing contamination of the components of the optical system or obstruction of the light path
    • G01N2021/158Eliminating condensation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N2021/3595Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using FTIR
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/85Investigating moving fluids or granular solids
    • G01N2021/8578Gaseous flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/0317High pressure cuvettes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/0332Cuvette constructions with temperature control
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/05Flow-through cuvettes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3504Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/12Circuits of general importance; Signal processing
    • G01N2201/129Using chemometrical methods

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Radiation Pyrometers (AREA)
  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Abstract

Изобретение относится к управлению технологическим процессом паровой конверсии. Технологический поток представляет собой сырьевой поток, подаваемый в устройство паровой конверсии или выходящий из него и имеющий температуру по меньшей мере 200°C, причем компоненты технологического потока находятся в паровой фазе. Способ включает отбор бокового потока из технологического потока, охлаждение его до температуры выше его точки росы, анализ охлажденного бокового потока с помощью спектроскопии в ближней инфракрасной области (БИК) для получения спектра, характеризующего БИК-поглощающие компоненты технологического потока, корреляцию полученного спектра для установления калибровочных моделей из БИК-спектроскопии с применением хемометрических методов для определения концентрации и/или парциального давления одного или более БИК-поглощающих компонентов технологического потока и корректировку концентрации по меньшей мере одного из компонентов в сырьевом потоке в ответ на определенную концентрацию и/или парциальное давление. Изобретение позволяет повысить эффективность процесса конверсии. 24 з.п. ф-лы, 2 ил.

Description

Настоящее изобретение относится к анализу парофазных технологических потоков в режиме реального времени (онлайн) в процессе паровой конверсии углеводородов с применением инфракрасной спектроскопии в ближней области (БИК).
Синтез-газ для производства химикалий, таких как метанол, обычно получают паровой конверсией (паровым риформингом) углеводородов, как правило, нафты или природного газа в присутствии катализатора. Синтез-газ, полученный реакцией паровой конверсии, включает смесь монооксида углерода, водорода и диоксида углерода. Как правило, молярное соотношение монооксид углерода: водород не является оптимальным для применения во вторичных химических процессах, таких как производство метанола. Соответственно, обычной практикой является удаление диоксида углерода - побочного продукта реакции конверсии и рециркуляция надлежащего количества в устройство (аппарат) конверсии. Добавка диоксида углерода к сырью устройства конверсии меняет молярное соотношение монооксид углерода: водород. Тщательное регулирование количества рециркулируемого диоксида углерода обеспечивает достижение требуемого соотношения монооксид углерода: водород. Традиционно на практике отделение диоксида углерода достигается абсорбционной обработкой растворителем, как правило, водными алканоламинами, с последующим сжатием для достижения необходимого давления для рециркуляции в устройство конверсии. Предпочтительно, чтобы количество диоксида углерода, полученного реакцией паровой конверсии, было отрегулировано или минимизировано.
Компонентами сырья реакции паровой конверсии являются вода (пар), углеводород и, возможно, диоксид углерода. Как правило, компоненты сырья предварительно нагревают до температуры по меньшей мере 500°C и подают в устройство конверсии при давлении по меньшей мере 15 бар изб. При этих условиях компоненты сырья присутствуют в газообразном состоянии.
Традиционным парофазным аналитическим методом является газовая хроматография. Однако, при применении газовой хроматографии было обнаружено, что может наблюдаться конденсация некоторых компонентов, таких как пар, что затрудняет получение данных по составу с достаточной точностью. Поэтому крайне желательно поддержание технологического пара в паровой фазе во время анализа. Однако, нежелательно проводить анализ технологических потоков, имеющих очень высокую температуру, такую как температуры, применяемые в устройстве паровой конверсии, так как аналитическое оборудование, которое может выдерживать такие температуры, является труднодоступным или дорогим.
Соответственно, настоящее изобретение предлагает способ анализа технологического потока в режиме онлайн, где технологический поток представляет собой сырьевой поток, подаваемый в устройство паровой конверсии или выходящий из него, технологический поток имеет температуру по меньшей мере 200°C, а компоненты технологического потока находятся в паровой фазе, и способ включает:
(а) отбор бокового (отводного) потока из технологического потока;
(б) охлаждение бокового потока до температуры выше его точки росы;
(в) анализ охлажденного бокового потока с помощью БИК для получения спектра, характеризующего БИК-абсорбирующие компоненты технологического потока, и
(г) корреляцию полученного спектра по установленным калибровочным моделям в БИК-спектроскопии с применением хемометрических методов для определения концентрации и/или парциального давления одного или более БИК-абсорбирующих компонентов технологического потока.
Как правило, при паровой конверсии углеводорода компоненты: пар, углеводород и, возможно, диоксид углерода подают в устройство конверсии при высокой температуре и давлении. В качестве углеводорода может быть, например, нафта или природный газ. Природный газ преимущественно включает метан, но может также содержать небольшие количества низкомолекулярных алифатических углеводородов, таких как этан и пропан. Таким образом, технологический поток может включать компоненты: пар, метан и диоксид углерода. В качестве источника диоксида углерода может применяться рециркулирующий поток, содержащий диоксид углерода, или другой источник. Преимущественно, боковой поток может быть отобран из сырьевого потока, подаваемого в устройство конверсии, в точке, следующей за вводом рециркулирующего сырьевого диоксида углерода.
В ходе реакции паровой конверсии образуется выходящий поток, включающий монооксид углерода, водород, непревращенный углеводород и диоксид углерода. Таким образом, технологический поток может включать компоненты: монооксид углерода, водород, метан и диоксид углерода. Как правило, в промышленной практике диоксид углерода извлекают из выходящего потока, и по меньшей мере часть диоксида углерода возвращают обратно в устройство конверсии. Преимущественно, боковой поток может быть отобран из выходящего потока устройства конверсии в точке перед отделением диоксида углерода от выходящего потока.
В качестве устройства конверсии может применяться любой подходящий аппарат для конверсии, такой как аппараты, имеющиеся в распоряжении в промышленности, он может представлять собой однопроходное устройство конверсии или двухшаговое устройство конверсии. Как правило, устройство конверсии представляет собой печь с огневым обогревом, содержащую параллельные трубные пакеты, заполненные традиционным катализатором паровой конверсии, таким как оксид алюминия на носителе - оксиде никеля.
В способе осуществления настоящего изобретения компоненты технологического потока находятся в паровой фазе, однако, компоненты могут также находиться под давлением. Температура и давление технологического потока будут зависеть от характера способа паровой конверсии. Предлагаемый в настоящем изобретении способ пригоден для анализа сырьевых потоков и/или потоков, выходящих из устройства конверсии, которые имеют температуру по меньшей мере 200°C, такую как 200-500°C, например, 200-350°C. Технологический поток может находиться при атмосферном давлении или более высоком давлении, например, при давлении по меньшей мере 10 бар изб., таком как в диапазоне 10-100 бар изб.
Боковой поток состоит из части технологического потока. Объем бокового потока не является критическим фактором, однако скорость, с которой может выполняться охлаждение бокового потока, будет возрастать с уменьшением объема бокового потока. Более быстрое охлаждение бокового потока может позволить более часто выполнять предлагаемый в настоящем изобретении способ.
Охлаждение бокового потока может осуществляться с помощью воздушного охлаждения. Кроме того, охлаждение бокового потока может проводиться с применением водяной рубашки.
При охлаждении бокового потока выше его точки росы, то есть температуры, при которой компоненты бокового потока начинают конденсироваться, компоненты бокового потока поддерживают в паровой фазе. Таким образом, настоящее изобретение позволяет определить данные по составу с высокой точностью, так как в ходе анализа конденсация компонентов исключена.
На практике боковой поток соответствующим образом охлаждают до температуры по меньшей мере на 20°C выше точки росы бокового потока для предотвращения образования холодных очагов в потоке. Соответственно, температуру бокового потока поддерживают при температуре в диапазоне 200-300°C.
Способ БИК применяют для того, чтобы охарактеризовать молекулы, которые поглощают в ближней инфракрасной части спектра. БИК позволяет провести как количественный так и качественный анализы. БИК-анализаторы имеются в распоряжении в промышленном масштабе. Главные компоненты БИК-анализатора включают детектор, источник света, средство передачи светового сигнала детектору и спектрометр. Детектор соединен со средством передачи светового сигнала к источнику света и спектрометром.
Свет с длиной волны от 10000 до 4000 см-1 передается детектору с помощью любого подходящего средства, известного в технике. Как правило, подобное средство передачи включает волоконно-оптический кабели, например, силикатные (кварцевые) волоконно-оптические кабели с низким омическим нагревом. Соответственно, для применения при высоких температурах волоконно-оптические кабели покрывают покрытием, стойким к разрушению при температурах выше 200°C. Например, волоконно-оптические кабели могут покрываться полиимидным материалом или металлом, таким как золото.
Выбор источника света не считают критическим, источником света может быть, например, кварцевый галогенный источник света или диоды, испускающие свет в ближней инфракрасной области.
Анализ бокового потока проводится детектором, который функционирует в ближней инфракрасной области (от 10000 см-1 до 4000 см-1).
Для применения в способе осуществления настоящего изобретения, в котором компоненты находятся в паровой фазе, предпочтительно использовать детектор типа проточной кюветы. Проточные кюветы доступны в промышленном масштабе, например, от фирмы Specac Limited.
Выбор БИК-проточной кюветы должен быть таким, чтобы подобный анализ компонентов мог проводиться в условиях температуры и давления охлажденного бокового потока. Например, проточная кювета может обогреваться с помощью электронных устройств до температуры выше точки росы бокового потока. БИК-проточные кюветы, подходящие для применения в способе осуществления настоящего изобретения, включают кювету Typhoon-T фирмы Specac Limited.
Соответственно, корпус проточной кюветы изготавливают из высококачественной нержавеющей стали, такой как нержавеющая сталь марки 316L, нержавеющей стали, полученной дуплекс процессом, или сплава Hastelloy СC.
Соответственно, окна кюветы изготавливают из материала, прозрачного в ближней инфракрасной области, химически стойкого и механически прочного в условиях охлажденного бокового потока. Подходящим материалом для окна кюветы является, например, сапфир.
Окна кюветы присоединены к корпусу проточной кюветы с помощью уплотнительного материала, способного выдерживать температуру и давление охлажденного бокового потока. Например, можно применить соответствующие уплотняющие материалы на основе эпоксидной смолы.
Длина тракта кюветы зависит от конкретного давления и температуры анализируемых компонентов. Увеличение интенсивности спектра приводит к нелинейной корреляции между интенсивностью поглощения и концентрацией. Нелинейная корреляция нежелательна, так как она может привести к неверным результатам анализа. Соответственно поэтому спектр анализируемого компонента имеет поглощение менее чем 1,5 единицы поглощения.
Интенсивность спектра увеличивается с давлением. Таким образом, по мере роста давления анализируемых компонентов длина тракта соответственно должна уменьшаться. Например, при давлении анализируемых компонентов в диапазоне 12-25 бар изб. длина тракта кюветы находится в диапазоне 5-10 см. Как правило, сырьевые потоки, подаваемые в устройство паровой конверсии природного газа, и потоки, выходящие из устройства, находятся под давлением примерно 17 бар изб., при этом длина тракта кюветы находится в диапазоне 7,0-8,0 см, так что длина тракта 7,5 см позволяет провести количественный анализ пара, метана, диоксида углерода и других компонентов, поглощающих в ближней инфракрасной - области.
В продаже имеются много разных типов БИК-спектрометров, которые можно применять в способе осуществления настоящего изобретения. Например, в качестве БИК-спектрометра можно применить инфракрасный спектрометр с преобразованием Фурье (ИК-Фурье спектрометр) или спектрометр с диодной матрицей. Как хорошо известно в технике, применение ИК-Фурье спектрометра с высоким разрешением обеспечивает получение спектров без искажения, тогда как применение при низком разрешении позволяет проводить более частый анализ компонентов технологического потока. Соответственно, частота измерения должна быть эффективной для обеспечения возможности управления технологическим процессом. Было показано, что при применении ИК-Фурье спектрометра разрешение в диапазоне 0,1-2 см-1 позволяет получить спектры без искажения при частоте примерно тридцать секунд. Однако, применение разрешения выше 4 см-1, такого как в диапазоне 4-16 см-1, позволит достичь более быстрого времени срабатывания.
Область спектра, в которой можно определить количество воды, метана и диоксида углерода, находится в диапазоне 7500-4800 см-1.
Полученный спектр регистрируется в БИК-спектрометре. Спектр коррелируют по эталонным данным для компонентов технологического потока с применением хемометрических методов для простого расчета прямого значения концентрации каждого из анализируемых компонентов и/или парциального давления каждого анализируемого компонента. Методы, которые можно использовать, включают метод частичных наименьших квадратов (англ-PLS - partial least squares), метод множественной линейной регресии (англ-MLR - multiple linear regression) и метод регрессии главного компонента (англ. PCR - principal component regression). В продаже имеется программное обеспечение для анализа типа PLS; для анализов типа MLR и PCR можно также применить, например, программное обеспечение GRAMS фирмы Galactic Limited и MATLAB фирмы Mathsoft Inc.MATLAB.
Как правило, при паровой конверсии природного газа сырьевой поток, подаваемый в устройство паровой конверсии, будет содержать метан, диоксид углерода и пар. Калибровочные смеси можно приготовить автономно с помощью техники смешения потоков. Техника смешения потоков основана на смешении газообразных компонентов с жидким компонентом при заданном давлении и нагреве до заданной температуры для получения паровой смеси. Затем паровая смесь проходит через БИК-проточную кювету для генерирования спектра. Регулирование жидкого и газового потоков может осуществляться с помощью регуляторов массового потока. Жидкость можно подавать из бутыли из нержавеющей стали, которая находится под давлением гелия для предотвращения пульсации потока. Возврат пара из БИК-проточной кюветы охлаждают, и жидкий конденсат собирают в конденсационной бутыли. Газ затем можно использовать для регулирования давления в системе до выпуска в вентиляционный канал. После этого БИК-спектры, полученные при анализе паровых смесей, используют для создания калибровочных моделей.
Кроме калибровочных данных, полученных в автономном режиме, точность калибровочной модели можно подтвердить и/или улучшить модель путем отбора проб из технологических потоков и анализа проб с помощью стандартных аналитических методов, таких как газовая хроматография. Отбор проб из парофазных технологических потоков можно проводить с применением бутыли из нержавеющей стали надлежащей емкости, например, 300 мл. Перед применением бутыль продувают под давлением инертным газом, который не присутствует в анализируемом технологическом потоке. Выбор инертного газа также зависит от вида хроматографии. Соответственно, инертным газом может быть криптон. Кроме того, в бутыль впрыскивают через мембрану небольшой объем растворителя (около 5 мл). Это необходимо для количественного вымывания компонентов пробы, которые конденсируются на внутренних стенках бутыли. Аналогичным образом, использованный растворитель не должен присутствовать в процессе и должен смешиваться со всеми сконденсировавшимися компонентами. В случае сырьевого потока устройства конверсии метанол является подходящим растворителем. В качестве вспомогательного средства для проведения количественного анализа в метаноле может присутствовать внутренний стандарт.После монтажа в устройстве бутыль открывают очень быстро (примерно за 0,5 секунды). Это обеспечивает ультразвуковой поток пробы в бутыль для уменьшения потерь инертного газа или растворителя. Затем бутыль можно удалить из устройства и анализировать газовое и/или жидкое содержимое в автономном режиме с помощью газовой хроматографии. Любую жидкость, содержащуюся в бутыли, следует удалить и анализировать с помощью газовой хроматографии. Подобным образом анализируют газ с помощью газовой хроматографии. Фактически собранный объем пробы можно рассчитать по имевшему место разбавлению криптоном. Затем рассчитывают число молей каждого компонента в каждой фазе, что позволяет легко определить концентрации пара в об.%. Эти данные можно затем использовать для подтверждения и/или улучшения точности калибровочной модели.
Способ по настоящему изобретению можно применить для определения концентрации одного или более БИК-поглощающих компонентов технологического потока, подаваемого в устройство паровой конверсии или выходящего из него.
В качестве альтернативы, предлагаемый в настоящем изобретении способ можно применить для определения парциального давления одного или более БИК-поглощающих компонентов технологического потока, подаваемого в устройство паровой конверсии или выходящего из него.
Когда технологический поток содержит воду, метан и диоксид углерода, полученный спектр корректируют по эталонным данным с применением хемометрических методов для определения концентрации одного или более компонентов: воды, метана и диоксида углерода. Как только данные по составу становятся известными, при необходимости можно скорректировать расходы сырьевых компонентов, тем самым улучшая эффективность процесса.
В качестве альтернативы, полученный спектр для воды, метана и диоксида углерода можно скорректировать по эталонным данным с применением хемометрических методов для определения парциального давления одного или более компонентов: воды, метана и диоксида углерода. Некоторые газы, такие как водород и азот, не имеют диполя и поэтому не поглощают инфракрасное излучение. Следовательно, эти газы нельзя анализировать с помощью БИК. Однако, в сырьевом потоке устройства конверсии может присутствовать азот, и в выходящем потоке из устройства конверсии присутствует водород. Как правило, на химических установках, включающих устройства конверсии, имеются датчики давления, связанные с ними. Эти датчики давления, такие как преобразователи, определяют общее давление газа технологического потока. Таким образом, с помощью предлагаемого в настоящем изобретении способа можно определить сумму парциальных давлений БИК-поглощающих компонентов технологического потока. Сравнение значения давления, определенного с помощью БИК-метода настоящего изобретения, с данными абсолютного давления газа, полученными, например, от датчика давления, позволит определить давление остальных газовых компонентов, например, азота и водорода. Это имеет особое значение в при изменении количества азота, присутствующего в природном газе, что может иметь место, например, при изменении источника снабжения природным газом.
Одно из преимуществ предлагаемого в настоящем изобретении способа заключается в способности быстрого определения информации по составу парофазного технологического потока при давлении и температуре выше точки росы технологического потока. При применении изобретения на практике измерение концентраций пара и/или углеводорода, такого как метан, и/или диоксид углерода, в охлажденном боковом потоке в соответствии с настоящим изобретением можно проводить непрерывно, например, с частотой каждые тридцать секунд.
Когда предлагаемый в настоящем изобретении способ осуществляется непрерывно, предпочтительно чтобы температура, до которой охлаждается боковой поток, оставалась постоянной. Это является благоприятным фактором, так как интенсивность полученных спектров не будет зависеть от изменений температуры, что упрощает корреляцию спектров по установленным корреляционным моделям.
Кроме того, непрерывный процесс предлагаемого в настоящем изобретении способ подходит для осуществления управления технологическим процессом. Например, при непрерывном мониторинге концентрации непревращенного метана в потоке, выходящем из устройства конверсии, расход (концентрация) метана, подаваемого в устройство конверсии, можно скорректировать для максимизации количества получаемого диоксида углерода, тем самым улучшив эффективность процесса конверсии.
В настоящем изобретении, кроме того, предлагается способ управления технологическим процессом паровой конверсии, где упомянутый процесс включает сырьевой поток, подаваемый в устройство конверсии, или поток, выходящий из устройства конверсии, и этот технологический поток имеет температуру по меньшей мере 200°C, а компоненты технологического потока находятся в паровой фазе, упомянутый способ включает:
(а) отбор бокового потока из технологического потока;
(б) охлаждение бокового потока до температуры выше его точки росы;
(в) анализ бокового потока с помощью БИК-спектроскопии для получения спектра, характеризующего БИК-поглощающие компоненты потока и
(г) корреляцию полученного спектра для установления калибровочных моделей из БИК-спектроскопии с применением хемометрических методов для определения концентрации и/или парциального давления одного или более БИК-поглощающих компонентов технологического потока и
(д) коррекцию концентрации по меньшей мере одного из компонентов в сырьевом потоке на основе определенной концентрацией) и/или парциального давления(й).
Управление технологическим процессом на основе информации, полученной с помощью анализа в ближней инфракрасной области бокового потока из сырьевого потока, подаваемого в устройство паровой конверсии и выходящих из него потоков, может быть ручным или автоматическим, Предпочтительно, чтобы данные, полученные с помощью анализа в ближней инфракрасной области, вводились в компьютеризированное регулирующее устройство, которое автоматически корректирует сырьевые компоненты, подаваемые в устройство паровой конверсии, для достижения заданных расходов компонентов.
В качестве альтернативы, данные могут выводиться на дисплей и интерпретироваться оператором, который корректирует вручную расходы компонентов сырья.
Предлагаемый в настоящем изобретении способ далее будет проиллюстрирован следующим, не ограничивающим настоящее изобретение примером, со ссылкой на фиг.1 и 2. Фиг.1 представляет в схематическом виде устройство, предназначенное для применения с целью установления калибровочных моделей парофазных смесей, генерированных смешением потоков. Фиг.2 показывает БИК-спектр парофазной смеси диоксида углерода, метана и воды.
Устройство включает в себя термические регуляторы (1) массового расхода, регулируемый испаритель смесителя (2), БИК - проточную кювету (3), волоконно-оптические кабели (4) и БИК-спектрометр (5).
Устройство функционирует следующим образом: компонент в жидкой фазе подают по линии (6) в обогреваемый регулируемый испаритель смесителя (2), где он испаряется с образованием пара. Газоообразные компоненты подают по линиям 7 и 8 в обогреваемый регулируемый испаритель смесителя (2), где они смешиваются с испарившейся жидкостью. Потоки жидкого и газообразного компонентов, подаваемые в обогреваемый регулируемый испаритель смесителя (2), регулируют с помощью термических регуляторов (1) массового расхода. Паровая смесь, полученная в обогреваемом регулируемом испарителе смесителя (2), поступает в БИК-проточную кювету (3). Поток, выходящий из БИК-проточной кюветы (3), пропускают через теплообменник (9) и выпускают в вентиляционный канал через конденсатор (10), который отделяет жидкости, и регулятор давления (11), который регулирует давление в системе. БИК-проточная кювета (3) соединена волоконно-оптическими кабелями (4) с БИК-спектрометром (5). Паровую смесь в БИК-проточной кювете (3) анализируют БИК-спектрометром (5) с применением множественных сканирований при разных разрешениях между 10000 и 4000 см-1 и проточной кюветы в атмосфере азота или волоконного контура в качестве эталона.
Установление калибровочных моделей концентрации пара, метана и диоксида углерода в их смеси.
Устройство, компоновка которого показана на фиг.1, применили для генерирования БИК-спектров калибровочных смесей диоксида углерода, водяного пара и метана. Прибор включает термические регуляторы массового расхода (1) и обогреваемый регулируемый испаритель смесителя (2) производства фирмы Bronkhurst (UK) Ltd. В качестве БИК-спектрометра (5) применили спектрометр Bruker Matrix F РТБИК фирмы Bruker Optics Ltd, имеющий интегральный механический мультиплексор и оснащенный детектором InGaAs с термоэлектрическим охлаждением и кварцевым свето делителем. БИК-спектрометр (5) подключен к БИК-проточной кювете (3) посредством силикатной волоконной оптики с низким омическим нагревом (200 микрон сердцевина / 280 микрон оболочка, 0,29 числовая апертура, полиимидное покрытие, рассчитанное до 350°C от фирмы Sentronic GmbH). БИК-проточная кювета представляет собой кювету из нержавеющей стали Typhoon N (фирма SPECAC Ltd), имеющую сапфировые окна, длину тракта 7,5 см и рассчитанную до 50 бар и 300°C. Проточную кювету и паровые линии нагревают с помощью электрообогрева до температуры выше точки росы паровых смесей.
Калибровочные смеси водяного пара, метана и диоксида углерода были приготовлены следующим образом. Воду (от 0 до 10 г/час) испарили, смешали с метаном (от 0 до 3 нл/час) и диоксидом углерода (от 0 до 3 нл/час) в регулируемом испарителе смесителя и подали в проточную кювету при 200-280°C и общем давлении 15-20 бар абс.Полученные таким образом паровые смеси содержали водяной пар 8-12 бар абс., метан 2-6 бар абс.и диоксид углерода 1-4 бар абс.Были зарегистрированы БИК-спектры в диапазоне волновых чисел между 10000 и 4000 при разрешении волнового числа 2 с применением проточной кюветы под азотом при температуре измерения в качестве эталона.
На фиг.2 представлен спектр пробы, показывающий области поглощения диоксидом углерода (2,60 бар абс.), метаном (3,64 бар абс.) и водяным паром (10,81 бар абс.) при общем давлении 17,05 бар абс.и 240°C. (Спектры чистого компонента можно найти в технических библиотеках, такие как спектры, опубликованные Pacific Northwest National Laboratory, министерство энергетики США, Ричланд, штат Вашингтон). Данные, полученные из генерированных БИК-спектров, были применены для установления калибровочных моделей. Были созданы калибровочные модели на основе частичных наименьших квадратов для метана, воды, диоксида углерода и температуры с помощью хемометрии с программным обеспечением PLSplusMQ (фирма Thermo Electron Corporation) с применением областей спектра без избыточного поглощения водой (волновые числа 9500-7400, 7100-5520 и 5160-4925).
Пример 1
Боковой поток из сырьевого потока устройства паровой конверсии, включающий пар, диоксид углерода и метан, при температуре примерно 278°C и давлении примерно 17 бар изб. охлаждают воздухом до температуры 250-260°C и затем анализируют путем регистрации БИК-спектров между волновыми числами 10000 и 4000 при разрешении волнового числа 2 с интервалами в 30 секунд с применением БИК-спектрометра, БИК-проточной кюветы и волоконно-оптических кабелей вышеописанного типа. Калибровочные модели на основе частичных наименьших квадратов применили к генерированным БИК-спектрам, так что была определена концентрация каждого из компонентов: метана, пара и диоксида углерода в сырьевом потоке устройства конверсии. На основе определенной концентрации компонентов: метана, пара и диоксида углерода скорректировали концентрацию метана в сырьевом потоке устройства паровой конверсии.

Claims (25)

1. Способ управления технологическим процессом паровой конверсии, включающим технологический поток, представляющий собой сырьевой поток, подаваемый в устройство паровой конверсии или выходящий из него и имеющий температуру по меньшей мере 200°C, причем компоненты технологического потока находятся в паровой фазе, и в котором осуществляют:
(а) отбор бокового потока из указанного технологического потока;
(б) охлаждение этого бокового потока до температуры, находящейся выше его точки росы;
(в) анализ охлажденного бокового потока с помощью спектроскопии в ближней инфракрасной области (БИК) для получения спектра, характеризующего БИК-поглощающие компоненты технологического потока; и
(г) корреляцию полученного спектра для установления калибровочных моделей из БИК-спектроскопии с применением хемометрических методов для определения концентрации и/или парциального давления одного или более БИК-поглощающих компонентов технологического потока; и
(д) корректировку концентрации по меньшей мере одного из компонентов в сырьевом потоке в ответ на определенную концентрацию(и) и/или парциальное давление(я).
2. Способ по п.1, в котором компоненты технологического потока включают пар, метан и диоксид углерода.
3. Способ по п.1, в котором компоненты технологического потока включают монооксид углерода, водород, метан и диоксид углерода.
4. Способ по п.2, в котором технологический поток, кроме того, включает азот.
5. Способ по п.3, в котором технологический поток, кроме того, включает азот.
6. Способ по п.1, в котором температура технологического потока находится в диапазоне 200-500°C.
7. Способ по п.1, в котором боковой поток получают из сырьевого потока в точке, следующей за вводом рециркулирующего сырьевого диоксида углерода.
8. Способ по п.1, в котором боковой поток получают из выходящего потока в точке, предшествующей отделению диоксида углерода от выходящего потока.
9. Способ по п.1, в котором боковой поток охлаждают до температуры по меньшей мере на 20°C выше точки росы.
10. Способ по п.1, в котором охлажденный боковой поток поддерживают при температуре в диапазоне 200-300°C.
11. Способ по п.9, в котором охлажденный боковой поток поддерживают при температуре в диапазоне 200-300°C.
12. Способ по п.1, в котором технологический поток находится под давлением в диапазоне 10-100 бар (изб.).
13. Способ по п.1, в котором хемометрический метод выбран из методов частичных наименьших квадратов, множественной линейной регрессии и регрессии главного компонента.
14. Способ по п.1, в котором спектроскопию в ближней ИК-области проводят с применением оборудования, включающего БИК-спектрометр, волоконно-оптические кабели и БИК-проточную кювету.
15. Способ по п.14, в котором БИК-спектрометр представляет собой инфракрасный спектрометр с преобразованием Фурье.
16. Способ по п.15, в котором инфракрасный спектрометр с преобразованием Фурье используют при разрешении в диапазоне 0,1-2 см-1.
17. Способ по п.14, в котором волоконно-оптические кабели представляют собой силикатные волоконно-оптические кабели с низким омическим нагревом.
18. Способ по п.14, в котором волоконно-оптические кабели покрыты полиимидным материалом или металлом.
19. Способ по п.17, в котором волоконно-оптические кабели покрыты полиимидным материалом или металлом.
20. Способ по п.14, в котором БИК-проточная кювета включает корпус из нержавеющей стали и сапфировые окна.
21. Способ по п.14, в котором БИК-проточная кювета имеет длину тракта в диапазоне 5-10 см.
22. Способ по п.20, в котором БИК-проточная кювета имеет длину тракта в диапазоне 5-10 см.
23. Способ по п.21, в котором длина тракта находится в диапазоне 7,0-8,0 см.
24. Способ по п.22, в котором длина тракта находится в диапазоне 7,0-8,0 см.
25. Способ по п.1, в котором спектр анализируемого компонента имеет поглощение менее 1,5 единиц поглощения.
RU2010101005/28A 2007-06-15 2008-05-23 Способ управления технологическим процессом паровой конверсии RU2491532C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP07252448.1 2007-06-15
EP07252448 2007-06-15
PCT/GB2008/001778 WO2008152351A1 (en) 2007-06-15 2008-05-23 A method for the online analysis of a vapour phase process stream

Publications (2)

Publication Number Publication Date
RU2010101005A RU2010101005A (ru) 2011-07-20
RU2491532C2 true RU2491532C2 (ru) 2013-08-27

Family

ID=38669161

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2010101005/28A RU2491532C2 (ru) 2007-06-15 2008-05-23 Способ управления технологическим процессом паровой конверсии

Country Status (16)

Country Link
US (1) US20100127217A1 (ru)
EP (1) EP2158472B1 (ru)
JP (1) JP5654343B2 (ru)
KR (1) KR101494920B1 (ru)
CN (1) CN101707919B (ru)
AT (1) ATE490457T1 (ru)
BR (1) BRPI0812731A2 (ru)
CA (1) CA2690078A1 (ru)
DE (1) DE602008003803D1 (ru)
ES (1) ES2357463T3 (ru)
MY (1) MY148026A (ru)
RS (1) RS51628B (ru)
RU (1) RU2491532C2 (ru)
TW (1) TWI463135B (ru)
UA (1) UA97671C2 (ru)
WO (1) WO2008152351A1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU196423U1 (ru) * 2019-10-29 2020-02-28 Федеральное государственное бюджетное учреждение "Национальный исследовательский центр "Курчатовский институт" Инфракрасный анализатор паров сжиженного природного газа

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5885699B2 (ja) * 2013-05-09 2016-03-15 株式会社フジキン 脆性破壊性光透過窓板の固定構造及びこれを用いた脆性破壊性光透過窓板の固定方法
WO2014181527A1 (ja) * 2013-05-09 2014-11-13 国立大学法人徳島大学 原料流体濃度検出器
CN103678921B (zh) * 2013-12-18 2016-06-15 北京科技大学 一种基于主成分回归分析的织构影响无取向硅钢磁性能的分析方法
CN103678922B (zh) * 2013-12-18 2016-08-31 北京科技大学 基于主成分回归分析的夹杂物影响无取向硅钢磁性能的分析方法
US10393638B2 (en) * 2014-01-29 2019-08-27 Jp3 Measurement, Llc System and method for determining vapor pressure of produced hydrocarbon streams via spectroscopy
CN103823975B (zh) * 2014-02-25 2017-07-18 北京科技大学 织构组分对无取向硅钢磁感影响的主成分回归分析法
US10012622B2 (en) * 2014-07-29 2018-07-03 Utah State University Gaseous mercury detection systems, calibration systems, and related methods
CN104792727B (zh) * 2015-04-30 2018-07-31 西安近代化学研究所 一种乙二胺胺化反应工艺物流的快速分析方法
CN104897606B (zh) * 2015-04-30 2018-07-31 西安近代化学研究所 一种甲基肼反应工艺物流的快速分析方法
CN104792725B (zh) * 2015-04-30 2018-01-23 西安近代化学研究所 乙醇胺脱水制备氮丙啶产物流的快速分析方法
CN104792726B (zh) * 2015-04-30 2018-07-31 西安近代化学研究所 一种乙醇胺胺化反应工艺物流的快速分析方法
JP6269576B2 (ja) 2015-05-25 2018-01-31 横河電機株式会社 多成分ガス分析システム及び方法
US10913071B2 (en) 2016-03-09 2021-02-09 Pearson Incorporated Scalper apparatus and processing system
US10322487B1 (en) 2016-07-15 2019-06-18 Pearson Incorporated Roller mill grinding apparatus with regenerative capability
US10807098B1 (en) 2017-07-26 2020-10-20 Pearson Incorporated Systems and methods for step grinding
PL238324B1 (pl) * 2017-08-29 2021-08-09 Inst Chemii Organicznej Polskiej Akademii Nauk Aparatura przepływowa do prowadzenia procesów pod wysokim ciśnieniem w trybie ciągłym
US10696906B2 (en) 2017-09-29 2020-06-30 Marathon Petroleum Company Lp Tower bottoms coke catching device
US11325133B1 (en) 2018-07-26 2022-05-10 Pearson Incorporated Systems and methods for monitoring the roll diameter and shock loads in a milling apparatus
US11300372B2 (en) * 2018-08-09 2022-04-12 Multi-Chem Group, Llc System for hydrogen detection in cooling towers
US12000720B2 (en) 2018-09-10 2024-06-04 Marathon Petroleum Company Lp Product inventory monitoring
RU2700331C1 (ru) * 2018-10-19 2019-09-16 Дарья Сергеевна Нехорошева Ик-спектрометрическая система парофазного контроля химического состава смесей жидких углеводородов в резервуаре и способ выполнения спектрометрических измерений с ее использованием
US10751722B1 (en) 2018-10-24 2020-08-25 Pearson Incorporated System for processing cannabis crop materials
US10785906B2 (en) 2019-02-19 2020-09-29 Pearson Incorporated Plant processing system
US12031676B2 (en) 2019-03-25 2024-07-09 Marathon Petroleum Company Lp Insulation securement system and associated methods
US11975316B2 (en) 2019-05-09 2024-05-07 Marathon Petroleum Company Lp Methods and reforming systems for re-dispersing platinum on reforming catalyst
US10757860B1 (en) 2019-10-31 2020-09-01 Hemp Processing Solutions, LLC Stripper apparatus crop harvesting system
US10933424B1 (en) 2019-12-11 2021-03-02 Pearson Incorporated Grinding roll improvements
US11124714B2 (en) 2020-02-19 2021-09-21 Marathon Petroleum Company Lp Low sulfur fuel oil blends for stability enhancement and associated methods
US11702600B2 (en) 2021-02-25 2023-07-18 Marathon Petroleum Company Lp Assemblies and methods for enhancing fluid catalytic cracking (FCC) processes during the FCC process using spectroscopic analyzers
US11905468B2 (en) 2021-02-25 2024-02-20 Marathon Petroleum Company Lp Assemblies and methods for enhancing control of fluid catalytic cracking (FCC) processes using spectroscopic analyzers
US11898109B2 (en) 2021-02-25 2024-02-13 Marathon Petroleum Company Lp Assemblies and methods for enhancing control of hydrotreating and fluid catalytic cracking (FCC) processes using spectroscopic analyzers
US20220268694A1 (en) 2021-02-25 2022-08-25 Marathon Petroleum Company Lp Methods and assemblies for determining and using standardized spectral responses for calibration of spectroscopic analyzers
US11692141B2 (en) 2021-10-10 2023-07-04 Marathon Petroleum Company Lp Methods and systems for enhancing processing of hydrocarbons in a fluid catalytic cracking unit using a renewable additive
US11802257B2 (en) 2022-01-31 2023-10-31 Marathon Petroleum Company Lp Systems and methods for reducing rendered fats pour point

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5082985A (en) * 1988-05-30 1992-01-21 Crouzet Pierre G Process for controlling hydrocarbon steam cracking system using a spectrophotometer
US5775808A (en) * 1996-06-19 1998-07-07 Applied Materials, Inc. Apparatus for real-time, in situ measurement of temperature and a method of fabricating and using same
US6072576A (en) * 1996-12-31 2000-06-06 Exxon Chemical Patents Inc. On-line control of a chemical process plant
US6512156B1 (en) * 1996-10-22 2003-01-28 The Dow Chemical Company Method and apparatus for controlling severity of cracking operations by near infrared analysis in the gas phase using fiber optics
RU2231045C2 (ru) * 2002-05-20 2004-06-20 Общество с ограниченной ответственностью "Еврохим-СпбТрейдинг" Способ измерения концентрации гидропероксидов алкилароматических углеводородов в жидких промышленных потоках
RU2264433C2 (ru) * 2000-10-13 2005-11-20 Бп Кемикэлз Лимитед Способ и устройство для определения затухания реакции в процессе конверсии углеводородов
EP1788378A1 (en) * 2005-11-22 2007-05-23 BP Chemicals Limited Method & apparatus for spectroscopic analysis

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2095205T3 (es) * 1987-08-18 1997-02-16 Bp Oil Int Metodo para la determinacion directa de propiedades fisicas de productos hidrocarbonados.
MY107650A (en) * 1990-10-12 1996-05-30 Exxon Res & Engineering Company Method of estimating property and / or composition data of a test sample
EP0706049A1 (en) * 1994-10-07 1996-04-10 Bp Chemicals S.N.C. Cracking property determination
US6063633A (en) * 1996-02-28 2000-05-16 The University Of Houston Catalyst testing process and apparatus
ATE262170T1 (de) * 1996-04-09 2004-04-15 Eutech Engineering Solutions L Prozess-steuerung
JP2001509597A (ja) * 1997-07-09 2001-07-24 アシュランド インコーポレーテッド 近赤外分光法による炭化水素種の分析方法及び装置
CN1117139C (zh) * 1997-12-31 2003-08-06 中国科学院大连化学物理研究所 一种有机溶剂中微量水的脱除工艺
GB9802695D0 (en) * 1998-02-10 1998-04-01 Bp Oil Int Process control
US5895506A (en) * 1998-03-20 1999-04-20 Cook; Bruce Randall Use of infrared spectroscopy to produce high lubricity, high stability, Fischer-Tropsch diesel fuels and blend stocks
US6103934A (en) * 1998-12-18 2000-08-15 Millennium Petrochemicals, Inc. Manufacturing and process control methods
JP2001027596A (ja) * 1999-05-13 2001-01-30 Canon Inc 走査型プローブによる表面特性・電気的特性の検出装置と検出方法、およびこれらにより構成されたマルチプローブによる表面特性・電気的特性の検出装置と検出方法、並びに観察装置と観察方法
CA2389105A1 (en) 1999-10-29 2001-05-10 Lanny D. Schmidt Process for catalytic partial oxidation using particulate catalysts
JP2003513272A (ja) * 1999-11-04 2003-04-08 レール・リキード−ソシエテ・アノニム・ア・ディレクトワール・エ・コンセイユ・ドゥ・スールベイランス・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード 高温プロセスガスの化学種および温度の連続モニタリング方法
EP1306129A1 (en) * 2001-10-26 2003-05-02 Rohm And Haas Company Preparation of a mixed metal oxide catalyst and its use in oxidation and ammoxidation reactions
CN1342742A (zh) * 2001-10-30 2002-04-03 杨主民 二氧化碳含量小于10%的天然气深冷分离工艺
US20040010170A1 (en) * 2002-01-09 2004-01-15 Vickers George H. Para-xylene and ethylbenzene separation from mixed C8 aromatics
JP2003214995A (ja) * 2002-01-25 2003-07-30 Nissan Motor Co Ltd 一酸化炭素濃度測定装置及び燃料改質システム
US7115791B2 (en) * 2002-12-19 2006-10-03 Exxonmobil Chemical Patents Inc. Method and apparatus for controlling effluent composition in oxygenates to olefins conversion
US6890962B1 (en) * 2003-11-25 2005-05-10 Chevron U.S.A. Inc. Gas-to-liquid CO2 reduction by use of H2 as a fuel
JP2005172472A (ja) * 2003-12-08 2005-06-30 National Institute Of Advanced Industrial & Technology ガス分析方法、燃料電池のガス分析方法
GB0402706D0 (en) * 2004-02-07 2004-03-10 Rolls Royce Plc Gas composition monitoring arrangement
US7355697B2 (en) * 2004-08-26 2008-04-08 The United States Of America As Represented By The Department Of Health And Human Services Flow-through, thermal-expansion-compensated cell for light spectroscopy
US7429373B2 (en) * 2005-06-24 2008-09-30 Air Products And Chemicals, Inc. Process for autothermal generation of hydrogen

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5082985A (en) * 1988-05-30 1992-01-21 Crouzet Pierre G Process for controlling hydrocarbon steam cracking system using a spectrophotometer
US5775808A (en) * 1996-06-19 1998-07-07 Applied Materials, Inc. Apparatus for real-time, in situ measurement of temperature and a method of fabricating and using same
US6512156B1 (en) * 1996-10-22 2003-01-28 The Dow Chemical Company Method and apparatus for controlling severity of cracking operations by near infrared analysis in the gas phase using fiber optics
US6072576A (en) * 1996-12-31 2000-06-06 Exxon Chemical Patents Inc. On-line control of a chemical process plant
RU2264433C2 (ru) * 2000-10-13 2005-11-20 Бп Кемикэлз Лимитед Способ и устройство для определения затухания реакции в процессе конверсии углеводородов
RU2231045C2 (ru) * 2002-05-20 2004-06-20 Общество с ограниченной ответственностью "Еврохим-СпбТрейдинг" Способ измерения концентрации гидропероксидов алкилароматических углеводородов в жидких промышленных потоках
EP1788378A1 (en) * 2005-11-22 2007-05-23 BP Chemicals Limited Method & apparatus for spectroscopic analysis

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU196423U1 (ru) * 2019-10-29 2020-02-28 Федеральное государственное бюджетное учреждение "Национальный исследовательский центр "Курчатовский институт" Инфракрасный анализатор паров сжиженного природного газа

Also Published As

Publication number Publication date
KR101494920B1 (ko) 2015-02-23
ATE490457T1 (de) 2010-12-15
EP2158472A1 (en) 2010-03-03
TWI463135B (zh) 2014-12-01
WO2008152351A1 (en) 2008-12-18
CA2690078A1 (en) 2008-12-18
RS51628B (en) 2011-08-31
TW200912305A (en) 2009-03-16
MY148026A (en) 2013-02-28
US20100127217A1 (en) 2010-05-27
CN101707919A (zh) 2010-05-12
JP2010530067A (ja) 2010-09-02
DE602008003803D1 (de) 2011-01-13
EP2158472B1 (en) 2010-12-01
CN101707919B (zh) 2012-02-01
BRPI0812731A2 (pt) 2014-12-23
UA97671C2 (ru) 2012-03-12
RU2010101005A (ru) 2011-07-20
ES2357463T3 (es) 2011-04-26
KR20100017804A (ko) 2010-02-16
JP5654343B2 (ja) 2015-01-14

Similar Documents

Publication Publication Date Title
RU2491532C2 (ru) Способ управления технологическим процессом паровой конверсии
US7986406B2 (en) Method and apparatus for spectroscopic analysis
US6284196B1 (en) Apparatus for monitor and control of an ammoxidation reactor with a fourier transform infrared spectrometer
US6420595B1 (en) Process control for vinyl acetate manufacture
US10408746B2 (en) System and method for impurity detection in beverage grade gases
Maksimov et al. Gas phase methanol synthesis with Raman spectroscopy for gas composition monitoring
US20170102333A1 (en) Method for in-line quantitative analysis of a stream in a production plant for the synthesis of urea
CN107703096B (zh) 一种检测异氰酸酯中水分和/或脲含量的方法及其在线监控的应用
US7851760B2 (en) Control and optimization of process for making ethylene oxide
WO2009150208A1 (en) Method for measuring the selectivity of a process for the production of ethylene oxide
Šašic et al. Polycondensation reaction of bis (hydroxyethylterephthalate)—self modeling curve resolution analysis of on-line ATR/FT-IR spectra
Vogt et al. In situ analysis of gas and liquid phase catalytic reduction of CO2 to hydrocarbons based on Raman spectroscopy
Martoccia et al. FT-NIR: A tool for process monitoring and more
Wilkin et al. Mid-IR spectroscopy for rapid on-line analysis in heterogeneous catalyst testing
CN110998290B (zh) 确定乙烯中的杂质气体的方法和测量系统
Marquardt et al. Raman Spectroscopy: Bringing Inline Analysis to Production

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20160524