RU2463707C2 - Управление лучом и формирование луча для широкополосных мвмв/мвов-систем - Google Patents

Управление лучом и формирование луча для широкополосных мвмв/мвов-систем Download PDF

Info

Publication number
RU2463707C2
RU2463707C2 RU2008104786/07A RU2008104786A RU2463707C2 RU 2463707 C2 RU2463707 C2 RU 2463707C2 RU 2008104786/07 A RU2008104786/07 A RU 2008104786/07A RU 2008104786 A RU2008104786 A RU 2008104786A RU 2463707 C2 RU2463707 C2 RU 2463707C2
Authority
RU
Russia
Prior art keywords
subbands
subband
control vector
channel
symbols
Prior art date
Application number
RU2008104786/07A
Other languages
English (en)
Other versions
RU2008104786A (ru
Inventor
Мурали Парават МЕНОН (US)
Мурали Парават Менон
Джон У. КЕТЧУМ (US)
Джон У. КЕТЧУМ
Марк УОЛЛЭЙС (US)
Марк УОЛЛЭЙС
Джэй Род УОЛТОН (US)
Джэй Род УОЛТОН
Стивен Дж. ГОВАРД (US)
Стивен Дж. ГОВАРД
Original Assignee
Квэлкомм Инкорпорейтед
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Квэлкомм Инкорпорейтед filed Critical Квэлкомм Инкорпорейтед
Publication of RU2008104786A publication Critical patent/RU2008104786A/ru
Application granted granted Critical
Publication of RU2463707C2 publication Critical patent/RU2463707C2/ru

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0417Feedback systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0408Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas using two or more beams, i.e. beam diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0426Power distribution
    • H04B7/0434Power distribution using multiple eigenmodes
    • H04B7/0443Power distribution using multiple eigenmodes utilizing "waterfilling" technique
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0634Antenna weights or vector/matrix coefficients
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0204Channel estimation of multiple channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/024Channel estimation channel estimation algorithms
    • H04L25/0242Channel estimation channel estimation algorithms using matrix methods
    • H04L25/0248Eigen-space methods
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03343Arrangements at the transmitter end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • H04L5/0025Spatial division following the spatial signature of the channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0426Power distribution
    • H04B7/043Power distribution using best eigenmode, e.g. beam forming or beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L2025/0335Arrangements for removing intersymbol interference characterised by the type of transmission
    • H04L2025/03375Passband transmission
    • H04L2025/03414Multicarrier
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L2025/0335Arrangements for removing intersymbol interference characterised by the type of transmission
    • H04L2025/03426Arrangements for removing intersymbol interference characterised by the type of transmission transmission using multiple-input and multiple-output channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L2025/03777Arrangements for removing intersymbol interference characterised by the signalling
    • H04L2025/03802Signalling on the reverse channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/024Channel estimation channel estimation algorithms
    • H04L25/0242Channel estimation channel estimation algorithms using matrix methods
    • H04L25/0246Channel estimation channel estimation algorithms using matrix methods with factorisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/006Quality of the received signal, e.g. BER, SNR, water filling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • H04L5/0085Timing of allocation when channel conditions change
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0096Indication of changes in allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/42TPC being performed in particular situations in systems with time, space, frequency or polarisation diversity

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Radio Transmission System (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Изобретение относится к технике связи и может быть использовано для передачи данных в системах связи с множеством входов и множеством выходов или с множеством входов и одним выходом (МВМВ/МВОВ). Способ обработки данных для передачи по широкополосному многовходовому каналу заключается в получении вектора управления для каждого из множества поддиапазонов, при этом каждый вектор управления включает в себя множество элементов для множества передающих антенн, и предварительном преобразовании символов модуляции, подлежащих передаче в каждом поддиапазоне, с использованием вектора управления для поддиапазона, причем вектор управления для каждого поддиапазона получают на основе собственного вектора, соответствующего основной собственной моде. Технический результат - улучшение рабочих показателей при неблагоприятных канальных условиях. 2 н. и 17 з.п. ф-лы, 5 ил.

Description

Область техники
Настоящее изобретение относится к передаче данных, более конкретно к способам управления лучом и формирования луча для широкополосных систем с множеством входов и множеством выходов или с множеством входов и одним выходом (МВМВ/МВОВ).
Уровень техники
Система связи с множеством входов и множеством выходов (МВМВ) использует для передачи данных множество (N T) передающих антенн и множество (N R) приемных антенн. МВМВ-канал, формируемый посредством N T передающих и N R приемных антенн, может разбиваться на N S независимых каналов, причем N S ≤min{N T, N R}. Каждый из N S независимых каналов также называется пространственным подканалом или собственной модой МВМВ канала.
Система связи с множеством входов и одним выходом (МВОВ) использует множество (N T) передающих антенн и единственную (N R) приемную антенну для передачи данных. МВОВ канал, формируемый N T передающими антеннами и единственной приемной антенной, включает в себя единственный пространственный подканал или собственную моду. Однако множество передающих антенн может быть использовано для обеспечения разнесения при передаче или для выполнения формирования луча или управления лучом для передачи данных.
Для широкополосной системы мультиплексирование с ортогональным частотным разделением (МОЧР) может использоваться для эффективного разделения всей ширины полосы системы на ряд (N F) ортогональных поддиапазонов, которые также называются частотными элементами разрешения или подканалами. При использовании МОЧР каждый поддиапазон связывается с соответствующей поднесущей, которую могут модулировать данные. Для МВМВ/МВОВ-системы, которая использует МОЧР (т.е. МВМВ/МВОВ-МОЧР-система), каждый поддиапазон каждого пространственного подканала может рассматриваться как независимый передающий канал.
В пространственных подканалах широкополосной МВМВ/МВОВ-системы могут возникать различные состояния канала, обусловленные различными факторами, такими как ослабление и многолучевое распространение. Каждый пространственный подканал может испытывать частотно-селективное ослабление, что характеризуется различными канальными усилениями на различных частотах полной ширины полосы системы. Результатом этого могут быть различные отношения сигнал-шум (С/Ш) на различных частотах каждого пространственного подканала. Более того, условия в канале могут ухудшаться до уровня, где большинство из пространственных каналов сильно ухудшены. В таких условиях улучшенные рабочие показатели могут быть обеспечены с использованием только наилучшего пространственного подканала для передачи данных.
Поэтому в технике имеется необходимость в методах обработки данных для передачи по единственному пространственному подканалу, который гарантирован канальными условиями.
Раскрытие изобретения
Обеспечены способы передачи данных по единственному пространственному подканалу (или собственной моде) в широкополосной системе с множеством входов, которая может быть МВМВ или МВОВ-системой (т.е. МВМВ-МОЧР или МВОВ-МОЧР-системой). Эти способы могут использоваться для обеспечения улучшенных рабочих показателей при неблагоприятных канальных условиях.
Передача данных на единственной собственной моде (обычно наилучшей или основной собственной моде для МВМВ-систем) может быть реализована с использованием управления лучом или формирования луча. Для широкополосной МВМВ/МВОВ-системы управление лучом или формирование луча выполняется для каждого поддиапазона, который выбирается для использования для передачи данных на основе вектора управления, полученного для этого поддиапазона. Управление лучом или формирование луча может также выполняться в сочетании с конкретной схемой распределения мощности, которая распределяет всю передаваемую мощность по поддиапазонам.
В варианте осуществления обеспечивается способ обработки данных для передачи на единственной собственной моде многовходового канала (т.е. МВМВ- или МВОВ-канала). В соответствии с этим способом вектор управления получают для каждого из ряда поддиапазонов. Каждый вектор управления включает в себя N T элементов для N T передающих антенн. В зависимости от того, как определяются векторы управления, управление лучом или формирование луча может быть выполнено для каждого поддиапазона.
Вся передаваемая мощность распределяется по поддиапазонам на основе конкретной схемы распределения мощности (например, полной инверсии каналов, селективной инверсии каналов, потокового наполнения или равномерного распределения, которые описаны ниже). Масштабирующее значение затем получается для каждого поддиапазона на основе передаваемой мощности, распределяемой по поддиапазонам.
Данные, подлежащие передаче, кодируются и модулируются на основе одной или более схем кодирования и модуляции для обеспечения символов модуляции. Символы модуляции, подлежащие передаче в каждом поддиапазоне, затем масштабируются с помощью масштабирующего значения поддиапазона, и масштабированные символы модуляции затем предварительно преобразуются посредством вектора управления поддиапазона. Затем для каждой передающей антенны формируется поток предварительно преобразованных символов, и этот поток затем обрабатывается для генерирования модулированного сигнала, подходящего для передачи соответствующей передающей антенной.
Различные аспекты и варианты осуществления изобретения описаны ниже более детально. Изобретение, кроме того, обеспечивает способы, программные коды, цифровые сигнальные процессоры, передающие блоки и приемные блоки, и другие устройства и элементы, которые воплощают различные аспекты, варианты осуществления и признаки изобретения, как описано ниже более детально.
Краткое описание чертежей
Признаки, сущность и преимущества настоящего изобретения поясняются в подробном описании, изложенном ниже со ссылками на чертежи, на которых одинаковые ссылочные позиции обозначают идентичные элементы по всему описанию и на которых представлено следующее:
Фиг. 1 - графическая иллюстрация результатов разложения собственного значения для ряда поддиапазонов в МВМВ-МОЧР- системе;
Фиг. 2 - блок-схема передающей системы и приемной системы в МВМВ- МОЧР-системе;
Фиг. 3 - блок-схема передающего блока в составе передающей системы;
Фиг. 4 - блок-схема блока масштабирования сигнала, блока управления лучом и мультиплексора в составе передающего блока передачи; и
Фиг. 5 - блок-схема способа обработки данных для передачи на единственной собственной моде многовходового канала, использующего управление лучом или формирование луча.
Подробное описание
Описанные ниже способы управления лучом и формирования луча могут быть использованы в различных широкополосных МВМВ/МВОВ- системах связи. Для ясности эти способы описаны конкретно для МВМВ- МОЧР-системы, которая эффективно разделяет полную ширину полосы системы на N F ортогональных поддиапазонов.
Модель для МВМВ- МОЧР-системы может быть выражена как:
y(k)= H(k)x(k)+ n(k), для
Figure 00000001
{1, …, N F}, (1)
где y(k) является вектором из N R элементов, {y i(k)} для
Figure 00000002
{1, …, N R}, для символов, принятых N R приемными антеннами для k-ого поддиапазона (т.е. «принятый» вектор);
x(k) является вектором из N T элементов, {x i(k)} для
Figure 00000003
{1, …, N T}, для символов, переданных N T передающими антеннами для k-ого поддиапазона (т.е. «переданный» вектор);
H(k) является (N R х N T) матрицей канального отклика с элементами {h ij(k)} для
Figure 00000002
{1, …, NR} и
Figure 00000003
{1, …, NT}, которые являются комплексными коэффициентами усиления от N T передающих антенн до N R приемных антенн для k-ого поддиапазона; и
n(k) является аддитивным белым Гауссовым шумом (AWGN) для k-ого поддиапазона с нулевым средним значением и ковариационной матрицей Λ n = σ2 I, где I является единичной матрицей и σ2 является дисперсией шума.
Для простоты, каждый поддиапазон предполагается неселективным по частоте (т.е. с плоским частотным откликом по всему поддиапазону). В этом случае канальный отклик h ij(k) для каждого передающего канала может быть представлен единственным комплексным значением, а элементы матрицы H(k) канального отклика являются скалярными величинами. Также для простоты, дисперсия шума предполагается постоянной по всем передающим каналам. Для дуплексных систем с временным разделением (ДВР) прямые и обратные линии связи совместно используют одну и ту же ширину полосы системы, и каждый поддиапазон может предполагаться обладающим взаимностью. Если H(k) представляет матрицу канальных откликов от антенной решетки А к антенной решетке В, то свойство взаимности канала означает, что связь от решетки В к решетке А определяется посредством H H(k).
Матрица H(k) канальных откликов для каждого поддиапазона может быть «диагонализирована» для получения N S независимых каналов для этого поддиапазона. Это может быть достигнуто посредством осуществления разложения по собственным значениям корреляционной матрицы для H(k), которая определяется соотношением R(k)=H H(k)H(k), где H H(k) обозначает сопряженную перестановку H(k). Разложение по собственным значениям корреляционной матрицы R(k) может быть выражено как:
R(k) = E(k)D(k)E H(k), для
Figure 00000001
{1, …, N F}, (2)
где E(k) является (N TxN T) единичной матрицей, столбцы которой являются собственными векторами матрицы R(k); и
D(k) является (N TxN T) диагональной матрицей с элементами на диагонали, соответствующими собственным значениям матрицы R(k).
Единичная матрица может быть записана через ее свойство M H M=I.
Разложение по собственным значениям может быть также осуществлено с помощью разложения по сингулярным значениям, как известно из уровня техники.
Диагональная матрица D(k) для каждого поддиапазона содержит не отрицательные действительные значения вдоль диагонали и нули во всех остальных позициях. Эти диагональные элементы называются собственными значениями R(k) и относятся к комплексным коэффициентам усиления для независимых каналов (или собственных мод) МВМВ-канала для k-ого поддиапазона. Так как число независимых каналов равно N S ≤min{N T, N R} для МВМВ-системы с N T передающими и N R приемными антеннами, то имеется N S ненулевых собственных значений матрицы R(k). Собственные значения матрицы R(k) обозначаются как {λi(k)} для i={1, …, N F} и k={1, …, N F}.
Для МВМВ-МОЧР-системы разложение по собственным значениям может быть выполнено независимо для матрицы H(k) канальных откликов для каждого поддиапазона для определения N S собственных мод для этого поддиапазона. N S собственных значений для каждой диагональной матрицы D(k), для
Figure 00000001
{1, …, N F}, могут быть упорядочены так, что {λ1(k)≥ λ2(k) ≥ … ≥
Figure 00000004
}, где λ1(k) является наибольшим собственным значением и
Figure 00000004
- наименьшим собственным значением для k-ого поддиапазона.
Фиг. 1 графически иллюстрирует результаты разложения по собственным значениям для N F поддиапазонов в МВМВ-МОЧР-системе. Показан набор диагональных матриц D(k) для k={1, …, N F), упорядоченный по оси 110, которая представляет размерность частоты. Собственные значения {λi(k)} для i={1, …, N S} каждой матрицы D(k) располагаются вдоль диагонали матрицы. Ось 112 может, таким образом, рассматриваться в качестве представления пространственного измерения. i-ая cобственная мода для всех поддиапазонов (или просто собственная мода i) связана с набором элементов, {λi(k)} для k = {1, …, N F}, который указывает частотный отклик по N F поддиапазонам для этой собственной моды. Набор элементов {λi(k)} для каждой собственной моды показан затемненными прямоугольниками вдоль пунктирной линии 114. Каждый затемненный прямоугольник на фиг. 1 представляет канал передачи. Для каждой собственной моды, которая испытывает частотно-селективное ослабление, элементы {λi(k)} для этой собственной моды могут быть различными для различных значений k.
Если собственные значения в каждой диагональной матрице D(k) отсортированы в порядке убывания, то собственная мода 1 (которая также называется основной собственной модой) будет включать в себя наибольшее собственное значение в каждой матрице, а собственная мода N S будет включать в себя наименьшее собственное значение в каждой матрице.
При неблагоприятных канальных условиях большинство собственных мод могут быть сильно искажены. В этих ситуациях улучшенные рабочие показатели могут быть достигнуты использованием только наилучшей собственной моды (т.е. основной собственной моды) для передачи данных.
Модель для МВОВ- МОЧР-системы может быть выражена как:
y(k) = h(k)x(k)+ n(k), для
Figure 00000001
{1, …, N F},
где y(k) обозначает символ, принятый в k-ом поддиапазоне;
x(k) является вектором из N T элементов для символов, переданных N T передающими антеннами для k-ого поддиапазона;
h(k) является (1хN T) вектором канальных откликов с составляющими {h j(k)} для
Figure 00000003
{1, …, N T}, которые являются комплексными коэффициентами усиления от N T передающих антенн до единственной приемной антенны для k-ого поддиапазона; и
n(k) является аддитивным белым Гауссовым шумом (AWGN) для k-ого поддиапазона.
Для МВМВ и МВОВ-систем передача данных на единственной собственной моде может быть достигнута с помощью управления лучом или формирования луча, как описано ниже.
1. Формирование луча
Метод формирования луча обеспечивает передачу данных на единственной (т.е. основной) собственной моде посредством предварительного преобразования символов модуляции собственным вектором для этой собственной моды. Для МВМО-МОЧР-системы формирование луча выполняется для каждого поддиапазона с использованием собственного вектора, полученного для этого поддиапазона.
В уравнении (2) единичная матрица E(k) содержит N T столбцов для N T собственных векторов, т.е. E(k)= [e 1(k) e 2(k) …
Figure 00000005
]. Собственные вектора также называются векторами управления. Каждый собственный вектор связан с соответствующей собственной модой и собственным значением диагональной матрицы D(k) (т.е. собственный вектор e i(k) связан с собственным значением λi(k) для поддиапазона k). Если собственные значения D(k) отсортированы в порядке убывания, как описано выше, собственные вектора E(k) также переупорядочиваются соответствующим образом. После сортировки/переупорядочивания собственный вектор e 1(k) соответствует наибольшему собственному значению λ1(k) и является собственным вектором для основной собственной моды для k-ого поддиапазона. Этот собственный вектор e 1(k) включает в себя N T элементов для N T передающих антенн и может быть выражен как:
Figure 00000006
e 1(k) = [e 1.1(k) e 1.2(k) …
Figure 00000007
]T для
Figure 00000001
{1, …, N F}, (3)
где «Т» обозначает транспонирование.
Предварительное преобразование в передатчике для выполнения формирования луча для каждого поддиапазона может быть выражено как:
Figure 00000008
Figure 00000009
s(k) для
Figure 00000001
{1, …, N F}, (4)
где s(k) является символом модуляции, подлежащим передаче в k-ом поддиапазоне;
Figure 00000010
является масштабирующим значением, получаемым на основе передаваемой мощности P(k), выделенной k-ому поддиапазону; и
x(k) является вектором передачи с N T предварительно преобразованными символами для k-ого поддиапазона.
Как показано в уравнении (4), способ формирования луча генерирует один вектор x(k) передачи для каждого поддиапазона на основе собственного вектора e 1(k) для основной собственной моды. Так как элементы собственного вектора e 1(k) могут иметь различные величины, то элементы вектора x(k) передачи могут также иметь различные величины.
Для каждой i-ой передающей антенны N F предварительно преобразованных символов, подлежащих передаче в N F поддиапазонах в n-ом периоде символа, мультиплексируются в вектор x i(n) (передачи для одной антенны), который может быть выражен как:
Figure 00000011
для
Figure 00000012
{1, …, N T},
где
Figure 00000013
является масштабированным символом модуляции и определяется как
Figure 00000014
.
Таким образом, для МВОВ-МОЧР-системы формирование луча осуществляется для каждого поддиапазона с использованием вектора управления, полученного для этого поддиапазона. Если канальное разложение выполняется над вектором h(k) канальных откликов, то результатом будет одна собственная мода (т.е. одно не нулевое значение для матрицы D(k)) и один вектор управления. Этот вектор управления будет равен h *(k). Формирование луча для МВОВ может быть осуществлено, как показано в уравнении (4).
2. Управление лучом
Способ управления лучом передает данные на основной собственной моде посредством предварительного преобразования символов модуляции «нормированным» вектором управления для этой собственной моды. Управление лучом также осуществляется для каждого поддиапазона для МВМВ-МОЧР-системы.
Как указано выше, элементы каждого собственного вектора e 1(k) для
Figure 00000001
{1, …, N F} для основной собственной моды могут иметь различные величины. Поэтому векторы x i(n) для
Figure 00000012
{1, …, N T} передачи для одной антенны могут иметь различные величины. Если передаваемая мощность для каждой передающей антенны ограничивается (например, из-за ограничений для усилителей мощности), то способ формирования луча может не полностью использовать всю мощность, доступную для каждой антенны.
Способ управления лучом использует только фазовую информацию из собственных векторов e 1(k) для
Figure 00000001
{1, …, N F} и нормирует каждый вектор управления передачей так, что все N T элементов имеют равные величины. Нормированный вектор управления
Figure 00000015
для k-ого поддиапазона может быть выражен как:
Figure 00000016
(5а)
где А является константой (т.е. А=1); и
θ i(k) является фазой для k-ого поддиапазона i-ой передающей антенны, которая определяется как:
Figure 00000017
(5b)
Как показано в уравнении (5b), фаза каждого элемента в векторе
Figure 00000015
получается из соответствующего элемента собственного вектора e 1(k) (т.е. θ i(k) получается из e 1,i(k)).
Предварительное преобразование в передатчике для выполнения управления лучом для каждого поддиапазона может быть выражено как:
Figure 00000018
для
Figure 00000001
{1, …, N F} (6)
Как показано в уравнениях (5а) и (5b), элементы нормированного вектора управления
Figure 00000015
для каждого поддиапазона имеет одинаковые величины, но, возможно, различные фазы. Способ управления лучом генерирует один вектор x(k) передачи для каждого поддиапазона с элементами x(k), имеющими одну и ту же величину, но, возможно, различные фазы.
Как описано выше, для i-ой передающей антенны N F предварительно преобразованных символов, подлежащих передаче в N F поддиапазонах в n-ом периоде символа, мультиплексируются в вектор x i(n) передачи для одной антенны. Так как каждый вектор x i(n) передачи для
Figure 00000012
{1, …, N T} включает в себя один и тот же набор масштабированных символов модуляции (но, возможно, с различными фазами), то вся доступная для каждой антенны мощность передачи может быть полностью использована.
В приемнике для получения оценки символа s(k) модуляции принятый вектор y (k) для каждого поддиапазона может быть предварительно умножен (или «преобразован») на
Figure 00000019
(если было выполнено управление лучом) или на
Figure 00000020
(если было выполнено формирование луча). Если выполнялось управление лучом, то преобразование для получения оценки
Figure 00000021
символа может быть выражено как:
Figure 00000022
где D(k) является коэффициентом усиления управления лучом для k-ого поддиапазона, который может быть выражен как:
Figure 00000023
Figure 00000024
является шумом AWGN c нулевым средним значением и дисперсией шума
Figure 00000025
.
Полученное отношение сигнал-шум для k-ого поддиапазона с использованием управления лучом может быть выражено как:
Figure 00000026
, для
Figure 00000001
{1, …, N F} (9)
Спектральная эффективность для k-ого поддиапазона может быть вычислена на основе непрерывной, монотонно возрастающей логарифмической функции для пропускной способности следующим образом:
Figure 00000027
для
Figure 00000001
{1, …, N F}. (10)
Спектральная эффективность определяется в единицах бит/секунда на Герц (бс/Гц). Средняя (усредненная) спектральная эффективность для N F поддиапазонов МВМВ-МОЧР-системы может затем быть выражена как:
Figure 00000028
(11)
Подобные же вычисления могут быть выполнены для способа формирования луча.
Для МВОВ-МОЧР-системы управление лучом также выполняется для каждого поддиапазона с использованием нормированного вектора управления, полученного для этого поддиапазона. Нормированный вектор управления для МВОВ может быть получен таким же способом, что и описанный выше для нормированного вектора управления
Figure 00000015
для основной собственной моды (т.е. с использованием фазы вектора управления). Управление лучом для МВОВ может быть выполнено, как показано в уравнении (6).
3. Распределение мощности для поддиапазонов
Если вся передаваемая мощность для всех N T передающих антенн ограничена конкретным значением P total, тогда способ формирования луча может обеспечить лучшие результаты, чем способ управления лучом. Это объясняется тем, что вся передаваемая мощность может быть более оптимально распределена по N T передающим антеннам на основе собственных векторов e 1(k) для основной собственной моды. Однако, если передаваемая мощность, доступная для каждой передающей антенны, ограничена (например, до P total /N T), то способ управления лучом, вероятно, обеспечит лучшие результаты, чем способ формирования луча. Это объясняется тем, что способ управления лучом может более полно использовать всю мощность, доступную для каждой передающей антенны.
В любом случае вся передаваемая мощность P total может быть распределена по N T передающим антеннам и N F поддиапазонам с использованием различных схем распределения мощности. Эти схемы включают в себя схемы (1) полной инверсии каналов, (2) селективной инверсии каналов, (3) равномерного распределения и (4) «потокового наполнения» или «потокового разливания» распределяемой мощности. Для ясности каждая из этих схем конкретно описывается ниже для способа управления лучом.
4. Полная канальная инверсия каналов
Если одинаковое количество передаваемой мощности используется для каждого поддиапазона, тогда управление лучом может привести к различным отношениям С/Ш для N F поддиапазонов. Для максимизации спектральной эффективности затем могут быть использованы различные схемы кодирования и модуляции для каждого поддиапазона в зависимости от отношения С/Ш, достигаемого для поддиапазона. Однако индивидуальное кодирование и модуляция для каждого поддиапазона может значительно увеличить сложность передатчика и приемника. С другой стороны, если одна и та же схема кодирования и модуляции используется для всех поддиапазонов, то могут иметь место значительные изменения в коэффициентах ошибок для N F поддиапазонов, в зависимости от изменений в отношениях С/Ш принимаемых сигналов.
Полная инверсия каналов может быть использована для эффективного «инвертирования» поддиапазонов так, чтобы отношение С/Ш принимаемых сигналов для всех поддиапазонов были приблизительно равными. Распределение мощности может быть выполнено при том ограничении, что вся мощность, распределенная по всем поддиапазонам для каждой передающей антенны, ограничена величиной P ant =P total /N T. Для полной инверсии каналов величина передаваемой мощности P(k), распределяемой для каждого поддиапазона, может быть выражена как:
Figure 00000029
для
Figure 00000001
{1, …, N F}, (12)
где αk является коэффициентом масштабирования, используемым для распределения мощности согласно полной инверсии каналов. Коэффициент масштабирования для k-ого поддиапазона может быть выражен как:
Figure 00000030
(13)
где b является коэффициентом нормирования, который может быть выражен как:
Figure 00000031
(14)
Как показано в уравнениях (12) и (13), вся передаваемая мощность P total распределяется неравномерно по N F поддиапазонам на основе коэффициентов масштабирования αk для
Figure 00000001
{1, …, N F}, которые обратно пропорциональны коэффициентам D(k) усиления управления лучом. Коэффициенты масштабирования αk обеспечивают, что отношения С/Ш принимаемых сигналов для всех поддиапазонов приблизительно равны. Принятая мощность P rx(k) сигнала для каждого поддиапазона может быть определена как:
Figure 00000032
, для
Figure 00000001
{1, …, N F}(15)
Мощность шума задается посредством σ2 D(k). Отношение γ(k) сигнал-шум для поддиапазона k затем определяется как:
Figure 00000033
(16)
Вся принятая мощность сигнала P rx может затем быть определена как:
Figure 00000034
Вся передаваемая мощность P total распределяется по поддиапазонам так, что в них достигались равные С/Ш принимаемых сигналов (т.е. С/Ш принимаемых сигналов для каждого поддиапазона не являются функцией k), как показано в уравнении (16). Это далее дает возможность использовать общую схему кодирования и модуляции для всех поддиапазонов при удовлетворении ограничений мощности для каждой антенны.
Для достижения приблизительного равенства С/Ш принимаемых сигналов для всех N F поддиапазонов схема полной инверсии каналов обеспечивает распределение бульшей передаваемой мощности для худших поддиапазонов с низкими коэффициентами усиления. Так как мощность на антенну ограничена величиной P total /N T, то лучшим поддиапазонам с более высокими коэффициентами усиления выделено меньше передаваемой мощности. Это может привести к снижению общей спектральной эффективности системы. Однако полная инверсия каналов может упростить процесс обработки в приемнике, поскольку характеристика общего канала является эффективно плоской, и выравнивания принятого сигнала не требуется.
5. Селективная инверсия каналов
Схема селективной инверсии каналов распределяет всю передаваемую мощность P total так, что в поддиапазонах, выбранных для использования, достигаются приблизительно равные отношения С/Ш принимаемых сигналов. Это может выполняться посредством выбора сначала всех или только поднабора из N F поддиапазонов, используемых для передачи данных. Выбор каналов может приводить к исключению поддиапазонов с низким отношением С/Ш, которое стало ниже определенного порога. Этот порог может быть выбран для максимизации спектральной эффективности, как описано ниже. Вся передаваемая мощность P total затем распределяется только по выбранным поддиапазонам и так, чтобы соответствующие им отношения С/Ш принимаемых сигналов были приблизительно равными.
Коэффициенты масштабирования
Figure 00000035
, используемые для распределения мощности посредством схемы селективной инверсии каналов, могут быть выражены как:
Figure 00000036
Figure 00000037
(17)
где ρ является значением, используемым для установления порога, L avg является средним значением коэффициента усиления и
Figure 00000038
является коэффициентом нормирования. Коэффициент нормирования
Figure 00000039
сходен с b в уравнении (14), но вычисляется только для выбранных поддиапазонов и может быть выражен как:
Figure 00000040
Среднее значение коэффициента усиления L avg может быть вычислено как:
Figure 00000041
Как показано в уравнении (17), конкретный поддиапазон выбирается для использования, если его коэффициент усиления управления лучом больше, чем порог, или равен порогу (т.е. |D(k)|≥ ρL avg). Так как передаваемая мощность не распределяется по поддиапазонам с коэффициентами усиления ниже порога, то может быть достигнута более высокая спектральная эффективность. Для поддиапазонов, выбранных для использования, вся передаваемая мощность P total распределяется по этим поддиапазонам на основе их коэффициентов масштабирования
Figure 00000035
, аналогично тому, как показано в уравнении (15), так что принятая мощность сигнала для каждого выбранного поддиапазона определяется как
Figure 00000039
P total D(k)/N T N F , и все выбранные поддиапазоны имеют приблизительно равные отношения С/Ш принимаемых сигналов.
Порог, используемый для выбора поддиапазонов, может быть установлен на основе различных критериев. Порог, который максимизирует спектральную эффективность, может быть определен следующим образом. Сначала коэффициенты усиления D(k) для всех N F поддиапазонов ранжируются и упорядочиваются в порядке убывания в списке G(λ), для
Figure 00000042
{1, …, N F), так, что G(1)= max{D(k)} и G(N F)= min{D(k)}. Последовательность B(λ) затем определяется следующим образом:
Figure 00000043
B(λ) является списком
Figure 00000039
, если используются λ наилучших поддиапазонов.
Отношение С/Ш принимаемых сигналов по всем выбранным поддиапазонам при выборе λ наилучших поддиапазонов для использования определяется как:
Figure 00000044
Согласно уравнению (21), вся передаваемая мощность P total распределена по λ наилучшим поддиапазонам так, что в них достигаются одинаковые отношения С/Ш принимаемых сигналов.
Если выбирается λ наилучших поддиапазонов для использования, то полная спектральная эффективность для этих поддиапазонов определяется как:
Figure 00000045
Спектральная эффективность C(λ) может быть вычислена для каждого значения λ, для
Figure 00000046
{1, …, N F}, и сохранена в виде матрицы. После вычисления всех N F значений C(λ) для N F возможных комбинаций выбранных поддиапазонов матрица спектральных эффективностей просматривается и определяется наибольшее значение C(λ). Значение λ, определенное как λmax, соответствующее наибольшему C(λ), является затем числом поддиапазонов, которое приводит к максимальной спектральной эффективности для оцениваемых условий в каналах.
Значение ρ может затем быть вычислено как:
Figure 00000047
где L avg определяется, как показано в уравнении (19). Порог ρ L avg может быть установлен равным D(λ max ), который является коэффициентом усиления наихудшего поддиапазона в группе поддиапазонов, которая максимизирует спектральную эффективность. Порог, используемый для выбора каналов, также может быть установлен на основе некоторого другого критерия.
Отношения С/Ш принимаемых сигналов для всех выбранных поддиапазонов могут быть сделаны примерно равными путем неравномерного распределения полной передаваемой мощности P total по этим поддиапазонам. Равные отношения С/Ш принимаемых сигналов позволят использовать одну скорость передачи данных и общую схему кодирования и модуляции для всех выбранных поддиапазонов, что значительно снизило бы сложность как для передатчика, так и для приемника.
Схемы полной и селективной инверсии каналов подробно описаны в заявках на патент США за № 09/860274, поданной 17 мая 2001, № 09/881,610, поданной 14 июня 2001, и № 09/829,379, поданной 26 июня 2001 на «Способ и устройство обработки данных для передачи в многоканальной системе связи с использованием селективной инверсии каналов», которые переуступлены правообладателю настоящей заявки и которые включены в настоящее описание посредством ссылки.
6. Потоковое наполнение
Схема потокового наполнения может быть использована для оптимального распределения полной передаваемой мощности по поддиапазонам так, что полная спектральная эффективность максимизируется при том ограничении, что вся передаваемая мощность ограничивается до P total. Схема потокового наполнения распределяет мощность по N F поддиапазонам так, что поддиапазоны с увеличивающимися коэффициентами усиления получают увеличивающиеся доли полной передаваемой мощности. Передаваемая мощность, выделенная для данного поддиапазона, определяется отношением С/Ш принимаемых сигналов поддиапазона, которое зависит от коэффициента усиления поддиапазона, как показано в уравнении (9) для способа управления лучом. Схема потокового наполнения может выделять нулевую передаваемую мощность для поддиапазонов с достаточно низкими отношениями С/Ш принимаемых сигналов.
Процедура осуществления потокового наполнения известна из уровня техники и не описывается здесь. Потоковое наполнение описано, например, в работе “Information Theory and Reliable Communication”, by Robert G. Gallager, John Wiley & Sons, 1968, которая включена в настоящее описание посредством ссылки. Результатом потокового наполнения является конкретное распределение P w (k) передаваемой мощности для каждого из N F поддиапазонов. Распределение мощности потоковым наполнением выполняется так, что удовлетворяется следующее условие:
Figure 00000048
На основе распределения передаваемой мощности P w (k) для k= {1, …, N F}, где P w (k) может равняться нулю для одного или более поддиапазонов, отношение С/Ш принимаемых сигналов каждого поддиапазона может быть выражено как:
Figure 00000049
Спектральная эффективность С для каждого поддиапазона может затем быть вычислена, как показано в уравнении (10), и усредненное значение спектральной эффективности для всех N F поддиапазонов может быть вычислено, как показано в уравнении (11).
Распределение мощности потоковым наполнением обычно приводит к различным отношениям С/Ш принимаемых сигналов поддиапазонов, для которых выделены ненулевые мощности передачи. Различные схемы кодирования и модуляции могут затем быть использованы для выбранных поддиапазонов на основе соответствующих им отношений С/Ш принимаемых сигналов.
7. Равномерное распределение мощности
Схема равномерного распределения распределяет полную передаваемую мощность P total равномерно по всем N F поддиапазонам. Передаваемая мощность P u (k), выделенная для каждого поддиапазона, может быть выражена как:
Figure 00000050
для
Figure 00000051
{1, …, N F} (26)
Равномерное распределение мощности может также приводить к различным отношениям С/Ш принимаемых сигналов NF поддиапазонов. Различные схемы кодирования и модуляции могут затем быть использованы для этих поддиапазонов на основе соответствующих им отношений С/Ш принимаемых сигналов. Если МВМВ-система имеет больший порядок разнесения, то схемы полной и селективной инверсии каналов обеспечивают меньше преимуществ по сравнению со схемой равномерной мощности. Если МВМВ-система имеет бульший порядок разнесения, то NF наибольших собственных значений для NF поддиапазонов вряд ли изменяются в широких пределах. В этом случае рабочие показатели схем полной или селективной инверсии каналов будут аналогичны рабочим показателям схемы равномерного распределения мощности.
Всю передаваемую мощность можно также распределять по поддиапазонам на основе некоторых других схем распределения мощности, и это также входит в объем изобретения.
Было выполнено моделирование для (1) способа управления лучом с тремя различными схемами распределения мощности (полная инверсия каналов, селективная инверсия каналов и равномерное распределение и (2) способа формирования луча с равномерным распределением мощности. Если передаваемая мощность, доступная для каждой передающей антенны, ограничена (например, величиной P total /N t), способ управления лучом обеспечивает улучшение рабочих показателей примерно на 2,5 дБ по сравнению со способом формирования луча. Это значительное улучшение может быть отнесено к тому факту, что в способе управления лучом используется вся доступная мощность, чего нет в случае способа формирования луча. При достаточно низком отношении С/Ш принимаемых сигналов (которое равно -1 дБ для определенной конфигурации системы, использованной при моделировании), способ управления лучом может обеспечить улучшенные рабочие показатели по сравнению со способом, в котором данные передаются с использованием всех собственных мод и вся передаваемая мощность распределяется по этим собственным модам. Это объясняется тем, что при достаточно низких отношениях С/Ш принимаемых сигналов только несколько собственных мод являются «активными», и лучшие рабочие показатели могут быть достигнуты за счет выделения всей передаваемой мощности наилучшей собственной моде. Для способа управления лучом селективная инверсия каналов обеспечивает лучшие рабочие показатели, чем полная инверсия каналов при низких отношениях С/Ш принимаемых сигналов, и когда оценки МВМВ-канала являются зашумленными. Согласно результатам моделирования, при низких отношениях С/Ш принимаемых сигналов управление лучом с селективной инверсией каналов является лучшим выбором для использования, чем другие схемы передачи МВМВ.
8. Система
На фиг. 2 представлена блок-схема варианта осуществления передающей системы 210 и приемной системы 250 в МВМВ-МОЧР-системе 200.
В передающей системе 210 данные трафика (т.е. информационные биты) из источника 212 данных передаются в процессор 214 данных передачи, который кодирует, перемежает и модулирует данные для обеспечения символов модуляции. Пространственный процессор 220 передачи далее обрабатывает символы модуляции для обеспечения предварительно преобразованных символов, которые затем мультиплексируются с пилотными символами и подаются в N T МОЧР-модуляторов с 222а по 222t, по одному модулятору для каждой передающей антенны. Каждый МОЧР-модулятор 222 обрабатывает соответствующий поток предварительно преобразованных символов для генерации промодулированного сигнала, который затем передается соответствующей антенной 224.
В приемной системе 250 промодулированные сигналы, переданные N T антеннами с 224а по 224t, принимаются N R антеннами с 252а по 252r. Принятый сигнал с каждой антенны 252 подается на соответствующий МОЧР-демодулятор 254. Каждый МОЧР-демодулятор 254 преобразует (например, фильтрует, усиливает и преобразует с понижением частоты) принятый сигнал, оцифровывает преобразованный сигнал для обеспечения выборок и обрабатывает выборки для обеспечения потока принятых символов. Пространственный процессор 260 приема затем обрабатывает N R потоков принятых символов для обеспечения восстановленных символов, которые являются оценками символов модуляции, переданных передающей системой.
Обработка для обратного канала от приемной системы до передающей системы может быть подобна обработке для прямого канала или может отличаться от нее. Обратный канал может быть использован для передачи назад информации состояния канала (ИСК) из приемной системы к передающей системе. ИСК используется в передающей системе для (1) выбора надлежащих скоростей передачи данных и схем кодирования и модуляции для использования при передаче данных, (2) выполнения управления лучом или формирования луча и (3) распределения всей передаваемой мощности по поддиапазонам. ИСК может обеспечиваться в различных формах. Например, при выполнении управления лучом ИСК может включать в себя N T фаз для N T передающих антенн для каждого поддиапазона, выбранного для использования.
Контроллеры 230 и 270 управляют работой передающей и приемной систем, соответственно. Блоки 232 и 272 памяти обеспечивают хранение кодов программ и данных, используемых контроллерами 230 и 270, соответственно.
Блок-схема передающей и приемной систем в системе МВОВ-МОЧР будет сходна со схемой, показанной на фиг. 2. Однако приемная система будет включать в себя только одну приемную антенну и не будет использовать пространственный процессор 260 приема.
На фиг. 3 представлена блок-схема передающего блока 300, который является вариантом осуществления передатчика передающей системы 210 на фиг. 2.
В процессоре 214 данных передачи кодер 312 принимает и кодирует данные трафика (т.е. информационные биты) в соответствии с одной или более схем кодирования для обеспечения кодированных битов. Канальный перемежитель 314 затем перемежает кодированные биты на основе одной или более схем перемежения для обеспечения временного, пространственного и/или частотного разнесения. Элемент 316 отображения символов затем отображает перемеженные данные в соответствии с одной или более схем модуляции (например, QPSK, M-PSK, M-QAM т.п.) для обеспечения символов модуляции.
Кодирование и модуляция для поддиапазонов могут быть осуществлены различными способами. Если в приемной системе отношения С/Ш принимаемых сигналов поддиапазонов примерно одинаковы, (например, полная или селективная инверсия каналов), то общая схема кодирования и модуляции может быть использована для всех поддиапазонов, используемых для передачи данных. Если отношения С/Ш принимаемых сигналов отличаются, то отдельная схема кодирования и модуляции может быть использована для каждого поддиапазона (или каждой группы поддиапазонов с примерно равными отношениями С/Ш). Сверточное, решетчатое и турбокодирование может быть использовано для кодирования данных.
В пространственном процессоре 220 передачи оценки импульсных откликов МВМВ-канала подаются в блок 322 быстрого преобразования Фурье (БПФ) как последовательность
Figure 00000052
матриц выборок во временной области. Блок 322 БПФ затем выполняет БПФ для каждого набора N F матриц
Figure 00000053
для обеспечения соответствующего набора N F матриц оценок
Figure 00000054
канальных частотных откликов для
Figure 00000051
{1, …, N F}.
Блок 324 затем осуществляет разложение по собственным значениям по каждой матрице
Figure 00000055
для обеспечения единичной матрицы E(k) и диагональной матрицы D(k), как описано выше. Затем вычисляется набор коэффициентов усиления D(k) на основе матриц
Figure 00000055
и векторов управления, которые могут представлять собой
Figure 00000056
или e 1(k) для
Figure 00000057
{1, …, N F}. Коэффициенты D(k) усиления выдаются в блок 330 распределения мощности, а вектора управления выдаются в блок 350 управления лучом/формирования луча.
Блок 330 распределения мощности распределяет полную передаваемую мощность P total по поддиапазонам с использованием любой из схем распределения мощности, описанных выше. Это приводит к распределениям мощности P(k) для
Figure 00000051
{1, …, N F} для N F поддиапазонов, где P(k) может быть нулем для одного или более поддиапазонов. Блок 330 распределения мощности затем выдает значения коэффициентов
Figure 00000058
масштабирования для поддиапазонов в блок 340 масштабирования сигналов.
Блок-схема передающего блока в МВОВ-МОЧР-системе подобна блок-схеме, показанной на фиг. 3. Однако вектор управления для каждого поддиапазона определяется на основе вектора
Figure 00000059
канальных откликов вместо матрицы
Figure 00000060
канальных откликов.
На фиг. 4 представлена блок-схема варианта осуществления блока 340а масштабирования сигналов, блока 350а управления лучом и мультиплексора 360а в передающем блоке 300, которые предназначены для осуществления управления лучом. В блоке 340а масштабирования сигналов символы s(k) модуляции демультиплексируются демультиплексором 440 на (до) N F подпотоков, по одному подпотоку для каждого поддиапазона, используемого для передачи данных. Каждый подпоток s k символов подается на соответствующий умножитель 442.
Каждый умножитель 442 выполняет масштабирование сигнала для связанного поддиапазона на основе значения коэффициента
Figure 00000058
масштабирования, обеспеченного для этого поддиапазона. В частности, каждый умножитель 442 масштабирует каждый символ модуляции в его подпотоке его значением коэффициента
Figure 00000058
масштабирования для обеспечения соответствующего масштабированного символа модуляции. Сигнал, масштабированный для каждого символа модуляции, может быть выражен как:
Figure 00000061
.
Значение коэффициента
Figure 00000058
масштабирования для каждого умножителя 442 определяется передаваемой мощностью P(k), выделенной для соответствующего поддиапазона. Каждый подпоток масштабированных символов
Figure 00000062
модуляции затем подается в соответствующий блок 450 управления лучом.
Каждый блок 450 управления лучом осуществляет управление лучом для связанного поддиапазона и также принимает нормированный вектор
Figure 00000056
управления для этого поддиапазона. В каждом блоке 450 масштабированный символ
Figure 00000063
модуляции подается на N T умножителей с 452а по 452t, по одному умножителю для каждой передающей антенны. Каждый умножитель 452 также принимает соответствующий элемент
Figure 00000064
нормированного вектора
Figure 00000056
управления, умножает каждый масштабированный символ модуляции в подпотоке на элемент
Figure 00000065
и подает предварительно преобразованный символ x i (k) в сумматор 460 для передающей антенны, связанной с этим умножителем. Предварительное преобразование, выполняемое блоком 450k управления лучом для k-ого поддиапазона, может быть выражено как:
Figure 00000066
для
Figure 00000002
{1, …, N T}
Каждый блок 450 управления лучом подает N T предварительно преобразованных символов x i (k) для
Figure 00000002
{1, …, N T} на N T сумматоров с 460а по 460t для N T передающих антенн.
Масштабирование и предварительное преобразование сигналов могут также комбинироваться или осуществляться в другом порядке, чем описанный выше.
Каждый сумматор 460 получает до N F предварительно преобразованных символов, x i (k) для
Figure 00000001
{1, …, N F} из соответствующих N F блоков 450 управления лучом для соответствующих N F поддиапазонов, используемых для передачи данных. Каждый сумматор 460 может также мультиплексировать пилотные символы с предварительно преобразованными символами в одном или более поддиапазонов с использованием мультиплексирования с временным разделением, мультиплексирования с кодовым разделением и/или мультиплексирования с частотным разделением. Пилотные символы могут быть использованы в приемнике для оценки МВМВ канала. Каждый сумматор 460 выдает поток предварительно преобразованных символов в соответствующий МОЧР-модулятор 222.
В каждом МОЧР-модуляторе 222 блок 472 ОБПФ принимает поток предварительно преобразованных символов и формирует вектор x i(n) предварительно преобразованных символов для каждого периода символов. Каждый такой вектор имеет N F элементов для N F поддиапазонов и включает в себя предварительно преобразованные символы для выбранных поддиапазонов и нули для не выбранных поддиапазонов (т.е. x i (n)=[x i (1), x i (2) …, x i (N F )]). Блок 472 ОБПФ затем выполняет обратное БПФ каждого вектора для получения соответствующего представления во временной области, которое определяется как МОЧР-символ. Для каждого МОЧР-символа генератор 474 циклического префикса повторяет часть МОЧР-символа для формирования соответствующего передаваемого символа. Циклический префикс гарантирует, что передаваемый символ сохраняет свои ортогональные свойства в присутствии расширения, обусловленного задержками многолучевого распространения. Передатчик 476 затем преобразует передаваемые символы в один или более аналоговых сигналов и дополнительно преобразует (например, усиливает, фильтрует и преобразует с повышением частоты) аналоговые сигналы для генерирования модулированного сигнала, который затем передается соответствующей антенной 224.
На фиг. 5 представлена блок-схема варианта осуществления способа 500 передачи данных на единственной собственной моде многовходового канала с использованием управления лучом или формирования луча. Многовходовой канал может быть МВМВ-каналом в МВМВ системе или МВОВ-каналом в МВОВ-системе. Сначала вектор управления получают для каждых N F поддиапазонов (этап 512). Вектор управления для каждого поддиапазона может быть собственным вектором e i (k) для собственной моды этого поддиапазона (для формирования луча) или нормированным вектором управления
Figure 00000056
, получаемым на основе собственного вектора e 1 (k) (для управления лучом). Для МВМВ-системы собственные вектора для поддиапазонов могут быть получены выполнением разложения по собственным значениям для матриц
Figure 00000060
для
Figure 00000067
{1, …, N F}, как описано выше. Для МВОВ-системы имеется только одна собственная мода и один вектор управления для каждого поддиапазона. Каждый вектор управления включает N T элементов для N T передающих антенн. Затем определяется коэффициент D(k) усиления для каждого поддиапазона, обеспечиваемый его вектором управления, (например, как показано в уравнении (8) для управления лучом) (этап 514).
Вся передаваемая мощность P total распределяется по поддиапазонам с использованием любой из схем распределения мощности, описанных выше (например, полная инверсия каналов, селективная инверсия каналов, равномерное распределение или потоковое наполнение) (этап 516). Коэффициенты усиления для поддиапазонов могут быть использованы для выполнения распределения мощности. Все или только поднабор N F поддиапазонов могут быть выбраны для использования в передаче данных посредством распределения мощности. Затем получают значение коэффициента
Figure 00000058
масштабирования для каждого выбранного поддиапазона на основе выделенной для него мощности (этап 518).
Данные, подлежащие передаче, кодируются и модулируются на основе одной или более схем кодирования и модуляции для получения символов модуляции (этап 520). Общая схема кодирования и модуляции может быть использована, если отношения С/Ш принимаемых сигналов поддиапазонов примерно равны. В общем случае конкретная схема кодирования и модуляции, используемая для каждого поддиапазона, зависит от отношения С/Ш принимаемых сигналов, достигаемого в этом поддиапазоне.
Символы модуляции, подлежащие передаче в каждом поддиапазоне, затем масштабируются значением коэффициента масштабирования для поддиапазона (этап 522). Масштабированные символы модуляции для каждого поддиапазона затем предварительно преобразуются с использованием вектора управления поддиапазона (этап 524). Предварительное преобразование обеспечивает управление лучом или формирование луча для поддиапазона в зависимости от использования
Figure 00000056
или e 1 (k) в качестве вектора управления. Для каждого поддиапазона, выбранного для использования, один вектор из N T предварительно преобразованных символов генерируется для каждого масштабированного символа модуляции, и эти N T предварительно преобразованных символов должны передаваться в этом поддиапазоне посредством N T передающих антенн.
Затем формируется поток предварительно преобразованных символов для каждой передающей антенны путем мультиплексирования выходных данных предварительного преобразования для выбранных поддиапазонов (этап 526). Каждый поток предварительно преобразованных символов обрабатывается далее (например, МОЧР-модуляцией) для обеспечения модулированного сигнала для передачи соответствующей антенной (этап 528).
Для ясности выше описаны конкретные варианты осуществления. Изменения этих вариантов осуществления и другие варианты осуществления также могут быть получены на основе вышеописанных сведений. Например, набор поддиапазонов для использования в передаче данных может быть выбран на основе одного или более критерия, независимо от схемы, используемой для распределения передаваемой мощности по поддиапазонам. В качестве другого примера, коэффициенты D(k) усиления и вектора управления могут быть получены приемной системой и выданы в передающую систему как часть ИСК. Обработка для МВМВ и МВМВ-МОЧР-систем описана подробно в заявке на патент США № 09/993087 на «Систему связи множественного доступа», с множеством входов и множеством выходов», поданной 6 ноября 2001, переуступленной правообладателю настоящей заявки и включенной в настоящее описание посредством ссылки.
Для ясности, способы осуществления управления лучом и формирования луча описаны применительно к МВМВ-МОЧР-системе. Эти способы могут также использоваться для МВМВ-системы, которая не использует МОЧР. Обработка для реализации управления лучом или формирования луча для каждого поддиапазона может быть осуществлена, как раскрыто выше. Однако обработка посредством модуляторов 222 будет зависеть от конкретной схемы модуляции и передачи, выбранной для использования.
Описанные способы могут быть реализованы различными средствами. Например, эти способы могут быть реализованы аппаратными средствами, программным обеспечением или комбинацией этих средств. В случае аппаратной реализации элементы, используемые для реализации любого одного или комбинации способов (например, пространственного процессора 220 передачи) могут быть реализованы на одной или более специализированных интегральных схемах (ASICs) на процессорах цифровой обработки сигналов (DSP), устройствах цифровой обработки сигналов (DSPD), программируемых логических устройствах (PLD), программируемых пользователем вентильных матрицах (FPGA), процессорах, контроллерах, микроконтроллерах, микропроцессорах, других электронных блоках, предназначенных для выполнения вышеописанных функций или их комбинации.
В случае программной реализации вышеописанные способы могут быть реализованы модулями (например, процедурами, функциями и т.п.), которые выполняют вышеописанные функции. Программные коды могут храниться в блоке памяти (например, блоке памяти 232 на фиг. 1) и выполняться процессором (например, контроллером 230). Блок памяти может быть реализован в процессоре или вне процессора, в последнем случае он может быть связан с процессором посредством различных средств, известных из уровня техники.
Заголовки включены в настоящее описание для ссылки и для нахождения определенных разделов. Эти заголовки не предназначены для ограничения объема описанных в соответствующих разделах принципов, которые могут применяться и в других разделах описания.
Предыдущее описание вариантов осуществления предназначено для обеспечения возможности любому специалисту в данной области техники осуществить или использовать настоящее изобретение. Различные модификации этих вариантов осуществления будут очевидны для специалистов в данной области техники, и общие принципы, определенные в настоящем описании, могут быть использованы в других вариантах осуществления без отклонения от сущности или объема изобретения. Таким образом, настоящее изобретение не предназначено для ограничения вышеописанными вариантами осуществления, но должно соответствовать самому широкому объему, отвечающему раскрытым принципам и новым признакам.

Claims (19)

1. Способ обработки данных для передачи по широкополосному многовходовому каналу, содержащий
получение вектора управления для каждого из множества поддиапазонов, при этом каждый вектор управления включает в себя множество элементов для множества передающих антенн; и
предварительное преобразование символов модуляции, подлежащих передаче в каждом поддиапазоне, с использованием вектора управления для поддиапазона, причем вектор управления для каждого поддиапазона получают на основе собственного вектора, соответствующего основной собственной моде.
2. Способ по п.1, в котором каждый вектор управления реализует управление лучом для соответствующего поддиапазона.
3. Способ по п.1, в котором элементы каждого вектора управления имеют одинаковую амплитуду.
4. Способ по п.1, в котором каждый вектор управления реализует формирование луча для соответствующего поддиапазона.
5. Способ по п.1, дополнительно содержащий
получение множества значений коэффициентов масштабирования для множества поддиапазонов и
масштабирование символов модуляции для каждого поддиапазона с использованием значения коэффициента масштабирования для поддиапазона.
6. Способ по п.5, в котором значения коэффициентов масштабирования для поддиапазонов определяются на основе коэффициентов усиления для поддиапазонов, обеспечиваемых векторами управления.
7. Способ по п.5, в котором значения коэффициентов масштабирования для поддиапазонов определяются на основе мощностей передачи, распределенных по поддиапазонам.
8. Способ по п.7, в котором мощности передачи распределяются по поддиапазонам на основе полной инверсии каналов.
9. Способ по п.7, в котором мощности передачи распределяются по поддиапазонам на основе селективной инверсии каналов.
10. Способ по п.7, в котором мощности передачи распределяются по поддиапазонам на основе равномерного распределения мощности.
11. Способ по п.7, в котором мощности передачи распределяются по поддиапазонам на основе распределения потокового наполнения.
12. Способ по п.1, в котором многовходовой канал является каналом с множеством входов и множеством выходов (МВМВ).
13. Способ по п.1, в котором многовходовой канал является каналом с множеством входов и одним выходом (МВОВ).
14. Способ по п.1, дополнительно содержащий кодирование и модуляцию данных на основе общей схемы кодирования и модуляции для обеспечения символов модуляции.
15. Способ по п.1, дополнительно содержащий
формирование потока предварительно преобразованных символов для каждой передающей антенны и
обработку каждого потока предварительно преобразованных символов для обеспечения модулированного сигнала для передачи соответствующей передающей антенной.
16. Способ по п.1, в котором широкополосная система выполняет мультиплексирование с ортогональным частотным разделением (МОЧР), и при этом множество поддиапазонов соответствует ортогональным поддиапазонам, обеспечиваемым посредством МОЧР.
17. Способ обработки данных для передачи по многовходовому каналу в системе связи с множеством входов, реализующей мультиплексирование с ортогональным частотным разделением (ОМЧР), содержащий:
получение вектора управления для каждого из множества поддиапазонов, при этом каждый вектор управления включает в себя множество элементов для множества передающих антенн;
получение множества значений коэффициентов масштабирования для множества поддиапазонов;
масштабирование символов модуляции, подлежащих передаче в каждом поддиапазоне, с использованием значения коэффициента масштабирования для поддиапазонов;
предварительное преобразование масштабированных символов модуляции для каждого поддиапазона с использованием вектора управления для поддиапазона и
формирование потока предварительно преобразованных символов для каждой передающей антенны, причем вектор управления для каждого поддиапазона получают на основе собственного вектора, соответствующего основной собственной моде.
18. Способ по п.17, в котором каждый вектор управления реализует управление лучом для соответствующего поддиапазона.
19. Способ по п.17, в котором значения коэффициентов масштабирования для поддиапазонов определяются на основе селективной инверсии каналов.
RU2008104786/07A 2002-08-27 2008-02-07 Управление лучом и формирование луча для широкополосных мвмв/мвов-систем RU2463707C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/228,393 US6940917B2 (en) 2002-08-27 2002-08-27 Beam-steering and beam-forming for wideband MIMO/MISO systems
US10/228,393 2002-08-27

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
RU2005108603/09A Division RU2328823C2 (ru) 2002-08-27 2003-08-19 Управление лучом и формирование луча для широкополосных мвмв/мвов-систем

Publications (2)

Publication Number Publication Date
RU2008104786A RU2008104786A (ru) 2009-08-20
RU2463707C2 true RU2463707C2 (ru) 2012-10-10

Family

ID=31976026

Family Applications (2)

Application Number Title Priority Date Filing Date
RU2005108603/09A RU2328823C2 (ru) 2002-08-27 2003-08-19 Управление лучом и формирование луча для широкополосных мвмв/мвов-систем
RU2008104786/07A RU2463707C2 (ru) 2002-08-27 2008-02-07 Управление лучом и формирование луча для широкополосных мвмв/мвов-систем

Family Applications Before (1)

Application Number Title Priority Date Filing Date
RU2005108603/09A RU2328823C2 (ru) 2002-08-27 2003-08-19 Управление лучом и формирование луча для широкополосных мвмв/мвов-систем

Country Status (15)

Country Link
US (2) US6940917B2 (ru)
EP (1) EP1552625B1 (ru)
JP (2) JP5021164B2 (ru)
KR (1) KR101013356B1 (ru)
CN (2) CN101677263B (ru)
AU (1) AU2003262813B2 (ru)
BR (1) BRPI0313817B1 (ru)
CA (1) CA2495438C (ru)
HK (1) HK1083946A1 (ru)
IL (1) IL166524A0 (ru)
MX (1) MXPA05002228A (ru)
RU (2) RU2328823C2 (ru)
TW (1) TWI325249B (ru)
UA (1) UA87969C2 (ru)
WO (1) WO2004021605A1 (ru)

Families Citing this family (158)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7952511B1 (en) 1999-04-07 2011-05-31 Geer James L Method and apparatus for the detection of objects using electromagnetic wave attenuation patterns
US7295509B2 (en) 2000-09-13 2007-11-13 Qualcomm, Incorporated Signaling method in an OFDM multiple access system
US9130810B2 (en) 2000-09-13 2015-09-08 Qualcomm Incorporated OFDM communications methods and apparatus
US8468414B2 (en) * 2009-08-27 2013-06-18 Icomm Technologies Inc. Method and apparatus for a wireless mobile system implementing beam steering phase array antenna
US7058637B2 (en) 2001-05-15 2006-06-06 Metatomix, Inc. Methods and apparatus for enterprise application integration
US6925457B2 (en) 2001-07-27 2005-08-02 Metatomix, Inc. Methods and apparatus for querying a relational data store using schema-less queries
US20050146463A1 (en) * 2001-09-13 2005-07-07 Calin Moldoveanu Method and apparatus for beam steering in a wireless communications system
US6862456B2 (en) 2002-03-01 2005-03-01 Cognio, Inc. Systems and methods for improving range for multicast wireless communication
US6687492B1 (en) 2002-03-01 2004-02-03 Cognio, Inc. System and method for antenna diversity using joint maximal ratio combining
US6785520B2 (en) * 2002-03-01 2004-08-31 Cognio, Inc. System and method for antenna diversity using equal power joint maximal ratio combining
TWI226765B (en) 2002-03-01 2005-01-11 Cognio Inc System and method for joint maximal ratio combining using time-domain signal processing
US6871049B2 (en) 2002-03-21 2005-03-22 Cognio, Inc. Improving the efficiency of power amplifiers in devices using transmit beamforming
US8194770B2 (en) 2002-08-27 2012-06-05 Qualcomm Incorporated Coded MIMO systems with selective channel inversion applied per eigenmode
US6940917B2 (en) * 2002-08-27 2005-09-06 Qualcomm, Incorporated Beam-steering and beam-forming for wideband MIMO/MISO systems
US8570988B2 (en) 2002-10-25 2013-10-29 Qualcomm Incorporated Channel calibration for a time division duplexed communication system
US8134976B2 (en) 2002-10-25 2012-03-13 Qualcomm Incorporated Channel calibration for a time division duplexed communication system
US8218609B2 (en) 2002-10-25 2012-07-10 Qualcomm Incorporated Closed-loop rate control for a multi-channel communication system
US7324429B2 (en) 2002-10-25 2008-01-29 Qualcomm, Incorporated Multi-mode terminal in a wireless MIMO system
US8169944B2 (en) 2002-10-25 2012-05-01 Qualcomm Incorporated Random access for wireless multiple-access communication systems
US7002900B2 (en) 2002-10-25 2006-02-21 Qualcomm Incorporated Transmit diversity processing for a multi-antenna communication system
US8170513B2 (en) 2002-10-25 2012-05-01 Qualcomm Incorporated Data detection and demodulation for wireless communication systems
US7151809B2 (en) * 2002-10-25 2006-12-19 Qualcomm, Incorporated Channel estimation and spatial processing for TDD MIMO systems
US20040081131A1 (en) 2002-10-25 2004-04-29 Walton Jay Rod OFDM communication system with multiple OFDM symbol sizes
US8208364B2 (en) 2002-10-25 2012-06-26 Qualcomm Incorporated MIMO system with multiple spatial multiplexing modes
US8320301B2 (en) 2002-10-25 2012-11-27 Qualcomm Incorporated MIMO WLAN system
US7986742B2 (en) 2002-10-25 2011-07-26 Qualcomm Incorporated Pilots for MIMO communication system
US7813440B2 (en) * 2003-01-31 2010-10-12 Ntt Docomo, Inc. Multiple-output multiple-input (MIMO) communication system, MIMO receiver and MIMO receiving method
US7058367B1 (en) 2003-01-31 2006-06-06 At&T Corp. Rate-adaptive methods for communicating over multiple input/multiple output wireless systems
US6927728B2 (en) * 2003-03-13 2005-08-09 Motorola, Inc. Method and apparatus for multi-antenna transmission
US7822140B2 (en) * 2003-03-17 2010-10-26 Broadcom Corporation Multi-antenna communication systems utilizing RF-based and baseband signal weighting and combining
US7385914B2 (en) * 2003-10-08 2008-06-10 Atheros Communications, Inc. Apparatus and method of multiple antenna transmitter beamforming of high data rate wideband packetized wireless communication signals
US9473269B2 (en) 2003-12-01 2016-10-18 Qualcomm Incorporated Method and apparatus for providing an efficient control channel structure in a wireless communication system
US8204149B2 (en) 2003-12-17 2012-06-19 Qualcomm Incorporated Spatial spreading in a multi-antenna communication system
US7302009B2 (en) * 2003-12-17 2007-11-27 Qualcomm Incorporated Broadcast transmission with spatial spreading in a multi-antenna communication system
US7336746B2 (en) * 2004-12-09 2008-02-26 Qualcomm Incorporated Data transmission with spatial spreading in a MIMO communication system
US8169889B2 (en) * 2004-02-18 2012-05-01 Qualcomm Incorporated Transmit diversity and spatial spreading for an OFDM-based multi-antenna communication system
US20050180312A1 (en) * 2004-02-18 2005-08-18 Walton J. R. Transmit diversity and spatial spreading for an OFDM-based multi-antenna communication system
US7447268B2 (en) * 2004-03-31 2008-11-04 Intel Corporation OFDM system with per subcarrier phase rotation
US20050238111A1 (en) * 2004-04-09 2005-10-27 Wallace Mark S Spatial processing with steering matrices for pseudo-random transmit steering in a multi-antenna communication system
US7346115B2 (en) * 2004-04-22 2008-03-18 Qualcomm Incorporated Iterative eigenvector computation for a MIMO communication system
KR20050106657A (ko) * 2004-05-06 2005-11-11 한국전자통신연구원 Ofdm/tdd 방식의 상향링크용 고유빔을 형성하기위한 스마트 안테나 시스템 및 그 방법
US8285226B2 (en) * 2004-05-07 2012-10-09 Qualcomm Incorporated Steering diversity for an OFDM-based multi-antenna communication system
US8923785B2 (en) * 2004-05-07 2014-12-30 Qualcomm Incorporated Continuous beamforming for a MIMO-OFDM system
US7665063B1 (en) 2004-05-26 2010-02-16 Pegasystems, Inc. Integration of declarative rule-based processing with procedural programming
US7110463B2 (en) * 2004-06-30 2006-09-19 Qualcomm, Incorporated Efficient computation of spatial filter matrices for steering transmit diversity in a MIMO communication system
US7978649B2 (en) 2004-07-15 2011-07-12 Qualcomm, Incorporated Unified MIMO transmission and reception
US9148256B2 (en) 2004-07-21 2015-09-29 Qualcomm Incorporated Performance based rank prediction for MIMO design
US9137822B2 (en) 2004-07-21 2015-09-15 Qualcomm Incorporated Efficient signaling over access channel
BRPI0515010A (pt) 2004-08-12 2008-07-01 Interdigital Tech Corp método e aparelho para implementação de codificação de bloco de freqüências
US7894548B2 (en) * 2004-09-03 2011-02-22 Qualcomm Incorporated Spatial spreading with space-time and space-frequency transmit diversity schemes for a wireless communication system
US7978778B2 (en) * 2004-09-03 2011-07-12 Qualcomm, Incorporated Receiver structures for spatial spreading with space-time or space-frequency transmit diversity
US9002299B2 (en) * 2004-10-01 2015-04-07 Cisco Technology, Inc. Multiple antenna processing on transmit for wireless local area networks
US8130855B2 (en) * 2004-11-12 2012-03-06 Interdigital Technology Corporation Method and apparatus for combining space-frequency block coding, spatial multiplexing and beamforming in a MIMO-OFDM system
AU2012241132B2 (en) * 2004-11-12 2014-10-02 Interdigital Technology Corporation Method and apparatus for combining space-frequency block coding, spatial multi-plexing and beamforming in a MIMO-OFDM system
US8498215B2 (en) * 2004-11-16 2013-07-30 Qualcomm Incorporated Open-loop rate control for a TDD communication system
CN1780278A (zh) * 2004-11-19 2006-05-31 松下电器产业株式会社 子载波通信系统中自适应调制与编码方法和设备
JP4464836B2 (ja) * 2005-01-14 2010-05-19 パナソニック株式会社 マルチアンテナ通信装置の通信方法及びマルチアンテナ通信装置
US8335704B2 (en) 2005-01-28 2012-12-18 Pegasystems Inc. Methods and apparatus for work management and routing
US9246560B2 (en) 2005-03-10 2016-01-26 Qualcomm Incorporated Systems and methods for beamforming and rate control in a multi-input multi-output communication systems
US9154211B2 (en) 2005-03-11 2015-10-06 Qualcomm Incorporated Systems and methods for beamforming feedback in multi antenna communication systems
US8446892B2 (en) 2005-03-16 2013-05-21 Qualcomm Incorporated Channel structures for a quasi-orthogonal multiple-access communication system
US9461859B2 (en) 2005-03-17 2016-10-04 Qualcomm Incorporated Pilot signal transmission for an orthogonal frequency division wireless communication system
US9143305B2 (en) 2005-03-17 2015-09-22 Qualcomm Incorporated Pilot signal transmission for an orthogonal frequency division wireless communication system
US9520972B2 (en) 2005-03-17 2016-12-13 Qualcomm Incorporated Pilot signal transmission for an orthogonal frequency division wireless communication system
US9184870B2 (en) 2005-04-01 2015-11-10 Qualcomm Incorporated Systems and methods for control channel signaling
US20060233276A1 (en) * 2005-04-18 2006-10-19 Green Marilynn P Spatial modulation in a wireless communications network
US9036538B2 (en) 2005-04-19 2015-05-19 Qualcomm Incorporated Frequency hopping design for single carrier FDMA systems
US9408220B2 (en) 2005-04-19 2016-08-02 Qualcomm Incorporated Channel quality reporting for adaptive sectorization
US7466749B2 (en) 2005-05-12 2008-12-16 Qualcomm Incorporated Rate selection with margin sharing
US7957327B2 (en) * 2005-05-18 2011-06-07 Qualcomm Incorporated Efficient support for TDD beamforming via constrained hopping and on-demand pilot
US8611284B2 (en) 2005-05-31 2013-12-17 Qualcomm Incorporated Use of supplemental assignments to decrement resources
US8565194B2 (en) 2005-10-27 2013-10-22 Qualcomm Incorporated Puncturing signaling channel for a wireless communication system
US8879511B2 (en) 2005-10-27 2014-11-04 Qualcomm Incorporated Assignment acknowledgement for a wireless communication system
US8462859B2 (en) 2005-06-01 2013-06-11 Qualcomm Incorporated Sphere decoding apparatus
US9179319B2 (en) 2005-06-16 2015-11-03 Qualcomm Incorporated Adaptive sectorization in cellular systems
US8358714B2 (en) 2005-06-16 2013-01-22 Qualcomm Incorporated Coding and modulation for multiple data streams in a communication system
US8599945B2 (en) 2005-06-16 2013-12-03 Qualcomm Incorporated Robust rank prediction for a MIMO system
US8885628B2 (en) 2005-08-08 2014-11-11 Qualcomm Incorporated Code division multiplexing in a single-carrier frequency division multiple access system
US9209956B2 (en) 2005-08-22 2015-12-08 Qualcomm Incorporated Segment sensitive scheduling
US20070041457A1 (en) * 2005-08-22 2007-02-22 Tamer Kadous Method and apparatus for providing antenna diversity in a wireless communication system
CN101248608B (zh) 2005-08-24 2012-03-14 松下电器产业株式会社 多入多出-正交频分复用发送装置和多入多出-正交频分复用发送方法
US8644292B2 (en) 2005-08-24 2014-02-04 Qualcomm Incorporated Varied transmission time intervals for wireless communication system
US9136974B2 (en) 2005-08-30 2015-09-15 Qualcomm Incorporated Precoding and SDMA support
US7917101B2 (en) * 2005-09-21 2011-03-29 Broadcom Corporation Method and system for a greedy user group selection with range reduction in TDD multiuser MIMO downlink transmission
US7630337B2 (en) * 2005-09-21 2009-12-08 Broadcom Corporation Method and system for an improved user group selection scheme with finite-rate channel state information feedback for FDD multiuser MIMO downlink transmission
US8693405B2 (en) 2005-10-27 2014-04-08 Qualcomm Incorporated SDMA resource management
US9225488B2 (en) 2005-10-27 2015-12-29 Qualcomm Incorporated Shared signaling channel
US9172453B2 (en) 2005-10-27 2015-10-27 Qualcomm Incorporated Method and apparatus for pre-coding frequency division duplexing system
US9088384B2 (en) 2005-10-27 2015-07-21 Qualcomm Incorporated Pilot symbol transmission in wireless communication systems
US8045512B2 (en) 2005-10-27 2011-10-25 Qualcomm Incorporated Scalable frequency band operation in wireless communication systems
US8477684B2 (en) 2005-10-27 2013-07-02 Qualcomm Incorporated Acknowledgement of control messages in a wireless communication system
US9210651B2 (en) 2005-10-27 2015-12-08 Qualcomm Incorporated Method and apparatus for bootstraping information in a communication system
US8582509B2 (en) 2005-10-27 2013-11-12 Qualcomm Incorporated Scalable frequency band operation in wireless communication systems
US9144060B2 (en) 2005-10-27 2015-09-22 Qualcomm Incorporated Resource allocation for shared signaling channels
US9225416B2 (en) 2005-10-27 2015-12-29 Qualcomm Incorporated Varied signaling channels for a reverse link in a wireless communication system
CN101667988B (zh) * 2005-10-28 2013-08-07 夏普株式会社 接收机
KR100996023B1 (ko) * 2005-10-31 2010-11-22 삼성전자주식회사 다중 안테나 통신 시스템에서 데이터 송수신 장치 및 방법
US8582548B2 (en) 2005-11-18 2013-11-12 Qualcomm Incorporated Frequency division multiple access schemes for wireless communication
US7586989B2 (en) * 2005-11-22 2009-09-08 Samsung Electronics Co., Ltd. Method and system for generating beam-forming weights in an orthogonal frequency division multiplexing network
US20070127360A1 (en) * 2005-12-05 2007-06-07 Song Hyung-Kyu Method of adaptive transmission in an orthogonal frequency division multiplexing system with multiple antennas
US8831607B2 (en) 2006-01-05 2014-09-09 Qualcomm Incorporated Reverse link other sector communication
TWI562572B (en) 2006-01-11 2016-12-11 Interdigital Tech Corp Method and apparatus for implementing space time processing with unequal modulation and coding schemes
US20070189151A1 (en) * 2006-02-10 2007-08-16 Interdigital Technology Corporation Method and apparatus for performing uplink transmission in a multiple-input multiple-output single carrier frequency division multiple access system
US7345629B2 (en) * 2006-02-21 2008-03-18 Northrop Grumman Corporation Wideband active phased array antenna system
US7881265B2 (en) * 2006-03-15 2011-02-01 Interdigital Technology Corporation Power loading transmit beamforming in MIMO-OFDM wireless communication systems
US7649955B2 (en) * 2006-03-24 2010-01-19 Intel Corporation MIMO receiver and method for beamforming using CORDIC operations
US8924335B1 (en) 2006-03-30 2014-12-30 Pegasystems Inc. Rule-based user interface conformance methods
US8543070B2 (en) 2006-04-24 2013-09-24 Qualcomm Incorporated Reduced complexity beam-steered MIMO OFDM system
US8290089B2 (en) 2006-05-22 2012-10-16 Qualcomm Incorporated Derivation and feedback of transmit steering matrix
US8787841B2 (en) * 2006-06-27 2014-07-22 Qualcomm Incorporated Method and system for providing beamforming feedback in wireless communication systems
US7933565B2 (en) * 2006-07-14 2011-04-26 Qualcomm, Incorporated Transformer coupling of antennas
CN101110808B (zh) * 2006-07-19 2010-05-12 上海无线通信研究中心 Ofdma系统中结合自适应调制编码的功率分配方法
US7567461B2 (en) * 2006-08-18 2009-07-28 Micron Technology, Inc. Method and system for minimizing number of programming pulses used to program rows of non-volatile memory cells
US8112038B2 (en) * 2006-09-15 2012-02-07 Futurewei Technologies, Inc. Beamforming with imperfect channel state information
CN101542938B (zh) * 2006-09-18 2012-12-12 马维尔国际贸易有限公司 用于无线mimo通信系统中的隐式波束形成的校准校正
US7715485B1 (en) 2007-01-08 2010-05-11 L-3 Communications, Corp. MIMO communication using interference cancellation and unequal transmit power distribution
US8250525B2 (en) 2007-03-02 2012-08-21 Pegasystems Inc. Proactive performance management for multi-user enterprise software systems
ES2407118T3 (es) * 2007-04-30 2013-06-11 Telefonaktiebolaget L M Ericsson (Publ) Método y disposición para adaptar una transmisión multi-antena
KR101320915B1 (ko) * 2007-05-10 2013-10-29 알까뗄 루슨트 다중 입력 통신 시스템에서 송신될 데이터의 전처리 방법 및 장치
US7983710B2 (en) * 2007-05-31 2011-07-19 Alcatel-Lucent Usa Inc. Method of coordinated wireless downlink transmission
US8009617B2 (en) * 2007-08-15 2011-08-30 Qualcomm Incorporated Beamforming of control information in a wireless communication system
RU2450450C2 (ru) * 2007-10-31 2012-05-10 Телефонактиеболагет Лм Эрикссон (Пабл) Выбор режима передачи во время процедуры произвольного доступа
EP2260579B1 (en) * 2008-02-25 2011-11-23 Telefonaktiebolaget L M Ericsson (publ) A method of and a device for precoding transmit data signals in a wireless mimo communication system
US8204544B2 (en) * 2008-03-27 2012-06-19 Rockstar Bidco, LP Agile remote radio head
US10481878B2 (en) 2008-10-09 2019-11-19 Objectstore, Inc. User interface apparatus and methods
US8843435B1 (en) 2009-03-12 2014-09-23 Pegasystems Inc. Techniques for dynamic data processing
US8468492B1 (en) 2009-03-30 2013-06-18 Pegasystems, Inc. System and method for creation and modification of software applications
US8494073B2 (en) * 2009-07-14 2013-07-23 Cisco Technology, Inc. Beamforming weight estimation using wideband multipath direction of arrival analysis
EP2540127B1 (en) 2010-02-28 2019-07-24 Celeno Communications Ltd. Method for single stream beamforming with mixed power constraints
US20110304504A1 (en) * 2010-06-10 2011-12-15 Nec Laboratories America, Inc. Adaptive Beamforming
US9083408B2 (en) 2010-08-31 2015-07-14 Qualcomm Incorporated Implicit and explicit channel sounding for beamforming
MX2013000954A (es) 2010-12-10 2013-03-22 Panasonic Corp Metodo de generacion de señales y aparato de generacion de señales.
US8880487B1 (en) 2011-02-18 2014-11-04 Pegasystems Inc. Systems and methods for distributed rules processing
US8917787B2 (en) 2011-03-22 2014-12-23 Hitachi, Ltd. Systems and methods for creating a downlink precode for communication system with per-antenna power constraints
US8971432B2 (en) 2011-04-19 2015-03-03 Panasonic Intellectual Property Corporation Of America Signal generating method and signal generating device
US9121943B2 (en) * 2011-05-23 2015-09-01 Sony Corporation Beam forming device and method
EP2541679A1 (en) 2011-06-30 2013-01-02 Sony Corporation Wideband beam forming device, wideband beam steering device and corresponding methods
US9154969B1 (en) 2011-09-29 2015-10-06 Marvell International Ltd. Wireless device calibration for implicit transmit
US9195936B1 (en) 2011-12-30 2015-11-24 Pegasystems Inc. System and method for updating or modifying an application without manual coding
EP2806576B1 (en) * 2013-05-21 2019-07-24 Telefonica S.A. Method and system for performing multiple access in wireless OFDM cellular systems considering both space and frequency domains
US9780848B2 (en) * 2014-08-13 2017-10-03 Nokia Solutions And Networks Oy Limited waterfilling: a method to adjust the transmit power for eigenvalue based beamforming
US10469396B2 (en) 2014-10-10 2019-11-05 Pegasystems, Inc. Event processing with enhanced throughput
CN104363035B (zh) * 2014-10-14 2018-01-30 东南大学 大规模miso多小区低复杂度波束生成方法
US9697074B2 (en) * 2014-12-11 2017-07-04 Internatioanl Business Machines Corporation Non-local error detection in processor systems
US9755883B1 (en) * 2015-05-19 2017-09-05 Marvell International Ltd. Systems and methods for detecting beam-formed orthogonal frequency division multiplexing (OFDM) packets
US9965328B2 (en) 2015-09-23 2018-05-08 International Business Machines Corporation Selective and piecemeal data loading for computing efficiency
US10698599B2 (en) 2016-06-03 2020-06-30 Pegasystems, Inc. Connecting graphical shapes using gestures
US10698647B2 (en) 2016-07-11 2020-06-30 Pegasystems Inc. Selective sharing for collaborative application usage
CN106301498B (zh) * 2016-08-17 2020-01-14 河海大学 子带处理方法及频空级联的宽带自适应波束获取方法
US20190377075A1 (en) * 2016-12-29 2019-12-12 Intel IP Corporation Communication scanning method and system
US11048488B2 (en) 2018-08-14 2021-06-29 Pegasystems, Inc. Software code optimizer and method
DE102019200612A1 (de) * 2019-01-18 2020-07-23 Zf Friedrichshafen Ag Vorrichtung und Verfahren zum Kalibrieren eines Multiple-Input-Multiple-Output-Radarsensors
US11503611B2 (en) 2019-10-29 2022-11-15 Hon Lin Technology Co., Ltd. Method and apparatus for allocation of resources in a wireless communication system
US11567945B1 (en) 2020-08-27 2023-01-31 Pegasystems Inc. Customized digital content generation systems and methods
CN116325960A (zh) * 2020-11-30 2023-06-23 华为技术有限公司 一种功率控制方法、通信设备及系统
WO2022229386A1 (en) 2021-04-30 2022-11-03 Provizio Limited Mimo radar using a frequency scanning antenna
CN113376603B (zh) * 2021-05-12 2023-01-03 西安电子科技大学 宽带机载相控阵雷达的子带空时自适应处理方法
US11621752B1 (en) * 2022-03-28 2023-04-04 Qualcomm Incorporated Transmit power violation protection mechanism in a radio unit of a disaggregated base station

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002005506A2 (en) * 2000-07-12 2002-01-17 Qualcomm Incorporated Multiplexing of real time services and non-real time services for ofdm systems
US6377631B1 (en) * 1996-08-29 2002-04-23 Cisco Systems, Inc. Transmitter incorporating spatio-temporal processing

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4287536B2 (ja) * 1998-11-06 2009-07-01 パナソニック株式会社 Ofdm送受信装置及びofdm送受信方法
US6473467B1 (en) * 2000-03-22 2002-10-29 Qualcomm Incorporated Method and apparatus for measuring reporting channel state information in a high efficiency, high performance communications system
US20020154705A1 (en) * 2000-03-22 2002-10-24 Walton Jay R. High efficiency high performance communications system employing multi-carrier modulation
WO2002003557A1 (en) * 2000-06-30 2002-01-10 Iospan Wireless, Inc. Method and system for mode adaptation in wireless communication
US8634481B1 (en) * 2000-11-16 2014-01-21 Alcatel Lucent Feedback technique for wireless systems with multiple transmit and receive antennas
JP4505677B2 (ja) * 2000-12-06 2010-07-21 ソフトバンクテレコム株式会社 送信ダイバーシチ装置および送信電力調整方法
JP2002237766A (ja) * 2001-02-08 2002-08-23 Nec Corp 適応アンテナ受信装置
US7167526B2 (en) * 2001-06-07 2007-01-23 National Univ. Of Singapore Wireless communication apparatus and method
US6760388B2 (en) * 2001-12-07 2004-07-06 Qualcomm Incorporated Time-domain transmit and receive processing with channel eigen-mode decomposition for MIMO systems
US6862271B2 (en) 2002-02-26 2005-03-01 Qualcomm Incorporated Multiple-input, multiple-output (MIMO) systems with multiple transmission modes
US6940917B2 (en) * 2002-08-27 2005-09-06 Qualcomm, Incorporated Beam-steering and beam-forming for wideband MIMO/MISO systems

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6377631B1 (en) * 1996-08-29 2002-04-23 Cisco Systems, Inc. Transmitter incorporating spatio-temporal processing
WO2002005506A2 (en) * 2000-07-12 2002-01-17 Qualcomm Incorporated Multiplexing of real time services and non-real time services for ofdm systems

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
: *
ЕРМОЛАЕВ В.Т. и др. Применение адаптивных антенных решеток для повышения скорости передачи информации. Труды научной конференции по радиофизике. (Шестая) Научная конференция по радиофизике, посвященная 100-летию со дня рождения М.Т.Греховой - ННГУ, 7 мая 2002, с.22-25. *

Also Published As

Publication number Publication date
AU2003262813B2 (en) 2008-11-13
JP2005537751A (ja) 2005-12-08
BRPI0313817B1 (pt) 2017-04-25
EP1552625B1 (en) 2014-04-30
RU2005108603A (ru) 2005-08-27
RU2328823C2 (ru) 2008-07-10
CN101677263A (zh) 2010-03-24
CA2495438A1 (en) 2004-03-11
EP1552625A1 (en) 2005-07-13
JP5021164B2 (ja) 2012-09-05
BR0313817A (pt) 2005-08-02
TWI325249B (en) 2010-05-21
MXPA05002228A (es) 2005-07-05
US20040042439A1 (en) 2004-03-04
JP4927976B2 (ja) 2012-05-09
US7194040B2 (en) 2007-03-20
WO2004021605A1 (en) 2004-03-11
CN101677263B (zh) 2014-08-27
AU2003262813A1 (en) 2004-03-19
KR20050037597A (ko) 2005-04-22
TW200417179A (en) 2004-09-01
CA2495438C (en) 2012-05-29
US6940917B2 (en) 2005-09-06
CN100566203C (zh) 2009-12-02
JP2011024233A (ja) 2011-02-03
UA87969C2 (ru) 2009-09-10
KR101013356B1 (ko) 2011-02-10
IL166524A0 (en) 2006-01-15
RU2008104786A (ru) 2009-08-20
CN1689249A (zh) 2005-10-26
HK1083946A1 (en) 2006-07-14
US20060104381A1 (en) 2006-05-18

Similar Documents

Publication Publication Date Title
RU2463707C2 (ru) Управление лучом и формирование луча для широкополосных мвмв/мвов-систем
KR100983231B1 (ko) 고유모드마다 적용되는 선택적 채널 인버전을 갖는 코딩된mimo 시스템
RU2317648C2 (ru) Обработка сигналов с разложением на собственные моды канала и инверсией канала для мвмв-систем
US9042213B2 (en) Communication apparatus and a communication method for combining signals mapped on a plurality of frequency bands and transforming the combined signal into a symbol in a time domain
CN102123023B (zh) 空分多址的多天线传输
KR100958092B1 (ko) Cqi및 송신 사전-코딩에 대한 피드백 리소스들의 적응적할당을 위한 방법 및 시스템
JP4354815B2 (ja) Mimo通信システムにおける電力割り当てを判断するための方法および装置
KR20080090582A (ko) 시분할 듀플렉스 시스템에서 데이터를 전송하기 위한 방법 및 장치
KR20070038552A (ko) Ofdma을 위한 전용 파일럿 톤들에 대한 반복적 채널및 간섭 추정
CN101185275A (zh) 用于信道反馈的方法和装置
WO2020123838A1 (en) System and method for power allocation in single input single output orthogonal frequency division multiplexing communication systems
Shrestha et al. Adaptive group loading and weighted loading for MIMO OFDM systems
Teodoro et al. Theoretical analysis of non-linear quantization of broadband channels