RU2450040C2 - Сшиваемая композиция и способ ее применения - Google Patents

Сшиваемая композиция и способ ее применения Download PDF

Info

Publication number
RU2450040C2
RU2450040C2 RU2008136865/05A RU2008136865A RU2450040C2 RU 2450040 C2 RU2450040 C2 RU 2450040C2 RU 2008136865/05 A RU2008136865/05 A RU 2008136865/05A RU 2008136865 A RU2008136865 A RU 2008136865A RU 2450040 C2 RU2450040 C2 RU 2450040C2
Authority
RU
Russia
Prior art keywords
crosslinking agent
crosslinkable
base gel
gel
organic
Prior art date
Application number
RU2008136865/05A
Other languages
English (en)
Other versions
RU2008136865A (ru
Inventor
Дональд Эдвард ПУТЗИГ (US)
Дональд Эдвард ПУТЗИГ
Original Assignee
ДОРФ КЕТАЛ СПЕШИАЛТИ КАТАЛИСТС, ЭлЭлСи
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ДОРФ КЕТАЛ СПЕШИАЛТИ КАТАЛИСТС, ЭлЭлСи filed Critical ДОРФ КЕТАЛ СПЕШИАЛТИ КАТАЛИСТС, ЭлЭлСи
Publication of RU2008136865A publication Critical patent/RU2008136865A/ru
Application granted granted Critical
Publication of RU2450040C2 publication Critical patent/RU2450040C2/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/62Compositions for forming crevices or fractures
    • C09K8/66Compositions based on water or polar solvents
    • C09K8/68Compositions based on water or polar solvents containing organic compounds
    • C09K8/685Compositions based on water or polar solvents containing organic compounds containing cross-linking agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/50Compositions for plastering borehole walls, i.e. compositions for temporary consolidation of borehole walls
    • C09K8/504Compositions based on water or polar solvents
    • C09K8/506Compositions based on water or polar solvents containing organic compounds
    • C09K8/508Compositions based on water or polar solvents containing organic compounds macromolecular compounds
    • C09K8/512Compositions based on water or polar solvents containing organic compounds macromolecular compounds containing cross-linking agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/58Compositions for enhanced recovery methods for obtaining hydrocarbons, i.e. for improving the mobility of the oil, e.g. displacing fluids
    • C09K8/588Compositions for enhanced recovery methods for obtaining hydrocarbons, i.e. for improving the mobility of the oil, e.g. displacing fluids characterised by the use of specific polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/84Compositions based on water or polar solvents
    • C09K8/86Compositions based on water or polar solvents containing organic compounds
    • C09K8/88Compositions based on water or polar solvents containing organic compounds macromolecular compounds
    • C09K8/887Compositions based on water or polar solvents containing organic compounds macromolecular compounds containing cross-linking agents

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Colloid Chemistry (AREA)

Abstract

Изобретение относится к сшиваемой композиции для применения в нефтяных скважинах для гидроразрыва пласта и тампонирования зоны проницаемости. Сшиваемая композиция включает жидкость на водной основе, буферный регулятор рН, сшиваемый органический полимер, сшивающий агент и замедлитель. Сшивающий агент выбирают из группы, включающей органический титанат, органический цирконат или их комбинации. Замедлитель представляет собой гидроксиалкиламинокарбоновую кислоту. Сшиваемый органический полимер выбирают из группы, включающей растворимые полисахариды, полиакриламиды и полиметакриламиды. Сшиваемая композиция обеспечивает возможность управления скоростью сшивки и может быть использована в широких пределах рН, в диапазоне различных скоростей сшивки при использовании одной и той же композиции. 9 н. и 6 з.п. ф-лы, 4 табл., 9 пр.

Description

Область техники изобретения
Настоящее изобретение относится к сшиваемым композициям и их применению в нефтяных скважинах для гидроразрыва пласта и тампонирования зоны проницаемости. Сшиваемая композиция включает сшивающий агент, представляющий собой комплекс циркония или титана или их смеси, сшивающий органический полимер и замедлитель.
Предпосылки создания изобретения
Добыча нефти и природного газа из подземной скважины (подземного пласта) может быть интенсифицирована посредством технологии под названием гидроразрыв пласта, при использовании которой вязкая жидкая композиция (жидкость гидроразрыва), содержащая взвешенный в ней проппант (например, песок, боксит), закачивается в нефтяную или газовую скважину по каналу, такому как насосно-компрессорные или обсадные трубы, со скоростью расхода и под давлением, при которых происходит создание, повторное приоткрывание и/или увеличение протяженности трещины в пласте, содержащем нефть или газ. Проппант доставляется в трещину жидкой композицией и предотвращает закрытие пласта после сброса давления. Проникновение жидкой композиции в пласт ограничивается вязкостью жидкости композиции. Вязкость жидкости также позволяет удерживать проппант в композиции во взвешенном состоянии во время операции гидроразрыва. Сшивающие агенты, такие как бораты, титанаты или цирконаты, обычно вводятся в композицию для регулирования вязкости.
Обычно из скважины извлекается менее одной трети располагаемой нефти после операции по ее гидроразрыву, прежде чем дебит скважины снизится до уровня, при котором дальнейшее извлечение становится нерентабельным. Добыча нефти с применением интенсификации для ее извлечения из подобного пласта часто включает попытку вытеснить остающуюся сырую нефть рабочей жидкостью, например, такой как газ, вода, рассол, водяной пар, полимерный раствор, пена или мицеллярный раствор. В идеальном случае эти методы добычи (обычно называемые заводнением пласта) позволяют получить нефтяную зону существенной глубины, перемещаемую в продуктивную скважину; однако на практике этого часто не происходит. Нефтеносные пласты обычно являются неоднородными, и отдельные их участки имеют проницаемость, более высокую, чем остальные. В результате часто возникают протоки, так что рабочая жидкость избирательно проходит через обедненные нефтью зоны пласта (так называемые «зоны поглощения раствора»), а не через те части пласта, которые содержат достаточно нефти для рентабельного нефтеизвлечения.
Сложности извлечения нефти по причине высокой проницаемости зон пласта могут быть скорректированы за счет закачки водного раствора органического полимера и сшивающего агента в определенные пласты в условиях, при которых происходит сшивка полимера с образованием геля, что ведет к снижению проницаемости этих пластов для рабочей жидкости (газа, воды и т.д.). Жидкости на основе полисахаридов или частично гидролизованных полиакриламидов, сшитые определенными соединениями алюминия, титана, циркония и бора, также используются в этих применениях интенсификации извлечения нефти.
Сшитые жидкости или гели, будь то при гидроразрыве пласта или для снижения проницаемости пласта, в настоящее время находят применение в более высокотемпературных и глубоких скважинах при различных условиях рН, когда скорости сшивки с использованием известных сшиваемых композиций могут оказаться неприемлемыми. Вместо того чтобы разрабатывать новые сшивающие агенты для этих новых условий, сервисные компании по обслуживанию нефтяных скважин могут вводить замедлители, эффективно задерживающие сшивку конкретным металлсодержащим сшивающим агентом в этих условиях.
Целый ряд патентов раскрывают применение различных замедлителей в комбинации с конкретными сшивающими агентами, для которых они являются эффективными. Эти патенты типично описывают добавление одного или нескольких компонентов в сшиваемую композицию или описывают конкретные эксплуатационные условия, такие как узкий диапазон рН. Имеется лишь ограниченное число описанных замедлителей, пригодных для применений с титановыми и циркониевыми сшивающими агентами. Таким образом, использование замедлителей с титановыми и циркониевыми сшивающими агентами имеет ограниченную гибкость в применении их сервисными компаниями по обслуживанию нефтяных скважин при проведении операций по стимулированию или интенсификации извлечения нефти или газа из скважины или пласта.
Существует потребность в сшиваемой композиции, эффективной с точки зрения замедления действия титановых и циркониевых сшивающих агентов, применяемых для извлечения нефти в диапазоне различных условий. Необходимо иметь возможность управлять скоростью сшивки для придания гибкости сшивающему агенту, чтобы иметь диапазон различных скоростей сшивки в диапазоне различных условий рН при использовании одной и той же сшиваемой композиции. Настоящее изобретение отвечает этим требованиям.
Краткое изложение сущности изобретения
Целью настоящего изобретения является создание сшиваемой композиции. Сшиваемая композиция включает (а) жидкость на водной основе, (b) буферный регулятор рН, (с) сшиваемый органический полимер, (d) сшивающий агент, включающий органический титанат, органический цирконат или их комбинации, и (е) замедлитель, представляющий собой гидроксиалкиламинокарбоновую кислоту. Композиция может быть использована в широком диапазоне рН, особенно рН 3-12. Предпочтительно сшиваемый органический полимер представляет собой растворимый полисахарид. Предпочтительный замедлитель представляет собой бис(гидроксиэтил)глицин.
Композиция настоящего изобретения используется в нефтедобыче, например в операциях по гидроразрыву пласта с применением сшиваемой композиции. Композиция настоящего изобретения, кроме того, используется в тампонировании проницаемых зон или утечек в пласте. Компоненты сшиваемой композиции могут быть смешаны до их закачивания в пласт, либо эти компоненты можно закачивать в пласт и проводить их реакцию в пласте через управляемый отрезок времени.
Целью настоящего изобретения является создание способа гидроразрыва пласта, включающего использование сшиваемой композиции, включающей (а) жидкость на водной основе, (b) буферный регулятор рН, (с) сшиваемый органический полимер, (d) сшивающий агент, который включает органический титанат, органический цирконат или их комбинации, и (е) замедлитель, представляющий собой гидроксиалкиламинокарбоновую кислоту. Композиция может быть использована в широком диапазоне рН, особенно рН 3-12. Предпочтительно, чтобы сшиваемый органический полимер представлял собой растворимый полисахарид. Предпочтительным замедлителем является бис(гидроксиэтил)глицин.
Настоящий способ включает закачку композиции в пласт со скоростью расхода и под давлением, достаточными для создания, повторного приоткрывания и/или увеличения протяженности трещины в пласте. Компоненты сшиваемой композиции могут быть смешаны до закачивания их в пласт, или ее компоненты могут закачиваться в пласт с проведением их реакции в пласте через управляемый отрезок времени.
Целью настоящего изобретения является создание способа тампонирования проницаемой зоны или утечки в пласте, включающего использование сшиваемой композиции, которая включает (а) жидкость на водной основе, (b) буферный регулятор рН, (с) сшиваемый органический полимер, (d) сшивающий агент, включающий органический титанат, органический цирконат или их комбинации, и (е) замедлитель, представляющий собой гидроксиалкиламинокарбоновую кислоту. Эта композиция может быть использована в широком диапазоне рН, особенно рН 3-12. Предпочтительным сшиваемым органическим полимером является растворимый полисахарид. Предпочтительным замедлителем является бис(гидроксиэтил)глицин.
Способ тампонирования проницаемой зоны или утечки в пласте включает закачку сшиваемой композиции в указанную зону или утечку. Сшиваемый органический полимер и сшивающий агент могут вступать в контакт до их закачки в плат. В соответствии с другим вариантом компоненты сшиваемой композиции могут закачиваться в пласт по отдельности таким образом, чтобы сшивка происходила внутри пласта.
Целью настоящего изобретения является создание способов эффективной задержки действия титанового и циркониевого сшивающих агентов для применений в области нефтеизвлечения.
Как ни удивительно, сшиваемая композиция настоящего изобретения способна выдерживать диапазон различных температур, рН и других условий. Продолжительностью задержки можно управлять для придания гибкости посредством корректировки относительных количеств компонентов, в том числе сшивающего агента и замедлителей.
Подробное описание изобретения
Целями настоящего изобретения являются сшиваемая композиция и способы использования композиции, особенно для таких применений в области нефтеизвлечения, как операции гидроразрыва и тампонирования проницаемых зон, при использовании которых можно замедлять и регулировать скорость сшивки сшиваемого полимера.
Сшиваемая композиция включает (а) жидкость на водной основе, (b) буферный регулятор рН, (с) сшиваемый органический полимер, (d) сшивающий агент, включающий органический титанат, органический цирконат или их комбинации, и (е) замедлитель, представляющий собой гидроксиалкиламинокарбоновую кислоту. Композиция, кроме того, может включать проппанты, стабилизаторы, деструкторы, органические растворители и др.
Жидкость на водной основе может представлять собой воду, водно-спиртовой раствор, такой как водный метанол или водный этанол, либо водный раствор, включающий различные компоненты. Например, водный раствор может включать стабилизатор глины. Стабилизаторы глин включают, например, соляную кислоту и хлориды, такие как, например, хлористый тетраметиламмоний (ТМАС) или хлористый калий. Водные растворы, включающие стабилизаторы глин, могут включать, например, стабилизаторы глин от 0,05 до 0,5 мас.% общего веса сшиваемой композиции.
Композиция действует в широком диапазоне рН. Буферный регулятор рН вводят в композицию для управления рН. Композиция может включать буферный регулятор рН, который может быть кислым, нейтральным или основным. Буферный регулятор рН в целом способен регулировать рН от приблизительно рН 3 до приблизительно рН 12. Например, в композиции, применяемой при рН приблизительно 4-5, может быть использован буферный регулятор на основе уксусной кислоты. В композиции, применяемой при рН 5-7, может быть использован буферный регулятор на основе фумаровой кислоты или на основе диацетата натрия. В композиции, применяемой при рН 7-8,5, можно использовать буферный регулятор на основе бикарбоната натрия. В композиции, применяемой при рН 9-12, может быть использован буферный регулятор на основе карбоната натрия или гидроксида натрия. Могут быть использованы иные применимые буферные регуляторы рН, известные специалистам в этой области техники.
В число примеров применимых сшиваемых органических полимеров входят растворимые полисахариды, полиакриламиды и полиметакриламиды. Предпочтительно органический полимер представляет собой растворимые полисахариды и выбирается из группы, состоящей из природных смол, производных смолы и производных целлюлозы. В число природных смол входят гуаровая смола и смола плодово-рожкового дерева, а также прочие галактоманнановая и глюкоманнановая камеди, такие как смолы сенны, цезальпинии бразильской, теры, гледичии трехколючковой, акации карайя и др. Производные смол включают гидроксиэтилгуар (ГЭГ), гидроксипропилгуар (ГПГ), карбоксиэтилгидроксиэтилгуар (КЭГЭГ), карбоксиметилгидроксипропилгуар (КМГПГ), карбоксиметилгуар (КМГ) и др. Производные целлюлозы включают таковые с содержанием карбоксильных групп, такие как карбоксиметилцеллюлоза (КМЦ), карбоксиметилгидроксиэтилцеллюлоза (КМГЭЦ) и др. Растворимые полисахариды могут быть применены по отдельности или в комбинации; обычно, однако, используется один материал. Гуаровые производные и производные целлюлозы предпочтительно являются такими, как ГПГ, КМЦ и КМГПГ. ГПГ обычно является более предпочтительным благодаря большей доступности на рынке и наличию желательных свойств. Однако КМЦ и КМГПГ могут оказаться более предпочтительными в составах сшиваемых композиций, когда рН композиции ниже 6,0 или выше 9,0 или когда проницаемость пласта такова, что желательно поддерживать остаточные твердые на низком уровне во избежание повреждения пласта.
Сшиваемый полимер обычно перемешивают с растворителем, таким как вода или смешанный водно-органический растворитель, или с жидкостью на водной основе, как описано выше, для образования несшитого геля. Органические растворители, пригодные для использования, включают спирты, гликоли, полиолы и углеводороды, такие как дизельное топливо. Например, полимер может быть смешан с водой, с водно-спиртовой смесью (например, спирт может быть представлен метанолом или этанолом) или с водным раствором, включающим стабилизатор глины.
Сшивающий агент включает органический комплекс титана, органический комплекс циркония или их комбинацию.
Применимые органические комплексы циркония для использования в композиции настоящего изобретения включают, но не ограничиваются лишь ими, соль циркониевой α-гидроксикарбоновой кислоты, комплексы цирконий-полиол, комплексы цирконий-алканоламин, комплексы цирконий-гидроксиалкилированный алкилендиамин и их комбинации. Примеры применимых циркониевых комплексов включают комплекс цирконий-диэтаноламин, комплекс цирконий-триэтаноламин, лактат циркония, этиленгликолат циркония, ацетилацетонат циркония, цирконийаммонийлактат, цирконийдиэтаноламинлактат, цирконийтриэтаноламинлактат, цирконийдиизопропиламинлактат, циркониевые соли лактата натрия, комплекс цирконий-глицерин, комплекс цирконий-сорбит, комплексы гидроксиалкилированного этилендиамина циркония или их комбинации.
Предпочтительные циркониевые комплексы представляют собой комплексы цирконий-полиол и комплексы цирконий-алканоламин. Полиолы включают глицерин, эритрит, треит, рибит, арабинит, ксилит, аллит, альтрит, сорбит, маннит, дульцит, идит, персеит и им подобные. Алканоламины включают те из них, которые соответствуют формуле R'-N-CH2-CH(OH)R")2, где R' представляет собой водород или -CH2-CH(OH)R" и R" представляет собой водород, метил или этил. Более предпочтительный циркониевый комплекс представляет собой комплекс цирконий тетра-триэтаноламин, выпускаемый в промышленном масштабе фирмой E.I. du Pont de Nemours and Company, г.Вилмингтон, шт.Делавэр, под названием органический цирконат Tyzor® TEAZ.
Применимые комплексы органического титана для использования в композиции настоящего изобретения включают, но не ограничиваются лишь ими, соль титан α-гидроксикарбоновой кислоты, комплексы титан-полиол, комплексы титан-алканоламин и их комбинации. Примеры применимых титановых комплексов включают комплекс титан-диаэтаноламин, комплекс титан-триэтаноламин, лактат титана, этиленгликолат титана, ацетилацетонат титана, титан аммонийлактат, титан диэтиноламинлактат, титан триэтаноламин лактат, титан диизопропиламинлактат, титановые соли натрийлактата, комплексы титан-сорбит и их комбинации.
Предпочтительные титановые комплексы представляют собой комплексы титан-алканоламин. Алканоламины, которые можно применять, представляют собой описанные выше. Более предпочтительный титановый комплекс представляет собой комплекс титан тетра-триэтаноламин, выпускаемый в промышленном масштабе фирмой E.I. du Pont de Nemours and Company, г.Вилмингтон, шт.Делавэр, под названием органический титанат Tyzor® ТЕ.
Сшивающий агент обычно используется в виде раствора или суспензии в органическом, водном или смешанном водно-органическом растворителе. Типичными органическими растворителями являются спирты, такие как этанол, n-пропанол, i-пропанол и др. Например, сшивающий агент может быть использован в виде раствора жидкости на водной основе. Концентрация сшивающего агента может варьироваться и типично составляет от 0,01 до 1,0 мас.% общего веса сшиваемой композиции. Предпочтительная концентрация составляет от 0,1 до 0,5 мас.% общего веса композиции.
Замедлитель представляет собой гидроксиалкиламинокарбоновую кислоту. Предпочтительно замедлитель выбирают из группы, которая включает бис(гидроксиэтил)глицин, бис(гидроксиметил)глицин, бис(гидроксипропил)глицин, бис(гидроксиизопропил)глицин, бис(гидроксибутил)глицин, моно(гидроксиэтил)глицин, моно(гидроксиметил)глицин и их соли щелочных металлов. Более предпочтительно, чтобы гидроксиалкиламинокарбоновая кислота представляла собой бис(гидроксиэтил)глицин.
Замедлители присутствуют на рынке и/или могут быть приготовлены согласно процессам, описанным в литературе. Например, бис(гидроксиэтил)глицин, пригодный для настоящего изобретения, может быть получен по ряду процессов, описанных в литературе (см. Хромов-Борисов и Ремизов в Журнале Общей Химии, 1953, 23, 598; Gump et. al., in J.Org.Chem., 1959, 24, 712-14). Бис(гидроксиэтил)глицин также присутствует на рынке и продается под видовым обозначением «Бицин».
Типично замедлитель используется в виде водного раствора. Концентрация замедлителя в растворе может варьироваться и типично составляет от 0,1 до 75 мас.%. Предпочтительная концентрация составляет 10-30 мас.% от общего веса раствора.
Композиция может включать и другие возможные компоненты, включая компоненты, являющиеся общепринятыми добавками для применения в нефтедобыче. Так, композиция может, кроме того, включать один или несколько проппантов, понизители трения, бактерициды, углеводороды, химические деструкторы, стабилизаторы, поверхностно-активные вещества, агенты регулирования водоотдачи пласта и др. Проппанты включают песок, бокситы, стеклянные шарики, нейлоновые гранулы, алюминиевую дробь и другие подобные им материалы. Понизители трения включают полиакриламиды. Углеводороды включают дизельное топливо. Химические деструкторы служат для управляемого разрушения сшитого полимера (геля) и включают энзимы, персульфат щелочного металла, персульфат аммония. Стабилизаторы включают метанол, тиосульфат щелочного металла, тиосульфат аммония. Стабилизаторы также могут включать стабилизаторы глины, такие как соляная кислота и хлориды, например хлористый тетраметиламмоний (ТМАС) или хлористый калий.
Композиция также может дополнительно включать в качестве возможных компонентов: комплексообразующий компонент или многофункциональное органическое соединение, такое как одно или несколько из следующих: гидроксикарбоновая кислота, аминокарбоновая кислота, алканоламин (гидроксиалкиламины, гидроксиалкилалкилендиамины, полигидроксильные соединения, карбонат натрия и бикарбонат натрия. Гидроксикарбоновая кислота включает полигидроксильную карбоновую кислоту, гидроксимонокарбоновую кислоту, α-гидроксикарбоновую кислоту. Полигидроксильные соединения включают полиолы и полигидроксилкарбоновые кислоты.
Каждый компонент присутствует в композиции в количестве, достаточном для достижения желательной эффективности сшивки на основе подбора индивидуальных компонентов, желательной задержки времени сшивки, температуры и других условий, существующих в пласте, подвергаемом гидроразрыву, или в проницаемой зоне, подвергаемой тампонированию. Жидкость на водной основе вводится в количестве, достаточном для того, чтобы придать композиции активность для сшивки сшиваемого полимера посредством сшивающего агента в присутствии замедлителя. Буферный регулятор рН вводится в количестве, достаточном для поддержания рН композиции в искомом диапазоне рН.
Количества сшиваемого полимера и сшивающего агента могут варьироваться. Используются небольшие, но эффективные количества, каждый из которых может варьироваться в зависимости от обстоятельств, например типа подземного пласта, глубины, на которой должен быть применен способ (т.е. гидравлический разрыв, тампонирование проницаемой зоны или тампонирование утечки), а также температуры и рН, среди прочих условий. Обычно применяемое количество каждого компонента мало настолько, насколько оно позволит получить уровень вязкости, необходимый для достижения желаемого результата, т.е. гидроразрыва пласта или тампонирования проницаемой зоны или утечек для обеспечения адекватного извлечения нефти или газа из пласта.
Количество замедлителя зависит от степени, в которой желательно замедлить скорость сшивки. Типичное отношение массы замедлителя к массе сшивающего агента составляет от 0,001:1 до 100:1 замедлителя к сшивающему агенту. Предпочтительно, чтобы замедлитель представлял собой бис (гидроксиэтил)глицин, когда отношение замедлителя к сшивающему агенту составляет 0,1-10:1. В этих широких пределах количество замедлителя, выбранного для использования, зависит от типа и количества применяемого сшивающего агента, температуры пласта, подвергаемого гидроразрыву, или проницаемой зоны, подвергаемой тампонированию, и от желательной задержки времени сшивки. По мере возрастания отношения веса замедлителя к весу сшивающего агента скорость сшивки, т.е. гелеобразования, снижается, или длительность сшивки возрастает. При увеличении соотношения между замедлителем и сшивающим агентом может потребоваться более высокая температура для инициирования сшивки. Максимальная вязкость полученного геля снижается по мере возрастания продолжительности сшивки. Управляя скоростью сшивки полимера за счет использования замедлителя в комбинации с единственным сшивающим агентом в широком диапазоне рН и температурных условий нефтепромысла, можно минимизировать преждевременную сшивку на поверхности и последующую потерю вязкости в результате деструкции при сдвиговых напряжениях.
Композиция настоящего изобретения может быть получена смешиванием жидкости на водной основе, буферного регулятора рН, органического полимера, сшивающего агента и замедлителя вместе с любыми другими возможными компонентами в любой последовательности. Например, в зависимости от конкретного применения при добыче нефти компоненты могут быть закачаны в пласт в виде отдельных потоков, или же два или более компонентов могут быть предварительно смешаны и закачаны в пласт в виде объединенного потока, или все компоненты могут быть предварительно смешаны и закачаны в виде единого потока. Предпочтительно не осуществлять предварительное смешивание сшиваемого полимера со сшивающим агентом. Для случая, когда эти два компонента предварительно смешиваются, их смешивают непосредственно перед использованием композиции, т.е. при закачивании этой смеси в пласт, например, для гидравлического разрыва или тампонирования проницаемых зон пласта или утечек. Как преимущество, согласно настоящему изобретению компоненты могут быть смешаны в различных комбинациях, и, с еще большим преимуществом, эти компоненты могут быть смешаны непосредственно перед использованием, что облегчает внесение изменений и корректировку скорости сшивки.
Композиции настоящего изобретения созданы для получения преимуществ по сравнению с композициями, существующими на известном уровне техники, для применения в ходе операций по гидроразрыву или тампонированию подземных зон или утечек. В эти композиции могут быть внесены изменения для создания набора скоростей сшивки при использовании единственного сшивающего агента. Эти композиции могут быть использованы как при высоком, так и при низком рН. Композиции могут быть использованы при высоких температурах с приемлемыми скоростями расхода. Композиции могут быть использованы с флюидами с высоким уровнем содержания рассола. Таким образом, композиции могут быть использованы в высокотемпературных пластах, в том числе на большей глубине нефтяных и газовых скважин. Композиции проявляют отличную эффективность при гидроразрыве и при селективном тампонировании проницаемых зон и утечек в пластах.
Кроме того, предметом настоящего изобретения является создание способов применения сшиваемой композиции, являющейся предметом настоящего изобретения. По способу гидроразрыва согласно настоящему изобретению производится создание, повторное приоткрывание и/или увеличение протяженности одной или более трещин в нефте- или газоносном пласте. Таким образом, предметом настоящего изобретения является способ гидроразрыва пласта, включающий закачку в указанный пласт сшиваемой композиции со скоростью расхода и под давлением, достаточными для создания, повторного приоткрывания и/или увеличения протяженности трещины в указанном пласте, где указанная композиция включает (а) жидкость на водной основе, (b) буферный регулятор рН, (с) сшиваемый органический полимер, (d) сшивающий агент, включающий органический титанат, органический цирконат или их комбинации, и (е) замедлитель, представляющий собой гидроксиалкиламинокарбоновую кислоту.
В первом варианте осуществления способа гидроразрыва пласта сшиваемый органический полимер и сшивающий агент вступают в контакт перед их закачкой в пласт так, что полимер и сшивающий агент вступают в реакцию с образованием сшитого водного геля, и таковой гель затем закачивается в пласт.
В первом примере первого варианта осуществления способа гидроразрыва пласта базовый гель готовили смешиванием жидкости на водной основе со сшиваемым органическим полимером, и была приготовлена сшиваемая композиция замедленного действия смешиванием сшивающего агента, включающего органический титанат, органический цирконат или их комбинации, с замедлителем, представляющим собой гидроксиалкиламинокарбоновую кислоту. Буферный регулятор рН вводится в базовый гель, в сшиваемую композицию или в то и другое. В этом варианте осуществления, более конкретно, способ гидроразрыва пласта включает (а) приготовление базового геля; (b) приготовление сшиваемой композиции замедленного действия; (с) вступление в контакт базового геля со сшиваемой композицией замедленного действия;
(d) проведение реакции между базовым гелем и сшивающим агентом через управляемый отрезок времени с образованием сшитого водного геля; и (е) закачка сшитого геля в пласт со скоростью расхода и под давлением, достаточными для создания, повторного приоткрывания и/или увеличения протяженности трещины в пласте.
Во втором примере первого варианта осуществления базовый гель готовят смешиванием жидкости на водной основе со сшиваемым полимером и замедлителем, представляющим собой гидроксиалкиламинокарбоновую кислоту. В этом варианте осуществления способ гидроразрыва пласта включает (а) приготовление базового геля, (b) контактирование базового геля со сшивающим агентом, включающим органический титанат, органический цирконат или их комбинации; (с) проведение реакции между базовым гелем и сшивающим агентом через управляемый отрезок времени с образованием сшитого водного геля; и (d) закачку сшитого геля в пласт со скоростью закачки и под давлением, достаточными для создания, повторного приоткрывания и/или увеличения протяженности трещины в пласте. В этом втором варианте осуществления буферный регулятор рН добавляют к базовому гелю, к сшивающему агенту или к тому и другому, прежде чем произойдет контактирование базового геля со сшивающим агентом.
С изменениями в этом первом варианте осуществления сквозь пласт может проходить ствол скважины, так что контактирование базового геля со сшивающим агентом происходит в стволе скважины, и сшитый водный гель закачивается в пласт из ствола скважины со скоростью расхода и под давлением, достаточными для создания, повторного приоткрывания и/или увеличения протяженности трещины в пласте.
Во втором варианте осуществления компоненты сшиваемой композиции закачиваются по отдельности, последовательно или одновременно, в пласт, так что сшивка происходит внутри пласта. Способ по этому варианту осуществления гидроразрыва пласта, пересеченного стволом скважины, включает а) приготовление базового геля путем смешивания жидкости на водной основе со сшиваемым полимером; (b) закачку базового геля в ствол скважины;
с) одновременно с закачкой базового геля в ствол скважины или последовательно после этого закачку сшивающего агента, включающего органический титанат, органический цирконат или их комбинации, в ствол скважины; при этом способе буферный регулятор рН и замедлитель, представляющий собой гидроксиалкиламинокарбоновую кислоту, независимо подмешиваются к базовому гелю, к сшивающему агенту или к тому и другому, прежде чем происходит закачка базового геля и сшивающего агента в ствол скважины; (d) проведение реакции между базовым гелем и сшивающим агентом через управляемый отрезок времени с образованием сшитого водного геля; и (е) закачку сшитого геля в пласт из ствола скважины со скоростью расхода и под давлением, достаточными для создания, повторного приоткрывания и/или увеличения протяженности трещины в пласте.
После создания одной или нескольких трещин этот способ, кроме того, может включать закачку сшиваемой композиции, включающей (а) жидкость на водной основе, (b) буферный регулятор рН, (с) сшиваемый органический полимер, (d) сшивающий агент, включающий органический титанат, органический цирконат или их комбинации, (е) замедлитель, представляющий собой гидроксиалкиламинокарбоновую кислоту, и (f) проппант, в одну или несколько трещин. Эта вторая закачка сшиваемой композиции предпочтительно выполняется в том случае, когда сшиваемая композиция, используемая для создания одной или нескольких трещин, не включает в себя проппант. Сшиваемая композиция впоследствии может быть извлечена из пласта.
Согласно способу гидроразрыва пласта удовлетворяющие гели в целом могут быть приготовлены с использованием сшиваемого органического полимера в количествах до приблизительно 1,2 мас.% и сшивающего агента в количествах до приблизительно 1,0 мас.%, причем оба процентных содержания основаны на массе жидкости на водной основе. Предпочтительно, чтобы использовалось от приблизительно 0,25 до приблизительно 0,75 мас.% сшиваемого органического полимера и от приблизительно 0,05 до приблизительно 0,50 мас.% сшивающего агента, причем оба процентных содержания основаны на массе жидкости на водной основе.
По другому способу настоящего изобретения композиция по настоящему изобретению используется для тампонирования проницаемой зоны или утечки в пласте. Этот способ включает закачку сшиваемой композиции (или сшитого геля) в проницаемую зону или в место утечки.
Более конкретно, способ тампонирования проницаемой зоны или утечки в пласте включает закачку в указанную зону или в указанную утечку сшиваемой композиции, включающей (а) жидкость на водной основе, (b) буферный регулятор рН, (с) сшиваемый органический полимер, (d) сшивающий агент, представляющий собой органический титанат, органический цирконат или их комбинации, и (е) замедлитель, представляющий собой гидроксиалкиламинокарбоновую кислоту.
По первому варианту осуществления способа тампонирования проницаемой зоны или утечки в пласте сшиваемый органический полимер и сшивающий агент вступают в контакт до их закачки в пласт, поэтому полимер и сшивающий агент вступают в реакцию с образованием сшитого водного геля, и этот гель затем закачивается в пласт.
В первом примере первого варианта осуществления способа тампонирования проницаемой зоны или утечки в пласте базовый гель получают смешиванием жидкости на водной основе со сшиваемым органическим полимером и сшиваемую композицию замедленного действия получают смешиванием сшивающего агента, включающего органический титанат, органический цирконат или их комбинации, с замедлителем, представляющим собой гидроксиалкиламинокарбоновую кислоту. Буферный регулятор рН добавляют к базовому гелю, к сшиваемой композиции замедленного действия или к тому и другому. В этом варианте осуществления, более конкретно, этот способ включает (а) приготовление базового геля, (b) приготовление сшиваемой композиции замедленного действия; (с) контактирование базового геля со сшиваемой композицией замедленного действия; (d) проведение реакции между базовым гелем и сшивающим агентом через управляемый отрезок времени с образованием сшитого водного геля и (е) закачку сшитого геля в проницаемую зону или к месту утечки.
Во втором примере первого варианта осуществления базовый гель готовят смешиванием жидкости на водной основе со сшиваемым полимером и замедлителем, который представляет собой гидроксиалкиламинокарбоновую кислоту. В этом варианте осуществления способ тампонирования проницаемой зоны или утечки включает (а) приготовление базового геля; (b) контактирование базового геля со сшивающим агентом, включающим органический титанат, органический цирконат или их комбинации; (d) проведение реакции между базовым гелем и сшивающим агентом через управляемый отрезок времени с образованием сшитого водного геля и (е) закачку сшитого геля в проницаемую зону или в место утечки. В этом втором варианте осуществления буферный регулятор рН добавляют к базовому гелю или подмешивают к сшивающему агенту.
Во втором варианте осуществления компоненты сшиваемой композиции закачиваются отдельно в проницаемую зону или место утечки в пласте так, что сшивка происходит внутри пласта. Способ по этому варианту осуществления включает (а) приготовление базового геля смешиванием жидкости на водной основе со сшиваемым полимером; (b) закачку базового геля в проницаемую зону или в место утечки; (с) одновременно с закачкой базового геля в проницаемую зону или в место утечки или после этого закачку сшивающего агента, включающего органический титанат, органический цирконат или их комбинации, в проницаемую зону или в место утечки; при этом способе буферный регулятор рН и замедлитель, представляющий собой гидроксиалкиламинокарбоновую кислоту, по отдельности подмешивают к базовому гелю, к сшивающему агенту или к тому и другому перед закачкой базового геля и сшивающего агента в проницаемую зону или в место утечки; и (d) проведение реакции между базовым гелем и сшивающим агентом через управляемый отрезок времени для образования сшитого водного геля для тампонирования проницаемой зоны или утечки.
Согласно способу тампонирования проницаемых зон или утечек в пласте обычно используют приблизительно от 0,25 до 1,2 мас.% сшиваемого органического полимера, предпочтительно от 0,40 до 0,75 мас.% и от 0,01 до 1,0 мас.% сшивающего агента, предпочтительно от 0,05 до 0,50 мас.% в процентах от веса жидкости на водной основе.
ПРИМЕРЫ
СПОСОБЫ
Приготовление базового геля
Один литр водопроводной воды добавляли в мешалку Waring, оборудованную лопастной мешалкой с тремя скребками. Было начато перемешивание и введено 3,6 г растворимого полисахарида, после чего добавляли стабилизатор глины (хлористый тетраметиламмоний) и выбирали буферный регулятор рН, чтобы установить рН 4,0-7,0 для получения раствора. Скорость перемешивания была отрегулирована так, чтобы поддерживать легкое воронкообразное вихревое движение в верхней части раствора, и перемешивание продолжалось 30 минут, в результате чего получен базовый гель состава «30 фунтов на 1000 галлонов». Через 30 минут рН базового геля был отрегулирован до искомой конечной величины рН (1) буферным регулятором рН на основе уксусной кислоты до рН 4-5; (2) буферным регулятором на основе фумаровой кислоты или диацетата натрия до рН 5-7; (3) буферным регулятором рН на основе бикарбоната натрия до рН 7-8,5; или (4) буферным регулятором рН на основе карбоната натрия или гидроксида натрия до рН 9-11. Перемешивание было остановлено, и базовый гель выдерживали в течение 30 минут.
В соответствии с другим вариантом для базового геля состава «20 фунтов на 1000 галлонов» вводили 2,4 г полимера на один литр водопроводной воды. Для базового геля состава «60 фунтов на 1000 галлонов» вводили 7,2 г полимера на один литр водопроводной воды.
Испытание на закрытие при воронкообразном движении
Отмеряли порцию 250 мл базового геля в чистый контейнер мешалки Waring. Начинали перемешивание и регулировали скорость до создания воронкообразного движения, при котором образовывалась воронка, открывающая гайку крепления лопастей. Регистрировалось положение, в котором был установлен вариатор Variac, управляющий скоростью вращения мешалки, и эта скорость поддерживалась постоянной при проведении всех испытаний для воспроизводимости результатов. Объем сшивающего агента вводили на край вихревой воронки перемешиваемого базового геля и сразу же пускали секундомер, установив время=0. В момент, когда вязкость геля достигала величины, достаточной для того, чтобы жидкость закрыла крепежную гайку крепления лопастей смесителя мешалки и воронка оставалась закрытой, это время фиксировалось. Этот отрезок времени, представляющий собой разницу между временем пуска секундомера и моментом, когда воронка остается закрытой, представляет собой время закрытия воронки. Если воронка не закрывалась в течение 10 минут, испытание прекращали и фиксировалось время закрытия воронки в качестве превысившего 10 минут. Начальная и конечная величины рН сшитого геля также фиксировались как рНb и pHf соответственно. Эти испытания на закрытие воронки позволяют достаточно хорошо оценить время, необходимое для завершения сшивки полимера сшивающим агентом. Полное закрытие воронки указывало на существенную степень сшивки.
Это испытание повторяли с использованием одних и тех же базового геля и сшивающего агента. Однако нормированное количество замедлителя бис(гидроксиэтил)глицина вводили сразу же после введения сшивающего агента. Время закрытия воронки фиксировали аналогичным образом. Результаты для сшиваемой композиции приведены ниже.
Примечание 1: Хлористый тетраметиламмоний в качестве стабилизатора глины составлял 0,2 мас.% от всей композиции.
Примечание 2: Базовый гель состава 30 фунтов на 1000 галлонов карбоксиметилцеллюлозы (КМЦ), приготовленный в составе 1 фунт на 1000 галлонов 50%-ного раствора ТМАС в воде, применялся для измерения времени закрытия воронки при рН 4.
Примечание 3: Базовый гель состава 20 фунтов на 1000 галлонов карбоксиметилцеллюлозы (КМЦ), приготовленный в составе 1 фунт на 1000 галлонов 50%-ного раствора ТМАС в воде, применялся для измерения времени закрытия воронки при рН 5.
Примечание 4: Базовый гель состава 60 фунтов на 1000 галлонов карбоксиметилгидроксипропилгуар (КМГПГ) использовали для измерения времени закрытия воронки при рН 10.
Пример 1
Хлорацетат натрия (237 г) вводили в 422 г водопроводной воды в 2-литровую колбу, оборудованную делительной воронкой, термопарой, конденсатором и азотным барботером. Было начато перемешивание и применено тепло для растворения хлорацетата натрия. После того как хлорацетат натрия был растворен, добавляли 218 г диэтаноламина (99%) и реакционную массу нагревали для дефлегмации и выдерживали там в течение 10 часов. После охлаждения раствор разбавляли водой 510 г с получением прозрачного белого водного раствора, содержащего 24% бис(гидроксиэтил)глицина. Продукт Примера 1 оценивали в качестве замедлителя для каждого из продуктов Примеров 2-5 и Сравнительного Примера D.
Пример 2
В колбу 500 мл, оборудованную термопарой, делительной воронкой, отверстием для азота и конденсатором, загрузили 313,7 г комплекса цирконий тетра-триэтаноламин, производимого E.I.de Font de Nemours and Company, г.Вилмингтон, шт.Делавэр. Начато перемешивание с добавлением смеси 20,9 г глицерина и 20,9 г воды. Раствор перемешивали в течение 2 часов при температуре 60°С с получением 355 г раствора оранжевого цвета, содержащего 11,6% Zr. В Таблице 1А приведены результаты с использованием продукта Примера 2 при проведении испытания на время закрытия воронки.
Пример 3
В колбу 500 мл, оборудованную термопарой, делительной воронкой, отверстием для азота и конденсатором, загрузили 313,7 г комплекса цирконий тетра-триэтаноламин. Начато перемешивание с добавлением следующего: 132,6 г Quadrol® тетракис(2-гидроксипропил)этилендиамина, производимого фирмой BASF Corp., и смеси 42 г глицерина и 42 г воды. Этот раствор перемешивали в течение 2 часов при температуре 60°С с получением 530 г раствора оранжевого цвета, содержащего 7,8% Zr. В Таблице 1В приведены результаты с использованием продукта Примера 3 при проведении испытания на время закрытия воронки.
Сравнительный Пример А
В колбу 1000 мл, оборудованную мешалкой, конденсатором, делительной воронкой, термопарой и отверстием для азота, загружали 352 г (0,799 моль) тетра-n-пропилцирконата. Было начато перемешивание и добавлено 230,8 г (0,83 моль) гидроксиэтил три-(2-гидроксипропил)этилендиамина. Реакционную массу нагревали до 60°С и выдерживали там в течение 2 часов. После периода выдержки реакционную массу охлаждали до комнатной температуры с получением вязкой прозрачной жидкости желтого цвета, содержащей 12,3% Zr. В Таблице 1C приведены результы использования продукта Сравнительного Примера А в испытании на время закрытия воронки.
Сравнительный Пример В
В колбу 1000 мл, оборудованную мешалкой, конденсатором, делительной воронкой, термопарой и отверстием для азота, загружали 364 г (0,826 моль) тетра-n-пропилцирконата. Начинали перемешивание и было добавлено 493,4 г (3,3 моль) триэтаноламина. Реакционную массу нагревали до 60°С и выдерживали там в течение 2 часов. После периода выдержки применяли вакуум 20 мм Нg для удаления n-пропанола, высвободившегося в процессе реакции. Реакционную массу затем охлаждали до комнатной температуры с получением вязкой прозрачной жидкости желтого цвета, содержащей 13,2% Zr. В Таблице 1C приведены результаты при использовании продукта Сравнительного Примера В в испытании на время закрытия воронки.
Сравнительный Пример С
В колбу 1000 мл, оборудованную мешалкой, конденсатором, делительной воронкой, термопарой и отверстием для азота, загружали 368,6 г (0,609 моль) оксихлорида циркония, растворенного в виде 30%-ного водного раствора. Было начато перемешивание и добавлено 40 г (0,83 моль) воды. После этого было быстро добавлено 181,3 г (1,77 моль) 85%-ной молочной кислоты при высокой скорости перемешивания, в то время как температуру поддерживали равной 20-30°С. Реакционную массу дополнительно подвергали перемешиванию в течение одного часа при температуре 20-30°С и затем нейтрализовывали до рН 6,7-7,3 25%-ным водным раствором гидроксида натрия. Реакционную массу затем нагревали до температуры 80°С и выдерживали там в течение 4 часов. После периода выдержки реакционную массу охлаждали до комнатной температуры с получением прозрачной бледно-желтой жидкости, содержащей 5,4% Zr. В Таблице 1C приведены результаты использования продукта Сравнительного Примера С в испытании на время закрытия воронки.
Таблица 1А
Сшивающий агент Концентрация (мл/1000 мл) Замедлитель Концентрация (мл/1000 мл) Время закрытия воронки (мин:с) Время закрытия воронки (мин:с)
рН 4 рН 5
Пример 2 0,35 Отсутствует 0 1:10
Пример 2 0,35 Пример 1 1 2:05
Пример 2 0,35 глицерин (70%) 1 1:22
Пример 2 0,35 сорбит (70%) 1 1:04
Пример 2 0,70 Пример 1 1 2:39
Пример 2 0,70 Отсутствует 0 0:59
Пример 2 0,70 глицерин (70%) 1 2:01
Пример 2 0,70 сорбит (70%) 1 1:05
Таблица 1В
Сшивающий агент Концентрация (мл/1000 мл) Замедлитель Концентрация (мл/1000 мл) Время закрытия воронки (мин:с) Время закрытия воронки (мин:с)
рН 4 рН 5
Пример 3 0,50 Отсутствует 0 1:14
Пример 3 0,50 Пример 1 1 3:03
Пример 3 0,50 глицерин (70%) 1 1:42
Пример 3 0,50 сорбит (70%) 1 1:18
Пример 3 1,0 Отсутствует 1:23
Пример 3 1,0 Пример 1 1 4:49
Пример 3 1,0 глицерин (70%) 1 2:39
Пример 3 1,0 сорбит (70%) 1 1:33
Пример 3 0,50 Пример 1 0 3:50
Пример 3 0,50 Пример 1 0,5 7:45
Пример 3 0,50 Пример 1 1 >10
Пример 3 0,75 Пример 1 0 1:44
Пример 3 0,75 Пример 1 0,5 5:29
Пример 3 0,75 Пример 1 1 >10
Таблица 1C
Сшивающий агент Концентрация (мл/1000 мл) Замедлитель Концентрация (мл/1000 мл) Время закрытия воронки (мин:с) Время закрытия воронки (мин:с)
рН 4 рН 5
Сравнит.Пример А 0,4 Отсутствует - 0:02 0:23
Сравнит.Пример В 0,08 Отсутствует - >10
Сравнит.Пример В 0,12 Отсутствует - 0:32
Сравнит.Пример С 0,20 Отсутствует - 6:17
Сравнит.Пример С 0,28 Отсутствует - >10
Таблицы 1А-1С приводят результаты оценки времени закрытия воронки при использовании сшиваемых композиций, включающих различные замедлители, включая композиции, включающие продукты Примеров 1 и 2 и Сравнительных Примеров А, В и С, при рН 4 и рН 5. Из Таблиц 1А-1С следует, что бис(гидроксиэтил)глицин является намного более эффективным замедлителем при рН 4 и рН 5, чем глицерин и сорбит, которые являются замедлителями известного уровня техники.
Таблица 1 В иллюстрирует эффект от повышения концентрации замедлителя на скорость сшивки. Таким образом, большее количество замедлителя повышает скорость сшивки.
Для выполнения эксплуатационных требований для использования в жидкостях гидроразрыва с низким рН время сшивки как при рН 4, так и рН 5 типично должно составлять от 2 секунд до 5 минут. Время закрытия воронки Сравнительных Примеров, в которых отсутствует замедлитель бис(гидроксиэтил)глицин, выходит за пределы этого промежутка времени.
Сравнительный Пример D
Действие различных замедлителей в комбинации с соединением бора, борной кислотой в качестве сшивающего агента, определяли с использованием испытания на время закрытия воронки согласно вышеописанному. Эквимолярные количества замедлителя и борной кислоты (0,15 г) вводили в базовый гель КМГПГ состава 30 фунтов на 100 галлонов, в котором рН регулировали посредством гидроксида натрия до достижения приблизительно рН 12. Величины времени закрытия воронки, выраженные в минутах, приведены в Таблице 2.
Таблица 2
Скорость сшивки при использовании борной кислоты и бис(гидроксиэтил)глицина
Замедлитель (вводимое количество) Время закрытия воронки (мин) рHb pHf
Замедлитель отсутствует 0:48 12,90 12,59
Глутамат натрия (0,75 г) 6:13 12,90 12,57
Сорбит (0,85 г) >10 12,95 12,58
Пример 1 (2,67 г) 0:53 12,95 12,60
Пример 1 (5,37 г) 0:37 12,97 12,58
Как можно видеть из Таблицы 2, где использована композиция Примера 1, бис(гидроксиэтил)глицин является неудовлетворительным замедлителем для бор-содержащего сшивающего агента. Время закрытия воронки при использовании борной кислоты в качестве сшивающего агента получается одним и тем же при добавлении и без добавления бис(гидроксиэтил)глицина. В противоположность этому другие известные замедлители (глутамат натрия и сорбит) являются эффективными с точки зрения увеличения времени закрытия воронки, когда их используют с бор-содержащим сшивающим агентом.
Пример 4
В колбу 500 мл, оборудованную термопарой, делительной воронкой и отверстием для азота и конденсатором, загружали 313,7 г комплекса цирконий тетра-триэтаноламин. Начинали перемешивание и добавляли в колбу следующее: 132,6 г Quadrol® tetrakis(2-гидроксипропил)этилендиамин и смесь 42 г глицерина и 21 г воды. Этот раствор перемешивали в течение 2 часов при температуре 60°С с получением 509 г раствора оранжевого цвета, содержащего 8,1% Zr.
Продукт оценивали испытанием на время закрытия воронки с использованием выпускаемого в промышленном объеме сшивающего агента на основе цирконата, комплекса цирконий - тетра-триэтаноламин, выпускаемого фирмой E.I. du Font de Nemours and Company, г.Вилмингтон, шт.Делавэр. Каждый сшивающий агент был применен в эквимолярном количестве. Применяли базовый гель КМГПГ состава 60 фунтов на 1000 галлонов, приготовленный согласно описанному выше в разделе, посвященном приготовлению базового геля. Гидроксид натрия применили для установления рН 10. Испытание проводили в отсутствие, а затем в присутствии бис(гидроксиэтил)глицина, продукта Примера 1.
Таблица 3
Сшивающий агент Концентрация сшивающего агента мл/1000 мл Концентрация Примера 1 мл/1000 мл Время закрытия воронки (мин) рHb pHf
Пример 4 1,08 0 7:24 10,00 10,04
Пример 4 1,08 0,25 >10 10,00 9,80
Комплекс цирконий-тетра-триэтаноламин 0,68 0 1:52 10,00 10,00
Комплекс цирконий - тетра-триэтаноламин 0,68 0,25 8:47 10,00 9,84
Таблица 3 показывает, что бис(гидроксиэтил)глицин имеет очень высокую эффективность при рН 10 с точки зрения задержки скорости сшивки комплексами цирконатов, такими как комплекс циркония, приготовленный в Примере 4, или выпускаемый промышленностью циркониевый сшивающий агент - комплекс цирконий - тетра-триэтаноламин.
Пример 5
Два выпускаемых промышленностью титановых сшивающих агента, комплекс титан - триэтаноламин (выпускаемый как органический титанат Tyzor® ТЕ) и титан аммонийлактат (выпускаемый как органический титанат Tyzor® LA) - оба выпускаемые фирмой E.I. du Font de Nemours and Company, г.Вилмингтон, шт.Делавэр, оценивались в ходе испытания на время закрытия воронки. Каждый сшивающий агент применяли в количестве 0,52 мл на 1000 мл раствора КМГПГ состава 60 фунтов на 1000 галлонов, подготовленного согласно описанному выше в разделе, посвященном приготовлению базового геля. Гидроксид натрия применили для установления рН 10. Испытание проводили в отсутствие, а затем в присутствии бис(гидроксиэтил)глицина, продукта Примера 1.
Таблица 4
Сшивающий агент Концентрация Примера 1 (мл/1000 мл) Время закрытия воронки (мин)
Комплекс титан -триэтаноламин 0 1:06
Комплекс титан -триэтаноламин 0,25 4:12
Титан аммонийлактат 0 4:01
Титан аммонийлактат 0,25 >10
Таблица 4 показывает, что бис(гидроксиэтил)глицин имеет очень высокую эффективность при рН 10 с точки зрения снижения скорости сшивки комплексами титанатов.

Claims (15)

1. Сшиваемая композиция для применения в нефтяных скважинах для гидроразрыва пласта и тампонирования зоны проницаемости, включающая (а) жидкость на водной основе, (b) буферный регулятор рН, (с) сшиваемый органический полимер, (d) сшивающий агент, выбранный из группы, включающей органический титанат, органический цирконат или их комбинации, и (е) замедлитель, представляющий собой гидроксиалкиламинокарбоновую кислоту, где указанный сшиваемый органический полимер выбран из группы, включающей растворимые полисахариды, полиакриламиды и полиметакриламиды, и
где указанная гидроксиалкиламинокарбоновая кислота выбрана из бис-(гидроксиалкил) глицинов и их солей.
2. Композиция по п.1, в которой сшиваемый органический полимер представляет собой растворимый полисахарид, выбранный из природных смол, производных смол и производных целлюлозы.
3. Композиция по п.2, в которой полисахарид представляет собой производное целлюлозы, выбранное из карбоксиметилцеллюлозы и карбоксиметилгидроксиэтилцеллюлозы.
4. Композиция по п.1, в которой сшивающий агент представляет собой комплекс органического циркония, выбранный из соли цирконий α-гидроксикарбоновой кислоты, комплексов цирконий-полиол, комплексов цирконий-алканоламины, комплексов цирконий-гидроксиалкилированные алкилендиамины и их комбинаций.
5. Композиция по п.1, в которой сшивающий агент представляет собой комплекс органического титаната, выбранный из соли титан α-гидроксикарбоновой кислоты, комплексов титан-полиол, комплексов титан-алканоламины и их комбинаций.
6. Композиция по пп.1, 4 или 5, в которой замедлитель выбран из группы, которая включает бис(гидроксиэтил)глицин, бис(гидроксиметил)глицин, бис(гидроксипропил)глицин, бис(гидроксиизопропил)глицин, бис(гидроксибутил)глицин, моно(гидроксиэтил)глицин, моно(гидроксиметил)глицин и их соли щелочных металлов.
7. Композиция по п.6, в которой замедлитель представляет собой бис(гидроксиэтил)глицин.
8. Способ гидроразрыва пласта, который включает закачку сшиваемой композиции в указанный пласт со скоростью расхода и под давлением, достаточными для создания, повторного приоткрывания и/или увеличения протяженности трещины в указанном пласте, согласно которому указанная композиция представляет собой сшиваемую композицию по любому из пп.1-7.
9. Способ гидроразрыва пласта, включающий:
(a) приготовление базового геля смешиванием жидкости на водной основе со сшиваемым органическим полимером;
(b) приготовление сшиваемой композиции замедленного действия смешиванием сшивающего агента, выбранного из органического титаната, органического цирконата или их комбинации, с замедлителем, представляющим собой гидроксиалкиламинокарбоновую кислоту;
при этом способе буферный регулятор рН добавляют к базовому гелю, к сшиваемой композиции замедленного действия или к тому и другому;
(c) осуществление контакта базового геля со сшиваемой композицией замедленного действия;
(d) проведение реакции между базовым гелем и сшивающим агентом через управляемый отрезок времени для образования сшитого водного геля; и
(e) закачку сшитого геля в пласт со скоростью расхода и под давлением, достаточными для создания трещины, повторного приоткрывания и/или увеличения протяженности трещины в пласте,
где указанный сшиваемый органический полимер выбран из группы, включающей растворимые полисахариды, полиакриламиды и полиметакриламиды, и
где указанная гидроксиалкиламинокарбоновая кислота выбрана из бис-(гидроксиалкил) глицинов и их солей.
10. Способ гидроразрыва пласта, включающий:
(a) приготовление базового геля смешиванием жидкости на водной основе с органическим сшиваемым полимером и замедлителем, представляющим собой гидроксиалкиламинокарбоновую кислоту;
(b) контактирование базового геля со сшивающим агентом, выбранным из органического титаната, органического цирконата или их комбинации;
при этом способе буферный регулятор рН добавляется к базовому гелю, к сшивающему агенту или к тому и другому до начала контактирования;
(c) проведение реакции между базовым гелем и сшивающим агентом через управляемый отрезок времени для образования сшитого водного геля и
(d) закачку сшитого геля в пласт со скоростью расхода и под давлением, достаточными для создания повторного приоткрывания и/или увеличения протяженности трещины в пласте;
где указанный сшиваемый органический полимер выбран из группы, включающей растворимые полисахариды, полиакриламиды и полиметакриламиды, и
где указанная гидроксиалкиламинокарбоновая кислота выбрана из бис-(гидроксиалкил) глицинов и их солей.
11. Способ гидроразрыва пласта, пересеченного стволом скважины, который включает:
(a) приготовление базового геля смешиванием жидкости на водной основе со сшиваемым полимером;
(b) закачку базового геля в ствол скважины;
(c) одновременно с закачкой базового геля в ствол скважины или после этого закачку сшивающего агента, выбранного из органического титаната, органического цирконата или их комбинации, в ствол скважины;
при этом способе буферный регулятор рН и замедлитель, представляющий собой гидроксиалкиламинокарбоновую кислоту, независимо добавляют к базовому гелю, к сшивающему агенту или к тому и другому перед тем как производится закачка базового геля и сшивающего агента в ствол скважины;
(d) проведение реакции между базовым гелем и сшивающим агентом через управляемый отрезок времени для образования сшитого водного геля и
(e) закачку сшитого геля в пласт из ствола скважины со скоростью расхода и под давлением, достаточными для создания повторного приоткрывания и/или увеличения размеров трещины в пласте,
где указанный сшиваемый органический полимер выбран из группы, включающей растворимые полисахариды, полиакриламиды и полиметакриламиды, и
где указанная гидроксиалкиламинокарбоновая кислота выбрана из бис-(гидроксиалкил) глицинов и их солей.
12. Способ тампонирования проницаемой зоны или утечки в пласте, включающий контактирование с указанной зоной или местом утечки сшиваемой композицией, включающей композицию любого из пп.1-7.
13. Способ тампонирования проницаемой зоны или утечки в пласте, включающий:
(а) приготовление базового геля смешиванием жидкости на водной основе со сшиваемым органическим полимером;
(b) приготовление сшиваемой композиции замедленного действия смешиванием сшивающего агента, выбранного из органического титаната, органического цирконата или их комбинации, с замедлителем, представляющим собой гидроксиалкиламинокарбоновую кислоту;
при этом способе буферный регулятор рН добавляют к базовому гелю, к сшиваемой композиции замедленного действия или к тому и другому;
(c) контактирование базового геля со сшиваемой композицией замедленного действия;
(d) проведение реакции базового геля и сшивающего агента через управляемый отрезок времени с образованием сшитого водного геля и
(e) закачку сшитого геля в проницаемую зону или к месту утечки;
где указанный сшиваемый органический полимер выбран из группы, включающей растворимые полисахариды, полиакриламиды и полиметакриламиды, и
где указанная гидроксиалкиламинокарбоновая кислота выбрана из бис-(гидроксиалкил) глицинов и их солей.
14. Способ тампонирования проницаемой зоны или утечки в пласте, включающий:
(a) приготовление базового геля смешиванием жидкости на водной основе со сшиваемым органическим полимером и замедлителем, представляющим собой гидроксиалкиламинокарбоновую кислоту;
(b) контактирование базового геля со сшивающим агентом, выбранным из органического титаната, органического цирконата или их комбинации;
при этом способе буферный регулятор рН добавляется к базовому гелю, к сшивающему агенту или к тому и другому до начала контактирования;
(c) проведение реакции базового геля и сшивающего агента через управляемый отрезок времени для образования сшитого водного геля и
(d) закачку сшитого геля в проницаемую зону или к месту утечки;
где указанный сшиваемый органический полимер выбран из группы, включающей растворимые полисахариды, полиакриламиды и полиметакриламиды, и
где указанная гидроксиалкиламинокарбоновая кислота выбрана из бис-(гидроксиалкил) глицинов и их солей.
15. Способ тампонирования проницаемой зоны или утечки в пласте, включающий:
(a) приготовление базового геля смешиванием жидкости на водной основе со сшиваемым полимером;
(b) закачку базового геля в проницаемую зону или к месту утечки;
(c) одновременно с закачкой базового геля в проницаемую зону или к месту утечки или после этого закачку сшивающего агента, выбранного из органического титаната, органического цирконата или их комбинации, в проницаемую зону или к месту утечки;
при этом способе буферный регулятор рН и замедлитель, представляющий собой гидроксиалкиламинокарбоновую кислоту, независимо добавляют к базовому гелю, к сшивающему агенту или к тому и другому перед закачкой базового геля и сшивающего агента в проницаемую зону или к месту утечки; и
(d) проведение реакции базового геля и сшивающего агента через управляемый отрезок времени для образования сшитого водного геля для тампонирования проницаемой зоны или утечки;
где указанный сшиваемый органический полимер выбран из группы, включающей растворимые полисахариды, полиакриламиды и полиметакриламиды, и
где указанная гидроксиаламинокилкарбоновая кислота выбрана из бис-(гидроксиалкил) глицинов и их солей.
RU2008136865/05A 2006-02-14 2007-02-13 Сшиваемая композиция и способ ее применения RU2450040C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/354,061 2006-02-14
US11/354,061 US7732382B2 (en) 2006-02-14 2006-02-14 Cross-linking composition and method of use

Publications (2)

Publication Number Publication Date
RU2008136865A RU2008136865A (ru) 2010-03-20
RU2450040C2 true RU2450040C2 (ru) 2012-05-10

Family

ID=38229579

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2008136865/05A RU2450040C2 (ru) 2006-02-14 2007-02-13 Сшиваемая композиция и способ ее применения

Country Status (5)

Country Link
US (1) US7732382B2 (ru)
CN (1) CN101421372A (ru)
CA (1) CA2642272C (ru)
RU (1) RU2450040C2 (ru)
WO (1) WO2007095367A2 (ru)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2526081C1 (ru) * 2013-07-26 2014-08-20 Открытое акционерное общество "Татнефть" имени В.Д. Шашина Способ гидравлического разрыва пласта в скважине
RU2655275C2 (ru) * 2013-10-23 2018-05-24 Бейкер Хьюз Инкорпорейтед Флюиды для обработки скважин, содержащие циркониевый сшиватель, и способы их применения
RU2722488C1 (ru) * 2019-11-26 2020-06-01 Публичное акционерное общество «Татнефть» имени В.Д. Шашина Способ разработки неоднородного по проницаемости заводненного нефтяного пласта
US11299617B2 (en) 2018-10-02 2022-04-12 Borealis Ag Low speed cross-linking catalyst for silane-grafted plastomers

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8242060B2 (en) 2006-12-21 2012-08-14 Dorf Ketal Specialty Catalysts, LLC Stable solutions of zirconium hydroxyalkylethylene diamine complex and use in oil field applications
US8236739B2 (en) * 2007-03-30 2012-08-07 Dork Ketal Speciality Catalysts, LLC Zirconium-based cross-linker compositions and their use in high pH oil field applications
US7795188B2 (en) 2007-03-30 2010-09-14 E.I. Du Pont De Nemours And Company Zirconium-base cross-linker compositions and their use in high pH oil field applications
PA8785001A1 (es) 2007-06-18 2008-06-17 Johnson Matthey Plc Compuestos estables en agua, catalizadores y reacciones catalizadas novedosos
CN101220264B (zh) * 2007-12-18 2011-02-02 中国石油集团川庆钻探工程有限公司 一种co2泡沫压裂用酸性交联剂的制备方法
US7754660B2 (en) * 2007-12-18 2010-07-13 E.I. Du Pont De Nemours And Company Process to prepare zirconium-based cross-linker compositions and their use in oil field applications
US8153564B2 (en) 2008-03-07 2012-04-10 Dorf Ketal Speciality Catalysts, Llc Zirconium-based cross-linking composition for use with high pH polymer solutions
US20100204069A1 (en) * 2009-02-10 2010-08-12 Hoang Van Le METHOD OF STIMULATING SUBTERRANEAN FORMATION USING LOW pH FLUID
US20110028354A1 (en) * 2009-02-10 2011-02-03 Hoang Van Le Method of Stimulating Subterranean Formation Using Low pH Fluid Containing a Glycinate Salt
CN101519585B (zh) * 2009-03-31 2011-05-04 荆州市弘利化工科技有限公司 剪切交联敏感性堵漏剂及制备方法
CN102108294B (zh) * 2009-12-23 2012-12-12 中国石油天然气股份有限公司 一种多羟基醇压裂液用有机钛交联剂的制备方法
CN102134481B (zh) * 2011-01-18 2013-05-22 大庆油田有限责任公司 羧甲基羟丙基胍胶水基压裂液
CN102153999B (zh) * 2011-01-21 2012-11-21 西安石油大学 两性离子冻胶调剖剂
CN102277153A (zh) * 2011-05-16 2011-12-14 陕西科技大学 一种应用于羟丙基瓜尔胶的酸性交联剂及其制备方法
RU2473798C1 (ru) * 2011-10-12 2013-01-27 Открытое акционерное общество "Татнефть" им. В.Д. Шашина Способ гидравлического разрыва пласта в скважине
US20130203637A1 (en) * 2012-02-02 2013-08-08 D. V. Satyanarayana Gupta Method of delaying crosslinking in well treatment operation
US20130317135A1 (en) * 2012-05-25 2013-11-28 Servicios Especiales San Antonio S.A. Water shut-off system for production and/or injection wells
CN103484097B (zh) * 2012-06-11 2016-07-06 中国石油化工股份有限公司 一种地面交联酸交联剂及其制备方法
CN102977878B (zh) * 2012-12-28 2014-08-06 陕西科技大学 一种植物胶压裂液及其制备方法
US20140364343A1 (en) * 2013-06-11 2014-12-11 Chemplex Advanced Materials, Llc Produced Water Borate Crosslinking Compositions and Method of Use
CN103484094B (zh) * 2013-08-22 2016-02-10 中国石油天然气股份有限公司 一种耐高温冻胶压裂液、制备方法及其应用
CN103881687B (zh) * 2014-03-11 2016-10-19 中国石油天然气股份有限公司 一种速溶改性纤维素交联清洁压裂液及其制备方法
CN103995083B (zh) * 2014-05-13 2016-02-10 中国石油天然气股份有限公司 一种评价聚合物凝胶调剖剂油藏适应性的方法
CN104212437A (zh) * 2014-08-11 2014-12-17 东北石油大学 有机锆交联剂及耐温220℃的羟丙基胍胶压裂液
CN104403658B (zh) * 2014-12-08 2016-02-24 中国石油大学(华东) 一种耐高温交联酸液体系及其制备方法
CN104927828B (zh) * 2015-04-29 2017-08-01 中国石油集团渤海钻探工程有限公司 耐高温有机锆交联剂及其制备方法以及一种压裂液冻胶及其制备方法
CN104962264A (zh) * 2015-06-04 2015-10-07 辽宁瑞达石油技术有限公司 选择性可控五段塞凝胶调剖堵水剂及调剖堵水方法
CN105018057B (zh) * 2015-07-03 2018-04-13 长江大学 一种有机锆交联剂及其制备方法
US20170037303A1 (en) 2015-08-03 2017-02-09 Ecolab Usa Inc. Compositions and methods for delayed crosslinking in hydraulic fracturing fluids
CN105909193B (zh) * 2016-06-20 2018-10-09 中国石油化工股份有限公司 一种碳酸钾聚醚醇钻井液的现场处理工艺
US10550315B2 (en) 2016-07-15 2020-02-04 Ecolab Usa Inc. Compositions and methods for delayed crosslinking in hydraulic fracturing fluids
CN106928959B (zh) * 2017-03-27 2018-10-26 成都劳恩普斯科技有限公司 交联剂、全悬浮压裂液及其制备方法
CN108276982B (zh) * 2018-03-22 2020-12-11 昆山京昆油田化学科技有限公司 一种有机钛交联剂及其制备方法和应用
CN109852368B (zh) * 2018-12-03 2021-03-26 中国石油大学(华东) 一种可交联有机酸的交联剂及其制备方法与应用
CN113046043B (zh) * 2019-12-27 2022-11-04 中国石油天然气股份有限公司 油藏回注水配液调驱剂、制备方法及其应用
CN112126420A (zh) * 2020-09-04 2020-12-25 四川省威沃敦化工有限公司 一种压裂用交联剂及其制备方法
CN114292636A (zh) * 2021-12-31 2022-04-08 昆山京昆油田化学科技有限公司 一种钛锆交联剂及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3888312A (en) * 1974-04-29 1975-06-10 Halliburton Co Method and compositions for fracturing well formations
SU1263705A1 (ru) * 1984-11-30 1986-10-15 Западно-Сибирский научно-исследовательский и проектно-конструкторский институт технологии глубокого разведочного бурения Буровой раствор
EP0282253A2 (en) * 1987-03-10 1988-09-14 E.I. Du Pont De Nemours And Company Cross-linking titanium & zirconium chelates & their use
US6227295B1 (en) * 1999-10-08 2001-05-08 Schlumberger Technology Corporation High temperature hydraulic fracturing fluid
RU2208035C1 (ru) * 2001-12-11 2003-07-10 ДФГУП "ЗапСибБурНИПИ" Буровой раствор на углеводородной основе

Family Cites Families (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5464533A (en) * 1977-11-02 1979-05-24 Kansai Paint Co Ltd Aqueous corrosion-resistant coating composition
US4692254A (en) 1981-10-29 1987-09-08 Dowell Schlumberger Incorporated Fracturing of subterranean formations
US4683068A (en) 1981-10-29 1987-07-28 Dowell Schlumberger Incorporated Fracturing of subterranean formations
US4502967A (en) 1982-09-27 1985-03-05 Halliburton Company Method and compositions for fracturing subterranean formations
US4464270A (en) * 1982-09-27 1984-08-07 Halliburton Company Method and compositions for fracturing subterranean formations
US4462917A (en) * 1982-09-27 1984-07-31 Halliburton Company Method and compositions for fracturing subterranean formations
US4470915A (en) 1982-09-27 1984-09-11 Halliburton Company Method and compositions for fracturing subterranean formations
US4524829A (en) 1983-08-23 1985-06-25 Halliburton Company Method of altering the permeability of a subterranean formation
US4953621A (en) * 1985-03-21 1990-09-04 E. I. Du Pont De Nemours And Company Organic titanium compositions useful as cross-linkers
US4749040A (en) 1986-02-19 1988-06-07 Dowell Schlumberger Incorporated Method of fracturing a subterranean formation using delayed crosslinker compositions containing organic titanium complexes
US4861500A (en) 1986-02-19 1989-08-29 Dowell Schlumberger Incorporated Delayed crosslinker composition containing organic titanium complexes and hydroxycarboxylic acids
US4657080A (en) 1986-02-19 1987-04-14 Dowell Schlumberger Incorporated Method of fracturing a subterranean formation using delayed crosslinker compositions containing organic titanium complexes
US4797216A (en) 1986-02-19 1989-01-10 Dowell Schlumberger Incorporated Delayed crosslinker composition
US4749041A (en) 1986-02-19 1988-06-07 Dowell Schlumberger Incorporated Hydraulic fracturing method using delayed crosslinker composition
US4657081A (en) 1986-02-19 1987-04-14 Dowell Schlumberger Incorporated Hydraulic fracturing method using delayed crosslinker composition
US4798902A (en) * 1987-02-09 1989-01-17 E. I. Du Pont De Nemours And Company Zirconium chelates and their use for cross-linking
US4883605A (en) * 1987-02-09 1989-11-28 E. I. Du Pont De Nemours And Company Zirconium chelates and their use for cross-linking
US4996336A (en) * 1987-03-10 1991-02-26 E. I. Du Pont De Nemours And Company Cross-linking titanum & zirconium; chelates & Their use
US4960527A (en) 1987-07-30 1990-10-02 Rhone-Poulenc, Inc. Delayed crosslinking of guar gelling agents with ceric salts
US4801389A (en) 1987-08-03 1989-01-31 Dowell Schlumberger Incorporated High temperature guar-based fracturing fluid
US4799550A (en) 1988-04-18 1989-01-24 Halliburton Company Subterranean formation treating with delayed crosslinking gel fluids
IT1229218B (it) 1989-03-31 1991-07-26 Eniricerche S P A Agip S P A Composizione acquosa tamponata gelificabile e suo impiego nei procedimenti di recupero assistito del petrolio.
IT1229226B (it) 1989-03-31 1991-07-26 Eniricerche S P A Agip S P A Procedimento e composizione per ridurre la permeabilita' di una zona ad alta permeabilita' in un giacimento petrolifero.
IT1229219B (it) 1989-03-31 1991-07-26 Eniricerche S P A Agip S P A Composizione acquosa gelificabile e suo uso nel recupero assistito del petrolio.
IT1229217B (it) 1989-03-31 1991-07-26 Eniricerche S P A Agip S P A Composizione acquosa gelificabile e suo impiego nei procedimenti di recupero assistito del petrolio.
US5145590A (en) 1990-01-16 1992-09-08 Bj Services Company Method for improving the high temperature gel stability of borated galactomannans
US5069281A (en) 1990-11-05 1991-12-03 Marathon Oil Company Process for enhanced delayed in situ gelation of chromium polyacrylamide gels
US5165479A (en) 1991-07-22 1992-11-24 Halliburton Services Method for stimulating subterranean formations
CA2073806C (en) 1991-07-24 2003-09-23 S. Bruce Mcconnell Delayed borate crosslinking fracturing fluid
US5877127A (en) 1991-07-24 1999-03-02 Schlumberger Technology Corporation On-the-fly control of delayed borate-crosslinking of fracturing fluids
US5305832A (en) 1992-12-21 1994-04-26 The Western Company Of North America Method for fracturing high temperature subterranean formations
US5431226A (en) 1994-01-03 1995-07-11 Marathan Oil Company Process for reducing permeability in a high-temperature subterranean hydrocarbon-bearing formation utilizing a decarboxylated crosslinking agent
US5547025A (en) * 1995-04-14 1996-08-20 Phillips Petroleum Company Process for treating oil-bearing formation
SG86324A1 (en) 1997-07-03 2002-02-19 Kao Corp Superabsorbent resin composition
EP1064339A4 (en) 1998-03-17 2007-09-26 Conocophillips Co COMPOSITIONS AND METHODS FOR APPLICATIONS RELATING TO PETROLEUM FIELDS
US6251838B1 (en) 1998-10-02 2001-06-26 Benchmark Research & Technologies, Inc. Suspended delayed borate cross-linker
US6737386B1 (en) 1999-05-26 2004-05-18 Benchmark Research And Technology Inc. Aqueous based zirconium (IV) crosslinked guar fracturing fluid and a method of making and use therefor
DE60014183D1 (de) 1999-12-29 2004-10-28 T R Oil Services Ltd Verfahren zur änderung der permeabilität von einer unterirdischen kohlenwasserstoff enthaltenden formation
US20030008780A1 (en) 2000-02-09 2003-01-09 Economy Mud Products Company Method and product for use of guar powder in treating subterranean formations
US20030092584A1 (en) * 2001-11-13 2003-05-15 Crews James B. Deep water completions fracturing fluid compositions
US20060009363A1 (en) 2001-11-13 2006-01-12 Baker Hughes Incorporated Deep water completions fracturing fluid compositions
JP3935831B2 (ja) * 2001-11-30 2007-06-27 松本製薬工業株式会社 水性組成物および水溶性ポリマー用架橋剤
US6640898B2 (en) 2002-03-26 2003-11-04 Halliburton Energy Services, Inc. High temperature seawater-based cross-linked fracturing fluids and methods
US6729408B2 (en) * 2002-04-05 2004-05-04 Schlumberger Technology Corp. Fracturing fluid and method of use
ES2290473T3 (es) * 2002-06-11 2008-02-16 Ciba Specialty Chemicals Holding Inc. Pigmentos de blanqueo.
KR20060124648A (ko) * 2003-11-18 2006-12-05 시바 스페셜티 케미칼스 홀딩 인크. 형광 증백 안료

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3888312A (en) * 1974-04-29 1975-06-10 Halliburton Co Method and compositions for fracturing well formations
SU1263705A1 (ru) * 1984-11-30 1986-10-15 Западно-Сибирский научно-исследовательский и проектно-конструкторский институт технологии глубокого разведочного бурения Буровой раствор
EP0282253A2 (en) * 1987-03-10 1988-09-14 E.I. Du Pont De Nemours And Company Cross-linking titanium & zirconium chelates & their use
US6227295B1 (en) * 1999-10-08 2001-05-08 Schlumberger Technology Corporation High temperature hydraulic fracturing fluid
RU2208035C1 (ru) * 2001-12-11 2003-07-10 ДФГУП "ЗапСибБурНИПИ" Буровой раствор на углеводородной основе

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2526081C1 (ru) * 2013-07-26 2014-08-20 Открытое акционерное общество "Татнефть" имени В.Д. Шашина Способ гидравлического разрыва пласта в скважине
RU2655275C2 (ru) * 2013-10-23 2018-05-24 Бейкер Хьюз Инкорпорейтед Флюиды для обработки скважин, содержащие циркониевый сшиватель, и способы их применения
US11299617B2 (en) 2018-10-02 2022-04-12 Borealis Ag Low speed cross-linking catalyst for silane-grafted plastomers
RU2722488C1 (ru) * 2019-11-26 2020-06-01 Публичное акционерное общество «Татнефть» имени В.Д. Шашина Способ разработки неоднородного по проницаемости заводненного нефтяного пласта

Also Published As

Publication number Publication date
RU2008136865A (ru) 2010-03-20
CA2642272C (en) 2012-06-05
CA2642272A1 (en) 2007-08-23
CN101421372A (zh) 2009-04-29
WO2007095367A3 (en) 2007-10-04
US20070191233A1 (en) 2007-08-16
US7732382B2 (en) 2010-06-08
WO2007095367A2 (en) 2007-08-23

Similar Documents

Publication Publication Date Title
RU2450040C2 (ru) Сшиваемая композиция и способ ее применения
RU2424270C2 (ru) Циркониевые сшивающие композиции и способы их использования
RU2490298C2 (ru) Способ приготовления композиций сшивающего агента на основе циркония и их использование на нефтяных месторождениях
US20070187098A1 (en) Permeable zone and leak plugging using cross-linking composition comprising delay agent
RU2482154C2 (ru) Способ получения бороцирконатного раствора и его применение в качестве сшивающего агента в жидкостях гидроразрыва пласта
US7795188B2 (en) Zirconium-base cross-linker compositions and their use in high pH oil field applications
US7732383B2 (en) Process for stabilized zirconium triethanolamine complex and uses in oil field applications
US7851417B2 (en) Process to prepare borozirconate solution and use as cross-linker in hydraulic fracturing fluids
US7730952B2 (en) Hydraulic fracturing methods using cross-linking composition comprising zirconium triethanolamine complex
CA2704542A1 (en) High temperature aqueous-based zirconium fracturing fluid and use
US20090156434A1 (en) Process to prepare borozirconate solution and use as cross-linker in hydraulic fracturing fluids
US20070187102A1 (en) Hydraulic fracturing methods using cross-linking composition comprising delay agent
CA2678783C (en) Zirconium-based cross-linker compositions and their use in high ph oil field applications
US7790657B2 (en) Process to prepare borozirconate solution and use a cross-linker in hydraulic fracturing fluids
US7795187B2 (en) Permeable zone and leak plugging using cross-linking composition comprising zirconium triethanolamine complex
US20090166041A1 (en) Zirconium-hydroxy alkylated amine-hydroxy carboxylic acid cross-linking composition for use with high pH polymer solutions
US8247356B2 (en) Zirconium-based cross-linking composition for use with high pH polymer solutions

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20160214