RU2482204C2 - Медно-оловянный сплав, композитный материал и их применение - Google Patents

Медно-оловянный сплав, композитный материал и их применение Download PDF

Info

Publication number
RU2482204C2
RU2482204C2 RU2011121810/02A RU2011121810A RU2482204C2 RU 2482204 C2 RU2482204 C2 RU 2482204C2 RU 2011121810/02 A RU2011121810/02 A RU 2011121810/02A RU 2011121810 A RU2011121810 A RU 2011121810A RU 2482204 C2 RU2482204 C2 RU 2482204C2
Authority
RU
Russia
Prior art keywords
alloy
tin
copper
composite material
tin alloy
Prior art date
Application number
RU2011121810/02A
Other languages
English (en)
Other versions
RU2011121810A (ru
Inventor
Михаэль КЕЛЕР
Андреас ХАЙДЕ
Ральф ХОЙДА
Удо РИПЕ
Original Assignee
Зундвигер Мессингверк Гмбх Унд Ко.Кг
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Зундвигер Мессингверк Гмбх Унд Ко.Кг filed Critical Зундвигер Мессингверк Гмбх Унд Ко.Кг
Publication of RU2011121810A publication Critical patent/RU2011121810A/ru
Application granted granted Critical
Publication of RU2482204C2 publication Critical patent/RU2482204C2/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/02Alloys based on copper with tin as the next major constituent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12389All metal or with adjacent metals having variation in thickness
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12708Sn-base component
    • Y10T428/12715Next to Group IB metal-base component

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Conductive Materials (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Non-Insulated Conductors (AREA)
  • Contacts (AREA)

Abstract

Изобретение относится к медно-оловянным сплавам и может быть использовано для соединительных элементов в электронике и электротехнике. Сплав содержит, вес.%: от 0,2 до 0,8 Sn, от 0,1 до 0,6 Ni и/или Со, от 0 до 0,05 Zn, от 0 до 0,2 Fe, от 0,008 до 0,05 Р, Сu - остальное. Изобретение также относится к композиционному материалу, состоящему из основы, выполненной из заявленного медно-оловянного сплава и нанесенного на него слоя олова. Технологические и физические свойства сплава сравнимы со свойствами сплава CuFe2P. Сплав легко сваривается лазером и его можно повторно возвращать в оборот. 4 н. и 8 з.п. ф-лы, 1 табл., 2 ил.

Description

Изобретение относится к медно-оловянному сплаву, к композитному материалу, содержащему такой медно-оловянный сплав, а также к применению медно-оловянного сплава и композитного материала. Медно-оловянный сплав и содержащий его композитный материал подходят, в частности, для соединительных элементов в электротехнике и в электронике. В частности, изобретение относится к проблемам возможно повторного использования.
В настоящее время для соединительных элементов в электротехнике и электронике в большом объеме обычно применяются медные сплавы на основе Cu-Zn, Cu-Sn и Cu-Fe. В частности, такие медные сплавы используются для рамок с выводами и штекерных соединений. Важными критериями для выбора материала при этом являются модуль упругости, предел текучести, релаксационные свойства и сгибаемость. Помимо достаточной механической прочности, важными критериями для надежной работы компонентов в течение срока службы всей системы являются электропроводность и стойкость к коррозии. При этом требования к свойствам, которые в принципе являются взаимоисключающими, часто перекрываются, например комбинация хорошей проводимости с высоким сопротивлением коррозии. Если, с одной стороны, такие легирующие элементы в меди, как никель и хром, улучшают коррозионную стойкость, то с другой стороны, они значительно снижают проводимость.
Возрастающее значение приобретает также проблема свариваемости, в частности лазерной сваркой, с другими металлическими материалами. В свете чрезмерного повышения цен на металлы в последние годы, все более важной становится также проблема возможности возвращения в оборот использованных сплавов.
Сплавы Cu-Zn, или латунь, представляют собой упрочненные на твердый раствор материалы. Это бинарные сплавы, которые обычно содержат от 5 до 40 вес.% цинка. Предел прочности на разрыв и твердость возрастают с повышением содержания цинка. Удлинение при разрыве достигает максимального значения при 30 вес.% цинка. Более высоких значений прочности и твердости можно достичь только холодной штамповкой.
Для штекерных соединителей в форме ленточных пружин, сделанных, например, из сплава CuZn 30 или сплава CuZn 37, обычно желательна твердость по Виккерсу Hv=150. Кроме того, должен соблюдаться минимальный радиус изгиба r/s=1, отнесенный к толщине листа s, при угле сгиба 90°. Однако сплавы Cu-Zn имеют недостаток, заключающийся в относительно плохой свариваемости, так как легирующий элемент цинк имеет относительно высокое давление паров. При давлении 1,013 бар чистый цинк кипит уже при 907°C. Кроме того, сплавы Cu-Zn имеют низкий модуль упругости, примерно 110 кН/мм2 (единица СИ: ГПа). Кроме того, латунные ленты, которые были покрыты оловом для защиты от коррозии, нелегко использовать вторично из-за введенного олова. Релаксационные характеристики сплавов Cu-Zn также являются выраженными, и поэтому температура, при которой их можно использовать, ограничена.
Сплавы Cu-Sn, т.е. оловянные бронзы относятся к самым старым медным сплавам, которые могут применяться в технике. В сплавы Cu-Sn обычно добавляется некоторое количество фосфора, поэтому указанные сплавы называют также фосфористой бронзой. Свойства этих сплавов определяются главным образом содержанием олова, которое, как правило, составляет от 4 до 8 вес.%. В зависимости от содержания Sn, модуль упругости фосфористых бронз составляет от 115 до 120 кН/мм2 (единица СИ: ГПа). Оловянные бронзы обычно отлично гнутся. При заданном состоянии отпуска повышение содержания Sn улучшает характеристики сгибаемости. Ленточные пружины, сделанные из фосфористой бронзы, можно легко упрочнить до уровня твердости по Викерсу Hv=200, они также имеют сгибаемость r/s=1 при угле изгиба 90°. Оловянные или фосфористые бронзы подходят для сварки лазером, так как эти сплавы не содержат никаких легколетучих элементов (в частности, цинка) или каких-либо мешающих вторичных фаз. Релаксационные свойства оловянных или фосфористых бронз лучше, чем у латунных сплавов, хотя и не достигают уровня упрочняемых медных материалов.
Сплавы Cu-Sn используются в форме лент для штампованных деталей и штекерных соединений, если требуется упругость от хорошей до очень хорошей, хорошая стойкость к электрическим и тепловым нагрузкам, низкая релаксация напряжений, хорошая сгибаемость, хорошая свариваемость и пригодность к пайке. Фосфористые бронзы можно без труда повторно пускать в оборот и в луженой форме. Олово уже присутствует в сплаве как таковом.
К низколегированным медным материалам относятся сплавы Cu-Fe. Добавлением небольших количеств железа и фосфора можно улучшить свойства чистой меди, например прочность, характеристики размягчения или релаксационные свойства. В частности, сплав CuFe2P в стадии отжига FH широко распространен для выводных рамок в автомобильной технике. В этой стадии отжига материал имеет предел прочности на разрыв Rm=420-500 Н/мм2 (единица СИ: МПа). Твердость по Виккерсу составляет Hv=130-150. Сгибаемость под острой кромкой все еще удается. К достоинствам сплава CuFe2P относится то, что модуль упругости составляет примерно 125 кН/мм2 (ГПа) и, следовательно, материал имеет хорошие упругие свойства. Электропроводность лежит в интервале между 60% и 70% по IACS (International Annealed Copper Standard (Международный стандарт на отожженную медь): 100% IACS соответствует примерно 58 МСт/м). Покрытие материала оловом в целях защиты от коррозии вполне возможно.
К недостаткам сплава CuFe2P относится то, что он не образует гомогенного материала, но вместо этого имеет выделения Fe2P. Это, в частности, затрудняет лазерную сварку. Если во время точечной сварки лазерный луч падает на относительно грубые выделения Fe2P, он может отразиться, из-за чего результат проплавления будет неудовлетворительным. Следующим недостатком является плохая возможность повторного использования скрапа из луженого сплава CuFe2P. При расплавлении электропроводность сплава CuFe2P снижается на 25% из-за перехода примерно 1 вес.% олова в раствор. Скрап луженых штамповок, который обычно составляет от 50% до 70% материала, используемого для производства выводных рамок, нельзя напрямую возвращать в процесс плавки, но нужно с большими затратами переплавлять и разделять электрохимически в сложном процессе. Соответственно скрап возвращают в оборот в форме катодов. Эта операция очень энергоемкая и поэтому является очень дорогостоящей по сравнению с прямой плавкой скрапа.
Описанное влияние содержания олова на электропроводность показано для сплава CuFe2P сплав на фигуре 1. Электропроводность резко падает при содержании олова выше всего 0,3 вес.%. Если, например, ленту из сплава CuFe2P, имеющую толщину 0,4 мм, покрыть на обеих сторонах слоем олова толщиной примерно 3 мкм в целях защиты от коррозии, то при прямом рециклинге на основе этого скрапа результатом будет сплав CuFe2P, загрязненный примерно 1,5 вес.% олова. Помимо резкого падения электропроводности, это содержание олова имеет также сильное негативное влияние на характеристики твердения.
Задачей изобретения является - указать сплав и композитный материал, который по своим физическим и технологическим свойствам был максимально близок к сплаву CuFe2P, но мог максимально легко свариваться лазером, и который можно было бы легко повторно пускать в оборот. Следующая задача состоит в том, чтобы указать применение для такого сплава и такого композитного материала.
В том, что касается сплава, указанная выше задача решена медно-оловянным сплавом, имеющим состав по пункту 1 формулы изобретения. В соответствии с этим, медно-оловянный сплав содержит от 0,2 до 0,8 вес.% олова (Sn), от 0,1 до 0,6 вес.% никеля (Ni) и/или кобальта (Co), от 0 до 0,05 вес.% цинка (Zn), от 0 до 0,02 вес.% железа (Fe), от 0,008 до 0,05 вес.% фосфора (P), а также медь (Cu) как баланс.
При этом изобретение исходит из замысла указать новый сплав, который был бы альтернативой сплаву CuFe2P, имел бы сравнимые свойства, но который можно было бы возвращать в оборот в луженом состоянии. В качестве такой альтернативы несомненно могут использоваться чистые Cu-Sn сплавы, такие, например, как сплав CuSn 0,15. Скрап такого сплава, когда он покрыт оловом, может напрямую подаваться на рециклинг. В этом случае механические и технологические свойства относительно хорошо соответствуют свойствам сплава CuFe2P. Однако, слабыми местами определенно являются характеристики размягчения и релаксации.
Теперь же обширные исследования показали, что медно-оловянный сплав с направленным подбором легирующих элементов олово, никель и/или кобальт, а также фосфор, достигает как механических и технологических свойств, сравнимых со свойствами сплава CuFe2P, так и профиль свойств, требующийся для соответствующей дальнейшей обработки и конечного применения, в том, что касается характеристик размягчения и релаксации, т.е. ползучести компонента под нагрузкой при повышенной температуре. При этом никель или кобальт присутствуют в заданном содержании. При этом предпочтительно, чтобы часть никеля была заменена кобальтом, причем в этом случае сумма содержаний обоих легирующих элементов дает указанное содержание.
Сравнение технологических и физических свойств указанного сплава Cu-Sn и сплава CuFe2P дает следующую картину:
CuFe2P CuSnNiCoP
Предел прочности при растяжении Rm [МПа] 450 438-440
Предел текучести 0,2% Rp0,2 [МПа] 420 405-430
Удлинение при разрыве A50 [%] 9 4-5
Модуль упругости [GPa] 123 126
Электропроводность [% IACS] 63 55-70
Теплопроводность [Вт/мК] 260 250
Минимальный радиус изгиба [r/s, 90°] 1 1
Коэффициент теплового расширения
[Rt-100°C]
17,7×10-6 17,7×10-6
Твердость по Виккерсу [Hv] 145 130-134
Температура размягчения [°C (1 ч)] 350 350
Из таблицы видно, что указанный сплав Cu-Sn удовлетворяет заданным требованиям в отношении технологических и физических свойств.
При использовании указанного сплава Cu-Sn в форме с оловянным покрытием, между базовым материалом и оловянным покрытием образуется легирующий слой. Переналадки производственного оборудования при переходе на новый материал не требуется.
Кроме того, упомянутый выше сплав Cu-Sn в том, что касается характера размягчения и релаксации, имеет профиль свойств, сравнимый со свойствами сплава CuFe2P. Это ясно из фигуры 2. На этой фигуре приведен график зависимости релаксации (в %) от температуры (в °C). При этом пунктирная линия показывает поведение сплава CuFe2P, а сплошная линия показывает поведение указанного нового сплава Cu-Sn. Испытания проводились для времени нагрузки 5000 часов и при начальном напряжении 65% Rp0,2.
Далее, новый сплав Cu-Sn отличается, в частности, прямой возможностью повторного использования луженого скрапа с отдельных стадий цепочки поставок. Луженый скрап можно напрямую возвратить на процесс плавки, так что стоимость рециклинга намного ниже по сравнению с переплавкой. При доле скрапа, например, 70%, расходы на переплавку могут быстро достичь уровня производственных расходов и поставить под вопрос рентабельность. По этой причине анализ стоимости метала между сплавом меди с железом таким, как сплав CuFe2P, и указанным сплавом Cu-Sn, также не изменяет тот факт, что указанный сплав является разумной альтернативой луженых сплавов железа с медью как с экономической, так и с экологической точек зрения (дополнительное использование электроэнергии и кислоты для электролитической подготовки скрапа отпадает).
Что касается требуемых свойств, выгодно, если указанный медно-оловянный сплав имеет содержание Sn от 0,3 до 0,7 вес.%, в частности, от 0,4 до 0,6 вес.%. Следующая выгодная корректировка свойств может быть сделана, если содержание Ni и/или Co в медно-оловянном сплаве составляет от 0,2 до 0,55 вес.%, в частности от 0,3 до 0,5 вес.%.
Благодаря предпочтительному содержанию фосфора от 0,008 до 0,03 вес.%, в частности, от 0,008 до 0,015 вес.%, можно улучшить прочность.
В одном предпочтительном составе сплава медно-оловянный сплав содержит от 0,3 до 0,7 вес.% Sn, от 0,2 до 0,55 вес.% Ni и/или Co, от 0 до 0,04 вес.% Zn, от 0 до 0,015 вес.% Fe, от 0,08 до 0,03 вес.% P, а также Cu как баланс.
Медно-оловянный сплав улучшается дополнительно, если он содержит от 0,4 до 0,6 вес.% Sn, 0,3 до 0,5 вес.% Ni и/или Co, от 0 до 0,03 вес.% Zn, от 0 до 0,01 вес.% Fe, от 0,008 до 0,015 вес.% P, а также Cu как баланс.
Следующая выгодная точная подстройка свойств медно-оловянного сплава может быть сделана, если сумма примесей и других добавок составляет не более 0,3 вес.%.
Как конкретный пример осуществления с отличными свойствами можно указать медно-оловянный сплав, содержащий 0,38 вес.% Sn, 0,30 вес.% Ni и/или Co, 0,003 вес.% Zn, 0,008 вес.% Fe, 0,014 вес.% P, а также Cu как баланс.
Новый медно-оловянный сплав очень легко может быть сварен лазером, так как он не содержит никаких легколетучих элементов, и сплав не имеет вторичной фазы. В частности, сплав совсем не содержит выделений NiP.
Сплав отлично подходит для легко свариваемого лазером композитного материала, который может применяться, в частности, для выводных рамок. В настоящее время такие рамки применяются, например, в автомобильной технике для систем ABS и ESP. С этой целью базовый материал из упомянутого выше медно-оловянного сплава снабжают или покрывают слоем олова; это может проводиться, в частности, способом горячего лужения. Таким образом, на базовом материале, сделанном из указанного медно-оловянного сплава, имеется слой чистого или свободного олова. Композитный материал отличается высоким сопротивлением релаксации вплоть до температур 100°C. Внутри, как ядро, он содержит указанный медно-оловянный сплав с составом в соответствии с относящимися к нему пунктами формулы изобретения. Благодаря наружному слою или покрытию оловом обеспечивается высокая коррозионная стойкость. Толщина слоя олова предпочтительно составляет от 1 до 3 мкм.
При покрытии оловом указанного медно-оловянного сплава между базовым материалом и слоем олова образуется переходный слой. Слой олова предпочтительно наносят таким образом, чтобы переходный слой содержал интерметаллическую фазу Cu, Ni и/или Co, а также Sn. Переходный слой формируют, в частности, таким образом, чтобы он имел толщину от 0,1 до 1 мкм. Таким образом, внутри, или как ядро, композитный материал содержит указанный медно-оловянный сплав с подходящими содержаниями никеля и/или кобальта, а также фосфора. Сплав ядра трансформируется через переходный слой в слой чистого олова. Хорошее сцепление слоя олова достигается благодаря образованному переходному слою или легированному слою.
Если рассматривается трехмерная структура, как рамка с выводами, сделанная из композитного материала, то в целом получается структура, имеющая пять слоев. На центральной части из указанного медно-оловянного сплава как базовом материале с обеих сторон находится слой интерметаллической фазы, состоящий из CuNiCoSn и имеющий толщину от 0,1 до 1,0 мкм. В целях защиты от коррозии композитный материал окончательно покрывают слоем свободного или чистого олова, имеющим толщину от 1,0 до 3,0 мкм. Итого, слоистый композитный материал имеет полную толщину от 0,2 до 1 мм, предпочтительно до 2 мм, особенно предпочтительно до 3 мм.
Электропроводность указанного композитного материала соответствует электропроводности сравнительного материала CuFe2P, использовавшегося до настоящего времени. Теплопроводность и другие технологические параметры композитного материала также полностью сравнимы.
И указанный медно-оловянный сплав, и покрытый оловом композитный материал отлично подходят для лент, фольги, профилированных лент, штампованных деталей или штекерных соединений, в частности, для применений в электротехнике или в электронике.

Claims (12)

1. Медно-оловянный сплав, содержащий:
от 0,2 до 0,8 вес.% Sn,
от 0,3 до 0,5 вес.% Ni,
0,003 вес.% Zn,
от 0 до 0,02 вес.% Fe,
от 0,008 до 0,05 вес.% Р,
а также Cu как баланс.
2. Медно-оловянный сплав по п.1, имеющий содержание Sn от 0,3 до 0,7 вес.%, в частности от 0,4 до 0,6 вес.%.
3. Медно-оловянный сплав по п.1, имеющий содержание Р от 0,008 до 0,03 вес.%, в частности, от 0,008 до 0,015 вес.%.
4. Медно-оловянный сплав по п.1, содержащий:
от 0,3 до 0,7 вес.% Sn,
от 0,3 до 0,5 вес.% Ni,
0,003 вес.% Zn,
от 0 до 0,015 вес.% Fe,
от 0,008 до 0,03 вес.% Р,
а также Cu как баланс.
5. Медно-оловянный сплав по п.4, содержащий:
от 0,4 до 0,6 вес.% Sn,
от 0,3 до 0,5 вес.% Ni,
0,003 вес.% Zn,
от 0 до 0,01 вec.%Fe,
от 0,008 до 0,015 вес.% Р,
а также Cu как баланс.
6. Медно-оловянный сплав по любому из пп.1, 5 или 6, в котором сумма примесей и других добавок составляет максимум 0,3 вес.%.
7. Композитный материал, содержащий базовый материал, включающий медно-оловянный сплав по любому из предыдущих пунктов, и нанесенный на него слой олова.
8. Композитный материал по п.7, в котором слой олова имеет толщину от 1 до 3 мкм.
9. Композитный материал по п.7 или 8, имеющий переходный слой между базовым материалом и слоем олова, причем переходный слой содержит интерметаллическую фазу из Cu, Ni, а также Sn.
10. Композитный материал по п.9, в котором переходный слой имеет толщину от 0,1 до 1 мкм.
11. Применение медно-оловянного сплава по одному из пп.1-6 в качестве сплава для лент, проволоки, фольги, профилированных лент, штампованных деталей или штекерных соединений.
12. Применение композитного материала по одному из пп.7-10 в качестве материала для лент, проволоки, фольги, профилированных лент, штампованных деталей или штекерных соединений.
RU2011121810/02A 2008-10-31 2009-10-27 Медно-оловянный сплав, композитный материал и их применение RU2482204C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102008054183.4 2008-10-31
DE102008054183 2008-10-31
PCT/EP2009/007669 WO2010049118A1 (de) 2008-10-31 2009-10-27 Kupfer-zinn-legierung, verbundwerkstoff und verwendung

Publications (2)

Publication Number Publication Date
RU2011121810A RU2011121810A (ru) 2012-12-10
RU2482204C2 true RU2482204C2 (ru) 2013-05-20

Family

ID=41508956

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2011121810/02A RU2482204C2 (ru) 2008-10-31 2009-10-27 Медно-оловянный сплав, композитный материал и их применение

Country Status (9)

Country Link
US (1) US20110206941A1 (ru)
EP (1) EP2340318B1 (ru)
JP (1) JP2012506952A (ru)
KR (1) KR20110079638A (ru)
CN (1) CN102177265B (ru)
BR (1) BRPI0921441A2 (ru)
ES (1) ES2623604T3 (ru)
RU (1) RU2482204C2 (ru)
WO (1) WO2010049118A1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2587110C2 (ru) * 2014-09-22 2016-06-10 Дмитрий Андреевич Михайлов Медный сплав, легированный теллуром тело, для коллекторов электрических машин
RU2709909C1 (ru) * 2018-11-26 2019-12-23 Федеральное государственное автономное образовательное учреждение высшего образования "Белгородский государственный национальный исследовательский университет" (НИУ "БелГУ") Низколегированный медный сплав
RU2809492C2 (ru) * 2019-03-11 2023-12-12 РЕХАУ Индастриз СЕ унд Ко. КГ Способ изготовления металлических деталей, а также изготовленная этим способом металлическая деталь

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2641292B1 (en) 2010-11-17 2019-06-19 Luvata Appleton LLC Alkaline collector anode
CN102176809A (zh) * 2011-01-14 2011-09-07 中国科学院上海技术物理研究所 一种用于印制电路板上的贴片电阻与电容的调试器
CN102703748B (zh) * 2012-07-06 2013-10-16 山东大学 一种纳米多孔铜锡合金的制备方法
RU2502817C1 (ru) * 2012-12-18 2013-12-27 Юлия Алексеевна Щепочкина Сплав на основе меди
JP5773015B2 (ja) * 2013-05-24 2015-09-02 三菱マテリアル株式会社 銅合金線
JP6113674B2 (ja) * 2014-02-13 2017-04-12 株式会社神戸製鋼所 耐熱性に優れる表面被覆層付き銅合金板条
CN107034381B (zh) * 2017-04-26 2019-03-19 江西理工大学 一种Cu-Ni-Co-Sn-P铜合金及其制备方法
CN116411202A (zh) * 2021-12-29 2023-07-11 无锡市蓝格林金属材料科技有限公司 一种铜锡合金线材及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11140569A (ja) * 1997-11-04 1999-05-25 Mitsubishi Shindoh Co Ltd SnまたはSn合金メッキ銅合金薄板およびその薄板で製造したコネクタ
RU2138573C1 (ru) * 1998-12-24 1999-09-27 Мочалов Николай Алексеевич Сплав на основе меди
JP2006291356A (ja) * 2005-03-17 2006-10-26 Dowa Mining Co Ltd Ni−Sn−P系銅合金
JP2007039735A (ja) * 2005-08-03 2007-02-15 Kobe Steel Ltd 異形断面銅合金板の製造方法
RU2315124C2 (ru) * 2006-01-10 2008-01-20 ОАО "Каменск-Уральский завод по обработке цветных металлов" Оловянно-цинковая бронза для изготовления проволоки

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5727051A (en) * 1980-07-25 1982-02-13 Nippon Telegr & Teleph Corp <Ntt> Copper nickel tin alloy for integrated circuit conductor and its manufacture
JPH0612796B2 (ja) * 1984-06-04 1994-02-16 株式会社日立製作所 半導体装置
JPS6379929A (ja) * 1987-08-26 1988-04-09 Nippon Telegr & Teleph Corp <Ntt> 集積回路導体用銅ニッケル錫合金およびその製造方法
US5322575A (en) * 1991-01-17 1994-06-21 Dowa Mining Co., Ltd. Process for production of copper base alloys and terminals using the same
JP3550233B2 (ja) * 1995-10-09 2004-08-04 同和鉱業株式会社 高強度高導電性銅基合金の製造法
JP3408929B2 (ja) * 1996-07-11 2003-05-19 同和鉱業株式会社 銅基合金およびその製造方法
US6254702B1 (en) * 1997-02-18 2001-07-03 Dowa Mining Co., Ltd. Copper base alloys and terminals using the same
US6679956B2 (en) * 1997-09-16 2004-01-20 Waterbury Rolling Mills, Inc. Process for making copper-tin-zinc alloys
US6136104A (en) * 1998-07-08 2000-10-24 Kobe Steel, Ltd. Copper alloy for terminals and connectors and method for making same
DE10025106A1 (de) * 2000-05-20 2001-11-22 Stolberger Metallwerke Gmbh Elektrisch leitfähiges Metallband und Steckverbinder hieraus
CN1296500C (zh) * 2003-03-03 2007-01-24 三宝伸铜工业株式会社 耐热铜合金
KR20070006747A (ko) * 2004-01-21 2007-01-11 엔쏜 인코포레이티드 전자부품의 주석 표면에서 납땜성의 보존과 휘스커 증식의억제 방법
JP4660735B2 (ja) * 2004-07-01 2011-03-30 Dowaメタルテック株式会社 銅基合金板材の製造方法
JP4461269B2 (ja) * 2004-09-15 2010-05-12 Dowaメタルテック株式会社 導電性を改善した銅合金およびその製造法
JP4350049B2 (ja) * 2005-02-07 2009-10-21 株式会社神戸製鋼所 耐応力緩和特性に優れた銅合金板の製造方法
JP4959141B2 (ja) * 2005-02-28 2012-06-20 Dowaホールディングス株式会社 高強度銅合金
JP3871064B2 (ja) * 2005-06-08 2007-01-24 株式会社神戸製鋼所 電気接続部品用銅合金板
JP4756195B2 (ja) * 2005-07-28 2011-08-24 Dowaメタルテック株式会社 Cu−Ni−Sn−P系銅合金
JP4984108B2 (ja) * 2005-09-30 2012-07-25 Dowaメタルテック株式会社 プレス打抜き性の良いCu−Ni−Sn−P系銅合金およびその製造法
JP4680765B2 (ja) * 2005-12-22 2011-05-11 株式会社神戸製鋼所 耐応力緩和特性に優れた銅合金
JP4845747B2 (ja) * 2007-01-12 2011-12-28 株式会社神戸製鋼所 ヒューズ用めっき付き銅合金材料及びその製造方法
JP5145331B2 (ja) * 2007-12-21 2013-02-13 三菱伸銅株式会社 高強度・高熱伝導銅合金管及びその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11140569A (ja) * 1997-11-04 1999-05-25 Mitsubishi Shindoh Co Ltd SnまたはSn合金メッキ銅合金薄板およびその薄板で製造したコネクタ
RU2138573C1 (ru) * 1998-12-24 1999-09-27 Мочалов Николай Алексеевич Сплав на основе меди
JP2006291356A (ja) * 2005-03-17 2006-10-26 Dowa Mining Co Ltd Ni−Sn−P系銅合金
JP2007039735A (ja) * 2005-08-03 2007-02-15 Kobe Steel Ltd 異形断面銅合金板の製造方法
RU2315124C2 (ru) * 2006-01-10 2008-01-20 ОАО "Каменск-Уральский завод по обработке цветных металлов" Оловянно-цинковая бронза для изготовления проволоки

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2587110C2 (ru) * 2014-09-22 2016-06-10 Дмитрий Андреевич Михайлов Медный сплав, легированный теллуром тело, для коллекторов электрических машин
RU2587110C9 (ru) * 2014-09-22 2016-08-10 Дмитрий Андреевич Михайлов МЕДНЫЙ СПЛАВ, ЛЕГИРОВАННЫЙ ТЕЛЛУРОМ ТелО, ДЛЯ КОЛЛЕКТОРОВ ЭЛЕКТРИЧЕСКИХ МАШИН
RU2709909C1 (ru) * 2018-11-26 2019-12-23 Федеральное государственное автономное образовательное учреждение высшего образования "Белгородский государственный национальный исследовательский университет" (НИУ "БелГУ") Низколегированный медный сплав
RU2809492C2 (ru) * 2019-03-11 2023-12-12 РЕХАУ Индастриз СЕ унд Ко. КГ Способ изготовления металлических деталей, а также изготовленная этим способом металлическая деталь

Also Published As

Publication number Publication date
KR20110079638A (ko) 2011-07-07
EP2340318A1 (de) 2011-07-06
WO2010049118A1 (de) 2010-05-06
ES2623604T3 (es) 2017-07-11
RU2011121810A (ru) 2012-12-10
CN102177265A (zh) 2011-09-07
CN102177265B (zh) 2014-07-09
JP2012506952A (ja) 2012-03-22
BRPI0921441A2 (pt) 2016-01-05
EP2340318B1 (de) 2017-02-15
US20110206941A1 (en) 2011-08-25

Similar Documents

Publication Publication Date Title
RU2482204C2 (ru) Медно-оловянный сплав, композитный материал и их применение
JP3880877B2 (ja) めっきを施した銅または銅合金およびその製造方法
CA2240239C (en) Tin coated electrical connector
TWI316554B (ru)
US5849424A (en) Hard coated copper alloys, process for production thereof and connector terminals made therefrom
JP4302392B2 (ja) コネクタ端子、コネクタおよびコネクタ端子の製造方法、並びに、コネクタ用条
US20190249274A1 (en) Conductive material for connection parts which has excellent minute slide wear resistance
US20110020664A1 (en) Metallic material for a connecting part and a method of producing the same
TWI374950B (ru)
KR101370137B1 (ko) 전기전자 부품용 복합재료 및 그것을 이용한 전기전자 부품
JPH11350188A (ja) 電気・電子部品用材料とその製造方法、およびその材料を用いた電気・電子部品
CN110997985A (zh) 附银皮膜端子材及附银皮膜端子
TWI323287B (ru)
WO2000015876A1 (fr) Materiau metallique
EP3293291B1 (en) Sn plating material and method for producing same
US6638643B2 (en) Electrically conductive metal tape and plug connector made of it
US6641930B2 (en) Electrically conductive metal tape and plug connector
JPH11350189A (ja) 電気・電子部品用材料とその製造方法、その材料を用いた電気・電子部品
JP2012167310A (ja) 電気・電子部品用銅合金及びSnめっき付き銅合金材
CN102416725B (zh) 电子部件材料
US6103188A (en) High-conductivity copper microalloys obtained by conventional continuous or semi-continuous casting
US6716541B2 (en) Material for a metal strip
US20220069498A1 (en) Connector terminal material and terminal for connector
JP2000169997A (ja) 金属材料
JP2000169995A (ja) 金属材料

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20171028