RU2375388C2 - Стабилизированный полиэтиленовый материал - Google Patents

Стабилизированный полиэтиленовый материал Download PDF

Info

Publication number
RU2375388C2
RU2375388C2 RU2006123558/04A RU2006123558A RU2375388C2 RU 2375388 C2 RU2375388 C2 RU 2375388C2 RU 2006123558/04 A RU2006123558/04 A RU 2006123558/04A RU 2006123558 A RU2006123558 A RU 2006123558A RU 2375388 C2 RU2375388 C2 RU 2375388C2
Authority
RU
Russia
Prior art keywords
alpha
tert
butyl
antioxidant
propionate
Prior art date
Application number
RU2006123558/04A
Other languages
English (en)
Other versions
RU2006123558A (ru
Inventor
Тхой Х. ХО (US)
Тхой Х. ХО
Пак-Менг ЧАМ (US)
Пак-Менг ЧАМ
Детлеф ШРАММ (CH)
Детлеф ШРАММ
Кальян СЕХАНОБИШ (US)
Кальян СЕХАНОБИШ
Original Assignee
Дау Глобал Текнолоджиз Инк.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=34676694&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=RU2375388(C2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Дау Глобал Текнолоджиз Инк. filed Critical Дау Глобал Текнолоджиз Инк.
Publication of RU2006123558A publication Critical patent/RU2006123558A/ru
Application granted granted Critical
Publication of RU2375388C2 publication Critical patent/RU2375388C2/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/13Phenols; Phenolates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/13Phenols; Phenolates
    • C08K5/134Phenols containing ester groups
    • C08K5/1345Carboxylic esters of phenolcarboxylic acids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L11/00Hoses, i.e. flexible pipes
    • F16L11/04Hoses, i.e. flexible pipes made of rubber or flexible plastics
    • F16L11/06Hoses, i.e. flexible pipes made of rubber or flexible plastics with homogeneous wall
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/014Additives containing two or more different additives of the same subgroup in C08K
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/18Applications used for pipes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1352Polymer or resin containing [i.e., natural or synthetic]
    • Y10T428/139Open-ended, self-supporting conduit, cylinder, or tube-type article

Abstract

Изобретение относится к изделиям из стабилизированных полиэтиленовых материалов, в частности, к трубе, выполненной из многомодального сополимера этилена и альфа-олефина, содержащей систему антиоксидантов, состоящую из 1) по меньшей мере одного антиоксиданта из первого класса антиоксидантов, представляющего собой ! 3, 3', 3'', 5, 5', 5'' - гекса-трет-бутил-альфа, альфа', альфа'' - (мезитилен-2,4,6-триил)три-п-крезол; 2) по меньшей мере одного антиоксиданта из второго класса антиоксидантов, включающего затрудненный фенол, выбранный из группы, состоящей из тетракис-(3-(3,5-ди-трет-бутил-4-гидроксифенил)пропионата) пентаэритрита, октадецил-3-(3,5-ди-трет-бутил-4-гидроксифенил)пропионата, 1,3,5-трис-(3,5-ди-трет-бутил-4-гидроксибензил)-1,3,5-триазин-2,4,6(1Н, 3Н,5Н)триона, 1,3,5-трис-(4-трет-бутил-3-гидрокси-2,6-диметилбензил)-1,3,5-триазин-2,4,6-(1Н,3Н,5Н)-триона, этилен-бис-(оксиэтилен)-бис-(3-(5-трет-бутил-4-гидрокси-м-толил)пропионата), 1,6-гексаметилен-бис-(3,5-ди(трет-бутил)-4-гидроксигидроциннамата), тиодиэтилен-бис-[3-(3,5-ди-трет-бутил-4-гидроксифенил)пропионат], трис-(2,4-ди-трет-бутилфенил)фосфата, и их смесей. Полиэтиленовая труба в соответствии с изобретением демонстрирует устойчивость к экстракции в среде горячей воды. Дополнительно труба демонстрирует устойчивость к окислению при действии хлора в воде внутри трубы и кислорода с наружной стороны трубы. 1 н. и 5 з.п. ф-лы, 1 табл.

Description

Настоящее изобретение относится к стабилизированной полиэтиленовой смоле, в частности к стабилизированной многомодальной полиэтиленовой смоле, а также композициям, содержащим такую смолу. Настоящее изобретение относится также к применению такой смолы или композиции, например, для изготовления формованного изделия. Смола и композиция изобретения являются особенно подходящими для применения в трубах.
Полиэтилен является известным для применения в формованных изделиях, включающих в себя трубы. Полиэтиленовые композиции с многомодальным молекулярно-массовым распределением (MWD), например бимодальным MWD, могут иметь явные преимущества по сравнению с унимодальными полиэтиленами или другими полиолефинами. Например, бимодальные полиэтилены могут сочетать благоприятные механические свойства, обеспечиваемые полиэтиленом с высокой молекулярной массой с хорошей способностью к переработке полиэтилена с низкой молекулярной массой. В известном уровне техники описано, что такие материалы можно пригодным образом использовать при различных применениях, включающих применение пленок или труб. Многомодальные полиэтилены известного уровня техники, предложенные для применения в трубах, включают материалы, описанные в публикациях заявок РСТ WO 97/291152, WO 00/01765, WO 00/18814, WO 01/02480 и WO 01/25328.
С точки зрения потенциально бедственных последствий повреждений материалов принятие любой пластиковой трубки для распределения воды или газа является вопросом стандартов и требований функционирования продуктов, установленных в нормативах, например DIN (German Industrial Norm or “Deutsche Industrie Norm”) или нормативах, определяемых ISO (International Organization for Standartization, Geneva, Switzerland). Примеры таких стандартов включают EN ISO 15877:2003 Plastics piping systems for hot and cold water installations - Chlorinated poly(vinyl chloride) (PVC-C)(including the following Parts: Part 1: General (the present standard), Part 2: Pipes, Part 3: Fittings, Part 5: Fitness for purpose of the system, Part 7: Guidance for the assessment of conformity (CEN ISO/TS 15877-7)); EN ISO 15874, Plastics piping systems for hot and cold water installations - Polypropylene (PP) (ISO 15874:2003; EN ISO 15875, Plastics piping systems for hot and cold water installations - Crosslinked polyethylene (PE-X) (ISO 15875:2003); EN ISO 15876, Plastics piping systems for hot and cold water installations - Polybutylene (PB) (ISO 15876:2003); ISO 22391, Plastics piping systems for hot and cold water installations - PE-RT; DIN 16833 Pipes made from polyethylene of raised temperature-resistance (PE-RT) General Quality Requirements Testing; DIN 4721 Plastic piping systems for warm water floor heating and radiator connections; polyethylene of raised temperature resistance (PE-RI); Oenorm B 5159 Plastics piping systems of polyethylene with raised temperature resistance (PE-RT) for hot and cold water installations. Каждый из этих стандартов таким образом включен в качестве ссылки во всей его полноте.
Структура полиэтиленовых материалов данной области, продаваемых для применения в трубах, таких как ирригационные трубы, трубы для сточных вод, домашние трубы (включающие трубы для нагрева полов, системы для плавления снега, доставки горячей и холодной воды), должна удовлетворять определенным стандартам. Например, полиэтиленовые материалы, продаваемые для изготовления напорных трубопроводов, могут удовлетворять так называемым показателям РЕ80 или РЕ100 (РЕ означает полиэтилен). Трубы, изготовленные из полиэтиленов, классифицируемых как смолы типа PE80 или типа РЕ100, должны выдерживать минимальное окружное напряжение или окружное напряжение 8 МПа (РЕ80) или 10 МПа (РЕ100) при 20°С в течение 50 лет. Смолы РЕ100 являются марками полиэтилена повышенной плотности (HDPE), обычно имеющие плотность, по меньшей мере, приблизительно 0,950 г/см3 или выше.
Их относительно низкая гидростатическая долговечность (LTHS) при высоких температурах подтверждает недостатки традиционных полиэтиленов, которые делали эти материалы неподходящими для применения в трубопроводе, подвергающемся воздействию более высоких температур, таких как трубы, применяемые в домашнем хозяйстве. Системы труб в домашнем хозяйстве обычно функционируют при давлениях от 2 до 10 бар и температурах до приблизительно 70°С со сбоями в работе при температурах 95-100°С. Трубы домашнего хозяйства включают трубы для горячей и/или холодной воды в сети напорных труб для обогрева и питьевой воды в зданиях, а также трубы для плавления снега и систем рекуперации тепла. Требования к характеристикам для различных классов труб для горячей воды, в том числе труб для нагрева полов, соединительных частей для радиаторов и гигиенических труб, указываются, например, в International Standard ISO 10508 (first edition 15, 1995, “Thermoplastic pipes and fitting for hot and cold water systems”).
Во многих применениях к используемой воде в качестве дезинфицирующего средства добавляют хлор. Системы хлорированной воды создают дополнительные проблемы для систем пластиковых труб, поскольку известно, что воздействие хлора повышает скорости разрушения систем труб из пластиков (то есть меньше времени проходит до обнаружения течи). Известно, что хлор взаимодействует с полиэтиленом в реакции окисления-восстановления, что приводит к деструкции полимера. Для противодействия хлору обычно используют антиоксиданты, но было обнаружено, что общепринятые антиоксиданты, применяемые со смолами, в настоящее время применяемыми в области изготовления труб, могут быть экстрагированы водой в относительно короткий период времени.
В соответствии с этим все еще существует потребность в новых стабилизированных полиэтиленовых материалах, которые обладают подходящим образом сбалансированной комбинацией термических, механических и обрабатываемых свойств и которые сохраняют свои физические свойства в окружении хлорированной воды. Целью настоящего изобретения является удовлетворение этих и других потребностей.
Обнаружено, что, по меньшей мере, три фактора влияют на стойкость пластиковых труб, применяемых в системах хлорированной воды. Первый, внешняя сторона труб подвергается действию кислорода в воздухе. Второй, внутренняя часть труб подвергается действию хлора в воде. Антиоксиданты можно применять для повышения стойкости трубы к любому из этих факторов, однако, обнаружено, что каждый антиоксидант не является в равной степени эффективным против каждого из этих факторов окружающей среды. Другой фактор, который, как наблюдали, имеет отношение к длительной термостойкости труб в системах хлорированной воды, является способностью антиоксидантов быть устойчивыми к экстракции их из воды внутренней стороны трубы. В настоящее время не имеется известных систем антиоксидантов, которые удовлетворяют комбинации всех этих факторов для стандартных полиэтиленовых смол.
В соответствии с этим настоящее изобретение предлагает класс смол, которые проявляют повышенное сродство к добавкам в том, что добавки, менее вероятно, экстрагируются в содержащую воду окружающую среду. Настоящее изобретение предлагает также конкретную комбинацию антиоксидантных добавок, которые демонстрируют синергическое действие в удлинении времени индуцирования окисления для пластиковых труб в системах хлорированной воды.
Предпочтительной смолой для применения в настоящем изобретении является полиэтиленовая смола с плотностью в диапазоне от 0,925 до 0,965 г/см3 Выбранная плотность будет зависеть от предполагаемой цели, причем материалы с меньшей плотностью обеспечивают более высокую эластичность, но проявляет также меньшую устойчивость к высоким температурам и более низкий модуль. Для некоторых применений плотности выше приблизительно 0,940 г/см3 будут наиболее предпочтительными. Смола должна также иметь индекс расплава (I2) в диапазоне от 0,05 до 5 г/10 минут, более предпочтительно в диапазоне от 0,1 до 1 г/10 минут.
Антиоксидантные добавки настоящего изобретения включают, по меньшей мере, два антиоксиданта, которые действуют синергическим образом для окружающей среды трубы, в которые подают хлорированную воду. В соответствии с этим один из антиоксидантов должен быть выбран для его эффективности в отношении атмосферы, внешней для трубы, и другой антиоксидант должен быть выбран для его эффективности в отношении воздействия хлора во внутренней части трубы. Предпочтительные антиоксиданты включают затрудненные фенолы, фосфиты и фосфониты.
Настоящее изобретение относится также к применению такой изготовленной полиэтиленовой смолы и композиции и к формованным изделиям, таким как трубы, изготовленным из такой полиэтиленовой смолы или композиции.
Основные определения
Термин «сополимер» используют в данном описании для обозначения полимеров, полученных полимеризацией, по меньшей мере, двух мономеров. Родовой термин сополимер, таким образом, включает термин сополимер, обычно используемый для обозначения полимеров, полученных из двух различных мономеров, и полимеров, полученных из более чем двух различных мономеров, таких как терполимеры.
Если не указано иное, все части, проценты и отношения являются массовыми.
Аббревиатура «куб.см» означает кубические сантиметры.
Если специально не оговорено особо, термин «индекс расплава» означает индекс расплава I2, как определено в соответствии ASTM D1238 при нагрузке 2,16 кг и при температуре 190°С.
Если не оговорено особо, термин «альфа-олефин» (α-олефин) относится к алифатическому или циклоалифатическому альфа-олефину, имеющему, по меньшей мере, 4, предпочтительно от 4 до 20 атомов углерода.
Настоящее изобретение предлагает полиэтиленовую смолу с плотностью, по меньшей мере, приблизительно 0,925 г/см3, более предпочтительно приблизительно 0,930 г/см3, наиболее предпочтительно приблизительно 0,940 г/см3. Полиэтиленовая смола может иметь максимальную плотность приблизительно 0,965 г/см3. Смола должна иметь также индекс расплава (I2) в диапазоне от 0,05 до 5 г/10 минут, более предпочтительно в диапазоне от 0,1 до 1 г/10 минут. Смола может также преимущественно иметь многомодальное молекулярно-массовое распределение. Предпочтительные смолы для применения в настоящем изобретении и подходящие способы для их получения указаны в WO 03/020821. Смолы, применяемые в настоящем изобретении, могут быть сшиты по способам, известным в данной области, но это не является обязательным, и фактически для многих применений предпочтительно, чтобы смолы не были сшиты.
Не желая связываться с теорией, высказывается гипотеза, что применение материалов с более высокой плотностью позволяет достичь лучших результатов вследствие их кристаллической структуры. Чем выше плотность материала, тем меньше он содержит аморфных областей. Считается, что вода может проникать в эти аморфные области и экстрагировать расположенный там антиоксидант, тогда как вода не может проникать в кристаллические области. Таким образом, материалы с более высокой плотностью имеют меньше областей, из которых антиоксиданты могут быть экстрагированы, что со временем приводит к более высокой концентрации антиоксиданта в материале. Следует также отметить, что этот эффект повышает эффективность всех антиоксидантов и совсем не повышает эффективность предпочтительной комбинации антиоксидантов настоящего изобретения. Специалисту в данной области будет очевидно, что этот благоприятный эффект снижения экстракции антиоксиданта, наблюдаемый при применении материала с высокой плотностью, не противоречит другим физическим ограничениям материалов с высокой плотностью, таким как обычно более низкая прочность и эластичность. Таким образом, конкретная применяемая смола должна быть оптимизирована для нужд конкретного применения.
Настоящее изобретение предлагает также композиции, содержащие полиэтиленовую смолу изобретения с высокой плотностью и упаковку антиоксиданта, включающую, по меньшей мере, две антиоксидантные добавки. Обнаружено, что антиоксиданты не являются подходящими для различных элементов в равной степени. Так, некоторые антиоксиданты действуют лучше при противодействии порче трубы при воздействии на нее воздуха, тогда как другие могут быть лучше при противодействии порчи той же самой трубы при воздействии на нее хлора. В соответствии с этим для настоящего изобретения одна антиоксидантная добавка должна быть выбрана ввиду ее эффективности в качестве антиоксиданта при воздействии на трубу воздуха и другая антиоксидантная добавка должна быть выбрана ввиду ее эффективности при воздействии на трубу хлора. Выбор антиоксиданта может также изменяться в зависимости от того, должна ли быть смола сшитой.
Известно, что для эффективного действия против воздействия воды применяют первый класс антиоксидантов, включающих затрудненные фенолы, соответствующие формуле
Figure 00000001
где R1 и R5 могут независимо представлять собой -СН3, -СН(СН3)2 или -С(СН3)3 и R2, R3 и R4 могут представлять собой независимо любую углеводородную или замещенную углеводородную группу.
Группы R должны быть выбраны так, чтобы конкретный антиоксидант мог иметь растворимость в гексане при 20°С более чем пять процентов. Как должно быть понятно среднему специалисту в данной области, это означает, что полярные группы обычно исключаются. Чтобы определить растворимость в гексане, вещество измельчают в порошок, имеющий средний размер частиц приблизительно 300 микрон, Двенадцать граммов этого порошка затем добавляют к 100 граммам гексана и смесь перемешивают при комнатной температуре в течение 5 часов. Твердое вещество затем отфильтровывают, сушат и взвешивают, процентную растворимость вычисляют из разности между массой порошка до и после перемешивания.
Гидролизованный продукт антиоксиданта также должен иметь растворимость в гексане при 20°С более чем пять процентов. Для определения растворимости гидролизованного продукта антиоксидант сначала гидролизуют растворением антиоксиданта в растворителе, таком как ацетон или диоксан. Затем добавляют воду в количестве, обеспечивающем получение раствора, имеющего пять массовых процентов воды. Этот раствор затем кипятят с обратным холодильником в течение семи дней до полного гидролиза вещества. Раствор затем упаривают для выделения твердого вещества и растворимость данного вещества определяют, как указано выше.
Примером первого класса антиоксидантов, подходящих для применения в настоящем изобретении, является 3,3'3'',5,5'5''-гекса-трет-бутил-альфа, альфа', альфа''-(мезитилен-2,4,6-триил)три-п-крезол (САЗ 1709-7-2), коммерчески доступный как ирганокс 1330 (Ciba Specialty Chemicals) или этанокс 330 (Albemarle Corporation).
Однако было обнаружено, что этот первый класс антиоксидантов не является эффективным, как требуется, против действия хлора и кислорода. Для эффективности против действия хлора и кислорода в воздухе предпочтительным является второй класс антиоксидантов.
Второй класс антиоксидантов соответствует такой же общей формуле, как первый класс, где R1 и R5 могут представлять собой -СН3, -СН(СН3)2 или -С(СН3)3 и R2, R3 и R4 могут представлять собой независимо водород или любую углеводородную или замещенную углеводородную группу, при условии, что R2, R3 и R4 выбраны так, чтобы антиоксидант не содержал остаток -Ph-CHR6, или R2, R3 и R4 выбраны так, чтобы антиоксидант не содержал остаток Ph-CHR6, где Ph представляет собой замещенное или незамещенное кольцо фенила, и R6 может быть Н или замещенным или незамещенный кольцом фенила. Примеры второго класса антиоксидантов включают тетракис-(3-(3,5-ди-трет-бутил-4-гидроксифенил)пропионат)пентаэритрита (CAS 6683-19-8), доступный как ирганокс 1010 (Ciba Specialty Chemicals); октадецил-3-(3,5-ди-трет-бутил-4-гидроксифенил)пропионат (CAS 002082-79-8), доступный как ирганокс 1076; 1,3,5-трис-(3,5-ди-трет-бутил-4-гидроксибензил)-1,3,5-триазин-2,4,6-(1Н,3Н,5Н)-трион (CAS 2767-62-6), доступный как ирганокс 3114; 1,3,5-трис-(4-трет-бутил-3-гидрокси-2,6-диметилбензил)-1,3,5-триазин-2,4,6-(1Н,3Н,5Н)трион (CAS 040601-76), доступный как цианокс 1790 (CyTech Industries); этиленбис(оксиэтилен)бис-(3-(5-трет-бутил-4-гидрокси-м-толил)пропионат) (CAS 36443-68-2), доступный как ирганокс 245; 1,6-гексаметилен-бис-(3,5-ди(трет-бутил)-4-гидроксигидроциннамат (CAS 35074-77-2), доступный как ирганокс 259; тиодиэтиленбис[3-(3,5-ди-трет-бутил-4-гидроксифенил)пропионат] (CAS 41484-35-9), доступный как ирганокс 1035, и их смеси. Структуры антиоксидантов, перечисленных выше, показаны ниже.
При применении в трубах, предназначенных для доставки хлорированной воды, таким образом, было обнаружено, что упаковка добавок, включающая, по меньшей мере, один антиоксидант из первого класса вместе, по меньшей мере, с одним антиоксидантом из второго класса, приводит к синергическим результатам. Предпочтительно, чтобы смола, применяемая для изготовления труб, содержала, по меньшей мере, приблизительно от 300, более предпочтительно 400 и наиболее предпочтительно приблизительно 500 ч./млн до приблизительно 5000 ч./млн, более предпочтительно приблизительно 4000 ч./млн и наиболее предпочтительно приблизительно 3000 ч./млн добавки каждого класса.
К смоле или упаковке антиоксидантов могут быть добавлены другие добавки, которые могут быть более эффективными при предотвращении окисления при более высоких температурах, которым смола может подвергаться во время экструзии. Такие антиоксиданты включают фосфиты и фосфониты, такие как трис-(2,4-ди-трет-бутилфенил)фосфат (CAS 31570-04-4), доступный как иргафосТМ 168. С композициями настоящего изобретения подходящим образом можно также применять деактиваторы металлов, такие как 2',3-бис-[[3-[3,5-ди-трет-бутил-4-гидроксифенил]пропионил]]пропионогидразид (CAS 32687-78-8), доступный как ирганоксТМ MD 1024, и 2,2'-оксалилдиамино-бис-[этил-3-(3,5-ди-трет-бутил-4-гидроксифенил)пропионат] (доступный как наугардTM XL1); вещества для улучшения технологических свойств; УФ-стабилизаторы; другие антиоксиданты; пигменты или красящие вещества.
При применении для изготовления труб для хлорированной воды смола настоящего изобретения содержит затрудненные фенолы, такие как ирганоксТМ 1330, затрудненные фенолы, такие как ирганоксТМ 1010 и/или ирганоксТМ 1076, фосфиты, такие как иргафос 168, и деактиваторы металлов, такие как ирганоксТМ MD 1024 и/или наугардТМ XL1.
Смолы или композиции настоящего изобретения можно применять для изготовления формованного изделия. Такое изделие может быть однослойным или многослойным изделием, которое можно получать подходящими известными способами превращения с использованием нагрева, давления или их комбинации для изготовления формованного изделия. Подходящие способы превращения включают, например, формование раздувом, формование раздувом с совмещенной экструзией, литьевое формование, литьевое формование с вытяжкой раздувом, прямое прессование, экструзию, получение одноосноориентированного волокнистого пластика, каландрование, формование листового термопласта. Формованные изделия, предложенные изобретением, включают, например, пленки, листы, волокна, профили, отливки и трубы.
Полиэтиленовые смолы и композиции согласно настоящему изобретению являются особенно подходящими для изготовления изделий долговременного применения, особенно труб без необходимости сшивания. Трубы, включающие полиэтиленовую смолу, предлагаемую в данном описании, являются другим аспектом настоящего изобретения и включают однослойные трубы, а также многослойные трубы, в том числе многослойные композиционные трубы. Трубы изобретения включают полиэтиленовую смолу низкого давления (повышенной плотности) в форме композиции (состава), которая содержит также упаковку антиоксиданта настоящего изобретения и необязательно другие добавки или наполнители.
Однослойные трубы согласно настоящему изобретению состоят из одного слоя, изготовленного из композиции согласно настоящему изобретению, содержащей полиэтиленовую смолу низкого давления (повышенной плотности) вместе с упаковкой антиоксиданта, предлагаемой в данном описании, и любыми дополнительными подходящими добавками, обычно применяемыми для изготовления труб. Такие добавки включают красящие вещества и материалы, такие как, например, стабилизаторы процесса, пигменты, деактиваторы металлов и УФ-защитные средства.
Возможны также многослойные композиционные трубы, включающие один или несколько слоев, например один или два слоя, где, по меньшей мере, один слой включает композицию согласно настоящему изобретению. В таких случаях следует применять смолу низкого давления, по меньшей мере, для внутреннего слоя, поскольку он является слоем, который подвергается действию воды. Должно быть понятно, что в многослойной трубе упаковка антиоксиданта, применяемая со смолой низкого давления, может быть другая и смола может не подвергаться действию воздуха. Такие многослойные трубки включают, например, трехслойные композиционные трубы с общей структурой РЕ/адгезив/барьер или пятислойные трубы с общей структурой РЕ/адгезив/барьер/адгезив/РЕ или полиолефин/адгезив/барьер/адгезив/РЕ. В этих структурах РЕ означает полиэтиленовые слои, которые могут быть изготовлены из одного и того же или разных полиэтиленовых композиций. Подходящие полиолефины включают, например, полиэтилен, полипропилен и полибутилен, гомополимеры и сополимеры высокого давления. Слоем-барьером может быть органический полимер, способный обеспечить требуемые барьерные свойства, такой как сополимер этилена с виниловым спиртом (EVOH), или металл, например алюминий или нержавеющая сталь.
Изобретение далее иллюстрируется нижеследующими примерами, которые, однако, не должны истолковываться как ограничение изобретения.
Примеры
Различные композиции смол получали сначала смешиванием маточной смеси, содержащей добавки, с базовой смолой до достижения уровней добавок (в ч./млн), указанных в таблице. Для примеров 1-8 базовой смолой была смола из этилена и октена с плотностью 0,941 г/см3 и индексом расплава (I2) 0,85 г/10 мин (определяли согласно ASTM D-1238, условие Е, 190°С/2,16 кг). Для примера 9 базовой смолой являлась полиэтиленовая смола, имеющая плотность 0,933 г/см3 и индекс расплава (I2) 0,7. Для примера 10 базовой смолой являлась полиэтиленовая смола, имеющая плотность 0,9345 г/см3 и индекс расплава (I2) 0,6. В таблице АО1 означает ирганоксТМ 1330, затрудненный фенол в качестве антиоксиданта; MD означает деактиватор металла (наугардТМ XL1 для примеров 1, 3, 4, 6, 8 и 9 и ирганоксТМ MD1024 для примеров 2 и 5); АО2 означает химассорбТМ 944, затрудненный амин в качестве антиоксиданта; АО3 означает иргафосТМ 168, фосфитный антиоксидант; АО4 означает органоксТМ 1010, затрудненный фенол в качестве антиоксиданта и АО5 означает ирганоксТМ 1076, затрудненный фенол.
Композиции смол затем подвергали экструзии на промышленных линиях экструзии для изготовления труб, имеющих наружный диаметр 17 мм (за исключением примера 9 для труб с 16 мм и примера 10 для труб с 16 мм) и толщину 2 мм. Эти трубы оценивали по их устойчивости к действию хлора согласно методике Jana Laboratories APTF-2, их время до повреждения (время F) указано в последнем столбце таблицы. Условия испытания были следующими: рН 6,8 (±0,1); содержание хлора 4,1 мг/л (±0,1); номинальная ORP 830 мВ; температура жидкости 110°С (±1); температура воздуха 110°С (±1); давление 70 фунт/кв.дюйм (±1); скорость потока 0,1 галлона США/мин (±10 процентов).
Позднее вторую партию испытаний проводили и описали, как примеры 11-19. Все эти образцы были изготовлены из базовой смолы, полученной из этилена и октена, с плотностью 0,941 г/см3 и индексом расплава (I2) 0,85 г/10 мин (определяли в соответствии с ASTM D-1238, условие Е, 190°С/2,16 кг). MD означает наугардТМ XL1 для примеров 11-13 и 15-19 и ирганоксТМ MD1024 для примера 14. Все полученные трубы имели 16 мм в диаметре. Метод испытания был идентичен описанному выше методу.
Figure 00000002

Claims (6)

1. Труба, содержащая сополимер этилена и альфа-олефина, где указанный сополимер этилена и альфа-олефина, содержащий один или несколько деактиваторов металлов и стабилизаторов на основе фосфора, имеет плотность в диапазоне от 0,925 до 0,965 г/см3, индекс расплава (I2) в диапазоне от 0,05 г/10 мин до 5 г/10 мин; и систему антиоксидантов, где система антиоксидантов по существу состоит из:
по меньшей мере одного антиоксиданта, где система антиоксидантов по существу состоит из:
по меньшей мере одного антиоксиданта из первого класса антиоксидантов, представляющего собой 3,3', 3'',5, 5',5'' - гекса-трет-бутил-альфа,альфа',альфа'' - (мезитилен-2,4,6-триил)три-п-крезол; и
по меньшей мере одного антиоксиданта из второго класса антиоксидантов, включающего затрудненный фенол, выбранный из группы, состоящей из тетракис-(3-(3,5-ди-трет-бутил-4-гидроксифенил)пропионата)пентаэритрита, октадецил-3-(3,5-ди-трет-бутил-4-гидроксифенил)пропионата, 1,3,5-трис-(3,5-ди-трет-бутил-4-гидроксибензил)-1,3,5-триазин-2,4,6(1Н,3Н,5Н)триона, 1,3,5-трис-(4-трет-бутил-3-гидрокси-2,6-диметилбензил)-1,3,5-триазин-2,4,6-(1Н, 3Н,5Н)-триона, этилен-бис-(оксиэтилен)-бис-(3-(5-трет-бутил-4-гидрокси-м-толил)пропионата), 1,6-гексаметилен-бис-(3,5-ди(трет-бутил)-4-гидроксигидроциннамата), тиодиэтилен-бис-[3-(3,5-ди-трет-бутил-4-гидроксифенил)пропионат], трис-(2,4-ди-трет-бутилфенил)фосфата, и их смесей;
где указанная труба имеет время F по методике Jana Laboratories APTF-2, по меньшей мере, 1000 ч в следующих условиях: pH 6,8 (±0,1); содержание хлора 4,1 мг/мл (±0,1); номинальная ORP 830 мВ; температура жидкости 110°С (±1); температура воздуха 110°С (±0,1); давление 70 фунт/дюйм2 (±1); скорость потока 0,1 галлон США/мин (±10).
2. Труба по п.1, где указанный первый класс антиоксидантов обеспечивает устойчивость к экстракции и указанный второй класс антиоксидантов обеспечивает устойчивость к окислению.
3. Труба по п.2, где два или больше антиоксиданта выбраны из группы, состоящей из тетракис-(3-(3,5-ди-трет-бутил-4-гидроксифенил)пропионата) пентаэритрита, 3,3',3'',5,5',5''-гексатретбутил-альфа, альфа', альфа''-(мезитилен-2,4,6-триил)три-п-крезола и октадецил-3-(3,5-ди-трет-бутил-4-гидроксифенил)пропионата.
4. Труба по п.1, где сополимер этилена и альфа-олефина является многомодальным.
5. Труба по п.1, где сополимер этилена и альфа-олефина имеет плотность в интервале от 0,940 до 0,965 г/см3.
6. Труба по п.1, где указанная труба имеет время F в диапазоне от больше чем 1200 ч.
RU2006123558/04A 2003-12-04 2004-12-03 Стабилизированный полиэтиленовый материал RU2375388C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US52705303P 2003-12-04 2003-12-04
US60/527,053 2003-12-04

Publications (2)

Publication Number Publication Date
RU2006123558A RU2006123558A (ru) 2008-01-10
RU2375388C2 true RU2375388C2 (ru) 2009-12-10

Family

ID=34676694

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2006123558/04A RU2375388C2 (ru) 2003-12-04 2004-12-03 Стабилизированный полиэтиленовый материал

Country Status (15)

Country Link
US (2) US7744972B2 (ru)
EP (1) EP1692222B1 (ru)
CN (3) CN104194042A (ru)
AR (1) AR047136A1 (ru)
AU (1) AU2004297227B2 (ru)
BR (1) BRPI0417262A (ru)
CA (1) CA2547157C (ru)
ES (1) ES2428038T3 (ru)
MX (1) MXPA06006271A (ru)
MY (1) MY145338A (ru)
NO (1) NO20062298L (ru)
PL (1) PL1692222T3 (ru)
RU (1) RU2375388C2 (ru)
WO (1) WO2005056657A2 (ru)
ZA (1) ZA200604411B (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2539594C2 (ru) * 2010-07-13 2015-01-20 Бореалис Аг Трубы, изготовленные из полиэтиленового сополимера с медленным ростом трещин
RU2600321C2 (ru) * 2011-10-10 2016-10-20 Басф Се Жидкие смеси стабилизаторов

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE602006018745D1 (de) * 2006-10-02 2011-01-20 Borealis Tech Oy Polyolefinzusammensetzung mit verbesserter Resistenz gegenüber CIO2-enthaltenden wasser
DE102006058251A1 (de) * 2006-12-08 2008-06-12 Evonik Röhm Gmbh Verfahren und Vorrichtung zur Herstellung von Methacrylsäurealkylestern
FR2917741B1 (fr) * 2007-06-20 2009-10-02 Nexans Sa Composition polymere a tenue en temperature amelioree.
DE602007011245D1 (de) * 2007-07-13 2011-01-27 Borealis Tech Oy Polyolefin-Zusammensetzung mit geringer Migration und einem Vitamin-E-artigen Stabilisator
EP2039719A1 (en) * 2007-09-21 2009-03-25 Total Petrochemicals Research Feluy Pipes for transporting water containing chlorine dioxide.
WO2009037103A1 (en) * 2007-09-21 2009-03-26 Total Petrochemicals Research Feluy Pipes for transporting water containing chloramine
WO2009037102A1 (en) * 2007-09-21 2009-03-26 Total Petrochemicals Research Feluy Pipes for transporting water containing chlorine.
EP2053084A1 (en) * 2007-10-25 2009-04-29 Total Petrochemicals Research Feluy Coloured pipes for transporting disinfectant-containing water.
US7855246B2 (en) * 2007-12-05 2010-12-21 Uponor Innovation Ab Plastic pipe made of polyolefin
EP2090616B1 (en) * 2008-02-15 2012-10-03 Borealis Technology OY Metal deactivating polymer composition
EP2133367A1 (en) 2008-06-09 2009-12-16 INEOS Manufacturing Belgium NV Novel Copolymers
EP2199328A1 (en) 2008-12-22 2010-06-23 Borealis AG Polyolefin composition for water pipes with improved chlorine resistance
EP2199330A1 (en) * 2008-12-22 2010-06-23 Borealis AG Polyolefin composition for water pipes with good resistance to chlorine dioxide and low migration
EP2199331A1 (en) * 2008-12-22 2010-06-23 Borealis AG Polyolefin composition for water pipes with improved chlorine resistance
AU2010264811B9 (en) * 2009-06-22 2014-06-05 Borealis Ag Chlorine dioxide resistant polyethylene pipes, their preparation and use
EP2516545B1 (en) * 2009-12-22 2017-01-25 Basell Poliolefine Italia S.r.l. Polyolefin composition for membranes
CA2779491A1 (en) * 2010-10-19 2012-04-26 Dow Global Technologies Llc Polyethylene compositions having reduced plate out, and films made therefrom having reduced blooming
MX352368B (es) * 2011-03-14 2017-11-22 Dow Global Technologies Llc Composiciones basadas en etileno.
PL2551294T3 (pl) 2011-07-25 2019-06-28 Borealis Ag Zastosowanie kompozycji poliolefinowej do rur i kształtek o ulepszonej odporności na ditlenek chloru
CN102952323B (zh) * 2011-08-31 2015-08-19 中国石油化工股份有限公司 一种耐热聚乙烯组合物及其用途
ES2902829T3 (es) 2011-09-09 2022-03-30 Chevron Phillips Chemical Co Lp Composiciones aditivas de polietileno y artículos fabricados con ellas
EP2607417B1 (en) * 2011-12-22 2015-02-11 Borealis AG Polyolefin composition with increased resistance against degradation caused by chlorine dioxide
RU2015102156A (ru) * 2012-06-25 2016-08-10 ДАУ ГЛОБАЛ ТЕКНОЛОДЖИЗ ЭлЭлСи Панели, изготовленные из полимерных композиций на основе этилена
CN106458883A (zh) * 2014-06-11 2017-02-22 弗纳技术股份有限公司 耐氯聚乙烯化合物和由其制造的制品
WO2017133918A1 (en) * 2016-02-02 2017-08-10 Sabic Global Technologies B.V. Pipe produced with a polymer composition comprising a polyethylen
WO2018028921A1 (en) 2016-08-11 2018-02-15 Sabic Global Technologies B.V. Pipe produced with a polymer composition
WO2019099131A1 (en) * 2017-11-17 2019-05-23 Exxonmobil Chemical Patents Inc. Pe-rt pipes and processes for making the same
EP3962710B1 (en) 2019-05-02 2023-12-06 SABIC Global Technologies B.V. Pipe for transport of chlorinated water

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2946954C2 (de) * 1979-11-21 1984-03-15 EC Erdölchemie GmbH, 5000 Köln Verfahren zur Stabilisierung von Hochdruckpolyethylen
DE3141506A1 (de) * 1981-10-20 1983-04-28 Basf Ag, 6700 Ludwigshafen Verwendung von ethylenpolymerisaten zur herstellung von rohren
CA1192559A (en) * 1982-04-09 1985-08-27 Ralph H. Hansen Polymer parts and compound useful therein
US4650903A (en) * 1984-06-21 1987-03-17 The Bf Goodrich Company Oligomeric amides as synergists for antioxidants and UV stabilizers
US4579900A (en) * 1984-08-31 1986-04-01 Shell Oil Company Polymeric composition useful for hot water pipe service
EP0243319A3 (de) 1986-04-25 1989-02-15 Ciba-Geigy Ag Gegen Lichteinwirkung stabilisierte Thermoplasten
US4746692A (en) * 1986-05-05 1988-05-24 Shell Oil Company Polyolefin compositions for use with water systems
DD276585A3 (de) * 1988-04-29 1990-03-07 Rohrkombinat Stahl & Walzwerk Verfahren zur erzeugung duenner plastbeschichtungen in metallrohren
JPH0649787B2 (ja) * 1990-01-23 1994-06-29 工業技術院長 成形品の表面処理及び塗装方法
JP2830358B2 (ja) * 1990-04-25 1998-12-02 住友化学工業株式会社 高酸化防止性樹脂組成物
US5032632A (en) * 1990-05-15 1991-07-16 E. I. Du Pont De Nemours And Company Oxidation-resistant ethylene vinyl alcohol polymer compositions
GB9108555D0 (en) * 1991-04-22 1991-06-05 Kent Cartridge Mfg Improvements in cartridge cases
US5260371A (en) * 1991-07-23 1993-11-09 E. I. Du Pont De Nemours And Company Process for making melt stable ethylene vinyl alcohol polymer compositions
WO1996008532A1 (en) * 1994-09-13 1996-03-21 Uniroyal Chemical Company, Inc. Stabilization of polyethylene polymers
DE19604520A1 (de) 1996-02-08 1997-08-14 Buna Sow Leuna Olefinverb Gmbh Polyethylenblend
JPH09324081A (ja) * 1996-04-02 1997-12-16 Furukawa Electric Co Ltd:The 架橋ポリエチレンパイプ
KR100352784B1 (ko) * 1998-03-10 2002-09-16 미쓰이 가가쿠 가부시키가이샤 에틸렌계 공중합체 조성물 및 그 용도
SE513632C2 (sv) 1998-07-06 2000-10-09 Borealis Polymers Oy Multimodal polyetenkomposition för rör
EP0989141A1 (en) 1998-09-25 2000-03-29 Fina Research S.A. Production of multimodal polyethelene
DE19929812A1 (de) 1999-06-30 2001-01-04 Elenac Gmbh Polyethylen Formmasse und daraus hergestelltes Rohr mit verbesserten mechanischen Eigenschaften
CN1098306C (zh) * 1999-09-24 2003-01-08 中国科学院化学研究所 高密度聚乙烯组合物及其管材
CA2285723C (en) 1999-10-07 2009-09-15 Nova Chemicals Corporation Multimodal polyolefin pipe
JP2005501951A (ja) 2001-08-31 2005-01-20 ダウ グローバル テクノロジーズ インコーポレイティド 多モードのポリエチレン材料
US7531594B2 (en) * 2002-08-12 2009-05-12 Exxonmobil Chemical Patents Inc. Articles from plasticized polyolefin compositions

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2539594C2 (ru) * 2010-07-13 2015-01-20 Бореалис Аг Трубы, изготовленные из полиэтиленового сополимера с медленным ростом трещин
RU2600321C2 (ru) * 2011-10-10 2016-10-20 Басф Се Жидкие смеси стабилизаторов

Also Published As

Publication number Publication date
WO2005056657A3 (en) 2007-09-27
PL1692222T3 (pl) 2013-11-29
WO2005056657A2 (en) 2005-06-23
BRPI0417262A (pt) 2007-03-06
CN103540010A (zh) 2014-01-29
MY145338A (en) 2012-01-31
CN104194042A (zh) 2014-12-10
RU2006123558A (ru) 2008-01-10
EP1692222B1 (en) 2013-07-03
ES2428038T3 (es) 2013-11-05
NO20062298L (no) 2006-06-21
CN101068868A (zh) 2007-11-07
CA2547157A1 (en) 2005-06-23
US7744972B2 (en) 2010-06-29
ZA200604411B (en) 2007-11-28
US20070092675A1 (en) 2007-04-26
EP1692222A2 (en) 2006-08-23
US20100233403A1 (en) 2010-09-16
MXPA06006271A (es) 2006-08-23
AR047136A1 (es) 2006-01-11
US8163226B2 (en) 2012-04-24
CA2547157C (en) 2013-04-09
AU2004297227B2 (en) 2010-09-23
AU2004297227A1 (en) 2005-06-23

Similar Documents

Publication Publication Date Title
RU2375388C2 (ru) Стабилизированный полиэтиленовый материал
EP1879954B1 (en) Use of an organic polyoxy compound for the production of polyolefinic molding composition having improved resistance to thermooxidative degradation useful for the production of pipes
KR101307161B1 (ko) 이산화염소에 대한 증대된 저항성을 갖는 워터 파이프용 폴리올레핀 조성물
WO2008040482A1 (en) Polyolefin composition with increased resistance to cio2-containing water
AU2009331889A1 (en) Polyolefin composition for water pipes with good resistance to chlorine dioxide and low migration
JP3497284B2 (ja) ポリオレフィンパイプ
US9522988B2 (en) Polyolefin pipe with improved migration behaviour
US20230151223A1 (en) Pipeline member for ultrapure water and polyethylene-based resin composition for pipeline member for ultrapure water
KR102001262B1 (ko) 에틸렌-기재 조성물
EP2361280A1 (en) Polyethylene composition for water pipes with improved chlorine resistance
JP6148349B2 (ja) 消毒剤含有水に対するパイプ安定性を改善するための添加剤の使用