RU2482204C2 - Медно-оловянный сплав, композитный материал и их применение - Google Patents
Медно-оловянный сплав, композитный материал и их применение Download PDFInfo
- Publication number
- RU2482204C2 RU2482204C2 RU2011121810/02A RU2011121810A RU2482204C2 RU 2482204 C2 RU2482204 C2 RU 2482204C2 RU 2011121810/02 A RU2011121810/02 A RU 2011121810/02A RU 2011121810 A RU2011121810 A RU 2011121810A RU 2482204 C2 RU2482204 C2 RU 2482204C2
- Authority
- RU
- Russia
- Prior art keywords
- alloy
- tin
- copper
- composite material
- tin alloy
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C9/00—Alloys based on copper
- C22C9/02—Alloys based on copper with tin as the next major constituent
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12389—All metal or with adjacent metals having variation in thickness
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/12708—Sn-base component
- Y10T428/12715—Next to Group IB metal-base component
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Conductive Materials (AREA)
- Electroplating Methods And Accessories (AREA)
- Non-Insulated Conductors (AREA)
- Contacts (AREA)
Abstract
Изобретение относится к медно-оловянным сплавам и может быть использовано для соединительных элементов в электронике и электротехнике. Сплав содержит, вес.%: от 0,2 до 0,8 Sn, от 0,1 до 0,6 Ni и/или Со, от 0 до 0,05 Zn, от 0 до 0,2 Fe, от 0,008 до 0,05 Р, Сu - остальное. Изобретение также относится к композиционному материалу, состоящему из основы, выполненной из заявленного медно-оловянного сплава и нанесенного на него слоя олова. Технологические и физические свойства сплава сравнимы со свойствами сплава CuFe2P. Сплав легко сваривается лазером и его можно повторно возвращать в оборот. 4 н. и 8 з.п. ф-лы, 1 табл., 2 ил.
Description
Изобретение относится к медно-оловянному сплаву, к композитному материалу, содержащему такой медно-оловянный сплав, а также к применению медно-оловянного сплава и композитного материала. Медно-оловянный сплав и содержащий его композитный материал подходят, в частности, для соединительных элементов в электротехнике и в электронике. В частности, изобретение относится к проблемам возможно повторного использования.
В настоящее время для соединительных элементов в электротехнике и электронике в большом объеме обычно применяются медные сплавы на основе Cu-Zn, Cu-Sn и Cu-Fe. В частности, такие медные сплавы используются для рамок с выводами и штекерных соединений. Важными критериями для выбора материала при этом являются модуль упругости, предел текучести, релаксационные свойства и сгибаемость. Помимо достаточной механической прочности, важными критериями для надежной работы компонентов в течение срока службы всей системы являются электропроводность и стойкость к коррозии. При этом требования к свойствам, которые в принципе являются взаимоисключающими, часто перекрываются, например комбинация хорошей проводимости с высоким сопротивлением коррозии. Если, с одной стороны, такие легирующие элементы в меди, как никель и хром, улучшают коррозионную стойкость, то с другой стороны, они значительно снижают проводимость.
Возрастающее значение приобретает также проблема свариваемости, в частности лазерной сваркой, с другими металлическими материалами. В свете чрезмерного повышения цен на металлы в последние годы, все более важной становится также проблема возможности возвращения в оборот использованных сплавов.
Сплавы Cu-Zn, или латунь, представляют собой упрочненные на твердый раствор материалы. Это бинарные сплавы, которые обычно содержат от 5 до 40 вес.% цинка. Предел прочности на разрыв и твердость возрастают с повышением содержания цинка. Удлинение при разрыве достигает максимального значения при 30 вес.% цинка. Более высоких значений прочности и твердости можно достичь только холодной штамповкой.
Для штекерных соединителей в форме ленточных пружин, сделанных, например, из сплава CuZn 30 или сплава CuZn 37, обычно желательна твердость по Виккерсу Hv=150. Кроме того, должен соблюдаться минимальный радиус изгиба r/s=1, отнесенный к толщине листа s, при угле сгиба 90°. Однако сплавы Cu-Zn имеют недостаток, заключающийся в относительно плохой свариваемости, так как легирующий элемент цинк имеет относительно высокое давление паров. При давлении 1,013 бар чистый цинк кипит уже при 907°C. Кроме того, сплавы Cu-Zn имеют низкий модуль упругости, примерно 110 кН/мм2 (единица СИ: ГПа). Кроме того, латунные ленты, которые были покрыты оловом для защиты от коррозии, нелегко использовать вторично из-за введенного олова. Релаксационные характеристики сплавов Cu-Zn также являются выраженными, и поэтому температура, при которой их можно использовать, ограничена.
Сплавы Cu-Sn, т.е. оловянные бронзы относятся к самым старым медным сплавам, которые могут применяться в технике. В сплавы Cu-Sn обычно добавляется некоторое количество фосфора, поэтому указанные сплавы называют также фосфористой бронзой. Свойства этих сплавов определяются главным образом содержанием олова, которое, как правило, составляет от 4 до 8 вес.%. В зависимости от содержания Sn, модуль упругости фосфористых бронз составляет от 115 до 120 кН/мм2 (единица СИ: ГПа). Оловянные бронзы обычно отлично гнутся. При заданном состоянии отпуска повышение содержания Sn улучшает характеристики сгибаемости. Ленточные пружины, сделанные из фосфористой бронзы, можно легко упрочнить до уровня твердости по Викерсу Hv=200, они также имеют сгибаемость r/s=1 при угле изгиба 90°. Оловянные или фосфористые бронзы подходят для сварки лазером, так как эти сплавы не содержат никаких легколетучих элементов (в частности, цинка) или каких-либо мешающих вторичных фаз. Релаксационные свойства оловянных или фосфористых бронз лучше, чем у латунных сплавов, хотя и не достигают уровня упрочняемых медных материалов.
Сплавы Cu-Sn используются в форме лент для штампованных деталей и штекерных соединений, если требуется упругость от хорошей до очень хорошей, хорошая стойкость к электрическим и тепловым нагрузкам, низкая релаксация напряжений, хорошая сгибаемость, хорошая свариваемость и пригодность к пайке. Фосфористые бронзы можно без труда повторно пускать в оборот и в луженой форме. Олово уже присутствует в сплаве как таковом.
К низколегированным медным материалам относятся сплавы Cu-Fe. Добавлением небольших количеств железа и фосфора можно улучшить свойства чистой меди, например прочность, характеристики размягчения или релаксационные свойства. В частности, сплав CuFe2P в стадии отжига FH широко распространен для выводных рамок в автомобильной технике. В этой стадии отжига материал имеет предел прочности на разрыв Rm=420-500 Н/мм2 (единица СИ: МПа). Твердость по Виккерсу составляет Hv=130-150. Сгибаемость под острой кромкой все еще удается. К достоинствам сплава CuFe2P относится то, что модуль упругости составляет примерно 125 кН/мм2 (ГПа) и, следовательно, материал имеет хорошие упругие свойства. Электропроводность лежит в интервале между 60% и 70% по IACS (International Annealed Copper Standard (Международный стандарт на отожженную медь): 100% IACS соответствует примерно 58 МСт/м). Покрытие материала оловом в целях защиты от коррозии вполне возможно.
К недостаткам сплава CuFe2P относится то, что он не образует гомогенного материала, но вместо этого имеет выделения Fe2P. Это, в частности, затрудняет лазерную сварку. Если во время точечной сварки лазерный луч падает на относительно грубые выделения Fe2P, он может отразиться, из-за чего результат проплавления будет неудовлетворительным. Следующим недостатком является плохая возможность повторного использования скрапа из луженого сплава CuFe2P. При расплавлении электропроводность сплава CuFe2P снижается на 25% из-за перехода примерно 1 вес.% олова в раствор. Скрап луженых штамповок, который обычно составляет от 50% до 70% материала, используемого для производства выводных рамок, нельзя напрямую возвращать в процесс плавки, но нужно с большими затратами переплавлять и разделять электрохимически в сложном процессе. Соответственно скрап возвращают в оборот в форме катодов. Эта операция очень энергоемкая и поэтому является очень дорогостоящей по сравнению с прямой плавкой скрапа.
Описанное влияние содержания олова на электропроводность показано для сплава CuFe2P сплав на фигуре 1. Электропроводность резко падает при содержании олова выше всего 0,3 вес.%. Если, например, ленту из сплава CuFe2P, имеющую толщину 0,4 мм, покрыть на обеих сторонах слоем олова толщиной примерно 3 мкм в целях защиты от коррозии, то при прямом рециклинге на основе этого скрапа результатом будет сплав CuFe2P, загрязненный примерно 1,5 вес.% олова. Помимо резкого падения электропроводности, это содержание олова имеет также сильное негативное влияние на характеристики твердения.
Задачей изобретения является - указать сплав и композитный материал, который по своим физическим и технологическим свойствам был максимально близок к сплаву CuFe2P, но мог максимально легко свариваться лазером, и который можно было бы легко повторно пускать в оборот. Следующая задача состоит в том, чтобы указать применение для такого сплава и такого композитного материала.
В том, что касается сплава, указанная выше задача решена медно-оловянным сплавом, имеющим состав по пункту 1 формулы изобретения. В соответствии с этим, медно-оловянный сплав содержит от 0,2 до 0,8 вес.% олова (Sn), от 0,1 до 0,6 вес.% никеля (Ni) и/или кобальта (Co), от 0 до 0,05 вес.% цинка (Zn), от 0 до 0,02 вес.% железа (Fe), от 0,008 до 0,05 вес.% фосфора (P), а также медь (Cu) как баланс.
При этом изобретение исходит из замысла указать новый сплав, который был бы альтернативой сплаву CuFe2P, имел бы сравнимые свойства, но который можно было бы возвращать в оборот в луженом состоянии. В качестве такой альтернативы несомненно могут использоваться чистые Cu-Sn сплавы, такие, например, как сплав CuSn 0,15. Скрап такого сплава, когда он покрыт оловом, может напрямую подаваться на рециклинг. В этом случае механические и технологические свойства относительно хорошо соответствуют свойствам сплава CuFe2P. Однако, слабыми местами определенно являются характеристики размягчения и релаксации.
Теперь же обширные исследования показали, что медно-оловянный сплав с направленным подбором легирующих элементов олово, никель и/или кобальт, а также фосфор, достигает как механических и технологических свойств, сравнимых со свойствами сплава CuFe2P, так и профиль свойств, требующийся для соответствующей дальнейшей обработки и конечного применения, в том, что касается характеристик размягчения и релаксации, т.е. ползучести компонента под нагрузкой при повышенной температуре. При этом никель или кобальт присутствуют в заданном содержании. При этом предпочтительно, чтобы часть никеля была заменена кобальтом, причем в этом случае сумма содержаний обоих легирующих элементов дает указанное содержание.
Сравнение технологических и физических свойств указанного сплава Cu-Sn и сплава CuFe2P дает следующую картину:
CuFe2P | CuSnNiCoP | |
Предел прочности при растяжении Rm [МПа] | 450 | 438-440 |
Предел текучести 0,2% Rp0,2 [МПа] | 420 | 405-430 |
Удлинение при разрыве A50 [%] | 9 | 4-5 |
Модуль упругости [GPa] | 123 | 126 |
Электропроводность [% IACS] | 63 | 55-70 |
Теплопроводность [Вт/мК] | 260 | 250 |
Минимальный радиус изгиба [r/s, 90°] | 1 | 1 |
Коэффициент теплового расширения [Rt-100°C] |
17,7×10-6 | 17,7×10-6 |
Твердость по Виккерсу [Hv] | 145 | 130-134 |
Температура размягчения [°C (1 ч)] | 350 | 350 |
Из таблицы видно, что указанный сплав Cu-Sn удовлетворяет заданным требованиям в отношении технологических и физических свойств.
При использовании указанного сплава Cu-Sn в форме с оловянным покрытием, между базовым материалом и оловянным покрытием образуется легирующий слой. Переналадки производственного оборудования при переходе на новый материал не требуется.
Кроме того, упомянутый выше сплав Cu-Sn в том, что касается характера размягчения и релаксации, имеет профиль свойств, сравнимый со свойствами сплава CuFe2P. Это ясно из фигуры 2. На этой фигуре приведен график зависимости релаксации (в %) от температуры (в °C). При этом пунктирная линия показывает поведение сплава CuFe2P, а сплошная линия показывает поведение указанного нового сплава Cu-Sn. Испытания проводились для времени нагрузки 5000 часов и при начальном напряжении 65% Rp0,2.
Далее, новый сплав Cu-Sn отличается, в частности, прямой возможностью повторного использования луженого скрапа с отдельных стадий цепочки поставок. Луженый скрап можно напрямую возвратить на процесс плавки, так что стоимость рециклинга намного ниже по сравнению с переплавкой. При доле скрапа, например, 70%, расходы на переплавку могут быстро достичь уровня производственных расходов и поставить под вопрос рентабельность. По этой причине анализ стоимости метала между сплавом меди с железом таким, как сплав CuFe2P, и указанным сплавом Cu-Sn, также не изменяет тот факт, что указанный сплав является разумной альтернативой луженых сплавов железа с медью как с экономической, так и с экологической точек зрения (дополнительное использование электроэнергии и кислоты для электролитической подготовки скрапа отпадает).
Что касается требуемых свойств, выгодно, если указанный медно-оловянный сплав имеет содержание Sn от 0,3 до 0,7 вес.%, в частности, от 0,4 до 0,6 вес.%. Следующая выгодная корректировка свойств может быть сделана, если содержание Ni и/или Co в медно-оловянном сплаве составляет от 0,2 до 0,55 вес.%, в частности от 0,3 до 0,5 вес.%.
Благодаря предпочтительному содержанию фосфора от 0,008 до 0,03 вес.%, в частности, от 0,008 до 0,015 вес.%, можно улучшить прочность.
В одном предпочтительном составе сплава медно-оловянный сплав содержит от 0,3 до 0,7 вес.% Sn, от 0,2 до 0,55 вес.% Ni и/или Co, от 0 до 0,04 вес.% Zn, от 0 до 0,015 вес.% Fe, от 0,08 до 0,03 вес.% P, а также Cu как баланс.
Медно-оловянный сплав улучшается дополнительно, если он содержит от 0,4 до 0,6 вес.% Sn, 0,3 до 0,5 вес.% Ni и/или Co, от 0 до 0,03 вес.% Zn, от 0 до 0,01 вес.% Fe, от 0,008 до 0,015 вес.% P, а также Cu как баланс.
Следующая выгодная точная подстройка свойств медно-оловянного сплава может быть сделана, если сумма примесей и других добавок составляет не более 0,3 вес.%.
Как конкретный пример осуществления с отличными свойствами можно указать медно-оловянный сплав, содержащий 0,38 вес.% Sn, 0,30 вес.% Ni и/или Co, 0,003 вес.% Zn, 0,008 вес.% Fe, 0,014 вес.% P, а также Cu как баланс.
Новый медно-оловянный сплав очень легко может быть сварен лазером, так как он не содержит никаких легколетучих элементов, и сплав не имеет вторичной фазы. В частности, сплав совсем не содержит выделений NiP.
Сплав отлично подходит для легко свариваемого лазером композитного материала, который может применяться, в частности, для выводных рамок. В настоящее время такие рамки применяются, например, в автомобильной технике для систем ABS и ESP. С этой целью базовый материал из упомянутого выше медно-оловянного сплава снабжают или покрывают слоем олова; это может проводиться, в частности, способом горячего лужения. Таким образом, на базовом материале, сделанном из указанного медно-оловянного сплава, имеется слой чистого или свободного олова. Композитный материал отличается высоким сопротивлением релаксации вплоть до температур 100°C. Внутри, как ядро, он содержит указанный медно-оловянный сплав с составом в соответствии с относящимися к нему пунктами формулы изобретения. Благодаря наружному слою или покрытию оловом обеспечивается высокая коррозионная стойкость. Толщина слоя олова предпочтительно составляет от 1 до 3 мкм.
При покрытии оловом указанного медно-оловянного сплава между базовым материалом и слоем олова образуется переходный слой. Слой олова предпочтительно наносят таким образом, чтобы переходный слой содержал интерметаллическую фазу Cu, Ni и/или Co, а также Sn. Переходный слой формируют, в частности, таким образом, чтобы он имел толщину от 0,1 до 1 мкм. Таким образом, внутри, или как ядро, композитный материал содержит указанный медно-оловянный сплав с подходящими содержаниями никеля и/или кобальта, а также фосфора. Сплав ядра трансформируется через переходный слой в слой чистого олова. Хорошее сцепление слоя олова достигается благодаря образованному переходному слою или легированному слою.
Если рассматривается трехмерная структура, как рамка с выводами, сделанная из композитного материала, то в целом получается структура, имеющая пять слоев. На центральной части из указанного медно-оловянного сплава как базовом материале с обеих сторон находится слой интерметаллической фазы, состоящий из CuNiCoSn и имеющий толщину от 0,1 до 1,0 мкм. В целях защиты от коррозии композитный материал окончательно покрывают слоем свободного или чистого олова, имеющим толщину от 1,0 до 3,0 мкм. Итого, слоистый композитный материал имеет полную толщину от 0,2 до 1 мм, предпочтительно до 2 мм, особенно предпочтительно до 3 мм.
Электропроводность указанного композитного материала соответствует электропроводности сравнительного материала CuFe2P, использовавшегося до настоящего времени. Теплопроводность и другие технологические параметры композитного материала также полностью сравнимы.
И указанный медно-оловянный сплав, и покрытый оловом композитный материал отлично подходят для лент, фольги, профилированных лент, штампованных деталей или штекерных соединений, в частности, для применений в электротехнике или в электронике.
Claims (12)
1. Медно-оловянный сплав, содержащий:
от 0,2 до 0,8 вес.% Sn,
от 0,3 до 0,5 вес.% Ni,
0,003 вес.% Zn,
от 0 до 0,02 вес.% Fe,
от 0,008 до 0,05 вес.% Р,
а также Cu как баланс.
от 0,2 до 0,8 вес.% Sn,
от 0,3 до 0,5 вес.% Ni,
0,003 вес.% Zn,
от 0 до 0,02 вес.% Fe,
от 0,008 до 0,05 вес.% Р,
а также Cu как баланс.
2. Медно-оловянный сплав по п.1, имеющий содержание Sn от 0,3 до 0,7 вес.%, в частности от 0,4 до 0,6 вес.%.
3. Медно-оловянный сплав по п.1, имеющий содержание Р от 0,008 до 0,03 вес.%, в частности, от 0,008 до 0,015 вес.%.
4. Медно-оловянный сплав по п.1, содержащий:
от 0,3 до 0,7 вес.% Sn,
от 0,3 до 0,5 вес.% Ni,
0,003 вес.% Zn,
от 0 до 0,015 вес.% Fe,
от 0,008 до 0,03 вес.% Р,
а также Cu как баланс.
от 0,3 до 0,7 вес.% Sn,
от 0,3 до 0,5 вес.% Ni,
0,003 вес.% Zn,
от 0 до 0,015 вес.% Fe,
от 0,008 до 0,03 вес.% Р,
а также Cu как баланс.
5. Медно-оловянный сплав по п.4, содержащий:
от 0,4 до 0,6 вес.% Sn,
от 0,3 до 0,5 вес.% Ni,
0,003 вес.% Zn,
от 0 до 0,01 вec.%Fe,
от 0,008 до 0,015 вес.% Р,
а также Cu как баланс.
от 0,4 до 0,6 вес.% Sn,
от 0,3 до 0,5 вес.% Ni,
0,003 вес.% Zn,
от 0 до 0,01 вec.%Fe,
от 0,008 до 0,015 вес.% Р,
а также Cu как баланс.
6. Медно-оловянный сплав по любому из пп.1, 5 или 6, в котором сумма примесей и других добавок составляет максимум 0,3 вес.%.
7. Композитный материал, содержащий базовый материал, включающий медно-оловянный сплав по любому из предыдущих пунктов, и нанесенный на него слой олова.
8. Композитный материал по п.7, в котором слой олова имеет толщину от 1 до 3 мкм.
9. Композитный материал по п.7 или 8, имеющий переходный слой между базовым материалом и слоем олова, причем переходный слой содержит интерметаллическую фазу из Cu, Ni, а также Sn.
10. Композитный материал по п.9, в котором переходный слой имеет толщину от 0,1 до 1 мкм.
11. Применение медно-оловянного сплава по одному из пп.1-6 в качестве сплава для лент, проволоки, фольги, профилированных лент, штампованных деталей или штекерных соединений.
12. Применение композитного материала по одному из пп.7-10 в качестве материала для лент, проволоки, фольги, профилированных лент, штампованных деталей или штекерных соединений.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102008054183.4 | 2008-10-31 | ||
DE102008054183 | 2008-10-31 | ||
PCT/EP2009/007669 WO2010049118A1 (de) | 2008-10-31 | 2009-10-27 | Kupfer-zinn-legierung, verbundwerkstoff und verwendung |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2011121810A RU2011121810A (ru) | 2012-12-10 |
RU2482204C2 true RU2482204C2 (ru) | 2013-05-20 |
Family
ID=41508956
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2011121810/02A RU2482204C2 (ru) | 2008-10-31 | 2009-10-27 | Медно-оловянный сплав, композитный материал и их применение |
Country Status (9)
Country | Link |
---|---|
US (1) | US20110206941A1 (ru) |
EP (1) | EP2340318B1 (ru) |
JP (1) | JP2012506952A (ru) |
KR (1) | KR20110079638A (ru) |
CN (1) | CN102177265B (ru) |
BR (1) | BRPI0921441A2 (ru) |
ES (1) | ES2623604T3 (ru) |
RU (1) | RU2482204C2 (ru) |
WO (1) | WO2010049118A1 (ru) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2587110C2 (ru) * | 2014-09-22 | 2016-06-10 | Дмитрий Андреевич Михайлов | Медный сплав, легированный теллуром тело, для коллекторов электрических машин |
RU2709909C1 (ru) * | 2018-11-26 | 2019-12-23 | Федеральное государственное автономное образовательное учреждение высшего образования "Белгородский государственный национальный исследовательский университет" (НИУ "БелГУ") | Низколегированный медный сплав |
RU2809492C2 (ru) * | 2019-03-11 | 2023-12-12 | РЕХАУ Индастриз СЕ унд Ко. КГ | Способ изготовления металлических деталей, а также изготовленная этим способом металлическая деталь |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2641292B1 (en) | 2010-11-17 | 2019-06-19 | Luvata Appleton LLC | Alkaline collector anode |
CN102176809A (zh) * | 2011-01-14 | 2011-09-07 | 中国科学院上海技术物理研究所 | 一种用于印制电路板上的贴片电阻与电容的调试器 |
CN102703748B (zh) * | 2012-07-06 | 2013-10-16 | 山东大学 | 一种纳米多孔铜锡合金的制备方法 |
RU2502817C1 (ru) * | 2012-12-18 | 2013-12-27 | Юлия Алексеевна Щепочкина | Сплав на основе меди |
JP5773015B2 (ja) * | 2013-05-24 | 2015-09-02 | 三菱マテリアル株式会社 | 銅合金線 |
JP6113674B2 (ja) * | 2014-02-13 | 2017-04-12 | 株式会社神戸製鋼所 | 耐熱性に優れる表面被覆層付き銅合金板条 |
CN107034381B (zh) * | 2017-04-26 | 2019-03-19 | 江西理工大学 | 一种Cu-Ni-Co-Sn-P铜合金及其制备方法 |
CN116411202A (zh) * | 2021-12-29 | 2023-07-11 | 无锡市蓝格林金属材料科技有限公司 | 一种铜锡合金线材及其制备方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11140569A (ja) * | 1997-11-04 | 1999-05-25 | Mitsubishi Shindoh Co Ltd | SnまたはSn合金メッキ銅合金薄板およびその薄板で製造したコネクタ |
RU2138573C1 (ru) * | 1998-12-24 | 1999-09-27 | Мочалов Николай Алексеевич | Сплав на основе меди |
JP2006291356A (ja) * | 2005-03-17 | 2006-10-26 | Dowa Mining Co Ltd | Ni−Sn−P系銅合金 |
JP2007039735A (ja) * | 2005-08-03 | 2007-02-15 | Kobe Steel Ltd | 異形断面銅合金板の製造方法 |
RU2315124C2 (ru) * | 2006-01-10 | 2008-01-20 | ОАО "Каменск-Уральский завод по обработке цветных металлов" | Оловянно-цинковая бронза для изготовления проволоки |
Family Cites Families (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5727051A (en) * | 1980-07-25 | 1982-02-13 | Nippon Telegr & Teleph Corp <Ntt> | Copper nickel tin alloy for integrated circuit conductor and its manufacture |
JPH0612796B2 (ja) * | 1984-06-04 | 1994-02-16 | 株式会社日立製作所 | 半導体装置 |
JPS6379929A (ja) * | 1987-08-26 | 1988-04-09 | Nippon Telegr & Teleph Corp <Ntt> | 集積回路導体用銅ニッケル錫合金およびその製造方法 |
US5322575A (en) * | 1991-01-17 | 1994-06-21 | Dowa Mining Co., Ltd. | Process for production of copper base alloys and terminals using the same |
JP3550233B2 (ja) * | 1995-10-09 | 2004-08-04 | 同和鉱業株式会社 | 高強度高導電性銅基合金の製造法 |
JP3408929B2 (ja) * | 1996-07-11 | 2003-05-19 | 同和鉱業株式会社 | 銅基合金およびその製造方法 |
US6254702B1 (en) * | 1997-02-18 | 2001-07-03 | Dowa Mining Co., Ltd. | Copper base alloys and terminals using the same |
US6679956B2 (en) * | 1997-09-16 | 2004-01-20 | Waterbury Rolling Mills, Inc. | Process for making copper-tin-zinc alloys |
US6136104A (en) * | 1998-07-08 | 2000-10-24 | Kobe Steel, Ltd. | Copper alloy for terminals and connectors and method for making same |
DE10025106A1 (de) * | 2000-05-20 | 2001-11-22 | Stolberger Metallwerke Gmbh | Elektrisch leitfähiges Metallband und Steckverbinder hieraus |
CN1296500C (zh) * | 2003-03-03 | 2007-01-24 | 三宝伸铜工业株式会社 | 耐热铜合金 |
KR20070006747A (ko) * | 2004-01-21 | 2007-01-11 | 엔쏜 인코포레이티드 | 전자부품의 주석 표면에서 납땜성의 보존과 휘스커 증식의억제 방법 |
JP4660735B2 (ja) * | 2004-07-01 | 2011-03-30 | Dowaメタルテック株式会社 | 銅基合金板材の製造方法 |
JP4461269B2 (ja) * | 2004-09-15 | 2010-05-12 | Dowaメタルテック株式会社 | 導電性を改善した銅合金およびその製造法 |
JP4350049B2 (ja) * | 2005-02-07 | 2009-10-21 | 株式会社神戸製鋼所 | 耐応力緩和特性に優れた銅合金板の製造方法 |
JP4959141B2 (ja) * | 2005-02-28 | 2012-06-20 | Dowaホールディングス株式会社 | 高強度銅合金 |
JP3871064B2 (ja) * | 2005-06-08 | 2007-01-24 | 株式会社神戸製鋼所 | 電気接続部品用銅合金板 |
JP4756195B2 (ja) * | 2005-07-28 | 2011-08-24 | Dowaメタルテック株式会社 | Cu−Ni−Sn−P系銅合金 |
JP4984108B2 (ja) * | 2005-09-30 | 2012-07-25 | Dowaメタルテック株式会社 | プレス打抜き性の良いCu−Ni−Sn−P系銅合金およびその製造法 |
JP4680765B2 (ja) * | 2005-12-22 | 2011-05-11 | 株式会社神戸製鋼所 | 耐応力緩和特性に優れた銅合金 |
JP4845747B2 (ja) * | 2007-01-12 | 2011-12-28 | 株式会社神戸製鋼所 | ヒューズ用めっき付き銅合金材料及びその製造方法 |
JP5145331B2 (ja) * | 2007-12-21 | 2013-02-13 | 三菱伸銅株式会社 | 高強度・高熱伝導銅合金管及びその製造方法 |
-
2009
- 2009-10-27 US US13/126,219 patent/US20110206941A1/en not_active Abandoned
- 2009-10-27 RU RU2011121810/02A patent/RU2482204C2/ru not_active IP Right Cessation
- 2009-10-27 KR KR1020117007862A patent/KR20110079638A/ko not_active Application Discontinuation
- 2009-10-27 WO PCT/EP2009/007669 patent/WO2010049118A1/de active Application Filing
- 2009-10-27 BR BRPI0921441A patent/BRPI0921441A2/pt not_active Application Discontinuation
- 2009-10-27 JP JP2011533596A patent/JP2012506952A/ja active Pending
- 2009-10-27 CN CN200980139788.1A patent/CN102177265B/zh not_active Expired - Fee Related
- 2009-10-27 EP EP09744964.9A patent/EP2340318B1/de active Active
- 2009-10-27 ES ES09744964.9T patent/ES2623604T3/es active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11140569A (ja) * | 1997-11-04 | 1999-05-25 | Mitsubishi Shindoh Co Ltd | SnまたはSn合金メッキ銅合金薄板およびその薄板で製造したコネクタ |
RU2138573C1 (ru) * | 1998-12-24 | 1999-09-27 | Мочалов Николай Алексеевич | Сплав на основе меди |
JP2006291356A (ja) * | 2005-03-17 | 2006-10-26 | Dowa Mining Co Ltd | Ni−Sn−P系銅合金 |
JP2007039735A (ja) * | 2005-08-03 | 2007-02-15 | Kobe Steel Ltd | 異形断面銅合金板の製造方法 |
RU2315124C2 (ru) * | 2006-01-10 | 2008-01-20 | ОАО "Каменск-Уральский завод по обработке цветных металлов" | Оловянно-цинковая бронза для изготовления проволоки |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2587110C2 (ru) * | 2014-09-22 | 2016-06-10 | Дмитрий Андреевич Михайлов | Медный сплав, легированный теллуром тело, для коллекторов электрических машин |
RU2587110C9 (ru) * | 2014-09-22 | 2016-08-10 | Дмитрий Андреевич Михайлов | МЕДНЫЙ СПЛАВ, ЛЕГИРОВАННЫЙ ТЕЛЛУРОМ ТелО, ДЛЯ КОЛЛЕКТОРОВ ЭЛЕКТРИЧЕСКИХ МАШИН |
RU2709909C1 (ru) * | 2018-11-26 | 2019-12-23 | Федеральное государственное автономное образовательное учреждение высшего образования "Белгородский государственный национальный исследовательский университет" (НИУ "БелГУ") | Низколегированный медный сплав |
RU2809492C2 (ru) * | 2019-03-11 | 2023-12-12 | РЕХАУ Индастриз СЕ унд Ко. КГ | Способ изготовления металлических деталей, а также изготовленная этим способом металлическая деталь |
Also Published As
Publication number | Publication date |
---|---|
KR20110079638A (ko) | 2011-07-07 |
EP2340318A1 (de) | 2011-07-06 |
WO2010049118A1 (de) | 2010-05-06 |
ES2623604T3 (es) | 2017-07-11 |
RU2011121810A (ru) | 2012-12-10 |
CN102177265A (zh) | 2011-09-07 |
CN102177265B (zh) | 2014-07-09 |
JP2012506952A (ja) | 2012-03-22 |
BRPI0921441A2 (pt) | 2016-01-05 |
EP2340318B1 (de) | 2017-02-15 |
US20110206941A1 (en) | 2011-08-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2482204C2 (ru) | Медно-оловянный сплав, композитный материал и их применение | |
JP3880877B2 (ja) | めっきを施した銅または銅合金およびその製造方法 | |
CA2240239C (en) | Tin coated electrical connector | |
TWI316554B (ru) | ||
US5849424A (en) | Hard coated copper alloys, process for production thereof and connector terminals made therefrom | |
JP4302392B2 (ja) | コネクタ端子、コネクタおよびコネクタ端子の製造方法、並びに、コネクタ用条 | |
US20190249274A1 (en) | Conductive material for connection parts which has excellent minute slide wear resistance | |
US20110020664A1 (en) | Metallic material for a connecting part and a method of producing the same | |
TWI374950B (ru) | ||
KR101370137B1 (ko) | 전기전자 부품용 복합재료 및 그것을 이용한 전기전자 부품 | |
JPH11350188A (ja) | 電気・電子部品用材料とその製造方法、およびその材料を用いた電気・電子部品 | |
CN110997985A (zh) | 附银皮膜端子材及附银皮膜端子 | |
TWI323287B (ru) | ||
WO2000015876A1 (fr) | Materiau metallique | |
EP3293291B1 (en) | Sn plating material and method for producing same | |
US6638643B2 (en) | Electrically conductive metal tape and plug connector made of it | |
US6641930B2 (en) | Electrically conductive metal tape and plug connector | |
JPH11350189A (ja) | 電気・電子部品用材料とその製造方法、その材料を用いた電気・電子部品 | |
JP2012167310A (ja) | 電気・電子部品用銅合金及びSnめっき付き銅合金材 | |
CN102416725B (zh) | 电子部件材料 | |
US6103188A (en) | High-conductivity copper microalloys obtained by conventional continuous or semi-continuous casting | |
US6716541B2 (en) | Material for a metal strip | |
US20220069498A1 (en) | Connector terminal material and terminal for connector | |
JP2000169997A (ja) | 金属材料 | |
JP2000169995A (ja) | 金属材料 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20171028 |