RU2419627C2 - Меченные радиоактивным изотопом конъюгаты rgd-содержащих пептидов и способы их получения с помощью click-химии - Google Patents

Меченные радиоактивным изотопом конъюгаты rgd-содержащих пептидов и способы их получения с помощью click-химии Download PDF

Info

Publication number
RU2419627C2
RU2419627C2 RU2007122804/04A RU2007122804A RU2419627C2 RU 2419627 C2 RU2419627 C2 RU 2419627C2 RU 2007122804/04 A RU2007122804/04 A RU 2007122804/04A RU 2007122804 A RU2007122804 A RU 2007122804A RU 2419627 C2 RU2419627 C2 RU 2419627C2
Authority
RU
Russia
Prior art keywords
compound
formula
peptide
vector
conjugates
Prior art date
Application number
RU2007122804/04A
Other languages
English (en)
Other versions
RU2007122804A (ru
Inventor
Эрик АРСТАД (GB)
Эрик АРСТАД
Маттиас Эберхард ГЛАЗЕР (GB)
Маттиас Эберхард ГЛАЗЕР
Original Assignee
Хаммерсмит Иманет Лтд.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Хаммерсмит Иманет Лтд. filed Critical Хаммерсмит Иманет Лтд.
Publication of RU2007122804A publication Critical patent/RU2007122804A/ru
Application granted granted Critical
Publication of RU2419627C2 publication Critical patent/RU2419627C2/ru

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K51/00Preparations containing radioactive substances for use in therapy or testing in vivo
    • A61K51/02Preparations containing radioactive substances for use in therapy or testing in vivo characterised by the carrier, i.e. characterised by the agent or material covalently linked or complexing the radioactive nucleus
    • A61K51/04Organic compounds
    • A61K51/08Peptides, e.g. proteins, carriers being peptides, polyamino acids, proteins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K51/00Preparations containing radioactive substances for use in therapy or testing in vivo
    • A61K51/02Preparations containing radioactive substances for use in therapy or testing in vivo characterised by the carrier, i.e. characterised by the agent or material covalently linked or complexing the radioactive nucleus
    • A61K51/04Organic compounds
    • A61K51/08Peptides, e.g. proteins, carriers being peptides, polyamino acids, proteins
    • A61K51/088Peptides, e.g. proteins, carriers being peptides, polyamino acids, proteins conjugates with carriers being peptides, polyamino acids or proteins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K51/00Preparations containing radioactive substances for use in therapy or testing in vivo
    • A61K51/02Preparations containing radioactive substances for use in therapy or testing in vivo characterised by the carrier, i.e. characterised by the agent or material covalently linked or complexing the radioactive nucleus
    • A61K51/04Organic compounds
    • A61K51/08Peptides, e.g. proteins, carriers being peptides, polyamino acids, proteins
    • A61K51/082Peptides, e.g. proteins, carriers being peptides, polyamino acids, proteins the peptide being a RGD-containing peptide
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K51/00Preparations containing radioactive substances for use in therapy or testing in vivo
    • A61K51/02Preparations containing radioactive substances for use in therapy or testing in vivo characterised by the carrier, i.e. characterised by the agent or material covalently linked or complexing the radioactive nucleus
    • A61K51/04Organic compounds
    • A61K51/08Peptides, e.g. proteins, carriers being peptides, polyamino acids, proteins
    • A61K51/10Antibodies or immunoglobulins; Fragments thereof, the carrier being an antibody, an immunoglobulin or a fragment thereof, e.g. a camelised human single domain antibody or the Fc fragment of an antibody
    • A61K51/1045Antibodies or immunoglobulins; Fragments thereof, the carrier being an antibody, an immunoglobulin or a fragment thereof, e.g. a camelised human single domain antibody or the Fc fragment of an antibody against animal or human tumor cells or tumor cell determinants
    • A61K51/1051Antibodies or immunoglobulins; Fragments thereof, the carrier being an antibody, an immunoglobulin or a fragment thereof, e.g. a camelised human single domain antibody or the Fc fragment of an antibody against animal or human tumor cells or tumor cell determinants the tumor cell being from breast, e.g. the antibody being herceptin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B59/00Introduction of isotopes of elements into organic compounds ; Labelled organic compounds per se

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Optics & Photonics (AREA)
  • Physics & Mathematics (AREA)
  • Epidemiology (AREA)
  • Oncology (AREA)
  • Organic Chemistry (AREA)
  • Cell Biology (AREA)
  • Immunology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

Изобретение относится к способам и реагентам мечения вектора, такого как пептид, включающим взаимодействие соединения формулы (I) с соединением формулы (II) в присутствии Cu(I) катализатора. Получающиеся в результате меченые конъюгаты полезны в качестве диагностических агентов, например, в качестве радиофармацевтических препаратов, более конкретно для применения в позитронно-эмиссионной томографии (ПЭТ) или однофотонной эмиссионной компьютерной томографии (ОЭКТ), или для радиотерапии. 4 н. и 3 з.п. ф-лы, 3 табл.

Description

Настоящее изобретение относится к радиодиагностическим и радиотерапевтическим агентам, включающим биологически активные векторы, меченные радионуклидами. Также оно относится к способам и реагентам мечения вектора, такого как пептид. Получающиеся в результате меченые конъюгаты полезны в качестве диагностических агентов, например в качестве радиофармацевтических препаратов, более конкретно для применения в позитронно-эмиссионной томографии (ПЭТ) или однофотонной эмиссионной компьютерной томографии (ОЭКТ), или для радиотерапии.
В медицинской радиологии увеличивается важность значения применения меченных радиоактивными изотопами биологически активных пептидов для диагностической визуализации. Биологически активные молекулы, которые избирательно взаимодействуют со специфическими типами клеток, полезны для доставки радиоактивности в ткани-мишени. Например, меченные радиоактивными изотопами пептиды обладают серьезным потенциалом для доставки радионуклидов в опухолевые, пораженные инфарктом и инфицированные ткани для диагностической визуализации и радиотерапии. 18F, имеющий период полураспада приблизительно 110 минут, представляет собой позитрон-излучающий нуклид, выбираемый для множества исследований рецепторной визуализации. Таким образом, 18F-меченые биологически активные пептиды обладают значительным клиническим потенциалом вследствие их применимости в ПЭТ для количественного обнаружения и характеристики широкого диапазона заболеваний. Другие полезные радионуклиды включают 11С, радиоактивный йод, такой как 125I, 123I, 124I, 131I и 99mTc.
До настоящего времени отсутствие быстрых и имеющих общее применение способов мечения пептидов и биологических молекул затрудняло использование пептидов и биомолекул в качестве диагностических агентов. Например, почти во всех используемых в настоящее время способах мечения пептидов и белков 18F используют активные сложные эфиры меченного фтором синтона. Поскольку пептиды и белки могут содержать множество функциональных групп, способных вступать в реакцию с активными сложными эфирами, эти используемые в настоящее время способы не являются сайт-специфическими. Например, пептид, содержащий три лизиновых остатка, имеет три аминные функциональные группы, все из которых в равной степени являются реакционноспособными в отношении меченого синтона. Таким образом, остается потребность в агентах мечения, таких как 18F-меченые простетические группы, и способах, обеспечивающих быстрое хемоселективное введение метки, такой как радионуклид, например 18F, в частности в пептиды, в мягких условиях с получением меченых продуктов с высокими радиохимическими выходом и чистотой. Дополнительно, существует потребность в таких способах, которые поддаются автоматизации с целью облечения получения диагностических агентов в клинических условиях.
В настоящем изобретении предложен способ мечения вектора, включающий взаимодействие соединения формулы (I) с соединением формулы (II):
Figure 00000001
Figure 00000002
или соединения формулы (III) с соединением формулы (IV):
Figure 00000003
Figure 00000004
в присутствии Cu (I) катализатора, где:
каждый из L1, L2, L3 и L4 представляет собой линкерную группу;
R* представляет собой репортерную группировку, содержащую радионуклид;
с получением конъюгата формулы (V) или (VI), соответственно:
Figure 00000005
Figure 00000006
,
где L1, L2, L3, L4 и R* являются такими, как определено выше.
Каждая из линкерных групп L1, L2, L3 и L4 независимо представляет собой С1-60гидрокарбильную группу, подходящим образом - C1-30гидрокарбильную группу, возможно содержащую от 1 до 30 гетероатомов, подходящим образом - от 1 до 10 гетероатомов, таких как кислород или азот. Подходящие линкерные группы включают алкильные, алкенильные, алкинильные цепи, ароматические, полиароматические и гетероароматические кольца, любое(ая) из которых может быть возможно замещено(а), например, одной или более чем одной функциональной группой простого эфира, тиоэфира, сульфонамида или амида, мономеры и полимеры, содержащие этиленгликолевые, аминокислотные или углеводные субъединицы.
Термин "гидрокарбильная группа" обозначает органический заместитель, состоящий из углерода и водорода, такие группы могут содержать насыщенные, ненасыщенные или ароматические фрагменты.
Линкерные группы L1, L2, L3 и L4 могут быть выбраны для обеспечения хорошей фармакокинетики in vivo, например благоприятных характеристик экскреции получающегося в результате соединения формулы (V) или (VI). Использование линкерных групп, обладающих различными липофильностями и/или зарядом, может значительно изменить фармакокинетику пептида in vivo с целью удовлетворения диагностических потребностей. Например, когда желательно, чтобы соединение формулы (V) или (VI) выводилось из организма путем экскреции через почки, используют гидрофильный линкер, а когда желательной для клиренса является гепатобилиарная экскреция, используют гидрофобный линкер. Обнаружено, что линкеры, содержащие полиэтиленгликолевую группировку, замедляют клиренс из крови, что в некоторых случаях является желательным.
R* представляет собой репортерную группировку, которая содержит радионуклид, например позитрон-излучающий радионуклид. Подходящие для этой задачи позитрон-излучающие радионуклиды включают 11С, 18F, 75Br, 76Br, 124I, 82Rb, 68Ga, 64Cu и 62Cu, из которых 11С и 18F являются предпочтительными. Другие полезные радионуклиды включают 123I, 125I, 131I, 211At, 99mTc и 111In. Металлические радионуклиды подходящим образом включены в хелатообразующий агент, например путем прямого включения с использованием способов, известных специалистам в данной области техники. Хелатирование металлического репортера предпочтительно осуществляют перед взаимодействием соединения формулы (I) или (IV) с соединением формулы (II) или (III), соответственно, для того, чтобы избежать хелатирования Cu(I) катализатора.
Подходящие хелатообразующие агенты, содержащиеся в R*, включают соединения формулы X
Figure 00000007
,
где:
каждый из R1A, R2A R3A и R4A независимо представляет собой группу RA;
каждая группа RA независимо представляет собой Н или С1-10алкил, С3-10алкиларил, С2-10алкоксиалкил, С1-10гидроксиалкил, С1-10алкиламин, С1-10фторалкил, или 2 или более чем 2 группы RA вместе с атомами, к которым они присоединены, образуют карбоциклическое, гетероциклическое, насыщенное или ненасыщенное кольцо,
или R* может содержать хелатообразующий агент формулы (i), (ii), (iii) или (iv)
Figure 00000008
Figure 00000009
Figure 00000010
Figure 00000011
.
Предпочтительный пример хелатообразующего агента представлен формулой (v)
Figure 00000012
.
Соединения формулы (II) или (IV), содержащие хелатообразующие агенты формулы X, могут быть мечены радиоактивным изотопом с хорошей радиохимической чистотой (РХЧ) при комнатной температуре в водных условиях при почти нейтральном значении рН.
Если специально не указано иначе, в формулах (I) и (III) и других аспектах изобретения подходящими векторами для мечения являются пептиды, которые могут включать аналоги соматостатина, такие как октреотид, бомбезин, вазоактивный интестинальный пептид, аналоги хемотаксического пептида, α-меланоцит-стимулирующий гормон, нейротензин, пептид Arg-Gly-Asp, человеческий проинсулин-связывающий пептид, инсулин, эндотелин, ангиотензин, брадикинин, эндостатин, ангиостатин, глутатион, кальцитонин, магаинин I и II, рилизинг-фактор лютеинизирующего гормона, гастрины, холецистокинин, вещество Р, вазопрессин, формил-норлейцил-лейцил-фенилаланил-норлейцил-тирозил-лизин, аналоги аннексина V, вазоактивные протеина-1 пептиды (VAP-1) и субстраты на основе пептида каспазы. Предпочтительные пептиды для мечения представляют собой пептид Arg-Gly-Asp и его аналоги, такие как описанные в WO 01/77415 и WO 03/006491, предпочтительно пептид, содержащий фрагмент:
Figure 00000013
,
более предпочтительно пептид формулы (А):
Figure 00000014
,
где X7 представляет собой или -NH2, или
Figure 00000015
,
где а представляет собой целое число от 1 до 10, предпочтительно а равно 1.
Специалисту в данной области техники понятно, что способы по изобретению также могут быть использованы для введения радиоактивной метки в другие биомолекулы, такие как белки, гормоны, полисахариды, олигонуклеотиды и фрагменты антител, клетки, бактерии, вирусы, а также небольшие молекулы, подобные лекарствам, с получением множества диагностических агентов. Если специально не указано иначе, в формулах (I) и (III) и других аспектах изобретения особенно подходящими векторами для введения радиоактивной метки являются пептиды, белки, гормоны, клетки, бактерии, вирусы и небольшие молекулы, подобные лекарствам.
Взаимодействие соединения формулы (I) с соединением формулы (II) или соединения формулы (III) с соединением формулы (IV) может быть осуществлено в подходящем растворителе, например ацетонитриле, С1-4-алкиловом спирте, диметилформамиде, тетрагидрофуране или диметилсульфоксиде, или водных смесях любого из них, или в воде и при некритической температуре от 5 до 100°С, предпочтительно при температуре окружающей среды. Cu(I) катализатор присутствует в количестве, достаточном для развития реакции, обычно или в каталитическом количестве, или в избытке, таком как от 0,02 до 1,5 мольных эквивалентов относительно соединения формулы (I) или (III).
Подходящие Cu(I) катализаторы включают соли Cu(I), такие как CuI, CuOTfC6H6 или [Cu(NCCH3)4][PF6], но преимущественно могут быть использованы соли Cu(II), такие как сульфат меди (II), в присутствии восстановителя, такого как аскорбиновая кислота или ее соль, например аскорбат натрия, гидрохинон, хинон, металлическая медь, глутатион, цистеин, Fe2+ или Со2+. Cu(I) также по существу присутствует на поверхности частиц элементарной меди, поэтому элементарная медь, например в форме порошка или гранул, также может быть использована в качестве катализатора. Было обнаружено, что использование Cu(I) катализатора, в частности элементарной меди, с контролируемым размером частиц, неожиданно приводит к улучшенным радиохимическим выходам. Таким образом, в одном из аспектов изобретения Cu(I) катализатор, в частности элементарная медь, имеет размер частиц в диапазоне от 0,001 до 1 мм, предпочтительно от 0,1 мм до 0,7 мм, более предпочтительно приблизительно 0,4 мм.
В настоящем изобретении предложен более хемоселективный подход к введению радиоактивной метки, при котором точный сайт введения метки предварительно выбран во время синтеза пептида или векторного предшественника. Реакция лигирования, протекающая в предварительно определенном сайте в векторе, позволяет получить только один возможный продукт. Таким образом, этот способ является хемоселективным и его применение рассматривается как общее для широкого диапазона пептидов, биомолекул и низкомолекулярных лекарств. Кроме того, как алкиновые, так и азидные функциональные группы стабильны в большинстве реакционных условий и являются нереакционноспособными в отношении наиболее общих пептидных функциональных групп, и, таким образом, минимизируют стадии введения и удаления защиты, требующиеся во время синтеза с введением метки. Более того, триазольное кольцо, образующееся во время реакции введения метки, не гидролизуется и высокоустойчиво к окислению и восстановлению, что означает, что меченый вектор обладает высокой стабильностью in vivo. Триазольное кольцо также сравнимо по размеру и полярности с амидом, так что меченые пептиды или белки представляют собой хорошие имитаторы своих природных аналогов.
Соединения формулы (I) и (III), где вектор представляет собой пептид или белок, могут быть получены стандартными способами пептидного синтеза, например путем твердофазного пептидного синтеза, например как описано Atherton, Е. and Sheppard, R.C. в "Solid Phase Synthesis"; IRL Press: Oxford, 1989. Включение алкиновой или азидной группы в соединение формулы (I) или (III) может быть осуществлено путем взаимодействия N- или С-конца пептида или с некоторой другой функциональной группой, содержащейся в пептидной последовательности, модификация которой не влияет на связывающие характеристики вектора. Алкиновые или азидные группы предпочтительно вводят в соединение формулы (I) или (III) путем образования стабильной амидной связи, например, образующейся путем взаимодействия пептидной аминной функциональной группы с активированной кислотой или, альтернативно, путем взаимодействия пептидной кислотной функциональной группы с аминной функциональной группой, и вводят во время или после пептидного синтеза. Способы введения алкиновой или азидной группы в такие векторы, как клетки, вирусы, бактерии, можно найти в Н.С.Kolb and K.В.Sharpless, Drug Discovery Today, Vol 8 (24), December 2003 и ссылках, описанных в этом источнике. Подходящие промежуточные соединения, полезные для введения алкиновой или азидной группы в соединение формулы (I) или (III), включают:
Figure 00000016
Figure 00000017
Figure 00000018
Figure 00000019
Figure 00000020
Figure 00000021
Figure 00000022
Figure 00000023
Figure 00000024
Figure 00000025
Figure 00000026
Figure 00000027
Figure 00000028
Figure 00000029
Figure 00000030
Figure 00000031
Figure 00000032
Figure 00000033
Figure 00000034
Figure 00000035
Figure 00000036
Figure 00000037
Figure 00000038
Figure 00000039
Figure 00000040
Figure 00000041
Figure 00000042
Figure 00000043
В еще одном аспекте настоящего изобретения предложены новые простетические группы, полезные для мечения векторов, таких как пептиды и белки, например с использованием способов, описанных выше. Соответственно, предложено соединение формулы (II) или формулы (IV):
Figure 00000002
Figure 00000044
,
где каждый из L2 и L4 представляет собой линкерную группу, как определено выше, и R* представляет собой репортерную группировку, как определено выше. В одном из воплощений этого аспекта изобретения R* представляет собой 18F, так что простетические группы имеют формулы (IIa) и (IVa):
Figure 00000045
Figure 00000046
,
где каждый из L2 и L4 представляет собой линкерную группу, как определено выше.
Предпочтительные соединения формулы (IV) включают:
Figure 00000047
Figure 00000048
Figure 00000049
Figure 00000050
Figure 00000051
Figure 00000052
.
В еще одном аспекте настоящего изобретения предложено соединение формулы (I) или (III):
Figure 00000053
Figure 00000054
,
где каждый из L1 и L3 представляет собой линкерную групу, как определено выше, и вектор является таким как определено выше. Подходящим вектором в этом аспекте изобретения является пептид или белок. Предпочтительные соединения формулы (I) и (III) представляют собой соединения, где вектор представляет собой пептид Arg-Gly-Asp или его аналог, такие как описанные в WO 01/77415 и WO 03/006491, предпочтительно пептид, содержащий фрагмент:
Figure 00000013
,
более предпочтительно пептид формулы (А):
Figure 00000014
,
где X7 представляет собой или -NH2, или
Figure 00000015
,
где а представляет собой целое число от 1 до 10, предпочтительно а равно 1.
В еще одном аспекте настоящего изобретения предложены меченые векторы формул (V) и (VI), как определено выше. Предпочтительные соединения формул (V) и (VI) представляют собой соединения, где вектор представляет собой пептид Arg-Gly-Asp или его аналог, такие как описанные в WO 01/77415 и WO 03/006491, предпочтительно пептид, содержащий фрагмент:
Figure 00000013
,
более предпочтительно пептид формулы (А)
Figure 00000014
,
где X7 представляет собой или -NH2, или
Figure 00000015
,
где а представляет собой целое число от 1 до 10, предпочтительно а равно 1.
Соединения формулы (II), где R* содержит радиоактивную метку 11С, могут быть получены, например, в соответствии со схемой:
Figure 00000055
Figure 00000056
Figure 00000057
Figure 00000058
Figure 00000059
,
где -NuH представляет собой нуклеофильный реакционный центр, такой как гидроксильная, тиольная или аминная функциональная группа.
Соединения формулы (II), где R* представляет собой 18F, могут быть получены при помощи реакций или электрофильного, или нуклеофильного фторирования, например:
Figure 00000060
Figure 00000061
Figure 00000062
Подходящие способы получения соединения формулы (II) путем радиоактивного фторирования включают взаимодействие предшественника, содержащего уходящую группу (такую как алкил- или арилсульфонатную, например мезилатную, трифлатную или тозилатную; нитро или триалкиламмониевую соль), с 18F в присутствии агента фазового переноса, такого как циклический полиэфир, например 18-краун-6 или криптофикс 2.2.2. Эта реакция может быть осуществлена в фазе раствора (с использованием апротонного растворителя, такого как ацетонитрил в качестве растворителя) в стандартных условиях, известных из уровня техники [например, из M.J.Welch and C.S.Redvanly "Handbook of Radiopharmaceuticals", опубликованной Wiley], или с использованием твердого носителя для облегчения очистки соединения формулы (II) с использованием способов, описанных в WO 03/002157.
Соединения формулы (IV) могут быть получены из подходящих ацетиленовых предшественников с использованием способов, аналогичных описанным для синтеза соединений формулы (II).
В настоящем изобретении также предложена радиофармацевтическая композиция, содержащая эффективное количество (например, количество, эффективное для применения в способе визуализации in vivo, подходящим образом - ПЭТ или ОЭКТ) соединения общей формулы (V) или (VI), как определено выше; вместе с одним или более фармацевтически приемлемыми адъювантами, эксципиентами или разбавителями. Предпочтительно, вектор в соединении формулы (V) или (VI) представляет собой пептид Arg-Gly-Asp или его аналог, как описано выше.
Еще одно воплощение изобретения относится к соединению общей формулы (V) или (VI), как определено выше, для медицинского применения и в частности для применения в визуализации in vivo (подходящим образом - ПЭТ или ОЭКТ). Предпочтительно, вектор в соединении формулы (V) или (VI) представляет собой пептид Arg-Gly-Asp или его аналог, как описано выше.
Меченые векторы формул (V) и (VI) могут быть введены пациентам для визуализации in vivo в количествах, достаточных для получения желаемого сигнала, типичные дозы радионуклида для ПЭТ- или ОЭКТ-визуализации от 0,01 до 100 мКи, предпочтительно от 0,1 до 50 мКи, обычно будут достаточны для массы организма 70 кг.
Следовательно, меченые векторы формул (V) или (VI) могут быть приготовлены для введения с использованием физиологически приемлемых носителей или эксципиентов способом, полностью известным специалисту в данной области техники. Например, соединения, возможно с добавлением фармацевтически приемлемых эксципиентов, могут быть суспендированы или растворены в водной среде, с последующей стерилизацией получающегося(ейся) в результате раствора или суспензии.
В еще одном аспекте изобретения предложено применение меченого вектора формулы (V) или (VI) для изготовления фармацевтического препарата для применения в способе визуализации in vivo, подходящим образом - ПЭТ; включая введение указанного фармацевтического препарата в организм человека или животного и получение изображения по меньшей мере части указанного организма.
В еще одном аспекте изобретения предложен способ получения изображения организма человека или животного, включающий введение фармацевтического препарата в указанный организм, например в сосудистую систему, и получение изображения по меньшей мере части указанного организма, в котором указанный фармацевтический препарат распределен, с использованием способа визуализации in vivo, такого как ПЭТ, где указанный фармацевтический препарат содержит меченый вектор формулы (V) или (VI).
В еще одном аспекте изобретения предложен способ мониторинга эффекта лечения организма человека или животного лекарственным средством для борьбы с состоянием, включающий введение в указанный организм меченого вектора формулы (V) или (VI) и детектирование захвата указанного меченого вектора, причем указанные введение и обнаружение возможно, но предпочтительно, осуществляют неоднократно, например до, во время и после лечения указанным лекарственным средством.
В еще одном воплощении настоящего изобретения предложен набор для получения радиофторированной метки, содержащий простетическую группу формулы (II) или (IV) или ее предшественник и соединение формулы (I) или (III).
При использовании наборов соединение-предшественник может быть превращено в соответствующее соединение формулы (II) или (IV) с использованием описанных выше способов. Соединения формулы (II) и (IV) могут быть использованы в неочищенной форме, но предпочтительно соединение формулы (II) и (IV) может быть отделено от отходов реакции путем пропускания реакционной смеси через картридж для твердофазной экстракции (ТФЭ), при помощи хроматографии или путем перегонки. Затем соединение формулы (II) и (IV) следует добавить к соединениям формулы (I) и (III), соответственно, которые подходящим образом могут быть растворены в подходящем растворителе, как описано здесь. После реакции при некритической температуре в течение 1-90 минут меченый пептид может быть очищен, например путем ТФЭ, и собран.
Описанная здесь химия также может быть использована для получения библиотек меченных радиоактивным изотопом векторов, подходящих для скрининга в качестве диагностических лекарственных средств или агентов визуализации in vivo. Таким образом, смесь простетических групп формулы (II) или (IV) может вступать в реакцию с одним или более чем одним соединением формулы (I) или (III), соответственно, с использованием описанных выше способов с получением библиотеки меченных радиоактивным изотопом векторов.
ПРИМЕРЫ
Изобретение проиллюстрировано при помощи примеров, в которых использованы следующие сокращения:
ВЭЖХ: высокоэффективная жидкостная хроматография
ДМФ: N,N-диметилформамид
ДМСО: диметилсульфоксид
МС-ЭРИ: масс-спектрометрия с электрораспылительной ионизацией
к.т.: комнатная температура
ВП-МС-ЭРИ: времяпролетная масс-спектрометрия с электрораспылительной ионизацией
ПФ-ИК: инфракрасная спектроскопия с Фурье-преобразованием
млн-1: миллионная доля
ТФУ: трифторуксусная кислота
АЦН: ацетонитрил.
Получение контрольных соединений
Figure 00000063
Figure 00000064
Пример 1 - Получение соединения (2) - 1-азидо-2-фторэтана
2-Фторэтиловый эфир толуол-4-сульфоновой кислоты, соединение (1), получали, как описано E.U.T.van Velzen et al. в Synthesis (1995), 989-997. Соединение (1) (128 мг, 0,586 ммоль) и азид натрия (114 мг, 1,758 ммоль) смешивали с безводным ДМФ (10 мл) и перемешивали при комнатной температуре в течение 48 часов. Реакционную смесь фильтровали, но продукт (2) не выделяли из реакционного раствора.
Пример 2 - Получение соединения (3)-1-(2-фторэтил)-4-фенил-1H-[1,2,3]триазола
Фенилацетилен (105 мкл, 0,977 ммоль) в ДМФ (1 мл) добавляли в атмосфере азота к перемешиваемому раствору пентагидрата сульфата меди (II) (12 мг, 0,0489 ммоль) и L-аскорбиновой кислоты (16 мг, 0,0977 ммоль) в воде (0,3 мл). После добавления соединения (2) (1,172 ммоль) в ДМФ (5 мл) перемешивание продолжали при комнатной температуре в течение 21 часа. Реакционную смесь разбавляли водой (5 мл) и неочищенный продукт экстрагировали дихлорметаном (3×5 мл) и промывали раствором бикарбоната натрия (10%, 3×10 мл) и рассолом (1×5 мл). После сушки над сульфатом натрия растворитель удаляли при пониженном давлении и неочищенный материал очищали с использованием флэш-хроматографии (диоксид кремния, гексан/этилацетат).
Выход: 32 мг (17%), белые кристаллы, т.пл. 83-85°С.
1Н-ЯМР (CDCl3): δ=4.70 (m, 1Н, СН2), 4.76 (m, 1Н, СН2), 4.80 (m, 1Н, СН2), 4.89 (m, 1Н, СН2), 7.35 (tt, 1.0 Гц, 7.5 Гц, 1Н, HAr), 7.44 (m, 2Н, HAr), 7.84 (m, 2Н, HAr), 7.89 (d, 1 Гц, 1Н, СН-триазол) млн-1.
Газовая хроматография/масс-спектрометрия (ГХ/МС): m/z=191.
ВП-МС-ЭРИ: обнаружено m/z=192,0935 [МН]+, рассчитано для C10H10N3F [МН]+ m/z=192,0932.
Пример 3 - Получение соединения (4) - 4-[1-(2-фторэтил)-1Н-[1,2,3]триазол-4-ил]фениламина
4-Этиниланилин (40 мг, 0,344 ммоль) в ДМФ (0,7 мл) добавляли в атмосфере азота к перемешиваемому раствору пентагидрата сульфата меди (II) (129 мг, 0,516 ммоль) и L-аскорбиновой кислоты (182 мг, 1,032 ммоль) в воде (1,2 мл). После добавления соединения (2) (0,287 ммоль) в ДМФ (2,45 мл) перемешивание продолжали при комнатной температуре в течение 4 часов. Реакционную смесь гасили раствором гидроксида натрия (1М, 5 мл). Продукт экстрагировали этилацетатом (3×5 мл), промывали водой (5 мл) и рассолом (2 мл). После сушки над сульфатом натрия растворитель удаляли при пониженном давлении, и неочищенный материал очищали с использованием флэш-хроматографии (диоксид кремния, гексан/этилацетат). Выход: 15 мг (25%), бежевые кристаллы, т.пл. 79-82°С.
1Н-ЯМР (CDCl3): δ=4.70 (m, 1Н, СН2), 4.72 (m, 1Н, СН2), 4.77 (m, 1Н, СН2), 4.88 (m, 1Н, СН2), 6.74 (m, 2Н, HAr), 7.63 (m, 2Н, HAr), 7.74 (d, 0.1 Гц, 1Н, СН-триазол) млн-1.
ВП-МС-ЭРИ: обнаружено m/z=207,1030 [МН]+, рассчитано для C10H11N4F [МН]+ m/z=207,1040.
Пример 4 - Получение соединения (5) - бензиламида 1-(2-фторэтил)-1Н-[1,2,3]триазол-4-карбоновой кислоты
Бензиламид пропионовой кислоты (50 мг, 0,314 ммоль), который получали в соответствии с протоколом G.M.Coppola and R.E.Damon в Synthetic Communications 23 (1993), 2003-2010, растворяли в ДМФ (1 мл) и добавляли в атмосфере азота к перемешиваемому раствору пентагидрата сульфата меди (II) (3,9 мг, 0,0157 ммоль) и L-аскорбиновой кислоты (11 мг, 0,0628 ммоль) в воде (0,4 мл). После добавления соединения (2) (0,377 ммоль) в ДМФ (3,2 мл) перемешивание продолжали при комнатной температуре в течение 48 часов. Реакционную смесь разбавляли бикарбонатом натрия (10%, 5 мл) и неочищенный продукт экстрагировали дихлорметаном (3×5 мл) и промывали рассолом (5 мл). После сушки над сульфатом натрия растворитель удаляли при пониженном давлении и неочищенный материал очищали путем перекристаллизации из смеси этилацетат/диэтиловый эфир. Выход: 8 мг (10%), белые кристаллы, т.пл. 165-167°С.
1Н-ЯМР (CDCl3): δ=4.70 (m, 6Н, СН2), 7.34 (m, 5Н, HAr), 7.46 (m, 1Н, NH), 8.20 (s, 1Н, СН-триазол) млн-1.
ВП-МС-ЭРИ: обнаружено m/z=249,1143 [МН]+, рассчитано для C12H13N4OF [МН]+m/z=249,1146.
Пример 5 - Получение соединения (6) - N-бензил-3-[1-(2-фторэтил)-1Н-[1,2,3]триазол-4-ил]пропионамида
Бензиламид пент-4-иновой кислоты - Это соединение синтезировали аналогичным способом, как описано G.M.Coppola and R.E.Damon (смотри пример 4) за исключением выделения N-сукцинимидильного промежуточного соединения.
Выход: 100 мг (53%), белые иглы, т.пл. 50-55°С.
1Н-ЯМР (CDCl3): δ=1.98 (m, 1Н, алкин-СН), 2.44 (m, 2Н, СН2), 2.56 (m, 2Н, СН2), 4.46 (d, 2Н, CH2N), 7.29-7.25 (m, 5Н, HAr) млн-1.
ПФ-ИК (пленка): 1651, 1629 см-1.
ВП-МС-ЭРИ: обнаружено m/z=188,1073 [МН]+, рассчитано для C12H13NO [МН]+ m/z=188,1070.
N-Бензил-3-[1-(2-фторэтил)-1Н-[1,2,3]триазол-4-ил]пропионамид - Бензиламид пент-4-иновой кислоты (50 мг, 0,267 ммоль) в метаноле (0,5 мл), соединение (2) (0,320 ммоль) в ДМФ (2,62 мл) и диизопропиламин (0,233 мл, 1,335 ммоль) добавляли в атмосфере азота к перемешиваемой суспензии йодида меди (I) (255 мг, 1,335 ммоль) в метаноле (0,8 мл). Перемешивание продолжали при комнатной температуре в течение 2 часов. Реакционную смесь гасили раствором гидрофосфата натрия (1 г) в воде (10 мл) и фильтровали через целит. Неочищенный продукт экстрагировали этилацетатом (3×20 мл) и промывали рассолом (20 мл). После сушки над сульфатом натрия растворитель удаляли при пониженном давлении и неочищенный материал очищали путем колоночной хроматографии с использованием диоксида кремния и смеси этилацетат/гексан.
Выход: 19 мг (26%), белые кристаллы, т.пл. 127-133°С.
1Н-ЯМР (CDCl3): δ=2.66 (t, 7.0 Гц, 2Н, СН2), 3.09 (t, 7.0 Гц, 2Н, СН2), 4.40 (d, 5.7 Гц, 2Н, бензил-СН2), 4.56 (m, 2Н, СН2), 4.61 (m, 2Н, СН2), 4.70 (m, 2Н, СН2), 4.80 (m, 2Н, СН2), 6.0 (s, 1Н, NH), 7.0-7.3 (m, 5Н, HAr), 7.44 (s, 1Н, СН-триазол) млн-1.
ВП-МС-ЭРИ: обнаружено m/z=277,1474 [МН]+, рассчитано для C12H13N4OF [MH]+ m/z=277,1459.
Пример 6 - Получение соединения (7) - 4-[1-(2-фторэтил)-1Н-[1,2,3]триазол-4-ил]бензойной кислоты
4-Этинилбензоат натрия (50 мг, 0,297 ммоль) в ДМФ (1,5 мл) добавляли в атмосфере азота к перемешиваемому раствору пентагидрата сульфата меди (II) (3,7 мг, 0,0149 ммоль) и L-аскорбиновой кислоты (10,5 мг, 0,0595 ммоль) в воде (0,2 мл). После добавления соединения (2) (0,356 ммоль) в ДМФ (0,76 мл) перемешивание продолжали при комнатной температуре в течение 12 часов. Реакционную смесь разбавляли HCl (20 мл, 1М). Неочищенный продукт экстрагировали этилацетатом (3×10 мл) и промывали рассолом (10 мл). После сушки над сульфатом натрия растворитель удаляли при пониженном давлении и неочищенный материал перекристаллизовывали из смеси этилацетат/гексан.
Выход: 37 мг (52%), белые кристаллы, т.пл. 236-240°С.
1Н-ЯМР (ДМСО-d6): δ=4.74 (m, 1Н, СН2), 4.80 (m, 2Н, СН2), 4.90 (m, 1Н, СН2), 8.70 (s, 1 Гц, 1Н, СН-триазол) млн-1.
ВП-МС-ЭРИ: обнаружено m/z=236,0838 [МН]+, рассчитано для C11H10N3O2F [МН]+ m/z=236,0830.
Пример 7 - Получение соединения (8) - 1-(2-фторэтил)-1Н-[1,2,3]триазол-4-карбоновой кислоты
Пропионовую кислоту (60 мкл, 0,977 ммоль) в ДМФ (0,5 мл) добавляли в атмосфере азота к перемешиваемому раствору пентагидрата сульфата меди (II) (12 мг, 0,0489 ммоль) и L-аскорбиновой кислоты (34 мг, 0,135 ммоль) в воде (0,4 мл). После добавления соединения (2) (1,172 ммоль) в ДМФ (2,5 мл) перемешивание продолжали при комнатной температуре в течение четырех часов. Реакционную смесь гасили HCl (20 мл, 1 М) и неочищенный продукт экстрагировали этилацетатом (3×20 мл). После промывки рассолом (5 мл) и сушки над сульфатом натрия растворитель удаляли при пониженном давлении и продукт очищали путем перекристаллизации из смеси этилацетат/гексан.
Выход: 16 мг (10%), белые кристаллы, т.пл. 160-165°С.
1Н-ЯМР (ДМСО-d6): δ=4.74 (m, 1Н, СН2), 4.80 (m, 2Н, СН2), 4.90 (m, 1Н, СН2), 8.71 (s, 1Н, СН-триазол) млн-1.
ВП-МС-ЭРИ: обнаружено m/z=160,0518 [МН]+, рассчитано для C5H6N3O2F [МН]+ m/z=160,0517.
Пример 8 - Получение соединения (9) - этилового эфира 2-ацетиламино-3-[1-(2-фторэтил)-1H-[1,2,3]триазол-4-ил]пропионовой кислоты
Этиловый эфир 2-ацетиламинопент-4-иновой кислоты (200 мг, 1,09 ммоль) в метаноле (1 мл) добавляли в атмосфере азота к медному порошку (200 мг, 40 меш) с последующим добавлением раствора соединения (2) (1,09 ммоль) в ДМФ (3 мл). Смесь перемешивали в течение 90 минут и затем нагревали при 80°С в течение трех часов. Соединение (9) выделяли путем флэш-хроматографии с обращенной фазой (ацетонитрил/вода).
Выход: 145 мг (49%) масла, кристаллы при хранении при 4°С, т.пл. 55-60°С.
1Н-ЯМР (CDCl3): δ=1.13 (t, 3Н, СН2СН3), 1.82 (s, 3Н, СН3), 2.97 (dd, 2J=14.9 Гц, 3J=8.5 Гц, 1Н, пропионовый-СН2), 3.07 (dd, 2J=14.9 Гц, 3J=6.0 Гц, 1Н, пропионовый-СН2), 4.05 (m, 2Н, ОСН2СН3), 4.47 (m, 1Н, СН), 4.46 (m, 1Н, СН2), 4.64 (m, 1Н, СН2), 4.70 (m, 1Н, СН2), 4.81 (m, 1Н, СН2), 7.89 (s, 1Н, триазол-СН), 8.31 (d, 1Н, NH) млн-1.
ВП-МС-ЭРИ: обнаружено m/z=273,1372 [МН]+, рассчитано для C11H17N4O3F [МН]+ m/z=273,1357.
Радиохимия
Figure 00000065
Пример 9 - Получение соединения (11) - [18F]1-азидо-2-фторэтана
18F-Фторид получали при помощи циклотрона с использованием 18O(p,n)18F ядерной реакции с протонным излучением 19 MeV и обогащенной [18O]Н2О мишенью. После излучения к 18F-воде (1 мл) добавляли смесь Kryptofix® (5 мг), карбоната калия (1 мг) и ацетонитрила (1 мл). Растворитель удаляли путем нагревания при 80°С в потоке азота (100 мл/мин). После этого добавляли ацетонитрил (0,5 мл) и упаривали при нагревании и потоке азота. Эту операцию повторяли дважды. После охлаждения до комнатной температуры добавляли раствор соединения (10) [1,5 мкл; приготовленный в соответствии со способом Z.P.Demko and К.B.Sharpless, Org. Lett. 3 (2001), 4091] в безводном ацетонитриле (0,2 мл). Реакционную смесь перемешивали в течение 30 мин при 80°С. Соединение (11) выделяли путем перегонки с радиохимическим выходом, скорректированным на распад (decay-corrected), 40±14% (n=7) [эффективность: 76±8% (n=7)].
Пример 10 - Получение соединений (12)-(16) - [18F][1-(2-фторэтил)-1H-[1,2,3]триазолов
Figure 00000066
Соединение R Радиохимический выход (РХВ)*
12
Figure 00000067
39%**
13
Figure 00000068
7%
14
Figure 00000069
меньше 1%
15
Figure 00000070
69%
16
Figure 00000071
больше 99%
* в соответствии с ВЭЖХ, ** выделено, реакция в одном реакторе
Раствор алкинового реагента (0,015 ммоль) в ДМФ (0,1 мл) добавляли к смеси сульфата меди (II) (5 эквивалентов) и L-аскорбиновой кислоты (20 эквивалентов) в атмосфере азота. Добавляли раствор соединения (11) в ацетонитриле (0,2 мл). После перемешивания в течение 30 мин при 80°С реакционную смесь анализировали путем ВЭЖХ.
Пример 11 - Получение соединения (18) - [18F](S)-6-амино-2-(2-{(S)-2-[2-((S)-6-амино-2-{[4-(2-фторэтил)-[1,2,3]триазол-1-карбонил]-амино}-гексаноиламино}-ацетиламино]-3-фенилпропиониламино}-ацетиламино)-гексановой кислоты
Figure 00000072
Соединение (17) (1 мг, 1,7 мкмоль) растворяли в буфере фосфате натрия (рН 6,0, 0.25 М, 0,05 мл). Добавляли соединение (11) (175 мкКи, 6,5 МБк) в ацетонитриле (0,05 мл), а затем гранулированную медь (400 мг, 10-40 меш). Смесь нагревали в течение 5 минут при 80°С. Анализ путем ВЭЖХ показал 86% пептида, меченного радиоактивным изотопом (18).
Пример 12 - Получение соединения (20)
Figure 00000073
(1) Получение соединения 19: Cys2-6; c[CH2CO-Lys(DL-Pra-Ac)-Cys-Arg-Gly-Asp-Cys-Phe-Cys]-CCX6-NH2
Ac-DL-Pra-OH (31 мг), гексафторфосфат (7-азабензотриазол-1-илокси)трипирролидинофосфония (PyAOP) (104 мг) и N-метилморфолин (NMM) (88 мкл) растворяли в диметилформамиде (ДМФ) (3 мл) и смесь перемешивали в течение 5 минут перед добавлением ClCH2CO-Lys-Cys(tBu)-Arg-Gly-Asp-Cys(tBu)-Phe-Cys-ПЭГ-NH2 (126 мг), полученного, как описано в WO 2005/003166, растворенного в ДМФ (4 мл). Реакционную смесь перемешивали в течение 45 минут. Добавляли дополнительное количество ClCH2CO-Lys-Cys(tBu)-Arg-Gly-Asp-Cys(tBu)-Phe-Cys-ПЭГ-NH2 (132 мг) и NMM (44 мкл) и перемешивание продолжали в течение 45 минут. Затем ДМФ выпаривали в вакууме, остаток (5 мл) разбавляли смесью 10% ацетонитрил (АЦН)/вода (100 мл) и продукт очищали с использованием препаративной ВЭЖХ.
Очистка и определение характеристик
Очистка путем препаративной ВЭЖХ (градиент: 10-40% Б в течение 60 мин, где А=Н2О/0,1% ТФУ, и Б=АЦН/0,1% ТФУ, скорость потока: 50 мл/мин, колонка: Phenomenex Luna 5µ С18 (2), 250×50 мм, детектирование: УФ 214 нм, время удерживания продукта: 31,3 мин) разбавленного остатка позволила получить 170 мг чистого АН-112145.
Чистый продукт анализировали при помощи аналитической ВЭЖХ (градиент: 10-40% Б в течение 10 мин, где А=Н2О/0,1% ТФУ, и Б=АЦН/0,1% ТФУ, скорость потока: 0,3 мл/мин, колонка: Phenomenex Luna 3µ С18 (2), 50×2 мм, детектирование: УФ 214 нм, время удерживания продукта: 6,32 мин). Дальнейшее определение характеристик продукта осуществляли с использованием масс-спектрометрии с электрораспылением (МН+ рассчитанное: 1395,5, МН+ обнаруженное: 1395,7).
(2) Получение соединения 20
Соединение (19) (0,5 мг, 0,35 мкмоль) растворяли в буфере фосфата натрия (рН 6,0, 50 мМ) и смешивали с раствором соединения (11) (25 мкл, 728 мкКи/25 МБк) и медным порошком (200 мг, 40 меш). После нагревания в течение 15 минут при 70°С смесь анализировали путем радио-ВЭЖХ.
Продукт конъюгации (20) выделяли с использованием полупрепаративной ВЭЖХ (колонка Luna С18(2), 100×10 мм, скорость потока 2,0 мл/мин; растворитель А: вода (0,085% ортофосфорная кислота, об./об.), растворитель Б: вода (30% этанол, об./об.), градиент: от 50% Б до 100% Б в течение 15 минут. Меченый пептид (20) получали с радиохимическим выходом, скорректированным на распад, 10% и радиохимической чистотой более 99%. Идентичность пика радиоактивного продукта (k'=2,03) подтверждали путем совместной инъекции со стандартным образцом соединения (20).
Пример 13 - Оптимизация параметров реакции получения соединения (20)
Общая методика: К раствору соединения (19) (0,5 мг, 0,35 мкмоль) в буфере (50 мкл; буфер А: фосфат натрия, рН 6,0, 50 мМ; буфер Б: карбонат натрия, рН 9,3, 50 мМ) добавляли соединение (11) (0,1 мКи, 3,7 МБк) в ацетонитриле (100 мкл), а затем медный катализатор (катализатор 1: гранулированная медь 10+40 меш, катализатор 2: медный порошок - 40 меш, катализатор 3: медный порошок, дендритный, 3 мкм). Смесь инкубировали в течение 15 минут при 80°С и анализировали путем ВЭЖХ.
Таблица 2.
Эффективность мечения соединения (19) с получением соединения (20) в зависимости от рН и катализатора (400 мг), измеренная путем ВЭЖХ
Буфер Катализатор 1 Катализатор 2 Катализатор 3
А 12% 44% -*
Б - 33% -*
* УФ пик для пептидного предшественника не обнаружен
Таблица 3.
Эффективность мечения соединения (19) с получением соединения (20) в зависимости от количества катализатора 3 при рН 6,0 (буфер А)
Количество катализатора 3 Эффективность мечения соединения (20)
200 мг 23%
100 мг 37%
50 мг 27%
Описанное и заявленное изобретение не ограничивается раскрытыми здесь специфическими воплощениями, поскольку эти воплощения предложены в качестве иллюстрации нескольких аспектов изобретения. Предполагается, что любые эквивалентные воплощения находятся в объеме этого изобретения. Действительно, различные модификации изобретения дополнительно к представленным и описанным здесь будут понятны специалистам в данной области техники из предшествующего описания. Также предполагается, что такие модификации являются частью объема прилагаемой формулы изобретения.

Claims (7)

1. Способ мечения вектора, включающий взаимодействие соединения формулы (I) с соединением формулы (II):
Figure 00000001

Figure 00000002

в присутствии Cu(I) катализатора, где:
L1 представляет собой линкерную группу, выбранную из -С(О)- и -CH2-CH(C(O)-)-NHC(O)CH3;
L2 представляет собой линкерную группу, представляющую собой C1-30алкильную цепь, возможно содержащую один гетероатом, такой как кислород, азот или сера;
R* представляет собой репортерную группировку, выбранную из 11С и 18F; и
вектор представляет собой пептид;
с получением конъюгата формулы (V):
Figure 00000074
,
где L1, L2, вектор и R* являются такими, как определено выше.
2. Способ по п.1, где вектор представляет собой пептид Arg-Gly-Asp или его аналог.
3. Способ по п.1, где вектор представляет собой пептид, содержащий фрагмент:
Figure 00000075
4. Способ по п.1, где вектор представляет собой пептид формулы (А):
Figure 00000076

где X7 представляет собой или -NH2, или
Figure 00000077
,
где а представляет собой целое число от 1 до 10.
5. Соединение формулы (II):
Figure 00000002

где L2 представляет собой линкерную группу, представляющую собой C1-30алкильную цепь, возможно содержащую один гетероатом, такой как кислород, азот или сера;
и R* представляет собой репортерную группировку, выбранную из 11С и 18F.
6. Соединение формулы (V):
Figure 00000005
,
где L1 представляет собой линкерную группу, выбранную из -С(О)- и -CH2-CH(C(O)-)-NHC(O)CH3;
L2 представляет собой линкерную группу, представляющую собой С1-30алкильную цепь, возможно содержащую один гетероатом, такой как кислород, азот или сера;
R* представляет собой репортерную группировку, выбранную из 11С и 18F; и
вектором является пептид, представляющий собой
Figure 00000078

или
-Lys-Gly-Phe-Gly-Lys.
7. Соединение формулы (I):
Figure 00000001
,
где L1 представляет собой линкерную группу, выбранную из -С(O)- и -CH2-CH(C(O)-)-NHC(O)CH3; и вектором является пептид, представляющий собой
Figure 00000079

или
-Lys-Gly-Phe-Gly-Lys.
RU2007122804/04A 2004-12-22 2005-12-09 Меченные радиоактивным изотопом конъюгаты rgd-содержащих пептидов и способы их получения с помощью click-химии RU2419627C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB0428012.9 2004-12-22
GBGB0428012.9A GB0428012D0 (en) 2004-12-22 2004-12-22 Radiolabelling methods

Publications (2)

Publication Number Publication Date
RU2007122804A RU2007122804A (ru) 2009-01-27
RU2419627C2 true RU2419627C2 (ru) 2011-05-27

Family

ID=34112991

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2007122804/04A RU2419627C2 (ru) 2004-12-22 2005-12-09 Меченные радиоактивным изотопом конъюгаты rgd-содержащих пептидов и способы их получения с помощью click-химии

Country Status (13)

Country Link
US (2) US7972588B2 (ru)
EP (4) EP2275145A1 (ru)
JP (2) JP5743372B2 (ru)
KR (1) KR101314460B1 (ru)
CN (2) CN105012972A (ru)
AU (1) AU2005317903C1 (ru)
BR (1) BRPI0519317A2 (ru)
CA (2) CA2589136C (ru)
GB (1) GB0428012D0 (ru)
MX (1) MX2007007560A (ru)
NO (1) NO341638B1 (ru)
RU (1) RU2419627C2 (ru)
WO (1) WO2006067376A2 (ru)

Families Citing this family (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0428012D0 (en) * 2004-12-22 2005-01-26 Hammersmith Imanet Ltd Radiolabelling methods
US8071718B2 (en) 2004-12-22 2011-12-06 General Electric Company Selective radiolabeling of biomolecules
WO2007148089A2 (en) * 2006-06-21 2007-12-27 Hammersmith Imanet Limited Radiolabelling methods
EP2029616A1 (en) * 2006-06-21 2009-03-04 Hammersmith Imanet Limited Chemical methods and apparatus
US20100233082A1 (en) * 2006-08-28 2010-09-16 Bengt Langstrom 68GA-Labeled Peptide-Based Radiopharmaceuticals
WO2008025886A1 (en) * 2006-09-01 2008-03-06 Wallac Oy Metal chelates and chelating agents containing triazolyl subunits
JP2010526999A (ja) * 2007-05-10 2010-08-05 トラスティーズ・オブ・コロンビア・ユニバーシティ・イン・ザ・シティ・オブ・ニューヨーク Petを用いた疾患の診断法及びその治療の評価法
CN101903047B (zh) * 2007-12-20 2015-10-21 通用电气公司 生物分子的选择性放射性标记
EP2147684A1 (en) * 2008-07-22 2010-01-27 Bracco Imaging S.p.A Diagnostic Agents Selective Against Metalloproteases
GB0815831D0 (en) * 2008-09-01 2008-10-08 Imp Innovations Ltd Compounds
AU2009289062B2 (en) 2008-09-05 2015-01-22 Hammersmith Imanet Limited Isatin derivatives for use as in vivo imaging agents
EP2346870B1 (en) * 2008-10-10 2015-08-05 Merck & Cie 18f-labelled folates as pet radiotracers
US20120165650A1 (en) 2010-12-22 2012-06-28 General Electric Company Her2 binders
EP2210882A1 (en) * 2009-01-16 2010-07-28 Commissariat à l'Énergie Atomique et aux Énergies Alternatives Synthesis of new protected azahistidine, their processes and their use in synthesises
EP2400992B1 (en) * 2009-02-27 2015-07-22 Genentech, Inc. Methods and compositions for protein labelling
US8722014B2 (en) * 2009-05-01 2014-05-13 Washington University 1 H-[1, 2, 3] triazole substituted amino acids and uses thereof
GB0914543D0 (en) 2009-08-20 2009-09-30 Ge Healthcare Ltd Radioiodination method
EP2498826A1 (en) * 2009-11-11 2012-09-19 NeuroSearch AS Labelled pyrrolyl-oxadiazolyl-diazabicyclononane derivatives and their use in diagnostic methods
GB0921573D0 (en) * 2009-12-10 2010-01-27 Ge Healthcare Ltd Iodine radiolabelling method
GB0922304D0 (en) 2009-12-22 2010-02-03 Ge Healthcare Ltd Radioiodinated compounds
EP2515650A4 (en) * 2009-12-23 2013-05-29 Univ Nebraska TARGETED RADIOMARTICATED COMPOUNDS AND THEIR USE FOR THE TREATMENT AND DIAGNOSIS OF CANCER
US9517279B2 (en) * 2010-04-14 2016-12-13 The Mclean Hospital Corporation 2-alkoxy-11-hydroxyaporphine derivatives and uses thereof
CA2801064A1 (en) * 2010-06-01 2011-12-08 Advanced Proteome Therapeutics Inc. Crosslinking of proteins and other entities via conjugates of alpha-haloacetophenones, benzyl halides, quinones, and their derivatives
CN103221398B (zh) * 2010-07-23 2016-03-23 特拉华大学 用于快速构建放射性核素标记探针的四嗪-反式环辛烯连接反应
GB201014023D0 (en) * 2010-08-20 2010-10-06 Ucl Business Plc Process for producing bioconjugates and products thereof
US9649394B2 (en) 2010-11-22 2017-05-16 The General Hospital Corporation Compositions and methods for in vivo imaging
GB201019824D0 (en) 2010-11-23 2011-01-05 Ge Healthcare Ltd Radioiodination method
GB201021369D0 (en) 2010-12-16 2011-01-26 Ge Healthcare Ltd Radioiodinated fatty acids
GB201021517D0 (en) 2010-12-20 2011-02-02 Ge Healthcare Ltd Radioiodinated guanidines
EP2661284A1 (en) 2010-12-22 2013-11-13 GE Healthcare UK Limited Her2 binding peptides labelled with a 18f - containing organosilicon compound
CA3159948A1 (en) 2010-12-22 2012-07-19 General Electric Company Radiolabled her2 binding peptides
WO2012118909A1 (en) 2011-03-01 2012-09-07 Ge Healthcare Limited Radiolabelled octreotate analogues as pet tracers
US20120251448A1 (en) * 2011-03-03 2012-10-04 Hefti Franz F Compounds for Use in the Detection of Neurodegenerative Diseases
US9023318B2 (en) * 2011-06-08 2015-05-05 Siemens Medical Solutions Usa, Inc. Compounds with matrix-metalloproteinase inhibitory activity and imaging agents thereof
WO2013048832A1 (en) 2011-09-29 2013-04-04 Ge Healthcare Limited 18 f - labelled 6 - ( 2 - fluoroethoxy) - 2 - naphthaldehyde for detecting cancer stem cells
WO2013048811A1 (en) 2011-09-30 2013-04-04 Ge Healthcare Limited Imaging and radiotherapy methods for tumour stem cells
WO2013082508A1 (en) * 2011-12-02 2013-06-06 The Regents Of The University Of Michigan Compositions and methods for the treatment and analysis of neurological disorders
GB201121911D0 (en) 2011-12-20 2012-02-01 Ge Healthcare Ltd Radiofluorination method
EP2809356A1 (en) * 2012-02-03 2014-12-10 Aarhus Universitet Radiolabeled bile acids and bile acid derivatives
EP2657213A1 (en) * 2012-04-24 2013-10-30 Institut National de la Santé et de la Recherche Medicale Labelled quinoxaline derivatives as multimodal radiopharmaceuticals and their precursors
US20140065070A1 (en) * 2012-08-28 2014-03-06 Mcmaster University Methods of preparing triazole-containing radioiodinated compounds
WO2014065413A1 (ja) * 2012-10-26 2014-05-01 日本たばこ産業株式会社 トリアゾール・イソオキサゾール化合物およびその医薬用途
US20150023877A1 (en) * 2013-07-18 2015-01-22 The Board Of Trustees Of The Leland Stanford Junior University Methods of parkinsons disease diagnosis and monitoring treatment
ES2700348T3 (es) * 2014-01-05 2019-02-15 Univ Washington Trazadores radioetiquetados para poli (ADP-ribosa) polimerasa-1 (PARP-1), métodos y usos para estos
US20160022846A1 (en) * 2014-07-22 2016-01-28 Ge Healthcare Limited Iodine radiolabelling method
MY189024A (en) * 2015-06-19 2022-01-20 Eisai R&D Man Co Ltd Cys80 conjugated immunoglobulins
WO2017023999A1 (en) * 2015-08-03 2017-02-09 Emory University Methylsulfonamide derivatives and uses related thereto
EP3826673A4 (en) * 2018-07-26 2022-03-09 Tayu Huaxia Biotech Medical Group Co., Ltd. IMAGING COMPOSITIONS AND METHODS

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4913891A (en) * 1986-04-17 1990-04-03 The United States Of America As Represented By The United States Department Of Energy Positron emitter labeled enzyme inhibitors
AU4589701A (en) 2000-03-24 2001-10-08 Cocensys Inc Aryl substituted pyrazoles, triazoles and tetrazoles, and the use thereof
US6350360B1 (en) 2000-04-07 2002-02-26 Sandia Coroporation Method of fabricating a 3-dimensional tool master
EP1272507B1 (en) * 2000-04-12 2005-06-29 Amersham Health AS Integrin binding peptide derivatives
GB0115927D0 (en) 2001-06-29 2001-08-22 Nycomed Amersham Plc Solid-phase nucleophilic fluorination
NZ530156A (en) * 2001-07-10 2007-04-27 Ge Healthcare As Peptide-based compounds for targeting integrin receptors for use as diagnostic imaging agents
KR101138643B1 (ko) 2002-05-30 2012-04-26 더 스크립스 리서치 인스티튜트 구리 촉매 작용하에서의 아지드와 아세틸렌과의 리게이션
WO2004055160A2 (en) 2002-12-13 2004-07-01 The Trustees Of Columbia University In The City Of New York Biomolecular coupling methods using 1,3-dipolar cycloaddition chemistry
JP5642916B2 (ja) 2003-04-17 2014-12-17 ザ スクリプス リサーチ インスティテュート 真核遺伝コードの拡張
US7993872B2 (en) 2003-06-18 2011-08-09 The Scripps Research Institute Unnatural reactive amino acid genetic code additions
NO20033115D0 (no) 2003-07-08 2003-07-08 Amersham Health As Peptid-baserte forbindelser
WO2006038185A2 (en) * 2004-10-07 2006-04-13 Koninklijke Philips Electronics N.V. Use of the staudinger ligation in imaging and therapy end kits for imaging and therapy
GB0428012D0 (en) * 2004-12-22 2005-01-26 Hammersmith Imanet Ltd Radiolabelling methods

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HAUBNER R ET AL: "RADIOLABELED TRACERS FOR IMAGING OF TUMOR ANGIOGENESIS AND EVALUATION OF ANTI-ANGIOGENIC THERAPIES" CURRENT PHARMACEUTICAL DESIGN, BENTHAM SCIENCE PUBLISHERS, 2004, vol.10, no.13, pages 1439-1455. KOLB H С ET AL: "The growing impact of click chemistry on drug discovery" DDT - DRUG DISCOVERY TODAY, 2003, vol.8, no.24, pages 1128-1137. *

Also Published As

Publication number Publication date
EP2266629B1 (en) 2015-12-09
AU2005317903C1 (en) 2012-05-10
CA2589136A1 (en) 2006-06-29
CA2817636A1 (en) 2006-06-29
AU2005317903B8 (en) 2012-01-19
JP5743372B2 (ja) 2015-07-01
CA2589136C (en) 2015-10-06
US8679455B2 (en) 2014-03-25
WO2006067376A2 (en) 2006-06-29
US7972588B2 (en) 2011-07-05
RU2007122804A (ru) 2009-01-27
AU2005317903B2 (en) 2011-12-01
CN105012972A (zh) 2015-11-04
BRPI0519317A2 (pt) 2009-01-13
KR20070091626A (ko) 2007-09-11
EP2266629A1 (en) 2010-12-29
KR101314460B1 (ko) 2013-10-10
GB0428012D0 (en) 2005-01-26
WO2006067376A3 (en) 2007-07-26
US20090311177A1 (en) 2009-12-17
JP2012254998A (ja) 2012-12-27
EP1830890A2 (en) 2007-09-12
NO341638B1 (no) 2017-12-18
US20110236311A1 (en) 2011-09-29
CN101084020A (zh) 2007-12-05
AU2005317903A1 (en) 2006-06-29
EP2275145A1 (en) 2011-01-19
JP2008528445A (ja) 2008-07-31
NO20073157L (no) 2007-06-20
MX2007007560A (es) 2007-11-21
EP2258403A1 (en) 2010-12-08

Similar Documents

Publication Publication Date Title
RU2419627C2 (ru) Меченные радиоактивным изотопом конъюгаты rgd-содержащих пептидов и способы их получения с помощью click-химии
US8409547B2 (en) Radiolabelling methods
EP2680889B1 (en) Radiolabelled octreotate analogues as pet tracers
Chiotellis et al. Novel chemoselective 18 F-radiolabeling of thiol-containing biomolecules under mild aqueous conditions
JP5318874B2 (ja) 放射性フッ素化方法
JP2009541286A (ja) 化学的方法及び装置
US20080213174A1 (en) Radiolabelled Insulin
AU2011250795A1 (en) Radiolabelling methods
KR20100022987A (ko) 표지 방법
Xiuli et al. An improved synthesis of S-benzoyl mercaptoacetyltriglycine as BFCA and the labeling of IgG with carrier-free 188 Re
CN113557037A (zh) 用于核医学和放射引导医学的诊断/治疗用途的放射性药物

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20151210