RU2466064C2 - Способ и устройство для предотвращения обледенения обшивки летательного аппарата - Google Patents

Способ и устройство для предотвращения обледенения обшивки летательного аппарата Download PDF

Info

Publication number
RU2466064C2
RU2466064C2 RU2007137023/11A RU2007137023A RU2466064C2 RU 2466064 C2 RU2466064 C2 RU 2466064C2 RU 2007137023/11 A RU2007137023/11 A RU 2007137023/11A RU 2007137023 A RU2007137023 A RU 2007137023A RU 2466064 C2 RU2466064 C2 RU 2466064C2
Authority
RU
Russia
Prior art keywords
inductor
inductors
blade
khz
layer
Prior art date
Application number
RU2007137023/11A
Other languages
English (en)
Other versions
RU2007137023A (ru
Inventor
Патрик БОШЕТ (FR)
Патрик БОШЕТ
Бруно ЛОРСЕТ (FR)
Бруно ЛОРСЕТ
Original Assignee
Еврокоптер
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Еврокоптер filed Critical Еврокоптер
Publication of RU2007137023A publication Critical patent/RU2007137023A/ru
Application granted granted Critical
Publication of RU2466064C2 publication Critical patent/RU2466064C2/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D15/00De-icing or preventing icing on exterior surfaces of aircraft
    • B64D15/12De-icing or preventing icing on exterior surfaces of aircraft by electric heating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/10Induction heating apparatus, other than furnaces, for specific applications
    • H05B6/105Induction heating apparatus, other than furnaces, for specific applications using a susceptor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/36Coil arrangements

Abstract

Изобретения относятся к области авиации, более конкретно к способу и устройству для предотвращения обледенения обшивки летательного аппарата, а также лопасти, содержащей такое устройство. Устройство для предотвращения обледенения содержит композитную структуру (47) и слой (41) электропроводного материала, причем множество тонких индукторных элементов (33-35), предназначенных для прохождения параллельно слою электропроводного материала. Индукторы выполнены в форме пластины или оболочки и содержат катушки (12, 13) индуктивности из электропроводного провода, которые являются плоскими и содержат большое число витков или контуров. Толщина катушки индуктивности и/или индуктора меньше 1/10 ее диаметра или эквивалентного диаметра, и каждая катушка индуктивности является удлиненной по форме вдоль оси (28) и содержит два слоя (16, 19, 22, 25) заплетенных или скрученных жил, которые проходят, по существу, параллельно оси катушки индуктивности. Слои разделены промежутком (31, 32), не имеющим жил индуктора. В способе предотвращения обледенения на индукторы подают электрический ток при частоте, лежащей в диапазоне 10-100 кГц, предпочтительно в диапазоне 40-70 кГц, в частности при частоте, находящейся близко к частоте, составляющей приблизительно 50 кГц. Технический результат заключается в увеличении эффективности борьбы с обледенением обшивки летательного аппарата. 3 н. и 9 з.п. ф-лы, 8 ил.

Description

Настоящее изобретение относится к способу и устройству для предотвращения обледенения обшивки летательного аппарата.
Областью техники, к которой относится настоящее изобретение, является производство вертолетов.
Более конкретно настоящее изобретение относится к способу и устройству для нагрева внешней поверхности оболочки винтокрылого летательного аппарата для предотвращения образования и/или аккумулирования льда на указанной поверхности и обшивке винтокрылого летательного аппарата - в частности, лопасти подъемного и тягового несущего винта вертолета - снабженного таким устройством.
Хорошо известно, что образование и аккумулирование льда на внешней поверхности летательного аппарата могут быстро изменить аэродинамические характеристики указанной поверхности; в частности, если указанная поверхность является вращающейся лопастью винтокрылого летательного аппарата, то такое обледенение может вызвать крушение винтокрылого летательного аппарата.
Большое количество исследований было проведено для предотвращения образования льда или борьбы с образованием льда.
В патентах US 4060212 и FR 2346217 предложено устройство для предотвращения обледенения, использующее микроволны; в патентах US 4399967, US 4458865 и US 4501398 для предотвращения обледенения обшивки крыла (лопасти) предложено деформирование обшивки посредством приложения электромагнитных импульсов.
В патенте US 1819497 предлагается оборудование крыла летательного аппарата проводящим контуром, питаемым источником высокочастотного электрического тока для возбуждения электрических токов в металлической структуре крыла, нагрев указанной структуры и, следовательно, борьба с обледенением. Подобный принцип предложен в патенте US 2547934 для предотвращения обледенения лопатки статора воздушного компрессора.
Тем не менее до настоящего времени не представлялась возможной разработка индукционного нагрева обшивки летательного аппарата, в частности, для нагрева лопастей несущего винта винтокрылого летательного аппарата; такие лопасти по этой причине, в общем, нагревают посредством теплопроводности, например, как описано в патентах US 2005/184193 и FR 2863586.
Кроме того, нагрев обшивки летательного аппарата, полученной из композиционного материала, содержащего армирующие волокна или волокна, внедренные в термопластичную или термореактивную смолу, посредством теплопроводности (посредством эффекта Джоуля) может привести к «горячим» точкам или зонам, появляющимся в обшивке, и к последующему старению композиционного материала.
Объектом настоящего изобретения является предложение способа и устройства для предотвращения обледенения обшивки летательного аппарата и обшивки летательного аппарата, включающей в себя такое устройство, которое улучшает и/или устраняет, по меньшей мере, частично, недостатки или изъяны систем предотвращения обледенения, соответствующих предшествующему уровню техники, при обеспечении также хорошей эффективности.
В одном аспекте настоящее изобретение обеспечивает устройство для предотвращения обледенения обшивки летательного аппарата, содержащее композитную структуру и слой или поверхностный слой, образованный из электропроводного материала, в частности металла или металлического сплава на основе железа (например, стали), никеля или титана, причем устройство содержит множество тонких индукторных элементов, в частности, в виде пластин или оболочек, которые предназначены для прохождения по существу параллельно слою или поверхностному слою из проводящего материала на расстоянии от него, которое является достаточно небольшим для гарантии того, что, при подаче на индуктор электропитания от источника переменного тока соответствующей частоты, слой или поверхностный слой быстро и равномерно нагревается без значительного нагрева композитной структуры.
В другом аспекте настоящее изобретение обеспечивает получение детали летательного аппарата, в частности лопасти несущего винта для винтокрылого летательного аппарата, содержащей композитную структуру армирования, внедренного в смолу, вместе с электропроводным поверхностным слоем, покрывающим часть композитной структуры, и индукторы, размещенные в композитной структуре, которые электрически изолированы от поверхностного слоя смолой и которые предназначены для побуждения нагрева поверхностного слоя индукцией, когда на них подается электропитание.
Индукторы предпочтительно содержат плоские катушки индуктивности электропроводной проволоки и имеют большое число витков или контуров. Индуктор может быть также выполнен в виде ткани или трикотажного изделия, полученного из изоляционных стекловолокон и литцендратов и пропитанных органической матрицей. На ткань может подаваться электропитание, и она может быть трикотажной или тканой типа саржи, тафты или сатина.
В предпочтительном варианте осуществления толщина катушки индуктивности и/или индуктора меньше ее диаметра или эквивалентного диаметра, в частности меньше одной десятой ее диаметра или эквивалентного диаметра.
Поскольку они являются тонкими, катушки индуктивности и индукторы могут быть профилированы так, чтобы они проходили вдоль поверхности, которая может быть плоской или в виде части цилиндра или оболочки, которая согласуется с формой поверхностного слоя, подлежащего нагреву, так что эффективность индукции увеличивается силовыми линиями и, таким образом, плотность тока распределяется более равномерно с тем, чтобы создавать нагрев металлического элемента более равномерным, причем элемент может быть получен из нержавеющей стали, титана, никеля и их сплавов, например при использования кобальта (Ni-Co). Затем индуцируемый электрический ток действует благодаря эффекту Джоуля для нагрева металлического элемента, подвергаемого воздействию магнитного поля.
В предпочтительном варианте осуществления каждая катушка индуктивности содержит несколько десятков или сотен витков или контуров проводящей проволоки, которые уложены рядом и/или являются перемеживающимися для увеличения эффективности индукции.
В соответствии с другими характеристиками настоящего изобретения предпочтительными являются следующие:
каждая катушка индуктивности является удлиненной по форме вдоль оси и содержит два слоя заплетенного или скрученного литцендарта, которые проходят по существу параллельно оси катушки индуктивности, причем два слоя разделены промежутком, не имеющим проводов индуктора;
каждый индуктор содержит две такие катушки индуктивности, расположенные смежно, причем каждый слой каждой катушки индуктивности содержит несколько десятков или сотен частей (или сегментов) заплетенного провода;
диаметр электропроводного провода, используемого для образования индукторов, меньше или равен приблизительно 2 мм, в частности имеет порядок приблизительно 0,2-1,0 мм, делая, таким образом, более простой интеграцию провода в волокна или ткань слоев композиционного материала и ограничивая потери в индукторах;
для увеличения прочности ткани, используемой при получении индуктора, а также для увеличения деформируемости тканого материала может служить ткани или вязка сбалансированного типа саржи или гибридного типа (стекловолокно/углеродное волокно/литцендрат);
большое число литцендратов служит для увеличения плотности тока, для получения перекрытия между силовыми линиями и для гарантии того, что передняя кромка нагревается равномерно;
на ткань может подаваться электропитание и ткань может быть подвергнута циклу профилирования для получения конечной формы для индуктора и/или для того, чтобы сделать возможным инфузионное инжектирование пропиточной смолы и полимеризацию смолы для получения конечной детали, готовой для клеевого соединения между передней кромкой и лопастью винта винтокрылого летательного аппарата.
В другом аспекте настоящее изобретение обеспечивает способ предотвращения обледенения, например, обшивки летательного аппарата, в котором индукторы питаются электрическим током при частоте, лежащей в диапазоне 10-100 кГц, предпочтительно в диапазоне 40-70 кГц, в частности близко приблизительно к 50 кГц.
Другие аспекты, характеристики и преимущества настоящего изобретения становятся очевидными из следующего описания, сделанного со ссылкой на сопроводительные чертежи, которые иллюстрируют без какого-либо ограничивающего качества предпочтительные варианты осуществления настоящего изобретения.
Фиг.1 - диаграмма, иллюстрирующая индуктор, образованный двумя тонкими смежными катушками индуктивности.
Фиг.2 - схематическое изометрическое изображение, иллюстрирующее индуктор, содержащий две смежные катушки индуктивности вместе с проводниками для соединения индуктора с источником электрического тока.
Фиг.3 - схематическое изображение сечения, сделанного по плоскости, которая перпендикулярна оси слоев катушек индуктивности индуктора, иллюстрирующее расположение проводников, образующих слои и внедренных в смолу и/или интегрированных в композитную структуру; фиг.3 является сечением, сделанным по плоскости III-III, показанной на фиг.2.
Фиг.4 - схематическое изображение поперечного сечения (относительно продольной оси лопасти), иллюстрирующее то, как слои индуктора имплантированы вблизи металлической вставки, интегрированной в лопасть несущего винта винтокрылого летательного аппарата, в окрестности передней кромки.
Фиг.5 - схематическое изометрическое изображение, иллюстрирующее индуктор, подобный индуктору, иллюстрируемому на фиг.2 и фиг.3, в котором форма катушек индуктивности согласуется с формой вставки в передней кромке лопасти несущего винта вертолета, как в конфигурации, иллюстрируемой на фиг.4.
Фиг.6-8 - иллюстрации трех соответствующих конфигураций для имплантации индуктора в лопасть несущего винта вертолета; фиг.6 - иллюстрация семи индукторов, распределенных вдоль передней кромки и вдоль стороны низкого давления - или вдоль стороны повышенного давления; фиг.7 - иллюстрация семи индукторов, как показано на фиг.5, которые равномерно распределены вдоль передней кромки; фиг.8 - иллюстрация лопасти, снабженной одним индуктором, проходящим вдоль существенной части длины лопасти.
В соответствии с аспектом настоящего изобретения система предотвращения обледенения лопастей вертолета посредством индукции содержит индукторы, внедренные в лопасть, которые, единовременно подвергнутые воздействию переменного тока высокой частоты, возбуждают магнитное поле из центра лопасти по направлению наружу. Затем магнитное поле индуцирует электрические токи в металлической оболочке (которая получена из электропроводного материала), защищающей переднюю кромку.
Благодаря воздействию переменного магнитного поля на электропроводный материал, покрывающий переднюю кромку, изменение магнитного потока индуцирует электродвижущие силы в материале (закон Ленца), которые дают увеличение индуцированных токов (вихревые токи). Затем вихревые токи нагревают материал оболочки благодаря эффекту Джоуля.
При высокой частоте вредное явление, известное как скин-эффект, может разрушить распределение плотностей электрического тока в индукторах: электрические токи в материале, который должен быть нагрет, часто проникают только на части пути в него; при проникновении в материал величина поля уменьшается в экспоненциальной зависимости и побуждает концентрирование плотности индуцированных токов в поверхностном слое; это явление может быть ослаблено и/или предотвращено путем изготовления индукторов при использовании литцендратов (проводов из скрученных жил), дающих возможность получения равномерной плотности тока в слоях катушек индуктивности/индукторах посредством ограничения и регулирования конфигураций контуров литцендратов так, чтобы получить силовые линии, которые равномерно распределены по металлической оболочке.
Если частота индукционного тока увеличивается от значения, близкого к 10 кГц, до значения, близкого к 70 кГц или более, то силовые линии становятся концентрированными вокруг индуктора. Чтобы сделать распределение равномерным так, чтобы не было зон оболочки, через которую не проходили бы силовые линии, предпочтительно использовать индуктор, содержащий две катушки индуктивности, в которых четыре слоя образуют три плоских проводника (индукционных элемента), которые размещают один на передней кромке, а другие два на противоположных сторонах (стороне низкого давления и стороне повышенного давления) передней кромки, причем каждый слой и/или катушка индуктивности имеют толщину порядка одного или нескольких миллиметров.
В некоторых конфигурациях было обнаружено, что мощность, рассеиваемая в пластине или слое вторичной цепи (оболочке), уменьшается с числом слоев индукционной цепи. Было установлено, что при переходе от системы, имеющей один слой, к системе, имеющей два слоя, один проводит электрический ток в «положительном» направлении, а другой - в противоположном («отрицательном») направлении, слои соответственно индуцируют в пластине отрицательный и положительный электрические токи. Эти два электрических тока встречаются в пластине на поверхности раздела между двумя слоями и в этой зоне они аннулируются, так что имеют нулевую плотность тока, уменьшая в соответствии с этим мощность, рассеиваемую в пластине.
Чем больше расстояние между слоями и вторичной цепью, тем меньше мощности рассеивается в ней. По этой причине предпочтительно размещать слои индуктора как можно ближе к оболочке.
Таким образом, можно получать эффективный нагрев оболочки, делая это возможным, например, начиная с оболочки при начальной температуре -40°С до достижения поверхностной температуры 10°C после нагрева за несколько секунд при плотности тока 4×106 ампер на квадратный метр (А/м2).
Электропитание индукторов посредством нескольких жил (например, трех жил) литцендрата дает возможность электрическому току, подаваемому к контурам, уменьшаться до величины, меньшей 100 А, в частности до нескольких ампер, например приблизительно 5-8 А, тогда как общий электрический ток, проходящий в каждом слое индуктора, намного больше, например составляет приблизительно 400 А.
Для обеспечения возможности предотвращения обледенения передней кромки локальным и циклическим образом, можно размещать множество индукторов вдоль передней кромки, как показано, например, на фиг.6 или фиг.7.
Система индукционного нагрева, включенная в лопасть, также может быть использована в качестве устройства для удаления защитной оболочки с передней кромки, когда оболочка имеет значительный уровень эрозии или ударных воздействий и ее необходимо заменить. Поскольку передняя кромка удерживается посредством термоплавкого безрастворного клея, имеющего температуру размягчения, которая ниже максимальной температуры, которой может достичь пластина под действием электромагнитной индукционной системы, в течение технического обслуживания и текущих ремонтных работ лопасти представляется возможным нагрев передней кромки до тех пор, пока оболочка может быть удалена посредством ее отслаивания, например, как более подробно описано в патенте FR 2787366 и US 6470544.
Система индукционного нагрева, включенная в лопасть, может также быть использована для обеспечения нагрева для быстрой полимеризации передних кромок при выполнении быстрого ремонта, причем нагрев регулируют в функции от кинетики полимеризации клея.
Кроме того, активация индукционной системы при довольно низких уровнях тока, возможно, в отсутствие какого-либо льда, может быть использована для создания преднамеренных электромагнитных помех для предотвращения обнаружения винтокрылого летательного аппарата вражеским оборудованием.
В частности, как следует из фиг.1, индуктор 11а содержит две катушки 12 и 13 индуктивности, которые электрически параллельно соединены с клеммами 14 и 15 источника переменного тока (не показано).
Катушка 12 индуктивности содержит первый слой 16 электропроводных жил 17, в котором электрический ток проходит в направлении 18, и второй слой 19 электропроводных жил 20, в котором ток проходит в направлении 21, противоположном направлению 18.
Аналогичным образом, катушка 13 индуктивности содержит первый слой 22 электропроводных жил 23, в котором электрический ток проходит в направлении 24, и второй слой 25 электропроводных жил 26, в котором ток проходит в направлении, указанном ссылочным номером 27.
Жилы 17 и 20 соединены вместе и образуют контуры или витки катушки 12 индуктивности; жилы 23 и 26 аналогичным образом соединены вместе и образуют контуры катушки 13 индуктивности.
Жилы 17, 20, 23 и 26 и слои 16, 19, 22 и 25 проходят параллельно оси 28.
«Наложением» трех тонких индукторов 11а типа, иллюстрируемого на фиг.1, получают индуктор 11b типа, иллюстрируемого на фиг.2, в котором к каждой катушке индуктивности подается электропитание тремя проводниками 29, 30.
На фиг.1 и фиг.2 можно видеть, что два центральных слоя 19 и 22 являются соприкасающимися, тогда как слои 16 и 25 отделены от слоев 19 и 22 соответственно двумя промежутками 31 и 32.
Когда слои покрыты смолой 39 и/или внедрены в три структуры 33, 34 и 35 (изоляционного) композиционного материала, схематически представленного прямоугольными параллелепипедами (смотри фиг.3), то эти три индукторных элемента (33-35) размещены на коротком расстоянии 40 от ферромагнитной пластины/оболочки 41, которая должна быть нагрета индукцией; это расстояние предпочтительно имеет порядок величины, составляющей приблизительно 0,1-3,0 мм, в частности порядок приблизительно 0,1-1,0 мм.
Толщина 36 каждой катушки 12, 13 индуктивности и каждого элемента 33, 34 и 35 может быть порядка приблизительно 1-2 мм; ширина 37 каждой катушки индуктивности и каждого элемента 33, 34 и 35 может быть порядка приблизительно 10-50 мм; длина 38 может лежать в диапазоне от нескольких миллиметров до нескольких метров, в зависимости от выбранной конфигурации (смотри фиг.6-8).
Как показано на фиг.4 и фиг.6-8, лопасть 42 имеет сторону 43 повышенного давления, сторону 44 низкого давления, переднюю кромку 45 и заднюю кромку 46.
В частности, как показано на фиг.4, металлическая оболочка 41 покрывает переднюю кромку и «передние» части сторон 43 и 44 повышенного давления и низкого давления соответственно и служит для защиты их от ударов.
Элементы 33-35 индуктора размещены в композитной структуре 47 лопасти, и они проходят в соответствии с оболочкой 41 и на коротком расстоянии от оболочки 41.
Индуктор соединен с проводниками 49, 50 подачи электропитания, которые проходят в продольном направлении относительно продольной оси 48 лопасти 42, посредством проводников 29 и 30 соответственно.
В частности, как следует из фиг.4 и фиг.5, в то время как два индукторных элемента 33 и 35 выполнены в виде тонких пластин, которые по существу являются плоскими или незначительно криволинейными, центральный индукторный элемент 34 выполнен в виде криволинейной тонкой пластины или оболочки, форма которой согласуется с формой передней части оболочки 41.
Хотя слои индукторов проходят перпендикулярно продольной оси 48 лопасти в элементе осуществления, иллюстрируемом на фиг.6, слои индукторов проходят параллельно указанной оси в вариантах осуществления, иллюстрируемых на фиг.7 и фиг.8.
В этих трех вариантах осуществления индукторы проходят непрерывно на фиг.8 и прерывисто на фиг.6 и фиг.7 вдоль передней кромки 45 и оси 48 по существу регулярно поверх большой части длины лопасти, между двумя ее концами (комеля 52 лопасти и законцовки 51 лопасти).
Проводники 49 и 50 вместе сведены в шину 53, которая действует через посредство вращающихся контактных колец (не показаны) для подачи электрического тока к индукторам от источника питания на борту винтокрылого летательного аппарата.

Claims (12)

1. Устройство для предотвращения обледенения обшивки летательного аппарата, содержащее композитную структуру (47) со слоем или поверхностным слоем (41), состоящим из электропроводного материала, в частности металла или металлического сплава, в котором устройство содержит множество тонких индукторных элементов (33-35), которые предназначены для прохождения, по существу, параллельно слою или поверхностному слою электропроводного материала на расстоянии (40) от него, которое достаточно мало, чтобы гарантировать то, что при подаче на индуктор электропитания от источника переменного тока при соответствующей частоте слой или поверхностный слой будет быстро и равномерно нагреваться без значительного нагрева композитной структуры, индукторы выполнены в форме пластины или оболочки и содержат катушки (12, 13) индуктивности из электропроводного провода, которые являются плоскими и которые содержат большое число витков или контуров, толщина катушки индуктивности и/или индуктора меньше 1/10 ее диаметра или эквивалентного диаметра, и каждая катушка индуктивности является удлиненной по форме вдоль оси (28) и содержит два слоя (16, 19, 22, 25) заплетенных или скрученных жил, которые проходят, по существу, параллельно оси катушки индуктивности, причем два слоя разделены промежутком (31, 32), не имеющим жил индуктора.
2. Устройство по п.1, в котором каждый индуктор содержит две смежные катушки индуктивности, причем каждый слой каждой катушки индуктивности содержит несколько десятков или сотен частей заплетенного провода.
3. Устройство по п.1, в котором каждая катушка индуктивности индуктора содержит несколько десятков витков или контуров, которые находятся рядом и/или являются перемеривающимися.
4. Устройство по п.1, в котором каждая катушка индуктивности индуктора содержит несколько сотен витков или контуров, которые находятся рядом или являются перемеривающимися.
5. Устройство по п.1, в котором индукторы содержат ткань или трикотажный материал из изоляционных волокон и электропроводных проводов.
6. Устройство по п.1, в котором индукторы содержат ткань или трикотажный материал из изоляционных волокон и электропроводных проводов с вязкой или тканью типа саржи, тафты сатина или гибридного типа.
7. Устройство по п.1, в котором диаметр электропроводного провода, используемого для образования индукторов, составляет приблизительно 0,2-1,0 мм.
8. Лопасть (42) несущего винта винтокрылого летательного аппарата, которая включает в себя устройство по п.1.
9. Лопасть по п.8, которая включает в себя один индуктор, проходящий вдоль существенной части длины лопасти, вдоль передней кромки (45).
10. Лопасть по п.8, которая включает в себя множество индукторов, проходящих вдоль существенной части длины лопасти, вдоль передней кромки.
11. Способ предотвращения обледенения обшивки летательного аппарата, в котором используют устройство по п.1, в котором на индукторы подают электропитание электрическим током при частоте, лежащей в диапазоне 10-100 кГц, предпочтительно в диапазоне 40-70 кГц, в частности, при частоте, находящейся близко к частоте, составляющей приблизительно 50 кГц.
12. Способ по п.11, в котором на индукторы подают электрический ток менее 100 А.
RU2007137023/11A 2006-10-09 2007-10-08 Способ и устройство для предотвращения обледенения обшивки летательного аппарата RU2466064C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0608824 2006-10-09
FR0608824A FR2906786B1 (fr) 2006-10-09 2006-10-09 Procede et dispositif de degivrage d'une paroi d'aeronef

Publications (2)

Publication Number Publication Date
RU2007137023A RU2007137023A (ru) 2009-04-20
RU2466064C2 true RU2466064C2 (ru) 2012-11-10

Family

ID=38008112

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2007137023/11A RU2466064C2 (ru) 2006-10-09 2007-10-08 Способ и устройство для предотвращения обледенения обшивки летательного аппарата

Country Status (5)

Country Link
US (1) US7913952B2 (ru)
EP (1) EP1911673B1 (ru)
CN (1) CN101200219A (ru)
FR (1) FR2906786B1 (ru)
RU (1) RU2466064C2 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2541548C1 (ru) * 2013-07-24 2015-02-20 Тамара Викторовна Тулайкова Способ ликвидации и предотвращения обледенения несущего винта вертолета в облаках

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007026246B4 (de) * 2007-06-04 2009-12-03 Eads Deutschland Gmbh Bauteil für ein Fluggerät
CA2740524A1 (en) * 2008-10-14 2010-05-06 Airbus Operations Gmbh Heating system having at least one electrothermal heating layer, a structural component having such a heating layer, a heating method and a method for producing a semi-finished component or a component having a heating device
US8777163B2 (en) * 2009-09-03 2014-07-15 The Boeing Company Ice protection system and method
US9469408B1 (en) * 2009-09-03 2016-10-18 The Boeing Company Ice protection system and method
FR2965249B1 (fr) * 2010-09-28 2013-03-15 Eurocopter France Systeme de degivrage ameliore pour voilure fixe ou tournante d'un aeronef
FR2970197B1 (fr) * 2011-01-11 2013-12-20 Snecma Procede de desolidarisation/solidarisation par induction d'une piece mecanique magnetique collee a une piece mecanique.
US8827207B2 (en) 2011-05-03 2014-09-09 Goodrich Corporation Ice protection system
RU2476356C1 (ru) * 2011-06-29 2013-02-27 Общество с ограниченной ответственностью "Велко" Способ удаления льдообразований с обшивки самолета
DE102012002132A1 (de) 2012-02-03 2013-08-08 Airbus Operations Gmbh Vereisungsschutzsystem für ein Flugzeug und Verfahren zum Betreiben eines Vereisungsschutzsystems
US10645763B2 (en) * 2013-02-19 2020-05-05 Illinois Tool Works Inc. Induction heating head
US9457909B2 (en) * 2013-04-25 2016-10-04 Hamilton Sundstrand Corporation Resistive-inductive de-icing of aircraft flight control surfaces
WO2014184146A1 (en) 2013-05-13 2014-11-20 Nci Swissnanocoat Sa Anti-icing system
ITTO20130430A1 (it) 2013-05-28 2014-11-29 Illinois Tool Works Dispositivo per il pre-riscaldamento ad induzione e la saldatura testa a testa di lembi adiacenti di almeno un elemento da saldare
US9463879B2 (en) * 2014-03-03 2016-10-11 The Boeing Company Systems and methods for predicting and controlling ice formation
US9638044B2 (en) * 2014-03-11 2017-05-02 Hamilton Sundstrand Corporation Resistive-inductive propeller blade de-icing system including contactless power supply
US11197350B2 (en) 2014-05-16 2021-12-07 Illinois Tool Works Inc. Induction heating system connection box
US10863591B2 (en) 2014-05-16 2020-12-08 Illinois Tool Works Inc. Induction heating stand assembly
US11076454B2 (en) 2014-05-16 2021-07-27 Illinois Tool Works Inc. Induction heating system temperature sensor assembly
US9913320B2 (en) 2014-05-16 2018-03-06 Illinois Tool Works Inc. Induction heating system travel sensor assembly
US11510290B2 (en) 2014-05-16 2022-11-22 Illinois Tool Works Inc. Induction heating system
US10399684B2 (en) * 2014-10-29 2019-09-03 The Boeing Company Induction heating coils with uniform heating
US9745070B2 (en) * 2014-11-11 2017-08-29 The Boeing Company Systems for multiple zone heaters for rotor craft and methods of operation
US10442523B2 (en) * 2015-08-25 2019-10-15 The Boeing Company Synergetic noise absorption and anti-icing for aircrafts
US10364035B2 (en) * 2015-08-25 2019-07-30 The Boeing Company Synergetic noise absorption and anti-icing for aircrafts
ES2681658T3 (es) * 2015-10-05 2018-09-14 Airbus Defence And Space, S.A. Dispositivo y método de protección contra el hielo
US11452178B2 (en) * 2015-11-10 2022-09-20 The Boeing Company Highly formable smart susceptor blankets
US9914269B2 (en) * 2016-02-29 2018-03-13 The Boeing Company Integrated smart susceptor heater blanket debulk system for composites
US10213969B2 (en) 2016-02-29 2019-02-26 The Boeing Company Integrated smart susceptor heater blanket and vacuum bag deployment system for large composite skin laminate debulk
US10336013B2 (en) * 2016-02-29 2019-07-02 The Boeing Company Large scale smart susceptor heater blankets requiring multi zone control
US10124902B2 (en) * 2016-06-15 2018-11-13 The Boeing Company Hybrid acoustic and induction-heating systems and methods for impeding formation of ice
US10118705B2 (en) * 2016-06-15 2018-11-06 The Boeing Company Hybrid acoustic and induction-heating systems and methods for impeding formation of ice
US10137994B2 (en) * 2016-06-15 2018-11-27 The Boeing Company Hybrid acoustic and induction-heating systems and methods for impeding formation of ice
US10118706B2 (en) * 2016-06-15 2018-11-06 The Boeing Company Hybrid acoustic and induction-heating systems and methods for impeding formation of ice
EP3285545B1 (en) 2016-08-17 2020-05-06 Ratier-Figeac SAS Heating device
US10464680B2 (en) 2016-08-30 2019-11-05 The Boeing Company Electrically conductive materials for heating and deicing airfoils
US10708979B2 (en) 2016-10-07 2020-07-07 De-Ice Technologies Heating a bulk medium
FR3061132B1 (fr) * 2016-12-27 2023-11-03 Airbus Operations Sas Structure pour ensemble propulsif d'aeronef, systeme et ensemble propulsif associes
RU2704699C1 (ru) * 2019-01-30 2019-10-30 Акционерное общество "Кронштадт" Электроимпульсная система для удаления льдообразований с обшивки агрегатов летательного аппарата
CN112081056B (zh) * 2020-10-27 2022-02-01 合肥工业大学 基于电磁加热与微波加热的多功能路面除冰雪施工方法
CN112081055B (zh) * 2020-10-27 2022-02-01 合肥工业大学 一种基于电磁加热与微波加热的多功能除雪车
US11952129B2 (en) 2020-12-30 2024-04-09 Goodrich Corporation Carbon nanotube (CNT) or carbon allotrobe based induction heating for aircraft ice protection
US20230002064A1 (en) * 2021-06-30 2023-01-05 Rohr, Inc. Integrated microwave thermal anti-icing system
US11732145B2 (en) * 2021-08-06 2023-08-22 The Boeing Company Conductive anti-icing coating systems and methods
FR3133374A1 (fr) * 2022-03-14 2023-09-15 Safran Aircraft Engines Dispositif de dégivrage d’aube

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU669638A1 (ru) * 1976-12-30 1986-10-07 Предприятие П/Я В-2323 Противообледенительна система летательного аппарата
EP0428142A2 (en) * 1989-11-15 1991-05-22 The B.F. Goodrich Company Planar coil construction
JP2001278195A (ja) * 2000-03-29 2001-10-10 Kawasaki Heavy Ind Ltd 航空機用除氷装置
US6377775B1 (en) * 1999-04-15 2002-04-23 Canon Kabushiki Kaisha Image heating apparatus
JP2005228571A (ja) * 2004-02-12 2005-08-25 Totoku Electric Co Ltd 電磁誘導加熱コイルおよび電磁誘導加熱装置

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1819497A (en) 1930-05-16 1931-08-18 Charles F Chisholm Combating sleet on airplanes
US2142785A (en) * 1935-03-15 1939-01-03 Earl C Hanson Heating device for aircraft
US2552075A (en) * 1944-08-05 1951-05-08 Catherine Van Daam Heating device for airplanes
US2547934A (en) 1948-06-09 1951-04-10 Peter L Gill Induction heater for axial flow air compressors
GB1012165A (en) * 1960-08-25 1965-12-08 Thomas Edward Evans Method and apparatus for electrical heating of components
GB1306062A (ru) * 1968-11-19 1973-02-07
US4060212A (en) 1976-04-01 1977-11-29 System Development Corporation Deicing apparatus and method
CA1069870A (en) * 1977-03-04 1980-01-15 B.F. Goodrich Company (The) Propeller deicer
US4458865A (en) 1980-12-09 1984-07-10 Lockheed Corporation Nose-torquer electro-impulse deicing systems
US4399967A (en) 1980-12-09 1983-08-23 Lockheed Corporation Staggered coil and nose-torquer electromagnetic pulse deicing systems
US4501398A (en) 1980-12-09 1985-02-26 Lockheed Corporation Beam balancer electro-impulse deicing systems
US5129598A (en) * 1989-12-22 1992-07-14 B. F. Goodrich Co. Attachable electro-impulse de-icer
US5553815A (en) * 1994-04-07 1996-09-10 The B. F. Goodrich Company De-icer adapted for installment on the inner surface of a structural member
JPH10165311A (ja) * 1996-12-14 1998-06-23 Sumitomo Electric Ind Ltd 誘導発熱体
CA2227526A1 (en) * 1997-01-21 1998-07-21 Michael J. Giamati Hybrid deicer with element sequence control
FR2779314B1 (fr) * 1998-05-27 2000-08-04 Eurocopter France Dispositif de chauffage a elements resistifs d'un profil aerodynamique
WO2000052966A1 (en) * 1999-03-01 2000-09-08 Trustees Of Dartmouth College Methods and systems for removing ice from surfaces
CA2277885C (fr) * 1999-07-16 2007-05-22 Hydro-Quebec Emetteur infrarouge a l'induction electromagnetique
FR2863586B1 (fr) 2003-12-12 2007-01-19 Eurocopter France Dispositif de degivrage/antigivrage modulaire d'une surface aerodynamique.

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU669638A1 (ru) * 1976-12-30 1986-10-07 Предприятие П/Я В-2323 Противообледенительна система летательного аппарата
EP0428142A2 (en) * 1989-11-15 1991-05-22 The B.F. Goodrich Company Planar coil construction
US6377775B1 (en) * 1999-04-15 2002-04-23 Canon Kabushiki Kaisha Image heating apparatus
JP2001278195A (ja) * 2000-03-29 2001-10-10 Kawasaki Heavy Ind Ltd 航空機用除氷装置
JP2005228571A (ja) * 2004-02-12 2005-08-25 Totoku Electric Co Ltd 電磁誘導加熱コイルおよび電磁誘導加熱装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2541548C1 (ru) * 2013-07-24 2015-02-20 Тамара Викторовна Тулайкова Способ ликвидации и предотвращения обледенения несущего винта вертолета в облаках

Also Published As

Publication number Publication date
US20080251642A1 (en) 2008-10-16
CN101200219A (zh) 2008-06-18
FR2906786B1 (fr) 2009-11-27
US7913952B2 (en) 2011-03-29
EP1911673A1 (fr) 2008-04-16
EP1911673B1 (fr) 2009-07-01
FR2906786A1 (fr) 2008-04-11
RU2007137023A (ru) 2009-04-20

Similar Documents

Publication Publication Date Title
RU2466064C2 (ru) Способ и устройство для предотвращения обледенения обшивки летательного аппарата
CA2290386C (en) Device and method for heating and deicing wind energy turbine blades
US5143325A (en) Electromagnetic repulsion system for removing contaminants such as ice from the surfaces of aircraft and other objects
DK2607075T3 (en) Sandwich laminate and method of manufacture
EP2528813B1 (en) Electrothermal heater mat
CA2852598C (en) Wind turbine rotor blade having an electrical heating device and a plurality of lightning conductors
US8981266B2 (en) Electrical apparatus
US20130001211A1 (en) Electrothermal heater mat
US20120298803A1 (en) Electrothermal heater
CN107010226B (zh) 防冰装置和方法
EP2528816B1 (en) Heater mat comprising dielectric component with electrical connection
JP3558279B2 (ja) 航空機用除氷装置
CN110546378A (zh) 与风力发电设备或其它装置的翼片加热相关的方法和设备
CN104302548A (zh) 针对闪电提供保护的设备
EP4025014B1 (en) Carbon nanotube (cnt) or carbon allotrobe based induction heating for aircraft ice protection

Legal Events

Date Code Title Description
PD4A Correction of name of patent owner