RU2427608C2 - Способ демеркаптанизации углеводородного сырья - Google Patents

Способ демеркаптанизации углеводородного сырья Download PDF

Info

Publication number
RU2427608C2
RU2427608C2 RU2009130801/04A RU2009130801A RU2427608C2 RU 2427608 C2 RU2427608 C2 RU 2427608C2 RU 2009130801/04 A RU2009130801/04 A RU 2009130801/04A RU 2009130801 A RU2009130801 A RU 2009130801A RU 2427608 C2 RU2427608 C2 RU 2427608C2
Authority
RU
Russia
Prior art keywords
catalyst
oil
demercaptanisation
temperature
mercaptans
Prior art date
Application number
RU2009130801/04A
Other languages
English (en)
Other versions
RU2009130801A (ru
Inventor
Надежда Титовна Берберова (RU)
Надежда Титовна Берберова
Елена Владимировна Шинкарь (RU)
Елена Владимировна Шинкарь
Нина Владимировна Полякова (RU)
Нина Владимировна Полякова
Original Assignee
Федеральное образовательное учреждение высшего профессионального образования "Астраханский государственный технический университет" (ФГОУ ВПО "АГТУ")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное образовательное учреждение высшего профессионального образования "Астраханский государственный технический университет" (ФГОУ ВПО "АГТУ") filed Critical Федеральное образовательное учреждение высшего профессионального образования "Астраханский государственный технический университет" (ФГОУ ВПО "АГТУ")
Priority to RU2009130801/04A priority Critical patent/RU2427608C2/ru
Publication of RU2009130801A publication Critical patent/RU2009130801A/ru
Application granted granted Critical
Publication of RU2427608C2 publication Critical patent/RU2427608C2/ru

Links

Abstract

Изобретение относится к области окислительной очистки углеводородных фракций от меркаптановой серы и может быть использовано в нефте- и газоперерабатывающей промышленности для демеркаптанизации нефтяных фракций, нефтепродуктов и газоконденсата и непосредственно на нефте- и газопромыслах для дезодорации сырья. Изобретение касается способа окислительной демеркаптанизации углеводородного сырья в присутствии гетерогенного катализатора, содержащего органическое соединение, нанесенное на твердый носитель, при этом в качестве гетерогенного катализатора окисления используют катализатор, содержащий 5-10% мас. 3,5 ди-трет.бутил о-бензохинона, нанесенного на оксид алюминия, процесс проводят при температуре 25-50°С при подаче воздуха и катализатор регенерируют в токе кислорода воздуха при данной температуре. Технический результат - повышение эффективности процесса демеркаптанизации углеводородного сырья при длительном использовании катализатора, снижение температуры проведения процесса, исключение стадии приготовления окислительных смесей.

Description

Изобретение относится к области окислительной очистки углеводородных фракций от меркаптановой серы и может быть использовано в нефте- и газоперерабатывающей промышленности для демеркаптанизации нефтяных фракций (бензиновых, керосиновых, дизельных), нефтепродуктов и газоконденсата и непосредственно на нефте- и газопромыслах для дезодорации сырья.
Известен способ демеркаптанизации нефтяных дистиллятов путем окисления меркаптанов кислородом воздуха в присутствии водно-щелочного раствора с использованием гетерогенного катализатора, представляющего собой твердый носитель (активированный уголь), на поверхность которого нанесен фталоцианин ванадия или кобальта [патент СССР №355805].
Недостатком указанного способа являются низкая степень конверсии меркаптанов в дисульфиды, значительные расходы щелочи, высокая стоимость катализаторов окисления меркаптанов и трудоемкость процесса утилизации отработанных водно-щелочных растворов.
Известен способ демеркаптанизации высококипящих нефтяных дистиллятов, основанный на окислении меркаптанов кислородом воздуха в 5-20%-ном растворе щелочи в присутствии катализатора, содержащего фталоцианин кобальта (0,005-0,9% мас.), нанесенного на углеродную или графитовую ткань [а.с. СССР №1512113, 1989]. Основными недостатками способа являются возможность очистки от меркаптанов только высококипящих нефтяных фракций с недостаточно высокой степенью окисления меркаптанов, низкая стабильность каталитической активности катализатора и необходимость применения щелочи в значительных количествах.
Известен способ очистки нефти, нефтепродуктов и газоконденсата от меркаптанов [А.С. СССР №2087520, 1997], заключающийся в использовании окислительной смеси, состоящей из азотной кислоты и органических веществ (аминов, амидов, эфиров, спиртов), реагирующих с образованием солей в молярном соотношении 1:(0,5-2,0). Смесь вводят в нефть, нефтепродукты или газоконденсат при температуре 0-90°С. Недостатками способа являются значительный расход азотной кислоты, предварительная стадия получения органических солей при перемешивании и охлаждении, нежелательное образование коррозионно-агрессивных сульфокислот при окислении меркаптанов, необходимость обезвреживания отработанной кислоты и промывных вод.
Наиболее близким по технической сущности (прототипом) является способ демеркаптанизации нефтяных дистиллятов [А.С. СССР №2076892, 1997], проводимой путем обработки меркаптанов кислородом воздуха при температуре 80-220°С в присутствии 0,01-10,0% масс. водорастворимой неорганической соли (меди, кобальта или никеля) при использовании гетерогенного катализатора, представляющего собой углеродный волокнистый материал в виде ткани (или жгута) с содержанием окислов кальция (магния, меди, марганца, железа, цинка или алюминия) в количестве до 0,03% мас. Недостатками является повышенная температура процесса демеркаптанизации, применение неорганической соли для перевода меркаптанов в меркаптиды металлов, неэффективность использования прототипа для демеркаптанизации газоконденсатов, недостаточно высокая степень окисления меркаптанов в бензиновой фракции.
Техническая задача - создание нового способа демеркаптанизации углеводородного сырья, предусматривающего повышение степени окисления меркаптанов в бензиновых, керосиновых, дизельных фракциях, нефтепродуктах и газоконденсате путем использования эффективного органического окислителя, нанесенного на твердый носитель и регенерирующегося кислородом воздуха, и исключения необходимости применения водного раствора неорганической соли и щелочи.
Технический результат - повышение эффективности процесса демеркаптанизации углеводородного сырья при длительном использовании катализатора за счет его регенерации при подаче воздуха, снижение температуры проведения процесса, исключение стадии приготовления окислительных смесей.
Он достигается тем, что в предлагаемом способе, включающем окисление меркаптанов углеводородного сырья до дисульфидов кислородом воздуха в присутствии гетерогенного катализатора, в качестве которого используют одноэлектронный окислитель - 3,5 ди-трет.бутил о-бензохинон в количестве 5-10% мас., нанесенный на твердый носитель, процесс проводят при температуре 25-50°С при подаче воздуха, что позволяет регенерировать катализатор при данной температуре. Степень окисления меркаптанов до дисульфидов достигает 90-100%.
Предлагаемый способ основывается на способности меркаптанов к одноэлектронному окислению в присутствии 3,5 ди-трет.бутил о-бензохинона в органических средах. Фрагментация нестабильного катион-радикала меркаптана с отрывом протона приводит к генерированию тиильных радикалов, которые димеризуются с образованием дисульфида. Способ демеркаптанизации углеводородного сырья включает приготовление гетерогенного катализатора путем пропитки оксида алюминия раствором 3,5 ди-трет.бутил о-бензохинона в ацетоне в количестве 5-10% мас., проведение процесса окисления меркаптанов в реакторном блоке при температуре 25-50°С при подаче воздуха.
Способ осуществляется следующим образом:
Пример 1. Демеркаптанизация модельного раствора гексилмеркаптана в гексане.
В реактор периодического действия (реакция-регенерация) с реакционным объемом V=10 см3 загружают катализатор - оксид алюминия, содержащий 5% мас. 3,5 ди-трет.бутил о-бензохинона, который наносят на поверхность носителя методом пропитки из ацетона. Затем в реактор подают 30 мл фракции модельного раствора гексилмеркаптана в гексане с содержанием меркаптановой серы 0,03% мас. (300 ppm) и пропускают через слой катализатора со скоростью 0,2 мл/мин. Реактор представляет собой стеклянную трубку, обогреваемую снаружи закрытой металлической спиралью. Окисление меркаптанов проводят при температуре 30°С и атмосферном давлении. Снизу в реактор подают воздух со скоростью 2 л/ч для регенерации катализатора в отсутствии в реакторе углеводородного сырья, при этом отработанный окислитель (3,5 ди-трет.бутил пирокатехин) превращается в исходную форму (3,5 ди-трет.бутил о-бензохинон). Содержание меркаптанов в исходном и очищенном углеводородном сырье определяют электрохимическими методами:
потенциометрического титрования или циклической вольтамперометрии. Анализ исследуемой фракции после демеркаптанизации показал, что остаточное содержание меркаптановой серы составляет 0,0022% мас. (22 ppm). При этом степень окисления меркаптанов во фракции НК 230-350°С составляет 92,6%.
Пример 2. Демеркаптанизация фракции НК 230-350°С Астраханского ГПЗ. В условиях примера 1 в присутствии описанного выше гетерогенного катализатора, содержащего 5% мас. 3,5 ди-трет.бутил о-бензохинона проводят демеркаптанизацию фракции НК 230-350°С с содержанием меркаптановой серы 0,0135% мас. (135 ppm) при температуре 50°С, атмосферном давлении и подаче воздуха. Анализ исследуемой фракции после демеркаптанизации показал, что остаточное содержание меркаптановой серы составляет 0,0022% мас. (12 ppm). При этом степень окисления меркаптанов во фракции НК 230-350°С составляет 91,1%.
Пример 3. Демеркаптанизация фракции НК 120-230°С Астраханского ГПЗ. В условиях примера 1 в присутствии описанного выше гетерогенного катализатора, содержащего 10% мас. 3,5 ди-трет.бутил о-бензохинона проводят демеркаптанизацию фракции НК 230-350°С с содержанием меркаптановой серы 0,007% мас. (70 ppm) при температуре 50°С, атмосферном давлении и подаче воздуха. Анализ исследуемой фракции после демеркаптанизации свидетельствует об отсутствии меркаптановой серы. При этом степень окисления меркаптанов во фракции НК 230-350°С составляет 100%.
Для пропитки катализатора возможно использовать любой из органических растворителей (например, ацетонитрил, хлористый метилен), в котором растворяется 3,5 ди-трет.бутил о-бензохинон. Время пропитки оксида алюминия (10 г) 3,5 ди-трет.бутил о-бензохиноном составляет 24 ч.
Из приведенных примеров видно, что проведение процесса демеркаптанизации предлагаемым способом позволяет значительно повысить степень окисления меркаптанов в углеводородном сырье (нефтяных фракциях, нефтепродуктах и газоконденсате) и проводить процесс без использования водных растворов неорганических солей и щелочи. Способ позволяет упростить процесс демеркаптанизации, что достигается легкой регенерацией предлагаемого гетерогенного катализатора в токе воздуха, обладающего высокой каталитической активностью, и многократным его использованием.
Положительный эффект предлагаемого способа заключается в повышении степени окисления меркаптанов, сокращении энергозатрат на демеркаптанизацию при снижении температуры процесса до 25-50°С, интенсификации процесса за счет использования дешевого окислителя, способного регенерироваться кислородом воздуха при температуре 25°С, исключении использования неорганических солей и щелочей.
Указанные преимущества предлагаемого способа позволяют существенно улучшить технико-экономические показатели процесса демеркаптанизации на газо- и нефтедобывающих, а также перерабатывающих предприятиях.

Claims (1)

  1. Способ окислительной демеркаптанизации углеводородного сырья в присутствии гетерогенного катализатора, содержащего органическое соединение, нанесенное на твердый носитель, отличающийся тем, что в качестве гетерогенного катализатора окисления используют катализатор, содержащий 5-10 мас.% 3,5 ди-трет.бутил о-бензохинона, нанесенного на оксид алюминия, процесс проводят при температуре 25-50°С при подаче воздуха и катализатор регенерируют в токе кислорода воздуха при данной температуре.
RU2009130801/04A 2009-08-10 2009-08-10 Способ демеркаптанизации углеводородного сырья RU2427608C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2009130801/04A RU2427608C2 (ru) 2009-08-10 2009-08-10 Способ демеркаптанизации углеводородного сырья

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2009130801/04A RU2427608C2 (ru) 2009-08-10 2009-08-10 Способ демеркаптанизации углеводородного сырья

Publications (2)

Publication Number Publication Date
RU2009130801A RU2009130801A (ru) 2011-02-20
RU2427608C2 true RU2427608C2 (ru) 2011-08-27

Family

ID=44756933

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2009130801/04A RU2427608C2 (ru) 2009-08-10 2009-08-10 Способ демеркаптанизации углеводородного сырья

Country Status (1)

Country Link
RU (1) RU2427608C2 (ru)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014031298A1 (en) * 2012-08-21 2014-02-27 Uop Llc Sulfur removal and methane conversion process using a supersonic flow reactor
WO2014031322A1 (en) * 2012-08-21 2014-02-27 Uop Llc Water removal and methane conversion process using a supersonic flow reactor
US8927769B2 (en) 2012-08-21 2015-01-06 Uop Llc Production of acrylic acid from a methane conversion process
US8933275B2 (en) 2012-08-21 2015-01-13 Uop Llc Production of oxygenates from a methane conversion process
US8937186B2 (en) 2012-08-21 2015-01-20 Uop Llc Acids removal and methane conversion process using a supersonic flow reactor
US9023255B2 (en) 2012-08-21 2015-05-05 Uop Llc Production of nitrogen compounds from a methane conversion process
US9205398B2 (en) 2012-08-21 2015-12-08 Uop Llc Production of butanediol from a methane conversion process
US9308513B2 (en) 2012-08-21 2016-04-12 Uop Llc Production of vinyl chloride from a methane conversion process
US9327265B2 (en) 2012-08-21 2016-05-03 Uop Llc Production of aromatics from a methane conversion process
US9370757B2 (en) 2012-08-21 2016-06-21 Uop Llc Pyrolytic reactor
US9434663B2 (en) 2012-08-21 2016-09-06 Uop Llc Glycols removal and methane conversion process using a supersonic flow reactor
US9656229B2 (en) 2012-08-21 2017-05-23 Uop Llc Methane conversion apparatus and process using a supersonic flow reactor
US9689615B2 (en) 2012-08-21 2017-06-27 Uop Llc Steady state high temperature reactor
US9707530B2 (en) 2012-08-21 2017-07-18 Uop Llc Methane conversion apparatus and process using a supersonic flow reactor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
БЕРБЕРОВА Т.Н. Неизвестные свойства сероводорода. - Соровский образовательный журнал, том 7, №9, 2001, с.38-42. *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014031298A1 (en) * 2012-08-21 2014-02-27 Uop Llc Sulfur removal and methane conversion process using a supersonic flow reactor
WO2014031322A1 (en) * 2012-08-21 2014-02-27 Uop Llc Water removal and methane conversion process using a supersonic flow reactor
US8927769B2 (en) 2012-08-21 2015-01-06 Uop Llc Production of acrylic acid from a methane conversion process
US8933275B2 (en) 2012-08-21 2015-01-13 Uop Llc Production of oxygenates from a methane conversion process
US8937186B2 (en) 2012-08-21 2015-01-20 Uop Llc Acids removal and methane conversion process using a supersonic flow reactor
US9023255B2 (en) 2012-08-21 2015-05-05 Uop Llc Production of nitrogen compounds from a methane conversion process
US9205398B2 (en) 2012-08-21 2015-12-08 Uop Llc Production of butanediol from a methane conversion process
US9308513B2 (en) 2012-08-21 2016-04-12 Uop Llc Production of vinyl chloride from a methane conversion process
US9327265B2 (en) 2012-08-21 2016-05-03 Uop Llc Production of aromatics from a methane conversion process
US9370757B2 (en) 2012-08-21 2016-06-21 Uop Llc Pyrolytic reactor
US9434663B2 (en) 2012-08-21 2016-09-06 Uop Llc Glycols removal and methane conversion process using a supersonic flow reactor
US9656229B2 (en) 2012-08-21 2017-05-23 Uop Llc Methane conversion apparatus and process using a supersonic flow reactor
US9689615B2 (en) 2012-08-21 2017-06-27 Uop Llc Steady state high temperature reactor
US9707530B2 (en) 2012-08-21 2017-07-18 Uop Llc Methane conversion apparatus and process using a supersonic flow reactor

Also Published As

Publication number Publication date
RU2009130801A (ru) 2011-02-20

Similar Documents

Publication Publication Date Title
RU2427608C2 (ru) Способ демеркаптанизации углеводородного сырья
EP2644268B1 (en) Process and catalyst for desulfurization of hydrocarbonaceous oil stream
CN103771353B (zh) 一种烷基化废硫酸的再生方法
WO2007063879A1 (ja) 水素化精製方法及び水素化精製油
CN103031143B (zh) 单反应器同时脱除汽油和液化气中硫化物的方法
US10005070B2 (en) Bimetallic mercaptan conversion catalyst for sweetening liquefied petroleum gas at low temperature
CN1952050B (zh) 一种加氢柴油氧化脱硫的方法
KR20130126492A (ko) 기체 처리 방법
JP2006514145A (ja) 有機硫黄の酸化方法
CN101173192B (zh) 一种柴油脱硫的方法
CN108043471B (zh) 一种铜基甲醇合成催化剂的保护剂及其制备方法
CN103031150B (zh) 双反应器同时脱除汽油和液化气中硫化物的方法
CN109863115B (zh) 在存在水的情况下催化转化dso
CN103031141B (zh) 一种脱除轻质石油产品中硫醇的方法
CN103074099B (zh) 一种燃料油的催化氧化脱硫方法
CA2599385C (en) Process for the removal by oxidation, of mercaptans contained in hydrocarbons
CN1563284A (zh) 石油馏分油催化氧化脱硫法
CN103031149B (zh) 一种双反应器同时脱除汽油和液化气中硫化物的方法
CN101063044B (zh) 一种柴油氧化脱硫方法
KR101167110B1 (ko) 생물체에서 유래된 지질과 하이드로탈사이트를 이용하는 연속적인 탄화수소 생산 방법 및 장치
CN110643385B (zh) 一种燃油选择性催化氧化脱硫的方法
CN110538668A (zh) 含杂原子纳米碳材料及其制备方法以及环己烷氧化方法
WO2013134910A1 (zh) 一种矿热熔融电炉尾气催化氧化净化的方法
RU2533140C2 (ru) Способ получения серы каталитическим окислением сероводорода
CN112760146B (zh) 用于提高液化气脱硫醇抽提剂再生性能的助剂及其应用

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20140811

NF4A Reinstatement of patent

Effective date: 20151020

MM4A The patent is invalid due to non-payment of fees

Effective date: 20200811