RU2435630C1 - Пленочное фильтрационное устройство из полых волокон - Google Patents

Пленочное фильтрационное устройство из полых волокон Download PDF

Info

Publication number
RU2435630C1
RU2435630C1 RU2010115270/05A RU2010115270A RU2435630C1 RU 2435630 C1 RU2435630 C1 RU 2435630C1 RU 2010115270/05 A RU2010115270/05 A RU 2010115270/05A RU 2010115270 A RU2010115270 A RU 2010115270A RU 2435630 C1 RU2435630 C1 RU 2435630C1
Authority
RU
Russia
Prior art keywords
hollow fiber
filter membrane
fiber filter
backwash
valves
Prior art date
Application number
RU2010115270/05A
Other languages
English (en)
Inventor
Тацуо НЕДЗИГАКИ (JP)
Тацуо НЕДЗИГАКИ
Томотака ХАСИМОТО (JP)
Томотака ХАСИМОТО
Original Assignee
Асахи Касеи Кемикалз Корпорейшн
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Асахи Касеи Кемикалз Корпорейшн filed Critical Асахи Касеи Кемикалз Корпорейшн
Application granted granted Critical
Publication of RU2435630C1 publication Critical patent/RU2435630C1/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/02Membrane cleaning or sterilisation ; Membrane regeneration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • B01D63/04Hollow fibre modules comprising multiple hollow fibre assemblies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/444Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/12Specific discharge elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/18Specific valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/48Mechanisms for switching between regular separation operations and washing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2315/00Details relating to the membrane module operation
    • B01D2315/06Submerged-type; Immersion type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2317/00Membrane module arrangements within a plant or an apparatus
    • B01D2317/04Elements in parallel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/04Backflushing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/18Use of gases
    • B01D2321/185Aeration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/20By influencing the flow
    • B01D2321/2033By influencing the flow dynamically
    • B01D2321/2041Mixers; Agitators

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

Изобретение относится к пленочному фильтрационному устройству (7) из полых волокон для фильтрации исходного раствора путем его прохождения через пленку из полых волокон, погруженную в рабочую ванну (24). Каналы (12а и 12b) отвода фильтрованной жидкости фильтрационного устройства (7) соединены с магистральным трубопроводом (11) отвода фильтрованной жидкости через двухпозиционные клапаны (26а и 26b) соответственно, трубопровод (11) соединен с всасывающим портом всасывающего насоса (25), двухпозиционный клапан (30) соединен с трубопроводом (11), соединенным с выпускным портом всасывающего насоса (25), каналы (29а и 29b) обратной промывки соединены через двухпозиционные клапаны (28а и 28b) с магистральным трубопроводом (27) обратной промывки, ответвленным от участка между двухпозиционным клапаном (30) и всасывающим насосом (25) трубопровода (11), каналы (29а и 29b) включают в себя множество половолоконных фильтрующих пленочных модулей (16а и 16b). Изобретение исключает потребность в промывочном насосе или баке обратной промывки для смыва взвешенного вещества или подобных налипаний на фильтрующую мембрану. 5 з.п. ф-лы, 9 ил.

Description

Настоящее изобретение относится к фильтрационному оборудованию на основе половолоконных мембран (т.е. пленочного фильтрационного устройства из полых волокон), обеспечивающему взаимную обратную промывку между половолоконными фильтрующими мембранными модулями.
В JP-A-9-220446 (патентном документе 1) описана обратная промывка с помощью половолоконного мембранного модуля, работающего под внешним давлением, как традиционного фильтрационного оборудования на основе половолоконных мембран.
Однако в вышеописанном JP-A-9-220446 требуется промывочный насос или бак обратной промывки для смыва взвешенного вещества или подобных налипаний на половолоконную фильтрующую мембрану, что имеет большую зону обслуживания и увеличивает расходы.
Настоящее изобретение выполнено с возможностью решения вышеописанной проблемы и ставит задачу создания фильтрационного оборудования на основе половолоконных мембран, которое исключает потребность в промывочном насосе или баке обратной промывки для смыва взвешенного вещества или подобных налипаний на половолоконную фильтрующую мембрану.
Фильтрационное оборудование на основе половолоконных мембран, в котором исходная жидкость проходит через половолоконную мембрану, погруженную в рабочий резервуар, и фильтруется по настоящему изобретению, имеет первую схему компоновки, включающую в себя множество половолоконных фильтрующих мембранных модулей, в которых каналы отвода фильтрата соединены с магистральным трубопроводом отвода фильтрата посредством двухпозиционных клапанов, магистральный трубопровод отвода фильтрата соединен с портом для всасывания жидкости всасывающего насоса, двухпозиционный клапан соединен с магистральным трубопроводом отвода фильтрата, соединенным с отводящим жидкость портом всасывающего насоса, а каналы обратной промывки соединены через двухпозиционные клапаны с магистральным трубопроводом обратной промывки, ответвленным от участка между двухпозиционным клапаном магистрального трубопровода отвода фильтрата и всасывающим насосом, и сообщаются с каналами отвода фильтрата, расположенными впереди своих двухпозиционных клапанов, при этом двухпозиционное регулирование двухпозиционных клапанов позволяет осуществлять взаимную обратную промывку между множеством половолоконных фильтрующих мембранных модулей.
Фильтрационное оборудование на основе половолоконных мембран по настоящему изобретению имеет вторую схему компоновки, включающую в себя средство подачи воздуха, расположенное в рабочем резервуаре, а также средство управления степенью аэрации, увеличивающее степень насыщения воздухом средством подачи воздуха в процессе взаимной обратной промывки между множеством половолоконных фильтрующих мембранных модулей.
Фильтрационное оборудование на основе половолоконных мембран по настоящему изобретению имеет третью схему компоновки, в которой средство управления степенью аэрации выполнено с возможностью увеличения степени насыщения воздухом средством подачи воздуха полностью для всего множества половолоконных фильтрующих мембранных модулей, погруженных в рабочий резервуар по второй схеме компоновки.
Фильтрационное оборудование на основе половолоконных мембран по настоящему изобретению имеет четвертую схему компоновки, в которой средство управления степенью аэрации выполнено с возможностью увеличения степени насыщения воздухом средством подачи воздуха только для половолоконного фильтрующего мембранного модуля в процессе обратной промывки среди множества половолоконных фильтрующих мембранных модулей, погруженных в рабочий резервуар по второй схеме компоновки.
Фильтрационное оборудование на основе половолоконных мембран по настоящему изобретению имеет пятую схему компоновки, в которой средство управления степенью аэрации выполнено с возможностью увеличения степени насыщения воздухом средством подачи воздуха в области, образованной между половолоконным фильтрующим мембранным модулем в процессе обратной промывки и половолоконным фильтрующим мембранным модулем в процессе фильтрации, среди множества половолоконных фильтрующих мембранных модулей, погруженных в рабочий резервуар по второй схеме компоновки.
Фильтрационное оборудование на основе половолоконных мембран по настоящему изобретению имеет шестую схему компоновки, при которой в рабочем резервуаре обеспечено средство перемешивания, при этом средство перемешивания перемешивает жидкость в рабочем резервуаре в процессе взаимной обратной промывки между множеством половолоконных фильтрующих мембранных модулей по первой схеме компоновки.
В первой схеме компоновки фильтрационного оборудования на основе половолоконных мембран по настоящему изобретению двухпозиционное регулирование двухпозиционных клапанов обеспечивает взаимную обратную промывку между множеством половолоконных фильтрующих мембранных модулей, тем самым устраняя необходимость в промывочном насосе или баке обратной промывки для смыва налипаний взвешенного вещества на половолоконную мембрану, что уменьшает размеры и стоимость фильтрационной установки.
Во второй схеме компоновки фильтрационного оборудования на основе половолоконных мембран по настоящему изобретению в процессе взаимной обратной промывки между множеством половолоконных фильтрующих мембранных модулей, погруженных в рабочий резервуар, средство управления степенью аэрации может увеличить степень насыщения воздухом для создания восходящего потока в обрабатываемой жидкости в рабочем резервуаре, и, таким образом, взвешенное вещество, удаленное с половолоконной мембраны в процессе обратной промывки, поднимается восходящим потоком примерно до верхнего слоя жидкости в рабочем резервуаре. В результате этого восходящий поток препятствует налипанию взвешенного вещества на половолоконную мембрану в процессе фильтрации.
В третьей схеме компоновки фильтрационного оборудования на основе половолоконных мембран по настоящему изобретению средство управления степенью аэрации может увеличить степень насыщения воздухом полностью для половолоконной мембраны в процессе обратной промывки, а также половолоконной мембраны в процессе фильтрации, тем самым увеличивая моющий эффект для половолоконного фильтрующего мембранного модуля в процессе обратной промывки, а также эффект по предотвращению повторного налипания взвешенного вещества на половолоконный фильтрующий мембранный модуль в процессе фильтрации.
В четвертой схеме компоновки фильтрационного оборудования на основе половолоконных мембран по настоящему изобретению средство управления степенью аэрации может увеличить степень насыщения воздухом только для половолоконной мембраны в процессе обратной промывки с целью создания восходящего потока для половолоконного фильтрующего мембранного модуля в процессе обратной промывки. Таким образом, взвешенное вещество, удаленное с половолоконного фильтрующего мембранного модуля в процессе обратной промывки, отводится восходящим потоком в верхний слой жидкости в рабочем резервуаре, чтобы далее создать нисходящий поток вдоль смежного половолоконного фильтрующего мембранного модуля в процессе фильтрации и образовать закрученный поток в рабочем резервуаре, тем самым эффективно увеличивая моющий эффект для половолоконного фильтрующего мембранного модуля в процессе обратной промывки, а также эффект по предотвращению повторного налипания взвешенного вещества на половолоконный фильтрующий мембранный модуль в процессе фильтрации.
В пятой схеме компоновки фильтрационного оборудования на основе половолоконных мембран по настоящему изобретению средство управления степенью аэрации может увеличить степень насыщения воздухом в области, образованной между половолоконной мембраной в процессе обратной промывки и половолоконной мембраной в процессе фильтрации, для создания устойчивого закрученного потока, тем самым эффективно увеличивая моющий эффект.
В шестой схеме компоновки фильтрационного оборудования на основе половолоконных мембран по настоящему изобретению в процессе взаимной обратной промывки между множеством половолоконных фильтрующих мембранных модулей, погруженных в рабочий резервуар, средство перемешивания перемешивает жидкость в рабочем резервуаре, и, таким образом, взвешенное вещество, удаленное с половолоконной мембраны в процессе обратной промывки, отводится потоком, создаваемым при перемешивании, и не налипает на половолоконную мембрану в процессе фильтрации.
Сущность изобретения поясняется на чертежах, где:
На фигуре 1А показана взаимная обратная промывка между множеством половолоконных фильтрующих мембранных модулей путем двухпозиционного регулирования двухпозиционных клапанов фильтрационного оборудования на основе половолоконных мембран, работающих под внешним давлением;
на фигуре 1В показана взаимная обратная промывка между множеством половолоконных фильтрующих мембранных модулей путем двухпозиционного регулирования двухпозиционных клапанов фильтрационного оборудования на основе половолоконных мембран, работающих под внутренним давлением;
на фигуре 1С показана взаимная обратная промывка между множеством половолоконных фильтрующих мембранных модулей путем двухпозиционного регулирования двухпозиционных клапанов фильтрационного оборудования на основе половолоконных мембран в случае погружения мембран;
на фигуре 2 показана схема компоновки, включающая в себя средство подачи воздуха, предназначенное для подачи воздуха в процессе обратной промывки между множеством половолоконных фильтрующих мембранных модулей в случае работы под внешним давлением;
на фигуре 3 продемонстрирована схема управления степенью насыщения воздухом в случае погружения мембран;
на фигуре 4 продемонстрирована схема управления степенью насыщения воздухом в случае погружения мембран;
на фигуре 5 продемонстрирована схема управления степенью насыщения воздухом в случае погружения мембран;
на фигуре 6 продемонстрирована схема управления степенью насыщения воздухом в случае погружения мембран;
на фигуре 7 продемонстрирована схема перемешивания в рабочем резервуаре в случае погружения мембран.
Вариант осуществления фильтрационного оборудования на основе половолоконных мембран по настоящему изобретению будет подробно описан со ссылкой на чертежи. На фигурах 1А-1С показана взаимная обратная промывка между множеством половолоконных фильтрующих мембранных модулей путем двухпозиционного регулирования двухпозиционных клапанов фильтрационного оборудования на основе половолоконных мембран, при этом на фигуре 1А показан случай работы под внешним давлением, на фигуре 1В показан случай работы под внутренним давлением, на фигуре 1С показан случай погружения мембран, а на фигуре 2 показана схема компоновки, включающая в себя средство подачи воздуха, предназначенное для подачи воздуха в процессе обратной промывки между множеством половолоконных фильтрующих мембранных модулей в случае работы под внешним давлением.
На фигурах 1А-1С показана взаимная обратная промывка между парой половолоконных фильтрующих мембранных модулей 16а и 16b путем двухпозиционного регулирования двухпозиционных клапанов фильтрационного оборудования на основе половолоконной мембраны 7, на фигуре 1А показана взаимная обратная промывка между мембранами в случае работы под внешним давлением, при этом половолоконные мембраны помещены в корпус, на фигуре 1В показана взаимная обратная промывка между мембранами в случае работы под внутренним давлением, при этом половолоконные мембраны помещены в корпус, на фигуре 1С показана взаимная обратная промывка между мембранами в случае погружения мембран, при этом половолоконные мембраны погружены в рабочий резервуар.
Как показано на фигуре 1А, фильтрационное оборудование на основе половолоконной мембраны 7, работающей под внешним давлением, где давление прикладывается к исходной жидкости снаружи половолоконных мембран, помещенных в корпус, чтобы добиться прохождения фильтрата внутрь половолоконных мембран, включает в себя пару половолоконных фильтрующих мембранных модулей 16а и 16b, где каналы 10а и 10b подачи исходной жидкости соединены с общим магистральным трубопроводом 8 подачи исходной жидкости, в который исходная жидкость подается подающим насосом, который не показан, через двухпозиционные клапаны 9а и 9b, каналы 12а и 12b отвода фильтрата соединены с общим магистральным трубопроводом 11 отвода фильтрата, магистральный трубопровод 11 отвода фильтрата имеет двухпозиционный клапан 18, а каналы 15а и 15b возврата исходной жидкости соединены с общим магистральным трубопроводом 13 возврата исходной жидкости через двухпозиционные клапаны 14а и 14b, так чтобы двухпозиционное регулирование двухпозиционных клапанов 9а, 9b, 14а, 14b и 18 позволяло осуществлять взаимную обратную промывку между парой половолоконных фильтрующих мембранных модулей 16а и 16b.
Далее со ссылкой на фигуру 1А будут описаны процедуры фильтрации и взаимной обратной промывки между парой половолоконных фильтрующих мембранных модулей 16а и 16b. Прежде всего, в процедуре фильтрации двухпозиционные клапаны 9а и 9b и двухпозиционный клапан 18, обеспеченный дальше по ходу каналов 12а и 12b отвода фильтрата в магистральном трубопроводе 11 отвода фильтрата в направлении потока фильтрата (правая сторона фигуры 1А), открыты, исходная жидкость проходит снаружи внутрь (фильтрация под внешним давлением) половолоконных мембран половолоконных фильтрующих мембранных модулей 16а и 16b, при этом двухпозиционные клапаны 14а и 14b закрыты, что предназначено для полной фильтрации, либо часть исходной жидкости возвращается из каналов 15а и 15b возврата исходной жидкости через магистральный трубопровод 13 возврата исходной жидкости в резервуар исходной жидкости, который не показан, при этом двухпозиционные клапаны 14а и 14b открыты, что предназначено для циркуляционной фильтрации.
Далее, что касается процедуры взаимной обратной промывки между парой половолоконных фильтрующих мембранных модулей 16а и 16b, для осуществления процедуры обратной промывки половолоконного фильтрующего мембранного модуля 16а, когда двухпозиционные клапаны 9b и 14а открыты, а двухпозиционные клапаны 9а, 14b и 18 закрыты, исходная жидкость проходит снаружи внутрь (фильтрация под внешним давлением) половолоконной мембраны половолоконного фильтрующего мембранного модуля 16b и фильтруется, а фильтрат вынужденно поступает назад в канал 12а отвода фильтрата половолоконного фильтрующего мембранного модуля 16а и проходит изнутри наружу половолоконной мембраны, при этом налипания взвешенного вещества, расположенные на половолоконной мембране, удаляются и выводятся наружу из канала 15а возврата исходной жидкости через магистральный трубопровод 13 возврата исходной жидкости.
Точно также для осуществления процедуры обратной промывки половолоконного фильтрующего мембранного модуля 16b, когда двухпозиционные клапаны 9а и 14а открыты, а двухпозиционные клапаны 9b, 14а и 18 закрыты, исходная жидкость проходит снаружи внутрь (фильтрация под внешним давлением) половолоконной мембраны половолоконного фильтрующего мембранного модуля 16а и фильтруется, а фильтрат вынужденно поступает назад в канал 12b отвода фильтрата половолоконного фильтрующего мембранного модуля 16b и проходит изнутри наружу половолоконной мембраны, при этом налипания взвешенного вещества, расположенные на половолоконной мембране, удаляются и выводятся наружу из канала 15b возврата исходной жидкости через магистральный трубопровод 13 возврата исходной жидкости.
В процедуре промывки под напором, для того чтобы просто промыть наружные поверхности половолоконных мембран половолоконных фильтрующих мембранных модулей 16а и 16b, когда двухпозиционные клапаны 9а, 9b, 14а и 14b открыты, а двухпозиционный клапан 18 закрыт, исходная жидкость подается из магистрального трубопровода 8 подачи исходной жидкости в каналы 10а и 10b подачи исходной жидкости и проходит через наружные стороны половолоконных мембран половолоконных фильтрующих мембранных модулей 16а и 16b, при этом налипания взвешенного вещества на наружных сторонах половолоконных мембран удаляются и выводятся наружу из каналов 15а и 15b возврата исходной жидкости через магистральный трубопровод 13 возврата исходной жидкости.
На фигуре 1B, также как и на фигуре 1А, представлена схема компоновки фильтрационного оборудования на основе половолоконной мембраны 7, работающей под внутренним давлением, где давление прикладывается к исходной жидкости изнутри половолоконных мембран, помещенных в корпус, чтобы добиться прохождения фильтрата наружу половолоконных мембран, так что двухпозиционное регулирование двухпозиционных клапанов 9а, 9b, 14а, 14b и 18 позволяет осуществлять взаимную обратную промывку между парой половолоконных фильтрующих мембранных модулей 16а и 16b.
Как показано на фигуре 1В, в процедуре фильтрации двухпозиционные клапаны 9а и 9b и двухпозиционный клапан 18, обеспеченный дальше по ходу каналов 12а и 12b отвода фильтрата в магистральном трубопроводе 11 отвода фильтрата в направлении потока фильтрата (правая сторона фигуры 1В), открыты, исходная жидкость проходит изнутри наружу (фильтрация под внутренним давлением) половолоконных мембран половолоконных фильтрующих мембранных модулей 16а и 16b, при этом двухпозиционные клапаны 14а и 14b закрыты, что предназначено для полной фильтрации, либо часть исходной жидкости возвращается из каналов 15а и 15b возврата исходной жидкости через магистральный трубопровод 13 возврата исходной жидкости в резервуар исходной жидкости, который не показан, при этом двухпозиционные клапаны 14а и 14b открыты, что предназначено для циркуляционной фильтрации.
Далее, как показано на фигуре 1С, в процедуре взаимной обратной промывки между парой половолоконных фильтрующих мембранных модулей 16а и 16b для осуществления процедуры обратной промывки половолоконного фильтрующего мембранного модуля 16а, когда двухпозиционные клапаны 9b и 14а открыты, а двухпозиционные клапаны 9а, 14b и 18 закрыты, исходная жидкость проходит изнутри наружу (фильтрация под внутренним давлением) половолоконной мембраны половолоконного фильтрующего мембранного модуля 16b и фильтруется, а фильтрат вынужденно поступает назад в канал 12а отвода фильтрата половолоконного фильтрующего мембранного модуля 16а и проходит снаружи внутрь половолоконной мембраны, при этом налипания взвешенного вещества, расположенные на половолоконной мембране, удаляются и выводятся наружу из канала 15а возврата исходной жидкости через магистральный трубопровод 13 возврата исходной жидкости.
Точно также для осуществления процедуры обратной промывки половолоконного фильтрующего мембранного модуля 16b, когда двухпозиционные клапаны 9а и 14b открыты, а двухпозиционные клапаны 9b, 14а и 18 закрыты, исходная жидкость проходит изнутри наружу (фильтрация под внутренним давлением) половолоконной мембраны половолоконного фильтрующего мембранного модуля 16а и фильтруется, а фильтрат вынужденно поступает назад в канал 12b отвода фильтрата половолоконного фильтрующего мембранного модуля 16b и проходит снаружи внутрь половолоконной мембраны, при этом налипания взвешенного вещества, расположенные на половолоконной мембране, удаляются и выводятся наружу из канала 15b возврата исходной жидкости через магистральный трубопровод 13 возврата исходной жидкости.
Как показано на фигуре 1С, фильтрационное оборудование на основе половолоконной мембраны 7 погружного типа, в котором обнаженные половолоконные мембраны, один конец которых закрыт, погружены в рабочий резервуар 24, исходная жидкость в рабочем резервуаре 24 всасывается с другого, открытого конца половолоконных мембран посредством всасывающего насоса 25, проходит через половолоконные мембраны и фильтруется, а фильтрат откачивается, включает в себя пару половолоконных фильтрующих мембранных модулей 16а, 16b, где исходная жидкость подается в рабочий резервуар 24 подающим насосом, который не показан, каналы 12а и 12b отвода фильтрата соединены с общим магистральным трубопроводом 11 отвода фильтрата через двухпозиционные клапаны 26а и 26b, магистральный трубопровод 11 отвода фильтрата соединен с портом для всасывания жидкости всасывающего насоса 25, двухпозиционный клапан 30 соединен с магистральным трубопроводом 11 отвода фильтрата, соединенным с отводящим жидкость портом всасывающего насоса 25, каналы 29а и 29b обратной промывки соединены через двухпозиционные клапаны 28а и 28b с общим магистральным трубопроводом 27 обратной промывки, ответвленным от участка между двухпозиционным клапаном 30 магистрального трубопровода 11 отвода фильтрата и всасывающим насосом 25, и сообщаются с каналами 12а и 12b отвода фильтрата, расположенными впереди своих двухпозиционных клапанов 26а и 26b, так что двухпозиционное регулирование двухпозиционных клапанов 26а, 26b, 28а, 28b и 30 позволяет осуществлять взаимную обратную промывку между парой половолоконных фильтрующих мембранных модулей 16а и 16b.
Далее со ссылкой на фигуру 1С будет описана процедура взаимной обратной промывки между парой половолоконных фильтрующих мембранных модулей 16а и 16b. Прежде всего, что касается процедуры фильтрации, двухпозиционные клапаны 26а и 26b и двухпозиционный клапан 30, обеспеченный дальше по ходу от всасывающего насоса 25 в магистральном трубопроводе 11 отвода фильтрата в направлении потока фильтрата (правая сторона фигуры 1С), открыты, всасывающий насос 25 приводится в действие по всасыванию исходной жидкости, собранной в рабочем резервуаре 24, при этом двухпозиционные клапаны 28а и 28b закрыты, и исходная жидкость проходит снаружи внутрь половолоконных мембран половолоконных фильтрующих мембранных модулей 16а и 16b.
Далее, что касается процедуры взаимной обратной промывки между парой половолоконных фильтрующих мембранных модулей 16а и 16b, для осуществления процедуры обратной промывки половолоконного фильтрующего мембранного модуля 16а, когда двухпозиционные клапаны 26b и 28а открыты, а двухпозиционные клапаны 26а, 28b и 30 закрыты, всасывающий насос 25 приводится в действие по всасыванию исходной жидкости, собранной в рабочем резервуаре 24, исходная жидкость проходит снаружи внутрь половолоконной мембраны половолоконного фильтрующего мембранного модуля 16b, фильтрат вынужденно поступает назад в канал 12а отвода фильтрата половолоконного фильтрующего мембранного модуля 16а и проходит изнутри наружу половолоконной мембраны, при этом налипания взвешенного вещества, расположенные на половолоконной мембране, удаляются и выводятся в рабочий резервуар 24.
Точно также для осуществления процедуры обратной промывки половолоконного фильтрующего мембранного модуля 16b, когда двухпозиционные клапаны 26а и 28b открыты, а двухпозиционные клапаны 26b, 28а и 30 закрыты, всасывающий насос 25 приводится в действие по всасыванию исходной жидкости, собранной в рабочем резервуаре 24, исходная жидкость проходит снаружи внутрь половолоконной мембраны половолоконного фильтрующего мембранного модуля 16а, фильтрат вынужденно поступает назад в канал 12b отвода фильтрата половолоконного фильтрующего мембранного модуля 16b и проходит изнутри наружу половолоконной мембраны, при этом налипания взвешенного вещества, расположенные на половолоконной мембране, удаляются и выводятся в рабочий резервуар 24.
На фигуре 2 показан пример фильтрационного оборудования на основе половолоконной мембраны 7, осуществляющей фильтрацию под внешним давлением, описанного выше со ссылкой на фигуру 1А, где трубоотводы 19а и 19b для подачи воздуха, ответвленные от магистрального трубопровода 19 подачи воздуха, который является средством подачи воздуха, предназначенным для подачи воздуха в процессе взаимной обратной промывки между парой половолоконных фильтрующих мембранных модулей 16а и 16b, через двухпозиционные клапаны 31а и 31b сообщаются с каналами 10а и 10b подачи исходной жидкости. Процедура взаимной обратной промывки между половолоконными фильтрующими мембранными модулями 16а и 16b та же, что описана выше со ссылкой на фигуру 1А, при этом в процессе обратной промывки каждого из половолоконных фильтрующих мембранных модулей 16а и 16b двухпозиционные клапаны 31а и 31b, соответствующие половолоконным фильтрующим мембранным модулям 16а и 16b, в случае необходимости могут быть открыты для проведения обратной промывки с использованием воздушных пузырьков.
В вышеописанном варианте осуществления пара половолоконных фильтрующих мембранных модулей 16а и 16b относится к одной или множеству групп половолоконных фильтрующих мембранных модулей, которые производят фильтрат для обратной промывки, а также к одной или множеству групп половолоконных фильтрующих мембранных модулей, которые должны пройти обратную промывку, будучи в паре. Пара половолоконных фильтрующих мембранных модулей 16а и 16b также включает в себя одну или множество групп половолоконных фильтрующих мембранных модулей, соединенных с отдельными магистральными трубопроводами, помимо половолоконных фильтрующих мембранных модулей, соединенных с общим магистральным трубопроводом.
С использованием вышеописанной схемы выполняемое автоматически или вручную двухпозиционное регулирование двухпозиционных клапанов позволяет осуществлять взаимную обратную промывку между парой половолоконных фильтрующих мембранных модулей 16а и 16b, тем самым исключая необходимость в промывочном насосе или баке обратной промывки для смыва налипаний взвешенного вещества на половолоконные мембраны, что уменьшает размеры и стоимость фильтрационной установки.
Кроме того, трубопровод подачи воздуха, который является средством подачи воздуха, подает воздух в процессе взаимной обратной промывки между парой половолоконных фильтрующих мембранных модулей 16а и 16b, тем самым создавая колебания половолоконных мембран для увеличения моющего эффекта.
Далее будет описана иная схема компоновки фильтрационного оборудования на основе половолоконных мембран по настоящему изобретению со ссылкой на фигуры 3-6. Составные элементы, являющиеся теми же что в вышеописанном варианте осуществления, будут обозначены теми же ссылочными позициями, а их описание будет опущено. В этом варианте осуществления, как показано на фигурах 3-6, обеспечены трубопроводы 41, 42 и 43 подачи воздуха, которые являются средством подачи воздуха, имеющие аэрационные отверстия 41а, 42а и 43а, размещенные в нижней части рабочего резервуара 24, а также обеспечен блок 44 управления степенью аэрации, который является средством управления степенью аэрации для увеличения или уменьшения степени насыщения воздухом трубопроводами 41, 42 и 43 подачи воздуха, которые являются средством подачи воздуха, в процессе взаимной обратной промывки между множеством половолоконных фильтрующих мембранных модулей 16а и 16b, погруженных в рабочий резервуар 24, как описано выше со ссылкой на фигуру 1С. Предпочтительно увеличивать степень насыщения воздухом, поскольку это увеличивает моющий эффект для половолоконного фильтрующего мембранного модуля, а также эффект по предотвращению повторного налипания взвешенного вещества на половолоконный фильтрующий мембранный модуль.
Как показано на фигуре 3, блок 44 управления степенью аэрации в варианте осуществления может выполнять функции управления по увеличению степени насыщения воздухом трубопроводами 41, 42 и 43 подачи воздуха, которые являются средством подачи воздуха, для всего множества половолоконных фильтрующих мембранных модулей 16а и 16b, погруженных в рабочий резервуар 24. На фигуре 4 показано управление по увеличению степени насыщения воздухом трубопроводами 41, 42 и 43 подачи воздуха, расположенными ниже половолоконных фильтрующих мембранных модулей 16а и 16b.
В вышеописанной схеме компоновки блок 44 управления степенью аэрации, который является средством управления степенью аэрации, выполнен с возможностью увеличения степени насыщения воздухом полностью всей половолоконной мембраны в процессе обратной промывки и половолоконной мембраны в процессе фильтрации, тем самым увеличивая моющий эффект для половолоконного фильтрующего мембранного модуля в процессе обратной промывки (половолоконного фильтрующего мембранного модуля 16b на фигурах 3 и 4), а также эффект по предотвращению повторного налипания взвешенного вещества на половолоконный фильтрующий мембранный модуль в процессе фильтрации (половолоконный фильтрующий мембранный модуль 16а на фигурах 3 и 4).
Как показано на фигуре 5, блок 44 управления степенью аэрации в варианте осуществления может также выполнять функции управления по увеличению степени насыщения воздухом трубопроводом 42 подачи воздуха, который является средством подачи воздуха только для половолоконного фильтрующего мембранного модуля в процессе обратной промывки (половолоконного фильтрующего мембранного модуля 16b на фигуре 5) из множества половолоконных фильтрующих мембранных модулей 16а и 16b, погруженных в рабочий резервуар 24.
В вышеописанной схеме компоновки блок 44 управления степенью аэрации, который является средством управления степенью аэрации, может увеличить степень насыщения воздухом только для половолоконной мембраны в процессе обратной промывки для создания восходящего потока 46 для половолоконного фильтрующего мембранного модуля в процессе обратной промывки (половолоконного фильтрующего мембранного модуля 16b на фигуре 5). Таким образом, взвешенное вещество, удаленное с половолоконного фильтрующего мембранного модуля в процессе обратной промывки (половолоконного фильтрующего мембранного модуля 16b на фигуре 5), отводится восходящим потоком 46 в верхний слой жидкости в рабочем резервуаре 24, чтобы далее создать нисходящий поток 47 вдоль смежного половолоконного фильтрующего мембранного модуля в процессе фильтрации (половолоконного фильтрующего мембранного модуля 16а на фигуре 5) и образовать закрученный поток в рабочем резервуаре 24, тем самым эффективно увеличивая моющий эффект для половолоконного фильтрующего мембранного модуля в процессе обратной промывки (половолоконного фильтрующего мембранного модуля 16b на фигуре 5), а также эффект по предотвращению повторного налипания взвешенного вещества на половолоконный фильтрующий мембранный модуль в процессе фильтрации (половолоконный фильтрующий мембранный модуль 16а на фигуре 5).
Как показано на фигуре 6, блок 44 управления степенью аэрации в варианте осуществления может также выполнять функции управления по увеличению степени насыщения воздухом трубопроводом 43 подачи воздуха, который является средством подачи воздуха для промежуточной области 45, образованной между половолоконным фильтрующим мембранным модулем в процессе обратной промывки (половолоконным фильтрующим мембранным модулем 16b на фигуре 6) и половолоконным фильтрующим мембранным модулем в процессе фильтрации (половолоконным фильтрующим мембранным модулем 16а на фигуре 6) среди множества половолоконных фильтрующих мембранных модулей 16а и 16b, погруженных в рабочий резервуар 24.
В вышеописанной схеме компоновки блок 44 управления степенью аэрации, который является средством управления степенью аэрации, может увеличить степень насыщения воздухом в промежуточной области 45, образованной между половолоконной мембраной в процессе обратной промывки и половолоконной мембраной в процессе фильтрации, для создания устойчивого закрученного потока, тем самым эффективно увеличивая моющий эффект.
В вышеописанной схеме компоновки в процессе взаимной обратной промывки между множеством половолоконных фильтрующих мембранных модулей 16а и 16b, погруженных в рабочий резервуар 24, блок 44 управления степенью аэрации, который является средством управления степенью аэрации, может увеличить степень насыщения воздухом для создания восходящего потока 46 в обрабатываемой жидкости в рабочем резервуаре 24. Таким образом, взвешенное вещество, удаленное с половолоконной фильтрующей мембраны в процессе обратной промывки, отводится восходящим потоком 46 в верхний слой жидкости в рабочем резервуаре 24 и не налипает на половолоконную фильтрующую мембрану в процессе фильтрации.
Далее будет описана дополнительная схема компоновки фильтрационного оборудования на основе половолоконных мембран по настоящему изобретению со ссылкой на фигуру 7. В этом варианте осуществления, как показано на фигуре 7, в нижней части рабочего резервуара 24 обеспечена мешалка 48, которая является средством перемешивания, и жидкость в рабочем резервуаре 24 перемешивается мешалкой 48 в процессе взаимной обратной промывки между множеством половолоконных фильтрующих мембранных модулей 16а и 16b.
В вышеописанной схеме компоновки жидкость в рабочем резервуаре 24 перемешивается мешалкой 48 в процессе взаимной обратной промывки между множеством половолоконных фильтрующих мембранных модулей 16а и 16b, погруженных в рабочий резервуар 24, и, таким образом, взвешенное вещество, удаленное с половолоконной мембраны в процессе обратной промывки, отводится потоком, создаваемым при перемешивании, и не налипает на половолоконную мембрану в процессе фильтрации.
Настоящее изобретение может применяться в фильтрационном оборудовании на основе половолоконных мембран, обеспечивающем взаимную обратную промывку между половолоконными фильтрующими мембранными модулями.
ОПИСАНИЕ ССЫЛОЧНЫХ ПОЗИЦИЙ
7 - фильтрационное оборудование на основе половолоконных мембран
8 - магистральный трубопровод подачи исходной жидкости
9а, 9b - двухпозиционный клапан
10а, 10b - канал подачи исходной жидкости
11 - магистральный трубопровод отвода фильтрата
12а, 12b - канал отвода фильтрата
13 - магистральный трубопровод возврата исходной жидкости
14а, 14b - двухпозиционный клапан
15а, 15b - канал возврата исходной жидкости
16а, 16b - половолоконный фильтрующий мембранный модуль
18 - двухпозиционный клапан
19 - магистральный трубопровод подачи воздуха
19а, 19b - трубоотводы для подачи воздуха
24 - рабочий резервуар
25 - всасывающий насос
26а, 26b - двухпозиционный клапан
27 - магистральный трубопровод обратной промывки
28а, 28b - двухпозиционный клапан
29а, 29b - канал обратной промывки
30 - двухпозиционный клапан
31а, 131b - двухпозиционный клапан
41-43 - трубопровод подачи воздуха
41а-41b - аэрационное отверстие
44 - блок управления степенью аэрации
45 - промежуточная область
46 - восходящий поток
47 - нисходящий поток
48 - мешалка

Claims (6)

1. Фильтрационное оборудование на основе половолоконных мембран, в котором исходная жидкость проходит через половолоконную мембрану, погруженную в рабочий резервуар, и фильтруется, содержащее множество половолоконных фильтрующих мембранных модулей, в которых каналы отвода фильтрата соединены с магистральным трубопроводом отвода фильтрата посредством двухпозиционных клапанов, причем магистральный трубопровод отвода фильтрата соединен с портом для всасывания жидкости всасывающего насоса, двухпозиционный клапан соединен с магистральным трубопроводом отвода фильтрата, соединенным с отводящим жидкость портом всасывающего насоса, а каналы обратной промывки соединены через двухпозиционные клапаны с магистральным трубопроводом обратной промывки, ответвленным от участка между двухпозиционным клапаном магистрального трубопровода отвода фильтрата и всасывающим насосом, и сообщены с каналами отвода фильтрата, расположенными впереди своих двухпозиционных клапанов, при этом двухпозиционное регулирование двухпозиционных клапанов позволяет осуществлять взаимную обратную промывку между множеством половолоконных фильтрующих мембранных модулей.
2. Фильтрационное оборудование на основе половолоконных мембран по п.1, содержащее средство подачи воздуха, расположенное в рабочем резервуаре, а также средство управления степенью аэрации, увеличивающее степень насыщения воздухом средством подачи воздуха в процессе взаимной обратной промывки между множеством половолоконных фильтрующих мембранных модулей.
3. Фильтрационное оборудование на основе половолоконных мембран по п.2, в котором средство управления степенью аэрации выполнено с возможностью увеличения степени насыщения воздухом средством подачи воздуха полностью для всего множества половолоконных фильтрующих мембранных модулей, погруженных в рабочий резервуар.
4. Фильтрационное оборудование на основе половолоконных мембран по п.2, в котором средство управления степенью аэрации выполнено с возможностью увеличения степени насыщения воздухом средством подачи воздуха только для половолоконного фильтрующего мембранного модуля в процессе обратной промывки среди множества половолоконных фильтрующих мембранных модулей, погруженных в рабочий резервуар.
5. Фильтрационное оборудование на основе половолоконных мембран по п.2, в котором средство управления степенью аэрации выполнено с возможностью увеличения степени насыщения воздухом средством подачи воздуха в области, образованной между половолоконным фильтрующим мембранным модулем в процессе обратной промывки и половолоконным фильтрующим мембранным модулем в процессе фильтрации, среди множества половолоконных фильтрующих мембранных модулей, погруженных в рабочий резервуар.
6. Фильтрационное оборудование на основе половолоконных мембран по п.1, в котором в рабочем резервуаре расположено средство перемешивания, при этом средство перемешивания выполнено с возможностью перемешивания жидкости в рабочем резервуаре в процессе взаимной обратной промывки между множеством половолоконных фильтрующих мембранных модулей.
RU2010115270/05A 2007-09-18 2008-09-10 Пленочное фильтрационное устройство из полых волокон RU2435630C1 (ru)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2007-240680 2007-09-18
JP2007240680 2007-09-18
JP2008152372 2008-06-11
JP2008-152372 2008-06-11

Publications (1)

Publication Number Publication Date
RU2435630C1 true RU2435630C1 (ru) 2011-12-10

Family

ID=40467817

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2010115270/05A RU2435630C1 (ru) 2007-09-18 2008-09-10 Пленочное фильтрационное устройство из полых волокон

Country Status (12)

Country Link
US (2) US20110079548A1 (ru)
EP (1) EP2191886A4 (ru)
JP (1) JP5135352B2 (ru)
KR (2) KR20100127885A (ru)
CN (2) CN102049197A (ru)
AU (1) AU2008301791B2 (ru)
CA (1) CA2699420A1 (ru)
GC (1) GC0001958A (ru)
RU (1) RU2435630C1 (ru)
SG (1) SG159590A1 (ru)
TW (1) TW200927274A (ru)
WO (1) WO2009037999A1 (ru)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200927274A (en) * 2007-09-18 2009-07-01 Asahi Kasei Chemicals Corp Hollow yarn film filtering apparatus
JP5317452B2 (ja) * 2007-09-21 2013-10-16 旭化成ケミカルズ株式会社 中空糸膜濾過装置
JP5434752B2 (ja) * 2010-03-31 2014-03-05 栗田工業株式会社 濾過装置及びその運転方法
JP5631871B2 (ja) 2010-04-16 2014-11-26 旭化成ケミカルズ株式会社 異形多孔性中空糸膜、異形多孔性中空糸膜の製造方法、異形多孔性中空糸膜を用いたモジュール、ろ過装置、及び水処理方法
CN102657966B (zh) * 2012-05-23 2014-07-23 宋泳 快速抽滤装置
JP6386860B2 (ja) * 2014-10-03 2018-09-05 一般社団法人グリーンディール推進協会 濁水処理装置および濁水処理方法
CN112703022B (zh) * 2018-08-18 2024-10-29 株式会社高鸟 原液处理装置、原液处理装置的操作方法以及器具的清洗方法
EP3858452A4 (en) * 2018-09-27 2022-05-11 DIC Corporation DEGASIFICATION SYSTEM, LIQUID DEGASIFICATION METHOD, DEGASIFICATION MODULE, DEGASIFICATION SYSTEM MANUFACTURING METHOD AND NATURAL RESOURCE PRODUCTION METHOD
CN112237847A (zh) * 2020-09-02 2021-01-19 重庆电子工程职业学院 用于纳滤膜制备的酸洗装置
CN113996184B (zh) * 2021-12-08 2023-11-03 浙江华强环境科技有限公司 一种mbr中空纤维膜组件

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2782566B2 (ja) * 1991-12-27 1998-08-06 株式会社 荏原製作所 膜濾過装置
US5413227A (en) * 1992-10-05 1995-05-09 Midwest Research Institute Improved vortex reactor system
EP0820344B1 (fr) * 1995-04-14 1999-11-03 Aquasource Procede pour faire fonctionner et controler un groupe de modules de membranes de filtration, et groupe de modules permettant la mise en oeuvre du procede
JPH09220446A (ja) 1996-02-15 1997-08-26 Asahi Chem Ind Co Ltd 外圧式中空糸膜モジュール
JP2000005780A (ja) * 1998-06-24 2000-01-11 Kantou Regional Constr Bureau Ministry Of Constr 膜を用いた河川浄化方法
JP2000070936A (ja) * 1998-08-25 2000-03-07 Ibiden Engineering Kk 水処理装置
ATE264272T1 (de) * 1998-10-09 2004-04-15 Zenon Environmental Inc Zyklisch arbeitendes belüftungssystem für tauchmembranmodul
JP2002530188A (ja) * 1998-11-23 2002-09-17 ゼノン、エンバイロンメンタル、インコーポレーテッド 浸漬型薄膜を用いる水の濾過
JP2000254459A (ja) * 1999-03-05 2000-09-19 Sumitomo Heavy Ind Ltd 固液分離エレメントの洗浄方法及び固液分離装置
JP2002126460A (ja) * 2000-10-19 2002-05-08 Japan Organo Co Ltd 膜濾過装置
JP2002253935A (ja) * 2001-03-02 2002-09-10 Togami Electric Mfg Co Ltd 水処理装置及び水処理装置に使用する分離膜の目詰まりを防止する方法
JP4882164B2 (ja) * 2001-05-28 2012-02-22 栗田工業株式会社 膜濾過装置
CN1245249C (zh) * 2001-09-18 2006-03-15 天津膜天膜工程技术有限公司 中空纤维膜分离装置及其运行方法
JP2005319375A (ja) * 2004-05-07 2005-11-17 Suido Kiko Kaisha Ltd 膜処理方法および膜処理装置
JP2005342609A (ja) * 2004-06-02 2005-12-15 Nishihara:Kk 水処理装置
DE102005033314B4 (de) * 2005-07-16 2008-11-13 Bödrich & Strecker Anlagenbau GmbH Verfahren und Filteranlage zum Filtern von Rohwasser
JP5238128B2 (ja) * 2005-12-08 2013-07-17 三菱レイヨン株式会社 固液混合処理液の固液分離装置
TW200927274A (en) * 2007-09-18 2009-07-01 Asahi Kasei Chemicals Corp Hollow yarn film filtering apparatus

Also Published As

Publication number Publication date
TWI342230B (ru) 2011-05-21
GC0001958A (en) 2012-11-14
CN102049197A (zh) 2011-05-11
WO2009037999A1 (ja) 2009-03-26
US20110079548A1 (en) 2011-04-07
CA2699420A1 (en) 2009-03-26
SG159590A1 (en) 2010-04-29
JPWO2009037999A1 (ja) 2011-01-06
CN101801507A (zh) 2010-08-11
KR20100029847A (ko) 2010-03-17
JP5135352B2 (ja) 2013-02-06
TW200927274A (en) 2009-07-01
US20110132830A1 (en) 2011-06-09
KR20100127885A (ko) 2010-12-06
AU2008301791B2 (en) 2011-02-17
AU2008301791A1 (en) 2009-03-26
EP2191886A4 (en) 2011-07-13
EP2191886A1 (en) 2010-06-02

Similar Documents

Publication Publication Date Title
RU2435630C1 (ru) Пленочное фильтрационное устройство из полых волокон
KR101495375B1 (ko) 산기 장치의 세정 방법
KR101958154B1 (ko) 공기세정 일체형 침지식 중공사막 모듈 장치
US6224766B1 (en) Membrane treatment method and membrane treatment apparatus
JP5648387B2 (ja) 散気装置及び膜分離装置の運転方法
WO2010104054A1 (ja) 膜型メタン発酵処理装置およびメタン発酵処理方法
JP2024107018A (ja) 浸漬型膜ユニットを供給するシステム及び方法
JP5317452B2 (ja) 中空糸膜濾過装置
JPH01168304A (ja) 固液分離濃縮装置
WO2012099140A1 (ja) 膜分離設備および膜分離装置および膜分離設備の運転方法
JPH11239770A (ja) 管路洗浄方法及び装置、並びに浴槽水循環装置の洗浄方法及び洗浄機能付き浴槽水循環装置
JP2012161791A (ja) 膜分離設備および膜分離装置および膜分離設備の運転方法
JP3659833B2 (ja) 多段積み浸漬型膜分離装置の運転方法
CN104379511B (zh) 过滤及气升兼用装置以及水处理系统
JP2001047046A (ja) 膜分離式水処理装置
JP5248938B2 (ja) 汚水処理装置
JP2012217968A (ja) 排水処理装置及び排水処理装置の洗浄方法
JP2001347268A (ja) 水処理装置
JP4242003B2 (ja) 固液分離装置
CN205193606U (zh) 一种基于物联网控制的污水池控制系统
JP7583018B2 (ja) 浸漬型膜ユニットを供給するシステム及び方法
JP2015192937A (ja) 浸漬型膜分離装置及びその運転方法
KR101009470B1 (ko) 중공사막 수처리 장치
JP2001170455A (ja) 浸漬平膜分離装置
CN107285459B (zh) 一种膜生物反应器

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20150911