CN101707919B - 在线分析蒸气相工艺流的方法 - Google Patents

在线分析蒸气相工艺流的方法 Download PDF

Info

Publication number
CN101707919B
CN101707919B CN2008800202665A CN200880020266A CN101707919B CN 101707919 B CN101707919 B CN 101707919B CN 2008800202665 A CN2008800202665 A CN 2008800202665A CN 200880020266 A CN200880020266 A CN 200880020266A CN 101707919 B CN101707919 B CN 101707919B
Authority
CN
China
Prior art keywords
stream
slip
nir
process flow
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2008800202665A
Other languages
English (en)
Other versions
CN101707919A (zh
Inventor
D·莱托勒斯
A·I·汤森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BP Chemicals Ltd
Original Assignee
BP Chemicals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BP Chemicals Ltd filed Critical BP Chemicals Ltd
Publication of CN101707919A publication Critical patent/CN101707919A/zh
Application granted granted Critical
Publication of CN101707919B publication Critical patent/CN101707919B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/359Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using near infrared light
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/16Controlling the process
    • C01B2203/1642Controlling the product
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/16Controlling the process
    • C01B2203/1642Controlling the product
    • C01B2203/1671Controlling the composition of the product
    • C01B2203/1676Measuring the composition of the product
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/16Controlling the process
    • C01B2203/169Controlling the feed
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/15Preventing contamination of the components of the optical system or obstruction of the light path
    • G01N2021/158Eliminating condensation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N2021/3595Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using FTIR
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/85Investigating moving fluids or granular solids
    • G01N2021/8578Gaseous flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/0317High pressure cuvettes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/0332Cuvette constructions with temperature control
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/05Flow-through cuvettes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3504Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/12Circuits of general importance; Signal processing
    • G01N2201/129Using chemometrical methods

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Radiation Pyrometers (AREA)

Abstract

在线分析工艺流的方法,其中工艺流为蒸汽转化器的输入流或输出流,该工艺流的温度至少为200℃,工艺流中的组分处于蒸气相中。该方法包括:(a)从工艺流中提取滑流;(b)冷却滑流至高于其露点的温度;(c)使用近红外(NIR)光谱法分析冷却的滑流以获得表征工艺流中NIR-吸收组分的光谱;以及(d)将所获得的光谱与使用化学计量学技术从NIR光谱法建立的校正模型进行关联,以确定一个或多个工艺流中的NIR吸收组分的浓度和/或分压。

Description

在线分析蒸气相工艺流的方法
本发明涉及使用近红外光谱法(NIR)在线分析烃蒸汽转化中的蒸气相工艺流(process stream)。
用于制备例如甲醇的化学制品的合成气通常取自于催化剂存在下的烃,典型的为石脑油或天然气的蒸汽转化。产自蒸汽转化反应的合成气包含一氧化碳、氢气和二氧化碳的混合物。通常,产生的一氧化碳:氢气的摩尔比不是用于如甲醇生产的下游化学工艺的最优比例。因此,一般做法是去除在转化反应中同时产生的二氧化碳,并将所需要的量循环回转化器。在转化器输入中加入的二氧化碳改变了一氧化碳:氢气的摩尔比。小心控制循环的二氧化碳的量能得到所需的一氧化碳:氢气的比例。通常,是通过使用溶剂(典型地为链烷醇胺水溶液)的吸收反萃取来分离二氧化碳,随后压缩至循环回转化器的必要的压力。如果在蒸汽转化反应中产生的二氧化碳的量能够被调整或最小化将会是有利的。
蒸汽转化反应的输入组分为水(水蒸汽)、烃以及任选的二氧化碳。输入组分典型的被预加热至至少500℃的温度,并在至少15barg的压力下被输入转化器。在这些条件下,输入组分为气体。
常规的蒸气相分析技术为气相色谱。但是,当采用气相色谱时,发现有些组分如水蒸汽可能发生冷凝,使得获得可接受精度的组成数据变得困难。因而高度期望在分析中保持处于蒸气相中的工艺流。然而,并不期望分析非常高的温度的工艺流,例如在蒸汽转化器中采用的温度,因为可能不容易获得能够承受如此高温的分析设备,或这种设备可能很昂贵。
因此,本发明提供一种在线分析工艺流的方法,该工艺流是蒸汽转化器的输入流(feedstream)或输出流,该工艺流具有至少200℃的温度,工艺流的组分处于蒸气相中,该方法包括:
(a)从工艺流中提取滑流(slipstream);
(b)冷却滑流至高于其露点的温度;
(c)使用近红外(NIR)光谱法分析冷却的滑流以获得表征工艺流中NIR-吸收组分的光谱;以及
(d)使用化学计量学技术将所获得的光谱与从NIR光谱法建立的校正模型进行关联,以确定工艺流中一种或多种NIR-吸收组分的浓度和/或分压。
典型的是,在烃的蒸汽转化中,组分:水蒸汽、烃以及任选的二氧化碳在高温和高压下被输入转化器。烃可以是,例如石脑油(naphtha)或天然气。天然气主要包括甲烷,但也可含较少量的低级脂肪族烃,如乙烷和丙烷。这样,工艺流可能包含的组分为水蒸汽、甲烷和二氧化碳。二氧化碳可能来自含二氧化碳的循环流或来自其它来源。有利的是,滑流可以在二氧化碳循环输入接头之后的点取自于转化器的输入流。
蒸汽转化反应产生含一氧化碳、氢气、未转化的烃以及二氧化碳的输出流。因而,工艺流可能包含的组分为一氧化碳、氢气、甲烷和二氧化碳。典型的是,在商业实践中,二氧化碳被从输出流分离出,并且至少一部分二氧化碳被循环回到转化器中。有利的是,滑流可以在二氧化碳分离出输出流之前的点取自于转化器的输出流。
蒸汽转化器可以是任何适合的转化器单元,例如商业上可提供的,还可以是单程转化器或二段式转化器。典型的是,转化器为燃烧炉,包含充填有传统蒸汽转化催化剂,例如氧化铝负载的氧化镍的平行管束。
在本发明的方法中,工艺流的组分处于蒸气相中,但组分也可在压力下。工艺流的温度和压力取决于蒸汽转化工艺的性质。本发明的方法适于分析蒸汽转化器的输入流和/或输出流,温度为至少200℃,比如200至500℃,例如200至350℃。工艺流可以在大气压下或更高压力下,例如在至少10barg的压力下,比如10barg至100barg的范围内。
滑流由工艺流的一部分构成。滑流的体积不是至关重要的,但是,可实施的滑流冷却的速度将随着滑流体积的减少而提高。滑流的较快冷却,会使本发明的方法实施的越频繁。
滑流的冷却可通过空气冷却实现。可选的是,滑流的冷却可通过水夹套实现。
通过将滑流冷却至高于其露点的温度,即在滑流的组分将要开始冷凝的温度,滑流的组分被保持在蒸气相中。因而,本发明实现了高精度组成数据的确定,因为分析期间的组分冷凝被避免了。
实践中,滑流被适当冷却至高于滑流露点至少20℃的温度以避免在流中形成冷点。适合的,滑流被保持在200至300℃的温度范围内。
近红外(NIR)光谱技术可用于表征在光谱的近红外区域中吸收的分子。NIR光谱法允许定性和定量分析。NIR分析仪是商业上可提供的。NIR分析仪的主要元件包括检测器、光源、将光信号传送至检测器的装置以及光谱仪。检测器与传送光信号至光源的装置以及光谱仪连接。
波长为10000至4000cm-1的光通过现有技术中已知的适合的装置被传送至检测器。典型的是,这种传送装置包括光纤光缆,例如,低OH硅石光纤光缆。适当的,为了在高温下使用,光纤光缆外涂覆有在高于200℃的温度下不易降解的涂层。例如,光纤光缆可涂覆聚酰亚胺材料或金属,如金。
光源不是至关重要的,可以是,例如石英卤灯光源或近红外发光二极管。
滑流的分析在可在近红外区(10000cm-1至4000cm-1)操作的检测器上进行。
为了用于本发明其中组分处于蒸气相中的方法,优选使用流通池形式的检测器。流通池为商业上可提供的,例如来自Specac Limited。
NIR流通池的选择应当使得可以在冷却的滑流的温度和压力条件下实现组分的分析。例如,流通池可以能够被电加热至高于滑流的露点的温度。适用于本发明的方法的NIR流通池包括Typhoon-T池(Specac Limited)。
适合的是,流通池体是由高品质不锈钢,比如不锈钢级316L,双相不锈钢(duplex stainless steel)或Hastelloy C制成的。
适合的是,池窗口包含在近红外区域透明,在冷却的滑流的条件下化学耐受和机械坚固的材料。适合的池窗口材料为,例如是,蓝宝石。
池窗口通过能够耐受冷却的滑流的温度和压力的密封材料粘结于流通池体。例如,合适的环氧基密封剂可被采用。
所使用的池体的光程长度(path length)取决于待分析组分的特定压力和温度。提高光谱的强度导致吸收强度和浓度间的非线性关联。非线性关联是不期望的,因为其可能产生错误的分析结果。因此,适合的是,被分析组分的光谱具有小于1.5吸光度单位的吸光度。
光谱强度随压力的增加而增加。因此,当待分析组分的压力增加时,池体的光程长度应相应减少。例如,当待分析组分的压力在12至25barg的范围内时,池体的光程长度可在5至10cm的范围内。典型的,天然气蒸汽转化器的输入流和输出流为在大约17barg的压力,因而,池体光程长度在7.0至8.0cm的范围内,比如7.5cm将实现水蒸汽、甲烷、二氧化碳以及其它在近红外区有吸收的组分的定量。
很多类型的NIR光谱仪是商业可提供的并可用于本发明的方法。例如,NIR光谱仪可以是傅利叶变换红外光谱仪(FTIR光谱仪)或二极管阵列光谱仪。如本领域公知的,在高分辨率下操作FTIR光谱仪可提供无扭曲的光谱,同时在低分辨率下操作可实现工艺流组分的更频繁的分析。适合的是,测量的频率应有效的使工艺控制被实现。使用FTIR光谱仪,发现在0.1至2cm-1范围的分辨率下,以大约三十秒的频率能实现无扭曲的光谱。但是,使用高于4cm-1比如4至16cm-1范围的分辨率将实现更快的响应时间。
水、甲烷和二氧化碳可被定量的光谱区域为7500至4800cm-1
获得的光谱被记录在NIR光谱仪中。使用化学计量学技术将该光谱与工艺流组分的参比数据进行关联,以简单地计算每种被分析组分的浓度和/或每种被分析组分的分压的直接值。可使用的技术包括偏最小二乘法(PLS),多元线性回归(MLR)以及主成分回归(PCR)。用于PLS型分析的软件是商业上可提供的,例如,Galactic Limited的GRAMS软件和Mathsoft Inc.的MATLAB。MATLAB还可以用于MLR和PCR类型的分析。
典型的,在天然气蒸汽转化中,蒸汽转化器的输入流包括甲烷、二氧化碳和水蒸汽。可通过流体混合技术离线产生校正混合物。在流体混合技术中,气态组分在所需的压力下与液态组分混合并被加热至所需的温度,以形成混合蒸气混合物。蒸气混合物随后穿过NIR流通池以产生光谱。可通过质量流量控制器对液体和气体流体进行控制。液体可从已被氦气加压以避免流体波动的不锈钢瓶输入。从NIR流通池中返回的蒸气被冷却,液体冷凝物被收集在分离瓶中。然后气体在被送至出口前可被用于控制体系压力。得自蒸气混合物的NIR光谱随后用于建立校正模型。
除了离线校正数据外,可通过从工艺流中取样并通过如气相色谱的标准分析技术分析样品来校验校正模型的准确性和/或改进模型。蒸气相工艺流的取样可采用具有如300ml的适合的容积的不锈钢瓶来实施。在使用前,使用待分析的工艺流中没有的惰性气体来加压吹扫瓶子。惰性气体的选择还取决于气相色谱。适合的是,惰性气体可以是氪气。此外,小体积(约5ml)的溶剂通过隔膜被注入瓶子。为了定量清洗掉冷凝至瓶子内壁的样品组分,这是必要的。同样,所用的溶剂必须不能在工艺中,而必须与所有冷凝的组分混溶。在转化器输入流的情况中,甲醇适合作为溶剂。可在甲醇中加入内标物用于帮助定量。当安装在装置上时,瓶子非常短时(约0.5秒)的向工艺开放。这样给出了进入瓶子的超音速样品流体,减轻了惰性气体或溶剂的损失。瓶子可从装置中移走,通过气相色谱离线分析气体和/或液体内容物。任何瓶内含有的液体都应取出并用气相色谱分析。类似的,使用气相色谱对气体进行分析。通过已发生的氪气稀释,实际收集的样品的体积能够被计算。每种组分在每一相中的摩尔数随后被计算出,并且这容易地允许以体积%确定蒸气浓度。此数据可随后被用于校验和/或改进校正模型的准确性。
可采用本发明的方法确定蒸汽转化器输入流或输出流中一种或多种NIR-吸收组分的浓度。
可选的是,可采用本发明的方法确定蒸汽转化器输入流或输出流中一种或多种NIR-吸收组分的分压。
如果工艺流中含有水、甲烷和二氧化碳,则使用化学计量技术将获得的光谱与参比数据进行关联,以确定水、甲烷和二氧化碳中一种或多种的浓度。一旦这些组成数据已知,如果必要,则输入组分的流速可被调节,以提高工艺的效率。
可选的是,可以使用化学计量学技术将水、甲烷和二氧化碳的所获得的光谱与参比数据进行关联,以确定水、甲烷和二氧化碳中一种或多种的分压。一些诸如氢气和氮气的气体不具备偶极性,因而不吸收红外射线。从而这些气体不能被NIR分析。但是,氮气可能出现在转化器的输入流中,氢气出现在转化器的输出流中。常规的,包括转化器的化工装置具有与其连接的压力检测器。这些压力检测器,如换能器,确定工艺流的气体总压力。这样,通过本发明的方法可确定工艺流中NIR-吸收组分的分压总和。通过本发明的NIR方法确定的压力值与得自如压力换能器的绝对气体压力数据间的比较,将能确定剩余气态组分,例如氮气和氢气的压力。这在天然气中的氮气含量改变时(其可能比如在天然气供应源改变时出现)具有特殊的价值。
本发明方法的一个优势为具有在工艺压力和高于工艺流露点的温度下快速确定蒸气相工艺流的组成信息的能力。在本发明的实施中,根据本发明对在冷却的滑流中的水蒸汽和/或烃,如甲烷和/或二氧化碳的测量可连续进行,例如,频繁至每三十秒一次。
当本发明的方法连续操作时,优选滑流被冷却到的温度保持恒定。这将是有利的,因为获得的光谱强度将不被温度变化影响,因而简化了将光谱与所建立的校正模型进行关联。
此外,本发明方法的连续操作使得本发明的方法适于实施工艺控制。例如,通过连续监视转化器输出流中未转化的甲烷的浓度,输入转化器的甲烷的流速(浓度)可被调节,以最大化一氧化碳的产出量,从而改进转化工艺的效率。
因此,本发明进一步提供在蒸汽转化工艺中实施工艺控制的方法,其中所述工艺具有工艺流,该工艺流是蒸汽转化器的输入流或输出流,其中工艺流具有至少200℃的温度,该工艺流的组分处于蒸气相中,其中该方法包括:
(a)从工艺流中提取滑流;
(b)冷却滑流至高于其露点的温度;
(c)使用近红外(NIR)光谱法分析冷却的滑流以获得表征工艺流中NIR-吸收组分的光谱;以及
(d)使用化学计量学技术将所获得的光谱与从NIR光谱法建立的校正模型进行关联,以确定工艺流中一种或多种NIR-吸收组分的浓度和/或分压,以及
(e)响应于所确定的浓度和/或分压,调节输入流中至少一种组分的浓度。
基于得自蒸汽转化器的输入流和/或输出流的滑流的近红外分析的信息的化学工艺的工艺控制可以是手动的或自动的。优选,得自近红外分析的数据被输入计算机控制单元,其自动调节蒸汽转化器的输入组分以实现所需的组分流速。
可选的是,数据可被输入显示单元,并能够被手动调节输入组分流速的操作员所理解。
本发明的方法现通过以下非限定性例子参考图1和2进行描绘。图1以示意图的形式表示了适于建立通过流体混合产生的蒸气相混合物的校正模型的仪器。图2示出了二氧化碳、甲烷和水的蒸气相混合物的NIR光谱。
仪器包括热质量流量控制器(1)、受控蒸发混合器(CEM)(2)、NIR流通池(3)、光纤光缆(4)以及NIR光谱仪(5)。
在使用中,液相组分通过管线(6)输入至加热的受控蒸发混合器(2),在此处被蒸发以产生蒸气。气态组分通过管线7和8被输入至加热的受控蒸发混合器(2),在此处与气化的液体混合。输入加热的受控蒸发混合器(2)的液态和气态组分流可被热质量流量控制器(1)调节。加热的受控蒸发混合器(2)中产生的蒸气混合物通往NIR流通池(3)。NIR流通池(3)中的流出物流经热交换器(9)并通过分离液体的冷凝器(10)和控制系统压力的压力调节器(11)排出。NIR流通池(3)通过光纤光缆(4)连接至NIR光谱仪(5)。NIR流通池(3)中的蒸气混合物被NIR光谱仪(5)分析,使用在10000至4000cm-1间变化的分辨率的多次扫描,并采用氮气环境下的流通池或光纤环路作为参比。
建立水蒸汽、甲烷和二氧化碳在其混合物中浓度的校正模型
如图1所示的仪器,用于产生二氧化碳、水蒸气和甲烷的校正混合物的NIR光谱。仪器包括热质量流量控制器(1)、加热的受控蒸发混合器(2),为Bronkhurst(UK)Ltd.制造。NIR光谱仪(5)为Bruker Matrix F FTNIR光谱仪(Bruker OpticsLtd),具有整体机械多路转换器,并配有电热制冷的InGaAs检测器和石英分束器。NIR光谱仪(5)通过低OH硅石光纤(200微米内核层/280微米覆层,数值孔径0.29,涂覆聚酰亚胺设定为350℃,可由Sentronic GmbH提供)与NIR流通池(3)连接。使用的NIR流通池为不锈钢Typhoon T池(SPECACLtd),具有蓝宝石窗体,光程长度7.5cm,设定为50bar和300℃,流通池和蒸气管线被电加热至高于蒸气混合物的露点。
水蒸气、甲烷和二氧化碳的校正混合物通过以下方式制备。水(0至10g/hr)被气化,在受控蒸发混合器中与甲烷(0至3nl/hr)和二氧化碳(0至3nl/hr)混合,并在200至280℃和15至20bara总压力下输入流通池。这产生的蒸气混合物含有8至12bara水蒸气,2至6bara甲烷以及1至4bara二氧化碳。混合物的NIR光谱在10000至4000波数间以2波数的分辨率被记录,使用测量温度氮气环境下的流通池作为参比。
图2所示的样品光谱显示了总压力17.05bara和240℃下二氧化碳(2.60bara)、甲烷(3.64bara)和水蒸气(10.81bara)的吸收区域。(纯组分光谱可从商业图书馆获得,如太平洋西北国家实验室,美国能源部,里其兰德,华盛顿,所出版的)。得自产生的NIR光谱的数据被用于建立校正模型。使用PLSplus\IQ化学计量学软件(Thermo Electron Corporation),采用避免过量水吸收的光谱区域(9500至7400,7100至5520以及5160至4925波数),建立用于甲烷、水、二氧化碳和温度的偏最小二乘法校正模型。
实施例1
来自在约278℃和约17barg压力的包含水蒸汽、二氧化碳和甲烷的蒸汽转化器输入流的滑流被空气冷却至250至260℃的温度,随后在10000至4000波数内以2波数分辨率,30秒间隔使用NIR光谱仪、NIR流通池和光纤光缆(前述类型),通过记录NIR光谱进行分析。偏最小二乘法校正模型被用于生成的NIR光谱,使得转化器输入流中的每种组分,甲烷、水蒸汽和二氧化碳,的浓度被确定。响应于确定的甲烷、水蒸汽和二氧化碳的组分浓度,蒸汽转化器输入流中的甲烷的浓度可被调节。

Claims (29)

1.在线分析工艺流的方法,所述工艺流是蒸汽转化器的输入流或输出流,所述工艺流具有至少200℃的温度,所述工艺流的组分处于蒸气相中,所述方法包括:
(a)从所述工艺流中提取滑流;
(b)冷却该滑流至高于其露点的温度;
(c)使用近红外(NIR)光谱法分析该冷却的滑流以获得表征工艺流中NIR-吸收组分的光谱;以及
(d)使用化学计量学技术将所获得的光谱与从NIR光谱法建立的校正模型进行关联,以确定该工艺流中一种或多种NIR-吸收组分的浓度和/或分压。
2.如权利要求1所述的方法,其中所述工艺流包含组分水蒸汽、甲烷和二氧化碳。
3.如权利要求1所述的方法,其中所述工艺流包含组分一氧化碳、氢气、甲烷和二氧化碳。
4.如前述任一权利要求所述的方法,其中所述工艺流还包含氮气。
5.如权利要求1至3任一项所述的方法,其中所述工艺流的温度在200至500℃的范围内。
6.如权利要求4所述的方法,其中所述工艺流的温度在200至500℃的范围内。
7.如权利要求1至3任一项所述的方法,其中所述滑流在二氧化碳循环输入接头之后的点处,从输入流获得。
8.如权利要求4所述的方法,其中所述滑流在二氧化碳循环输入接头之后的点处,从输入流获得。
9.如权利要求5所述的方法,其中所述滑流在二氧化碳循环输入接头之后的点处,从输入流获得。
10.如权利要求1至3任一项所述的方法,其中所述滑流在从所述输出流分离出二氧化碳之前的点处,从输出流获得。
11.如权利要求4所述的方法,其中所述滑流在从所述输出流分离出二氧化碳之前的点处,从输出流获得。
12.如权利要求5所述的方法,其中所述滑流在从所述输出流分离出二氧化碳之前的点处,从输出流获得。
13.如权利要求1至3任一项所述的方法,其中所述滑流被冷却至高于该露点至少20℃的温度。
14.如权利要求5所述的方法,其中所述滑流被冷却至高于该露点至少20℃的温度。
15.如权利要求7所述的方法,其中所述滑流被冷却至高于该露点至少20℃的温度。
16.如权利要求10所述的方法,其中所述滑流被冷却至高于该露点至少20℃的温度。
17.如权利要求1至3任一项所述的方法,其中所述冷却的滑流的温度保持在200至300℃的范围内。
18.如权利要求1至3任一项所述的方法,其中所述工艺流处于10至100barg的范围内的压力。
19.如权利要求1至3任一项所述的方法,其中所述化学计量学技术选自于偏最小二乘法,多元线性回归以及主成分回归。
20.如利要求1至3任一项所述的方法,其中所述近红外光谱法是使用包含NIR光谱仪、光纤光缆和NIR流通池的仪器实施的。
21.如权利要求20所述的方法,其中所述NIR光谱仪为傅利叶变换红外光谱仪。
22.如权利要求21所述的方法,其中所述傅利叶变换红外光谱仪在0.1至2cm-1的分辨率使用。
23.如权利要求20所述的方法,其中所述光纤光缆为低OH硅石光纤光缆。
24.如权利要求20所述的方法,其中所述光纤光缆涂覆有聚酰亚胺材料或金属。
25.如权利要求20所述的方法,其中所述NIR流通池包括不锈钢体和蓝宝石窗口。
26.如权利要求20所述的方法,其中所述NIR流通池的光程长度在5至10cm的范围内。
27.如权利要求26所述的方法,其中所述光程长度在7.0至8.0cm的范围内。
28.如前权利要求1至3任一项所述的方法,其中被分析组分的光谱具有小于1.5吸光度单位的吸光度。
29.在蒸汽转化工艺中实施工艺控制的方法,所述工艺具有工艺流,所述工艺流是蒸汽转化器的输入流或输出流,其中所述工艺流具有至少200℃的温度,所述工艺流的组分处于蒸气相中,所述方法包括:
(a)从所述工艺流中提取滑流;
(b)冷却该滑流至高于其露点的温度;
(c)使用近红外(NIR)光谱法分析该冷却的滑流以获得表征工艺流中NIR-吸收组分的光谱;以及
(d)使用化学计量学技术将所获得的光谱与从NIR光谱法建立的校正模型进行关联,以确定工艺流中一种或多种NIR-吸收组分的浓度和/或分压;以及
(e)响应于所确定的浓度和/或分压,调节所述输入流中至少一种组分的浓度。
CN2008800202665A 2007-06-15 2008-05-23 在线分析蒸气相工艺流的方法 Expired - Fee Related CN101707919B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP07252448 2007-06-15
EP07252448.1 2007-06-15
PCT/GB2008/001778 WO2008152351A1 (en) 2007-06-15 2008-05-23 A method for the online analysis of a vapour phase process stream

Publications (2)

Publication Number Publication Date
CN101707919A CN101707919A (zh) 2010-05-12
CN101707919B true CN101707919B (zh) 2012-02-01

Family

ID=38669161

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2008800202665A Expired - Fee Related CN101707919B (zh) 2007-06-15 2008-05-23 在线分析蒸气相工艺流的方法

Country Status (16)

Country Link
US (1) US20100127217A1 (zh)
EP (1) EP2158472B1 (zh)
JP (1) JP5654343B2 (zh)
KR (1) KR101494920B1 (zh)
CN (1) CN101707919B (zh)
AT (1) ATE490457T1 (zh)
BR (1) BRPI0812731A2 (zh)
CA (1) CA2690078A1 (zh)
DE (1) DE602008003803D1 (zh)
ES (1) ES2357463T3 (zh)
MY (1) MY148026A (zh)
RS (1) RS51628B (zh)
RU (1) RU2491532C2 (zh)
TW (1) TWI463135B (zh)
UA (1) UA97671C2 (zh)
WO (1) WO2008152351A1 (zh)

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101722013B1 (ko) 2013-05-09 2017-03-31 가부시키가이샤 후지킨 원료 유체 농도 검출기
JP5885699B2 (ja) * 2013-05-09 2016-03-15 株式会社フジキン 脆性破壊性光透過窓板の固定構造及びこれを用いた脆性破壊性光透過窓板の固定方法
CN103678921B (zh) * 2013-12-18 2016-06-15 北京科技大学 一种基于主成分回归分析的织构影响无取向硅钢磁性能的分析方法
CN103678922B (zh) * 2013-12-18 2016-08-31 北京科技大学 基于主成分回归分析的夹杂物影响无取向硅钢磁性能的分析方法
US10393638B2 (en) * 2014-01-29 2019-08-27 Jp3 Measurement, Llc System and method for determining vapor pressure of produced hydrocarbon streams via spectroscopy
CN103823975B (zh) * 2014-02-25 2017-07-18 北京科技大学 织构组分对无取向硅钢磁感影响的主成分回归分析法
US10012622B2 (en) * 2014-07-29 2018-07-03 Utah State University Gaseous mercury detection systems, calibration systems, and related methods
CN104792726B (zh) * 2015-04-30 2018-07-31 西安近代化学研究所 一种乙醇胺胺化反应工艺物流的快速分析方法
CN104792725B (zh) * 2015-04-30 2018-01-23 西安近代化学研究所 乙醇胺脱水制备氮丙啶产物流的快速分析方法
CN104792727B (zh) * 2015-04-30 2018-07-31 西安近代化学研究所 一种乙二胺胺化反应工艺物流的快速分析方法
CN104897606B (zh) * 2015-04-30 2018-07-31 西安近代化学研究所 一种甲基肼反应工艺物流的快速分析方法
JP6269576B2 (ja) * 2015-05-25 2018-01-31 横河電機株式会社 多成分ガス分析システム及び方法
US10913071B2 (en) 2016-03-09 2021-02-09 Pearson Incorporated Scalper apparatus and processing system
US10322487B1 (en) 2016-07-15 2019-06-18 Pearson Incorporated Roller mill grinding apparatus with regenerative capability
US10807098B1 (en) 2017-07-26 2020-10-20 Pearson Incorporated Systems and methods for step grinding
PL238324B1 (pl) * 2017-08-29 2021-08-09 Inst Chemii Organicznej Polskiej Akademii Nauk Aparatura przepływowa do prowadzenia procesów pod wysokim ciśnieniem w trybie ciągłym
US10696906B2 (en) 2017-09-29 2020-06-30 Marathon Petroleum Company Lp Tower bottoms coke catching device
US11325133B1 (en) 2018-07-26 2022-05-10 Pearson Incorporated Systems and methods for monitoring the roll diameter and shock loads in a milling apparatus
US11300372B2 (en) * 2018-08-09 2022-04-12 Multi-Chem Group, Llc System for hydrogen detection in cooling towers
US12000720B2 (en) 2018-09-10 2024-06-04 Marathon Petroleum Company Lp Product inventory monitoring
RU2700331C1 (ru) * 2018-10-19 2019-09-16 Дарья Сергеевна Нехорошева Ик-спектрометрическая система парофазного контроля химического состава смесей жидких углеводородов в резервуаре и способ выполнения спектрометрических измерений с ее использованием
US10751722B1 (en) 2018-10-24 2020-08-25 Pearson Incorporated System for processing cannabis crop materials
US10785906B2 (en) 2019-02-19 2020-09-29 Pearson Incorporated Plant processing system
US11975316B2 (en) 2019-05-09 2024-05-07 Marathon Petroleum Company Lp Methods and reforming systems for re-dispersing platinum on reforming catalyst
RU196423U1 (ru) * 2019-10-29 2020-02-28 Федеральное государственное бюджетное учреждение "Национальный исследовательский центр "Курчатовский институт" Инфракрасный анализатор паров сжиженного природного газа
US10757860B1 (en) 2019-10-31 2020-09-01 Hemp Processing Solutions, LLC Stripper apparatus crop harvesting system
US10933424B1 (en) 2019-12-11 2021-03-02 Pearson Incorporated Grinding roll improvements
US11352577B2 (en) 2020-02-19 2022-06-07 Marathon Petroleum Company Lp Low sulfur fuel oil blends for paraffinic resid stability and associated methods
US11898109B2 (en) 2021-02-25 2024-02-13 Marathon Petroleum Company Lp Assemblies and methods for enhancing control of hydrotreating and fluid catalytic cracking (FCC) processes using spectroscopic analyzers
US11702600B2 (en) 2021-02-25 2023-07-18 Marathon Petroleum Company Lp Assemblies and methods for enhancing fluid catalytic cracking (FCC) processes during the FCC process using spectroscopic analyzers
US20220268694A1 (en) 2021-02-25 2022-08-25 Marathon Petroleum Company Lp Methods and assemblies for determining and using standardized spectral responses for calibration of spectroscopic analyzers
US11905468B2 (en) 2021-02-25 2024-02-20 Marathon Petroleum Company Lp Assemblies and methods for enhancing control of fluid catalytic cracking (FCC) processes using spectroscopic analyzers
US11692141B2 (en) 2021-10-10 2023-07-04 Marathon Petroleum Company Lp Methods and systems for enhancing processing of hydrocarbons in a fluid catalytic cracking unit using a renewable additive
US11802257B2 (en) 2022-01-31 2023-10-31 Marathon Petroleum Company Lp Systems and methods for reducing rendered fats pour point

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5082985A (en) * 1988-05-30 1992-01-21 Crouzet Pierre G Process for controlling hydrocarbon steam cracking system using a spectrophotometer
CN1221775A (zh) * 1997-12-31 1999-07-07 中国科学院大连化学物理研究所 一种有机溶剂中微量水的脱除工艺
US6072576A (en) * 1996-12-31 2000-06-06 Exxon Chemical Patents Inc. On-line control of a chemical process plant
CN1342742A (zh) * 2001-10-30 2002-04-03 杨主民 二氧化碳含量小于10%的天然气深冷分离工艺
EP1306129A1 (en) * 2001-10-26 2003-05-02 Rohm And Haas Company Preparation of a mixed metal oxide catalyst and its use in oxidation and ammoxidation reactions

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE146880T1 (de) * 1987-08-18 1997-01-15 Bp Oil Int Verfahren zur direkten bestimmung der physikalischen eigenschaften von kohlenwasserstoffprodukten
MY107650A (en) * 1990-10-12 1996-05-30 Exxon Res & Engineering Company Method of estimating property and / or composition data of a test sample
EP0706049A1 (en) * 1994-10-07 1996-04-10 Bp Chemicals S.N.C. Cracking property determination
US6063633A (en) * 1996-02-28 2000-05-16 The University Of Houston Catalyst testing process and apparatus
DE69631872D1 (de) * 1996-04-09 2004-04-22 Eutech Engineering Solutions L Prozess-Steuerung
US5775808A (en) * 1996-06-19 1998-07-07 Applied Materials, Inc. Apparatus for real-time, in situ measurement of temperature and a method of fabricating and using same
US6512156B1 (en) * 1996-10-22 2003-01-28 The Dow Chemical Company Method and apparatus for controlling severity of cracking operations by near infrared analysis in the gas phase using fiber optics
AU3667697A (en) * 1997-07-09 1999-02-08 Ashland Inc. Process and apparatus for analysis of hydrocarbon species by near infrared spectroscopy
GB9802695D0 (en) * 1998-02-10 1998-04-01 Bp Oil Int Process control
US5895506A (en) * 1998-03-20 1999-04-20 Cook; Bruce Randall Use of infrared spectroscopy to produce high lubricity, high stability, Fischer-Tropsch diesel fuels and blend stocks
US6103934A (en) * 1998-12-18 2000-08-15 Millennium Petrochemicals, Inc. Manufacturing and process control methods
JP2001027596A (ja) * 1999-05-13 2001-01-30 Canon Inc 走査型プローブによる表面特性・電気的特性の検出装置と検出方法、およびこれらにより構成されたマルチプローブによる表面特性・電気的特性の検出装置と検出方法、並びに観察装置と観察方法
JP2003512991A (ja) * 1999-10-29 2003-04-08 エクソンモービル リサーチ アンド エンジニアリング カンパニー 微粒子触媒を用いる接触部分酸化方法
WO2001033200A1 (en) * 1999-11-04 2001-05-10 L'air Liquide, Societe Anonyme À Directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Procedes Georges Claude Method for continuously monitoring chemical species and temperature in hot process gases
GB0025081D0 (en) * 2000-10-13 2000-11-29 Bp Chem Int Ltd Process for monitoring loss of reaction
US20040010170A1 (en) * 2002-01-09 2004-01-15 Vickers George H. Para-xylene and ethylbenzene separation from mixed C8 aromatics
JP2003214995A (ja) * 2002-01-25 2003-07-30 Nissan Motor Co Ltd 一酸化炭素濃度測定装置及び燃料改質システム
RU2231045C2 (ru) * 2002-05-20 2004-06-20 Общество с ограниченной ответственностью "Еврохим-СпбТрейдинг" Способ измерения концентрации гидропероксидов алкилароматических углеводородов в жидких промышленных потоках
US7115791B2 (en) * 2002-12-19 2006-10-03 Exxonmobil Chemical Patents Inc. Method and apparatus for controlling effluent composition in oxygenates to olefins conversion
US6890962B1 (en) * 2003-11-25 2005-05-10 Chevron U.S.A. Inc. Gas-to-liquid CO2 reduction by use of H2 as a fuel
JP2005172472A (ja) * 2003-12-08 2005-06-30 National Institute Of Advanced Industrial & Technology ガス分析方法、燃料電池のガス分析方法
GB0402706D0 (en) * 2004-02-07 2004-03-10 Rolls Royce Plc Gas composition monitoring arrangement
US7355697B2 (en) * 2004-08-26 2008-04-08 The United States Of America As Represented By The Department Of Health And Human Services Flow-through, thermal-expansion-compensated cell for light spectroscopy
US7429373B2 (en) * 2005-06-24 2008-09-30 Air Products And Chemicals, Inc. Process for autothermal generation of hydrogen
EP1788378A1 (en) * 2005-11-22 2007-05-23 BP Chemicals Limited Method & apparatus for spectroscopic analysis

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5082985A (en) * 1988-05-30 1992-01-21 Crouzet Pierre G Process for controlling hydrocarbon steam cracking system using a spectrophotometer
US6072576A (en) * 1996-12-31 2000-06-06 Exxon Chemical Patents Inc. On-line control of a chemical process plant
CN1221775A (zh) * 1997-12-31 1999-07-07 中国科学院大连化学物理研究所 一种有机溶剂中微量水的脱除工艺
EP1306129A1 (en) * 2001-10-26 2003-05-02 Rohm And Haas Company Preparation of a mixed metal oxide catalyst and its use in oxidation and ammoxidation reactions
CN1342742A (zh) * 2001-10-30 2002-04-03 杨主民 二氧化碳含量小于10%的天然气深冷分离工艺

Also Published As

Publication number Publication date
DE602008003803D1 (de) 2011-01-13
TWI463135B (zh) 2014-12-01
ES2357463T3 (es) 2011-04-26
RU2491532C2 (ru) 2013-08-27
JP5654343B2 (ja) 2015-01-14
RU2010101005A (ru) 2011-07-20
JP2010530067A (ja) 2010-09-02
ATE490457T1 (de) 2010-12-15
CA2690078A1 (en) 2008-12-18
CN101707919A (zh) 2010-05-12
BRPI0812731A2 (pt) 2014-12-23
KR20100017804A (ko) 2010-02-16
EP2158472B1 (en) 2010-12-01
WO2008152351A1 (en) 2008-12-18
UA97671C2 (ru) 2012-03-12
EP2158472A1 (en) 2010-03-03
KR101494920B1 (ko) 2015-02-23
MY148026A (en) 2013-02-28
US20100127217A1 (en) 2010-05-27
RS51628B (en) 2011-08-31
TW200912305A (en) 2009-03-16

Similar Documents

Publication Publication Date Title
CN101707919B (zh) 在线分析蒸气相工艺流的方法
CN101313207B (zh) 用于光谱分析的方法和装置
Lefkowitz et al. A chemical kinetic study of tertiary-butanol in a flow reactor and a counterflow diffusion flame
US10761018B2 (en) System and method for impurity detection in beverage grade gases
Grosch et al. UV absorption cross-sections of phenol and naphthalene at temperatures up to 500 C
Kokoric et al. Infrared spectroscopy via substrate-integrated hollow waveguides: a powerful tool in catalysis research
Morrison Jr et al. In situ infrared measurements of film and gas properties during the plasma deposition of amorphous hydrogenated silicon
Catoire et al. The SPIRIT airborne instrument: a three-channel infrared absorption spectrometer with quantum cascade lasers for in situ atmospheric trace-gas measurements
UA122058C2 (uk) Спосіб оперативного кількісного аналізу потоку у промисловій установці синтезу сечовини
US7851760B2 (en) Control and optimization of process for making ethylene oxide
CN104792727B (zh) 一种乙二胺胺化反应工艺物流的快速分析方法
CN104792726B (zh) 一种乙醇胺胺化反应工艺物流的快速分析方法
US20230194419A1 (en) Monitoring gas impurities with total sulfur detection
Buric et al. Industrial Raman gas sensing for real-time system control
Xiaoli et al. In-line monitoring of several pilot scale catalytic reforming units using a short-wavelength near infrared analyser
Bogatykh et al. Low-interference real-time at-line spectroscopic composition analysis for chemical plants
CN203432961U (zh) 一种多功能催化剂活性检测装置
Dene et al. Laboratory investigation of three distinct emissions monitors for hydrochloric acid
Brüning et al. Stage-II-screening device for testing of heterogeneous catalysts in gas phase reactions with Fourier transform infrared analysis
Buckley et al. Extractive FTIR spectroscopy with cryogen-free low-temperature inert preconcentration for autonomous measurements of atmospheric organics: 1: Instrument development and preliminary performance
Jangale Optical Gas Quality Sensor for Natural Gas and Opportunity Fuels.
Amerov et al. PROCESS GAS ANALYZERS FOR THE MEASUREMENT OF AMMONIA AND ACETYLENE CONCENTRATION

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120201

Termination date: 20160523

CF01 Termination of patent right due to non-payment of annual fee