RU2372358C2 - Способ получения полиизоциануратполиуретанового материала - Google Patents

Способ получения полиизоциануратполиуретанового материала Download PDF

Info

Publication number
RU2372358C2
RU2372358C2 RU2006101063/04A RU2006101063A RU2372358C2 RU 2372358 C2 RU2372358 C2 RU 2372358C2 RU 2006101063/04 A RU2006101063/04 A RU 2006101063/04A RU 2006101063 A RU2006101063 A RU 2006101063A RU 2372358 C2 RU2372358 C2 RU 2372358C2
Authority
RU
Russia
Prior art keywords
polyisocyanate
isocyanate
polyol
diphenylmethanediisocyanate
reacting
Prior art date
Application number
RU2006101063/04A
Other languages
English (en)
Other versions
RU2006101063A (ru
Inventor
Герхард Йозеф БЛЕЙЗ (BE)
Герхард Йозеф БЛЕЙЗ
Ян Виллем ЛЕНСЛАГ (BE)
Ян Виллем ЛЕНСЛАГ
Ханс Годеливе Гвидо ВЕРБЕКЕ (BE)
Ханс Годеливе Гвидо ВЕРБЕКЕ
Original Assignee
Хантсмэн Интернэшнл Ллс
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Хантсмэн Интернэшнл Ллс filed Critical Хантсмэн Интернэшнл Ллс
Publication of RU2006101063A publication Critical patent/RU2006101063A/ru
Application granted granted Critical
Publication of RU2372358C2 publication Critical patent/RU2372358C2/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/09Processes comprising oligomerisation of isocyanates or isothiocyanates involving reaction of a part of the isocyanate or isothiocyanate groups with each other in the reaction mixture
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/22Catalysts containing metal compounds
    • C08G18/225Catalysts containing metal compounds of alkali or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/68Barrels or cylinders
    • B29C48/685Barrels or cylinders characterised by their inner surfaces, e.g. having grooves, projections or threads
    • B29C48/686Barrels or cylinders characterised by their inner surfaces, e.g. having grooves, projections or threads having grooves or cavities
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4833Polyethers containing oxyethylene units
    • C08G18/4837Polyethers containing oxyethylene units and other oxyalkylene units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/77Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
    • C08G18/78Nitrogen
    • C08G18/79Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/77Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
    • C08G18/78Nitrogen
    • C08G18/79Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates
    • C08G18/797Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates containing carbodiimide and/or uretone-imine groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2110/00Foam properties
    • C08G2110/0041Foam properties having specified density
    • C08G2110/0066≥ 150kg/m3

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

Изобретение относится к способу получения полиизоциануратполиуретанового материала, используемого для изготовления подошв ботинок для футболистов и лыжных ботинок, частей автомобиля, например подлокотников, дверных панелей, задних панелей сидений и солнцезащитных щитков. Способ включает взаимодействие полиизоцианата и полиольного компонента, способного вступать во взаимодействие с изоцианатом, где реакцию проводят при изоцианатном числе от 150 до 1500 и в присутствии катализатора тримеризации. Полиизоцианат состоит из а) от 80 до 100 мас.% дифенилметандиизоцианата, включающего, по меньшей мере, 40 мас.% 4,4'-дифенилметандиизоцианата и/или производного указанного дифенилметандиизоцианата, который является жидкостью при 25°С, с NCO-числом, равным, по меньшей мере, 20 мас.%(полиизоцианат а) и b) 20-0 мас.% другого полиизоцианата (полиизоцианат b). Полиольный компонент состоит из а) от 80 до 100 мас.% простого полиэфирполиола со средней номинальной функциональностью в интервале от 2 до 6, средней эквивалентной массой в интервале от 150 до 1000, средней молекулярной массой в интервале от 600 до 5000, содержанием оксиэтилена (ЭО) в интервале от 75 до 100 мас.% и b) от 20 до 0 мас.% одного или нескольких других соединений, способных взаимодействовать с изоцианатом, за исключением воды, причем количество полиола а) и соединения b) рассчитано на общее количество полиола а) и соединения b). Полученные материалы проявляют высокую ударопрочность и когезионную прочность, стойки к воздействию различных температур и воспламеняемости, обладают небольшим временем выемки из формы и являются менее ломкими. 2 н.п. ф-лы, 1 ил., 2 табл.

Description

Данное изобретение относится к способу получения полиизоциануратполиуретанового материала.
Точнее, данное изобретение относится к способу получения полиизоциануратполиуретанового материала с использованием полиэфирполиола (простого полиэфира с концевыми гидроксильными группами) с высоким содержанием оксиэтилена и полиизоцианата с высоким содержанием дифенилметандиизоцианата (MDI).
Получение полиуретановых материалов с низким и высоким содержанием жестких блоков из полиолов с высоким содержанием оксиэтилена, полиизоцианатов, включающих, по меньшей мере, 85% (мас.) 4,4'-MDI или их производных, и воды описано в WO 02/06370 и WO 98/00450. Полученные материалы представляют собой полиуретановые эластомеры. Кроме того, в EP 608626 описано получение пенополиуретанов, способных восстанавливать форму, взаимодействием полиизоцианата, включающего большое количество 4,4'-MDI и полиола с высоким содержанием оксиэтилена с водой. В WO 02/10249 описывается способ получения полиуретанового материала с высоким содержанием жестких блоков взаимодействием MDI, полиола с высоким содержанием оксиэтилена и сшивающего агента/удлинителя цепей.
Но в указанных публикациях не описывается способ получения полиизоциануратполиуретанового материала путем взаимодействия полиизоцианата и полиола при высоком NCO-числе в присутствии катализатора тримеризации.
Способы получения полиизоциануратполиуретановых материалов взаимодействием полиизоцианатов и полиолов при высоком числе в присутствии катализатора тримеризации как таковые были подробно описаны в литературе. См., например, EP 922063, WO 00/29459, WO 02/00752, EP 1173495, EP 745627, EP 587317, US № 4247656, US № 4129697, DE 10145458, US № 4661533, US № 4424288 и GB № 1433642.
Неожиданно авторами данного изобретения был обнаружен новый класс полиизоциануратполиуретановых материалов, полученных из определенных полиизоцианатов на основе MDI и определенных полиолов с высоким содержанием оксиэтилена.
Данное изобретение позволяет получать материалы с высоким модулем, высокой ударной прочностью, стойкостью к воздействию различных температур и стойкостью к воспламеняемости, с небольшим временем выемки из формы и с высокой когезионной прочностью. В частности, указанные материалы могут быть преимущественно получены в соответствии со способом реакционного литья под давлением (RIM).
Кроме того, способ подходит для получения армированных материалов с использованием наполнителей, таких как органические частицы или неорганические частицы, подобно частицам наноглины, BaSO4 и CaCO3 и/или волокна, например стекловолокна, натуральные волокна, в частности льняные волокна, волокна конопли и сизальной пеньки, синтетические волокна, такие как полиамиды (Kevlar™) и полиэтилен (Spectra™). Данные материалы проявляют хорошую термостойкость.
Далее, ингредиенты, используемые для получения указанного материала, легко поддаются технологической обработке и проявляют прекрасные характеристики отверждения, которые позволяют затрачивать немного времени на выемку полученного материала из формы.
Полученные материалы показывают более низкие уровни содержания остаточных NCO-групп при ИК-анализе по сравнению с материалами, полученными из более высоких количеств полиолов с высоким уровнем содержания оксипропиленовых групп с таким же NCO-числом. Материалы согласно данному изобретению проявляют большую ударопрочность и являются менее ломкими.
Таким образом, данное изобретение относится к способу получения полиизоциануратполиуретанового материала, который включает взаимодействие полиизоцианата с композицией, способной взаимодействовать с изоцианатом, где реакция проводится при изоцианатном числе в интервале от 150 до 1500, полиизоцианат состоит из а) от 80 до 100% (мас.) дифенилметандиизоцианата, включающего, по меньшей мере, 40%, предпочтительно, по меньшей мере, 60% и наиболее предпочтительно, по меньшей мере, 85% (мас.) 4,4'-дифенилметандиизоцианата и/или производного указанного дифенилметандиизоцианата, который представляет собой жидкость при 25°С и имеет NCO-число, по меньшей мере, 20 мас.% (полиизоцианат а), и b) 20-0 мас.% другого полиизоцианата (полиизоцианата b), и где композиция, способная взаимодействовать с изоцианатом, состоит из а) 80-100 мас.% полиэфирполиола, имеющего среднюю номинальную функциональность в интервале от 2 до 6, среднюю эквивалентную массу 150-1000, среднюю молекулярную массу от 600 до 5000, содержание оксиэтилена (ЭО) в интервале от 75 до 100 мас.%, и b) 20-0% (мас.) одного или нескольких других соединений, способных взаимодействовать с изоцианатом, за исключением воды, где количество полиола а) и соединения b) вычислено из расчета на общее количество данного полиола а) и соединения b).
Термины, используемые в данном описании, в контексте данного изобретения имеют следующие значения:
1. Изоцианатное число или NCO-число или число:
соотношение NCO-групп и атомов водорода, присутствующих в композиции и способных вступать в реакцию с изоцианатом, выраженное в процентах:
Figure 00000001
Другими словами, NCO-число выражает процент изоцианата, фактически используемого в композиции, относительно количества изоцианата, теоретически необходимого для взаимодействия со способным взаимодействовать с изоцианатом количеством водорода, используемым в композиции.
Следует иметь в виду, что термин «изоцианатное число», используемый в данном описании, рассматривается с точки зрения действительного процесса полимеризации с получением материала, включающего изоцианатный ингредиент и ингредиенты, способные взаимодействовать с изоцианатом. Любые изоцианатные группы, используемые на предварительной стадии получения модифицированных полиизоцианатов (включая такие изоцианатпроизводные, которые в данной области техники называются форполимерами), или любые активные водороды, используемые на предварительной стадии (например, взаимодействующие с изоцианатом с получением модифицированных полиолов или полиаминов), не берутся в расчет при вычислении изоцианатного числа. Учитываются только свободные изоцианатные группы и атомы водорода, способные взаимодействовать со свободными изоцианатными группами (включая атомы водорода воды), присутствующие на фактической стадии полимеризации.
2. Выражение «атомы водорода, способные вступать во взаимодействие с изоцианатом», используемое в данном описании для вычисления изоцианатного числа, относится к общему количеству активных атомов водорода в гидроксильных и аминогруппах, присутствующих в реакционноспособных композициях; это означает, что при вычислении изоцианатного числа фактического процесса полимеризации считается, что одна гидроксильная группа включает один реакционноспособный водород, одна группа первичного амина включает один реакционноспособный водород и одна молекула воды включает два активных атома водорода.
3. Реакционная система: сочетание компонентов, где полиизоцианаты находятся в одном или нескольких контейнерах отдельно от компонентов, способных взаимодействовать с изоцианатами.
4. Выражение «полиизоциануратполиуретановый материал», используемое в данном описании, относится к пористым или непористым продуктам взаимодействия указанных полиизоцианатов и композиций, способных взаимодействовать с изоцианатом, в присутствии катализатора тримеризации при высоком числе, необязательно с использованием пенообразователя, и, в частности, включает пористые продукты, полученные с использованием воды в качестве реакционноспособного пенообразователя (включая взаимодействие воды с изоцианатными группами с получением карбамидных связей и диоксида углерода и получением полимочевина-полиизоциануратполиуретановых пенопластов).
5. Термин «средняя номинальная гидроксильная функциональность в данном описании используется для обозначения среднего количества функциональных групп (количество гидроксильных групп на молекулу) полиола или полиольной композиции при условии, что она представляет собой среднечисловую функциональность (количество активных атомов водорода на молекулу) инициатора(ов), используемого(ых) при их получении, хотя на практике зачастую она будет несколько ниже вследствие некоторой концевой ненасыщенности.
6. Термин «средний», за исключением особо оговоренных случаев, относится к среднему значению.
Предпочтительно полиизоцианат а) выбран из 1) дифенилметандиизоцианата, включающего, по меньшей мере, 40%, предпочтительно, по меньшей мере, 60% и наиболее предпочтительно, по меньшей мере, 85 мас.% 4,4'-дифенилметандиизоцианата, и следующих предпочтительных производных такого дифенилметандиизоцианата; 2) карбодиимид- и/или уретонимин-модифицированного производного полиизоцианата 1), причем NCO-число данного производного равно 20 мас.% или более; 3) уретан-модифицированного производного полиизоцианата 1), причем NCO-число данного производного равно 20 мас.% или более, и оно является продуктом взаимодействия избытка полиизоцианата 1) и полиола со средним номинальном количеством гидроксильных групп в интервале от 2 до 4 и средней молекулярной массой, самое большее, 1000; 4) форполимера с NCO-числом, равным 20 мас.% или более, который является продуктом взаимодействия избытка любого из указанных выше полиизоцианатов 1-3) и полиола со средней номинальной функциональностью в интервале от 2 до 6, средней молекулярной массой в интервале от 2000 до 12000 и предпочтительно гидроксильным числом в интервале от 15 до 60 мг КОН/г, и 5) смесей любых перечисленных выше полиизоцианатов. Полиизоцианаты 1) и 2) и смеси являются предпочтительными в качестве полиизоцианата а).
Полиизоцианат 1) включает, по меньшей мере, 40 мас.% 4,4'-MDI. Такие полиизоцианаты известны в данной области техники и включают чистый 4,4'-MDI и изомерные смеси 4,4'-MDI и до 60 мас.% 2,4'-MDI и 2,2'-MDI.
Следует отметить, что содержание 2,2'-MDI в смеси изомеров равно скорее содержанию загрязнителей и обычно не превышает 2 мас.%, а остальное составляют 4,4'-MDI и 2,4'-MDI. Полиизоцианаты известны в данной области техники и коммерчески доступны; например, Suprasec™ MPR ex Huntsman Polyurethanes, производства Huntsman International LLC (торговое название Suprasec).
Карбодиимид- и/или уретонимин-модифицированные производные описанного выше полилизоцианата 1) также известны в данной области техники и коммерчески доступны, например Suprasec 2020 выпускает фирма Huntsman Polyurethanes.
Уретан-модифицированные производные описанного выше полиизоцианата 1) также известны в данной области техники, см., например, публикацию G. Woods, The ICI Polyurethanes Book, 1990, 2nd edition, p. 32-35. Упомянутые выше форполимеры полиизоцианата 1) с NCO-числом, равным 20 мас.% или более, также известны в данной области техники. Предпочтительно полиол, используемый для получения данных форполимеров, выбирают из сложных полиэфирполиолов и простых полиэфирполиолов и, в частности, из полиоксиэтиленполиоксипропиленовых полиолов со средней номинальной функциональностью в интервале от 2 до 4, средней молекулярной массой в интервале от 2500 до 8000, предпочтительно гидроксильным числом в интервале от 15 до 60 КОН/г и предпочтительно либо с содержанием оксиэтилена в интервале от 5 до 25 мас.%, где оксиэтилен предпочтительно находится в конце полимерных цепей, либо с содержанием оксиэтилена в интервале от 50 до 90 мас.%, где оксиэтилен предпочтительно неупорядоченно распределен в полимерных цепях.
Могут также использоваться смеси упомянутых выше полиизоцианатов (см. G. Woods, The ICI Polyurethanes Book, 1990, 2nd edition, pр. 32-35). Примером такого коммерчески доступного полиизоцианата является Suprasec 2020 ex Huntsman Polyurethanes.
Другой полиизоцианат b) может быть выбран из алифатических, циклоалифатических, аралифатических и предпочтительно ароматических полиизоцианатов, таких как толуолдиизоцианат в форме его 2,4- и 2,6-изомеров и их смесь, и смеси дифенилметандиизоцианатов (MDI) и их олигомеров с количеством изоцианатных групп более 2, известных в данной области техники как «неочищенный» или полимерный MDI (полиметиленполифениленполиизоцианаты). Могут также использоваться смеси толуолдиизоцианата и полиметиленполифениленполиизоцианатов.
Когда используются полиизоцианаты с NCO-функциональностью более 2, используемое количество такого полиизоцианата является таким, что среднее количество NCO-групп всего изоцианата, используемого в данном изобретении, предпочтительно находится в интервале от 2,0 до 2,2.
Простой полиэфирполиол а) с высоким содержанием ЭО выбирается из простых полиэфиров с концевыми гидроксильными группами с содержанием ЭО в интервале от 75 до 100 мас.% из расчета на массу простого полиэфирполиола. Данные простые полиэфирполиолы могут содержать другие оксиалкиленовые группы, такие как оксипропиленовые и/или оксибутиленовые группы. Такие простые полиэфирполиолы имеют среднюю номинальную функциональность в интервале от 2 до 6, более предпочтительно в интервале от 2 до 4, среднюю эквивалентную массу в интервале от 150 до 1000 и молекулярную массу в интервале от 600 до 5000, предпочтительно в интервале от 600 до 3000. Если полиол содержит оксиэтиленовые группы и другую оксиалкиленовую группу, такую как оксипропилен, полиол может относиться к типу статистических со случайным распределением, блок-сополимерным распределением или их сочетаниям. Могут использоваться смеси полиолов. Способы получения таких полиолов известны, и такие полиолы являются коммерчески доступными; примерами являются Caradol™ 3602 от Shell, Lupranol™ 9205 от BASF, Daltocel F526 ex Huntsman Polyurethanes (Daltocel представляет собой торговую марку Huntsman International LLC) и G2005 ex Uniqema. Предпочтительно они используются в количестве от 90 до 100 мас.%.
Другие способные взаимодействовать с изоцианатом соединения b), которые могут использоваться в количестве от 0 до 20 мас.% и предпочтительно от 0 до 10 мас.%, могут выбираться из удлинителей цепей, сшивающих агентов, полиэфполиаминов, сложных полиэфирполиолов и простых полиэфирполиолов (отличных от описанных выше) с молекулярной массой более 500 и, в частности, из таких других простых полиэфирполиолов, которые могут быть выбраны из полиоксипропиленполиолов, полиоксиэтиленполиоксипропиленполиолов с содержанием оксиэтилена менее 75 мас.% и полиоксиэтиленполиоксипропиленполиолов с содержанием первичных гидроксильных групп менее 70%. Предпочтительными полиоксиэтиленполиоксипропиленполиолами являются полиолы с содержанием оксиэтилена в интервале от 5 до 30%, предпочтительно от 10 до 25 мас.%, где все оксиэтиленовые группы расположены в конце полимерных цепей (так называемые ЭО-блокированные полиолы), и те, которые имеют содержание оксиэтилена в интервале от 60 до 90 мас.% при неупорядоченном распределении всех оксиэтиленовых групп и оксипропиленовых групп и содержание первичных гидроксильных групп в интервале от 20 до 60%, вычисленном из расчета на количество первичных и вторичных гидроксильных групп в полиоле. Предпочтительно средняя номинальная функциональность указанных «других» простых полиэфирполиолов находится в интервале от 2 до 6, более предпочтительно в интервале от 2 до 4, и средняя молекулярная масса - в интервале от 2000 до 10000, более предпочтительно от 2500 до 8000.
Удлинители цепи, способные взаимодействовать с изоцианатом, функциональность которых равна 2, могут быть выбраны из аминов, аминоспиртов и полиолов, предпочтительно используются полиолы. Кроме того, удлинители цепи могут быть ароматическими, циклоалифатическими, аралифатическими и алифатическими; предпочтительно используются алифатические удлинители цепи. Молекулярная масса удлинителей цепи равна 500 или менее. Наиболее предпочтительными являются алифатические диолы с молекулярной массой от 62 до 500, такие как этиленгликоль, 1,3-пропандиол, 2-метил-1,3-пропандиол, 1,4-бутандиол, 1,5-пентандиол, 1,6-гександиол, 1,2-пропандиол, 1,3-бутандиол, 2,3-бутандиол, 1,3-пентандиол, 1,2-гександиол, 3-метилпентан-1,5-диол, 2,2-диметил-1,3-пропандиол, диэтиленгликоль, дипропиленгликоль и трипропиленгликоль, а также ароматические диолы и их пропоксилированные и/или этоксилированные производные. Сшивающими агентами являются соединения, способные взаимодействовать с изоцианатами, со средней молекулярной массой 500 или менее и количеством функциональных групп в интервале от 3 до 8. Примерами таких сшивающих агентов являются глицерин, триметилолпропан, пентаэритрит, сахароза, сорбит, моно-, ди- и триэтаноламин, этилендиамин, толуолдиамин, диэтилтолуолдиамин, полиоксиэтиленполиолы со средним номинальным количеством функциональных групп в интервале от 3 до 8 и средней молекулярной массой 500 или менее, такие как этоксилированный глицерин, триметилолпропан, пентаэритрит, сахароза и сорбит с указанной молекулярной массой, и диамины и триамины простых полиэфиров со средней молекулярной массой 500 или менее; наиболее предпочтительными сшивающими агентами являются полиольные сшивающие агенты.
Кроме того, соединения, способные взаимодействовать с изоцианатом, могут быть выбраны из сложных полиэфиров, сложных полиэфирамидов, простых политиоэфиров, поликарбонатов, полиацеталей, полиолефинов или полисилоксанов. Сложные полиэфирполиолы, которые могут использоваться, включают содержащие концевые гидроксильные группы продукты взаимодействия двухатомных спиртов, таких как этиленгликоль, пропиленгликоль, диэтиленгликоль, 1,4-бутандиол, неопентилгликоль, 1,6-гександиол или циклогександиметанол или смеси таких двухатомных спиртов, с дикарбоновыми кислотами и их сложноэфирными производными, например янтарной, глутаровой и адипиновой кислотами или их диметиловыми эфирами, себациновой кислотой, фталевым ангидридом, тетрахлорфталевым ангидридом или диметилтерефталатом и их смесями. Простые политиоэфирполиолы, которые могут применяться, включают продукты, полученные конденсацией тиодигликоля - одного или с другими гликолями, алкиленоксидов, дикарбоновых кислот, формальдегида, аминоспиртов или аминокарбоновых кислот. Поликарбонатполиолы, которые могут использоваться, включают продукты, полученные взаимодействием двухатомных спиртов, таких как 1,3-пропандиол, 1,4-бутандиол, 1,6-гександиол, диэтиленгликоль или тетраэтиленгликоль, с диарилкарбонатами, например дифенилкарбонатом, или с фосгеном. Полиацетальполиолы, которые могут использоваться, включают полиацетальполиолы, которые получены взаимодействием гликолей, таких как диэтиленгликоль, триэтиленгликоль или гександиол, с формальдегидом. Подходящие полиацетали также могут быть получены полимеризацией циклических ацеталей. Подходящие полиолефинполиолы включают бутадиеновые гомо- и сополимеры с концевыми гидроксильными группами, и подходящие полисилоксанполиолы включают полидиметилсилоксандиолы.
Могут использоваться и смеси упомянутых выше «других» соединений, способных взаимодействовать с изоцианатом. Предпочтительно «другими» соединениями, способными взаимодействовать с изоцианатом, являются полиолы, выбранные из указанных выше предпочтительных соединений.
Полиолы могут включать дисперсии или растворы аддитивных или конденсационных полимеров в полиолах описанных выше типов Такие модифицированные полиолы, часто называемые «полимерными полиолами», подробно описаны в литературе предшествующего уровня и включают продукты, полученные in situ полимеризацией одного или нескольких виниловых мономеров, например стирола и/или акрилонитрила, в описанных выше простых полиэфирполиолах или взаимодействием in situ полиизоцианата и амино- и/или гидрокси-функционального соединения, такого как триэтаноламин, в описанном выше полиоле. Особенно применимы полиоксиалкиленполиолы, содержащие от 1 до 50% диспергированного полимера. Размеры частиц диспергированного полимера менее 50 микрон являются предпочтительными.
Кроме того, могут использоваться следующие необязательные ингредиенты: катализаторы, способствующие образованию уретановых связей, такие как катализаторы на основе олова, например октоат олова и дибутилдилаурат олова, катализаторы на основе третичных аминов, такие как триэтилендиамин, и имидазолы, такие как диметилимидазол, и другие катализаторы, такие как сложные малеатные эфиры и сложные ацетатные эфиры; поверхностно-активные вещества; стабилизаторы пены, такие как сополимеры силоксана и оксиалкилена; антипирены; подавители образования дыма; УФ-стабилизаторы; красители; ингибиторы микроорганизмов; органические и неорганические наполнители, модификаторы, увеличивающие ударную прочность, пластификаторы и внутренние добавки, способствующие извлечению из формы. В способе согласно данному изобретению дополнительно могут использоваться внешние смазки для форм.
Любое соединение, которое катализирует реакцию тримеризации изоцианатов (образование изоцианурата), может использоваться в качестве катализатора тримеризации в способе согласно данному изобретению, такое как третичные амины, триазины наиболее предпочтительные катализаторы тримеризации - соли металлов.
Примерами подходящих катализаторов тримеризации - солей металлов - являются соли щелочных металлов и органических карбоновых кислот. Предпочтительными щелочными металлами являются калий и натрий, предпочтительными карбоновыми кислотами являются уксусная кислота и 2-этилгексановая кислота.
Наиболее предпочтительными катализаторами тримеризации являются ацетат калия (коммерчески доступен как Polycat 46 от Air Products и как Catalyst LB от Huntsman Polyurethanes) и 2-этилгексаноат калия (коммерчески доступен как Dabco K15 от Air Products). В способе данного изобретения могут использоваться два или более катализаторов тримеризации в форме солей металлов.
Катализатор тримеризации в форме солей металлов обычно используется в количестве до 5 мас.% из расчета на композицию, способную взаимодействовать с изоцианатом, предпочтительно от 0,1 до 3 мас.%. Полиол, используемый в способе согласно данному изобретению, может содержать соль металла, используемую при его получении, которая может затем использоваться в качестве катализатора тримеризации или как часть катализатора тримеризации.
Полиуретановый материал может быть твердым или выдувным (микропористым) материалом. Микропористые материалы получают проведением реакции в присутствии порообразователя, такого как углеводороды, фторуглеводороды, хлорированные серосодержащие углеводороды, газы, например N2 и СО2, и вода. Наиболее предпочтительным порообразователем является вода. Количество порообразователя будет зависеть от желаемой плотности. Количество воды будет составлять менее 5, предпочтительно менее 3 и наиболее предпочтительно менее 1 мас.% из расчета на массу композиции, способной взаимодействовать с изоцианатом. Снижение плотности может достигаться введением вспененных или способных вспениваться микросфер, таких как Expancel или полые стеклянные шарики.
Реакция получения материала проводится при значении NCO-числа в интервале от 150 до 1500.
Плотность материалов составляет более 100 кг/м3.
Материалы предпочтительно получают в форме. Способ может проводиться в любом типе формы, известной в данной области техники. Примерами таких форм являются формы, коммерчески используемые для изготовления частей обуви, таких как кроссовки, лыжные ботинки и ботинки для катания на коньках, для создания частей автомобиля, таких как подлокотники, дверные панели и задние панели сидений. Предпочтительно реакция проводится в закрытой пресс-форме. Ингредиенты, используемые для получения материала, подаются в форму при температуре в интервале от температуры окружающей среды до 80°С, причем пресс-форма в продолжении процесса выдерживается при температуре в интервале от температуры окружающей среды до 150°С. Время извлечения из формы является относительно непродолжительным, несмотря на тот факт, что предпочтительно в качестве соединений, способных взаимодействовать с изоцианатом, не используются соединения, содержащие реакционноспособные аминогруппы; в зависимости от количества катализатора, продолжительность времени извлечения из формы может составлять менее 10 минут, предпочтительно менее 5 минут, более предпочтительно менее 3 минут и наиболее предпочтительно менее 1 минуты.
Формование может проводиться в соответствии со способом реакционного литья под давлением (RIM) и способом литья без давления. Способ может также осуществляться в соответствии с процессом RRIM (RIM с усилением) и SRIM (RIM со структурированием).
Обычно ингредиенты, способные взаимодействовать с изоцианатом, и катализаторы могут предварительно смешиваться, необязательно вместе с необязательными ингредиентами перед контактированием с полиизоцианатом.
Материалы, полученные согласно данному изобретению, особенно подходят для тех областей применения, где желательны материалы с высокой жесткостью, неломкие, с высокой ударной прочностью и низкой плотностью, такие как подошвы ботинок для футболистов и лыжных ботинок и части автомобилей, например подлокотники, дверные панели, задние панели сидений и солнцезащитые щитки.
Изобретение иллюстрируется далее с помощью примеров.
Примеры 1-4
Suprasec 2020* и Daltocel F526** распределяют в форме (дозирующее устройство Krauss Maffei Comet 2020, поршневая машина высокого давления, производительность 300 г/с). Форма представляет собой стальную форму размером 30х60х0,3 см, вмонтированную в Battenfeld пресс.
Температуры химических соединений и формы для плавления равны 35 и 85°С соответственно. Перед использованием форму обрабатывают смазкой для форм Acmos 35-5015. Время выемки из формы составляет 60 секунд. Используемые количества (в массовых долях) и физические свойства полиизоциануратполиуретановых компонентов приведены в таблице 1.
Таблица 1
Пример 1 2 3 4
Suprasec 2020 65 50 60 70
Daltocel F526**** 35 50 40 30
Вода 0,2*** - - -
Общая плотность, кг/м3, DIN 53420 656 1211 1204 1165
Твердость по Шору, DIN 53505 56 72 80 83
Модуль упругости при изгибе, ГПа, DIN EN 63 0,75 0,84 1,80 2,35
Напряжение при максимальной нагрузке, МПа, DIN 53455 27 33 70 94
Ударная вязкость по Изоду, кДж/м2, ISO 180 10 71 34 14
*Уретонимин/карбодиимид - модифицированный 4,4'-MDI с содержанием NCO 29,3 мас.% и содержанием уретонимин/карбодиимида примерно 27 мас.%, доступен от Huntsman Polyurethanes. Suprasec представляет собой торговую марку Huntsman International LLC.
**Глицерин - модифицированный полиоксиэтиленполиол с ОН-числом 140 мг КОН/г, доступен от Huntsman Polyurethanes. Daltocel представляет собой торговую марку Huntsman International LLC.
*** смешан в Daltocel F526.
**** Daltocel F526 содержит достаточное количество Na/K-солевого катализатора со стадии его получения; добавление катализатора не требуется.
Пример 5.
Компоненты отдельно дегазировали и затем смешивали в течение 15 секунд. Смесь помещали в открытую форму при 85°С и отверждали в течение 60 секунд. Таблица 2. Дополнительные примеры полиизоциануратполиуретанов смотри в таблице 2.
Таблица 2
Компонент Дополнительный пример 1 Дополнительный пример 2 Дополнительный пример 3
DaltocelF526 (мас.%) 34 34 38
Дополнительный полиол I (мас.%) 6 0 0
Дополнительный полиол II (мас.%) 0 6 0
S2020 (мас.%) 60 60 52,7
Дополнительный изоцианат I (мас.%) 0 0 9,3
NCO-число 510 510 510
Твердость (по Шору D) 78 78 80
Плотность (кг/м3) 1190 1205 1195
S2020 и F526 относится к тому же продукту, который используется и указан в настоящей заявке.
Дополнительный полиол I является дополнительным соединением, способным вступать во взаимодействие с изоцианатом, который является ЕО-РО статистическим полиолом, имеющим содержание ЕО примерно 75 мас.%, функциональность 3, молекулярную массу примерно 4000 и, следовательно, эквивалентную массу примерно 1330.
Дополнительный полиол II является дополнительным соединением, способным вступать во взаимодействие с изоцианатом, который является ЕО-РО полиолом с ЕО на конце, где содержание ЕО примерно 15 мас.%, функциональность 2, молекулярная масса примерно 6000, и, следовательно, эквивалентная масса примерно 2000.
Дополнительный изоцианат является дополнительным полиизоцианатом, который является полимерным MDI с содержанием диизоцианата 37,7 мас.% и содержанием изоцианата с функциональностью более чем или равной 3-62,3 мас.%. NCO-число равно 30,7 мас.%.
Пример 6.
Suprasec 2020 и полиоксиэтиленполиоксипропиленовый полиол,
имеющий номинальную функциональность 3, средний молекулярный вес примерно 1000 и содержание оксиэтилена примерно 87 вес.%, подвергают взаимодействию при индексе 150 после добавления уретанового катализатора (триэтилендиамин; 0,6 частей вес. Dabco EG) или катализатора тримеризации (ацетат калия; 0,2 частей вес. катализатора LB) к полиолу.
ИК-анализ дал следующий результат.
Эксперимент 1 - это эксперимент с уретановым катализатором и эксперимент 2 - это эксперимент с катализатором тримеризации.
Пик около 2270 см-1 показывает, что имеют место еще много свободных, непрореагировавших групп NCO в материале, полученном в эксперименте 1. Непрореагировавшие группы NCO не присутствуют или едва присутствуют в продукте, полученном в эксперименте 2. Количество непрореагировавших групп NCO в эксперименте 1 составило примерно 5 вес.%. Это означает, что все или почти все NCO группы при индексе выше 100 остаются непрореагировавшими.
Эти эксперименты показывают, что высокий индекс вместе с тримеризацией являются важным и необходимым признаком.

Claims (2)

1. Способ получения полиизоциануратполиуретанового материала, включающий взаимодействие полиизоцианата и полиольного компонента, способного вступать во взаимодействие с изоцианатом, где реакцию проводят при изоцианатном числе от 150 до 1500 и в присутствии катализатора тримеризации; причем полиизоцианат состоит из а) от 80 до 100 мас.% дифенилметандиизоцианата, включающего, по меньшей мере, 40 мас.% 4,4'-дифенилметандиизоцианата и/или производного указанного дифенилметандиизоцианата, который является жидкостью при 25°С, с NCO-числом, равным, по меньшей мере, 20 мас.% (полиизоцианат а) и b) 20-0 мас.% другого полиизоцианата (полиизоцианат b); и где полиольный компонент, способный взаимодействовать с изоцианатом, состоит из а) от 80 до 100 мас.% простого полиэфирполиола со средней номинальной функциональностью в интервале от 2 до 6, средней эквивалентной массой в интервале от 150 до 1000, средней молекулярной массой в интервале от 600 до 5000, содержанием оксиэтилена (ЭО) в интервале от 75 до 100 мас.% и b) от 20 до 0 мас.% одного или нескольких других соединений, способных взаимодействовать с изоцианатом, за исключением воды, причем количество полиола а) и соединения b) рассчитано на общее количество данного полиола а) и соединения b).
2. Материал, полученный способом по п.1.
RU2006101063/04A 2003-06-12 2004-05-24 Способ получения полиизоциануратполиуретанового материала RU2372358C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP03013241 2003-06-12
EP03013241.9 2003-06-12

Publications (2)

Publication Number Publication Date
RU2006101063A RU2006101063A (ru) 2006-05-27
RU2372358C2 true RU2372358C2 (ru) 2009-11-10

Family

ID=33547586

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2006101063/04A RU2372358C2 (ru) 2003-06-12 2004-05-24 Способ получения полиизоциануратполиуретанового материала

Country Status (14)

Country Link
US (1) US20060084777A1 (ru)
EP (1) EP1631606B1 (ru)
JP (2) JP4818104B2 (ru)
KR (1) KR101074615B1 (ru)
CN (1) CN100513450C (ru)
AT (1) ATE521651T1 (ru)
AU (1) AU2004247421B2 (ru)
BR (1) BRPI0409963B1 (ru)
CA (1) CA2523481C (ru)
ES (1) ES2370718T3 (ru)
MX (1) MXPA05012544A (ru)
PL (1) PL1631606T3 (ru)
RU (1) RU2372358C2 (ru)
WO (1) WO2004111101A1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2549891C2 (ru) * 2010-07-08 2015-05-10 Хантсмэн Интернэшнл Ллс Противокоррозионное покрытие на основе полиизоцианата
RU2669384C2 (ru) * 2014-09-05 2018-10-11 Хантсмэн Интернэшнл Ллс Способ улучшения трещиностойкости полиизоциануратсодержащих продуктов реакции

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004060800A1 (de) * 2004-12-17 2007-05-03 Bayer Materialscience Ag Kunststoffformteile aus gegebenenfalls gefüllten Polyurethanen und deren Verwendung
ATE491734T1 (de) * 2005-10-13 2011-01-15 Huntsman Int Llc Verfahren zur herstellung eines polyisocyanuratpolyurethanmaterials
BRPI0616662B1 (pt) * 2005-10-13 2017-06-13 Huntsman International Llc Process for the preparation of a solid material of polyesocyanurate polyurethane, and, material
CN101389675B (zh) * 2006-02-21 2012-06-20 亨茨曼国际有限公司 制备聚异氰脲酸酯复合材料的方法
AU2007260123B2 (en) 2006-06-14 2010-12-02 Huntsman International Llc Composite panel
ATE449116T1 (de) 2007-03-05 2009-12-15 Basf Se Kompaktes polyisocyanurat mit verbesserten verarbeitungs-und produkteigenschaften sowie verfahren zu seiner herstellung
EP1970420A1 (en) * 2007-03-15 2008-09-17 Huntsman International Llc Polyisocyanate-based adhesive composition
EP2245081B1 (en) 2008-02-14 2015-09-16 Huntsman International LLC Elastomeric materials having a high hardblock content and process for preparing them
BRPI0908520B1 (pt) 2008-03-07 2019-08-06 Huntsman International Llc Material espumado, e, processo para preparar um material espumado
DE102008036995A1 (de) 2008-08-07 2010-02-11 Bayer Materialscience Ag Kunststoffformteile aus Polyurethan und deren Verwendung
EP2342252B1 (en) 2008-08-28 2017-04-26 Huntsman International LLC Mixture obtained by reacting polyol and anhydride and it's use in polyisocyanates for making polyisocyanurates
TR201802760T4 (tr) 2009-07-10 2018-03-21 Huntsman Int Llc Homojen köpük.
US20120301651A1 (en) * 2009-12-09 2012-11-29 Bayer Intellectual Property Gmbh Polyisocyanurate-coated parts and the use thereof in offshore applications
WO2012062801A1 (en) 2010-11-09 2012-05-18 Rockwool International A/S Mineral fibre product having reduced thermal conductivity
WO2012062796A1 (en) 2010-11-09 2012-05-18 Rockwool International A/S Method for manufacturing an aerogel-containing composite and composite produced by said method
EP2812370B1 (de) 2012-02-08 2015-11-04 Covestro Deutschland AG Verfahren zum herstellen eines polyurethan-polyisocyanurat-hartschaumstoffs
EP2644374A1 (en) 2012-03-26 2013-10-02 Huntsman International LLC Insulation board
JP6383404B2 (ja) * 2013-03-28 2018-08-29 ダウ グローバル テクノロジーズ エルエルシー ウレタン−イソシアヌレートを作製するための方法
US10294391B2 (en) 2013-07-11 2019-05-21 Dow Global Technologies Llc Process for making urethane-isocyanurates
CA2909496C (en) 2014-10-22 2020-07-07 Easton Hockey, Inc. Hockey skate including a one-piece frame with integral pedestals
CN107531875B (zh) * 2015-04-21 2020-09-22 科思创德国股份有限公司 用于生产具有功能化表面的聚异氰脲酸酯塑料的方法
WO2017136942A1 (en) 2016-02-09 2017-08-17 Bauer Hockey Corp. Skate or other footwear
CN112154166B (zh) * 2018-06-05 2023-04-04 陶氏环球技术有限责任公司 聚氨酯-聚异氰脲酸酯泡沫
CN112898939B (zh) * 2019-12-03 2023-04-28 Sika技术股份公司 低总voc含量的无底漆快速固化的聚氨酯组合物
US20240109263A1 (en) * 2020-05-28 2024-04-04 Bauer Hockey Llc Skate or other footwear
US11732083B2 (en) 2020-11-19 2023-08-22 Covestro Llc Polyisocyanate resins
CN114773565A (zh) * 2022-03-09 2022-07-22 安丹达工业技术(上海)有限公司 阻燃热塑性聚氨酯树脂及其制备方法及其应用和防护服

Family Cites Families (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3940517A (en) * 1973-01-11 1976-02-24 The Celotex Corporation Polyisocyanurate foam, catalyst composition and process for producing such
GB1433642A (en) * 1973-01-11 1976-04-28 Celotex Corp Polyisocyanurate composition related products and processes
US3817939A (en) * 1973-02-21 1974-06-18 Minnesota Mining & Mfg Organic carbonate salts as isocyanate trimerization catalysts
ZA755751B (en) * 1974-12-24 1976-08-25 Basf Wyandotte Corp Manufacture of foams
DE2607380C3 (de) 1976-02-24 1981-07-23 Bayer Ag, 5090 Leverkusen Verfahren zur Herstellung von warmformbaren Polyisocyanuratschaumstoffen
US4066580A (en) * 1976-06-07 1978-01-03 Basf Wyandotte Corporation Process for the manufacture of polyisocyanurate foams
US4126742A (en) * 1978-05-15 1978-11-21 The Upjohn Company High-modulus polyisocyanurate elastomers
US4126741A (en) * 1978-05-15 1978-11-21 The Upjohn Company High-modulus polyisocyanurate elastomers
US4247656A (en) 1979-03-14 1981-01-27 Minnesota Mining And Manufacturing Company Poly(urethane-isocyanurate) foams
US4299924A (en) * 1979-08-10 1981-11-10 Toyota Jidosha Kogyo Kabushiki Kaisha Polyisocyanurate resin and process for making the same
US4424288A (en) * 1981-12-24 1984-01-03 Basf Wyandotte Corporation Carbodiimide-modified polymethylene polyphenylene polyisocyanates for use in the preparation of polyisocyanurate-polyurethane foams
JPS59120615A (ja) * 1982-12-27 1984-07-12 Nippon Polyurethan Kogyo Kk 耐熱性ポリイソシアヌレート重合体硬化物の製造方法
JPS6099121A (ja) * 1983-11-04 1985-06-03 Asahi Glass Co Ltd ウレタン変性ポリイソシアヌレ−トフオ−ムの製造方法
JPS6099120A (ja) * 1983-11-04 1985-06-03 Asahi Glass Co Ltd ポリイソシアヌレ−ト系フオ−ムの製造方法
US4661533A (en) * 1985-10-28 1987-04-28 The Dow Chemical Company Rigid polyurethane modified polyisocyanurate containing fly ash as an inorganic filler
US4871612A (en) * 1986-09-05 1989-10-03 Inoue Mtp Kabushiki Kaisha Interior member for vehicles and method for its manufacture
JPS63245420A (ja) * 1987-03-31 1988-10-12 Sanyo Chem Ind Ltd ポリイソシアヌレ−トフオ−ムの製法
JP2613441B2 (ja) * 1988-07-18 1997-05-28 トヨタ自動車株式会社 発泡ポリウレタンの製法
US4900776A (en) * 1988-12-01 1990-02-13 Georgia-Pacific Resins, Inc. Potassium catalyst system for preparing polyurethane based plywood-patch compositions
US5286759A (en) * 1991-03-08 1994-02-15 The Dow Chemical Company Foaming system for rigid urethane and isocyanurate foams
US5137929A (en) * 1991-06-21 1992-08-11 Allied-Signal Inc. Additives which stabilize hydrohalocarbon blowing agent in polyurethane and polyisocyanurate foam formulations during polymerization
US5260344A (en) * 1992-03-13 1993-11-09 Asahi Glass Company, Ltd. Open cell rigid isocyanurate foams and method for producing the same and vacuum heat insulating layer by use of the same
BE1005821A3 (nl) * 1992-05-18 1994-02-08 Recticel Werkwijze voor het vervaardigen van zelfdragende kunststof garnituuronderdelen en aldus vervaardigd garnituuronderdeel.
US5232957A (en) 1992-09-11 1993-08-03 Davidson Textron Inc. RIM molded energy absorbing polyurethane foam
US5418261A (en) * 1993-01-25 1995-05-23 Imperial Chemical Industries Plc Polyurethane foams
GB9301428D0 (en) 1993-01-25 1993-03-17 Ici Plc Polyurethane foams
US5556934A (en) * 1993-09-03 1996-09-17 H. B. Fuller Licensing & Financing Inc. Isocyanurate embedment compound
US5900442A (en) * 1995-05-12 1999-05-04 Imperial Chemical Industries Plc Flexible polyurethane foams
JPH08319330A (ja) 1995-05-29 1996-12-03 Mitsubishi Kagaku Dow Kk 連続気泡ポリウレタン変性ポリイソシアヌレートフォームの製造方法
US5928772A (en) * 1996-06-13 1999-07-27 Dainippon Ink And Chemicals, Inc. Panel material and method of manufacturing the same
PL188405B1 (pl) * 1996-06-27 2005-01-31 Huntsman Int Llc Sposób wytwarzania mikrokomórkowej elastomerycznej pianki poliuretanowej
AU4380097A (en) 1996-08-27 1998-03-19 Ciba Specialty Chemicals Holding Inc. Polyurethane-isocyanurate casting systems with high heat deflection temperat ures
DE19651994A1 (de) * 1996-12-13 1998-06-18 Basf Ag Verfahren zur Herstellung von selbsttrennenden, kompakten oder zelligen, gegebenenfalls Verstärkungsmittel enthaltenden Formkörpern aus Polyisocyanat-Polyadditionsprodukten und innere Formtrennmittel hierfür
DE19838167A1 (de) * 1998-08-21 2000-02-24 Basf Ag Mischung enthaltend Isocyanate sowie organische und/oder anorganische Säureanhydride
BR9915380A (pt) * 1998-11-16 2001-07-31 Huntsman Ici Chem Llc Sistema de poliisocianurato, processo de extrusão por tração para a preparação de um compósito polimérico reforçado por fibra de poliisocianurato curado, e, produto de poliisocianurato
DE19918726C2 (de) 1999-04-24 2002-04-11 Bayer Ag Offenzellige Polyurethanhartschaumstoffe
US6509392B1 (en) * 2000-01-25 2003-01-21 H.A. International Llc Foundry binder and process
EP1167414A1 (en) * 2000-06-29 2002-01-02 Huntsman International Llc Process for making rigid polyurethane foams having high adhesion
EP1172387A1 (en) * 2000-07-14 2002-01-16 Huntsman International Llc Process for preparing an elastomer
EP1178063A1 (en) 2000-08-01 2002-02-06 Huntsman International Llc Process for preparing a polyurethane material
FR2812653A1 (fr) * 2000-08-03 2002-02-08 Michelin Soc Tech Colle pour compositions de caoutchouc, son procede de preparation et articles comportant cette colle
IT1319215B1 (it) * 2000-10-16 2003-09-26 Industrialesud Spa Prodotto multistrato, suo uso per la realizzazione di articolileggeri, fonoassorbenti, autoportanti e articoli ottenibili con detto
DE10145458B4 (de) * 2001-09-14 2014-03-20 Basf Se Verfahren zur Herstellung von Urethan- und überwiegend Isocyanuratgruppen aufweisenden Polyurethanhartschaumstoffen
US6773756B2 (en) * 2002-03-20 2004-08-10 Bayer Polymers Llc Process to manufacture three dimensionally shaped substrate for sound abatement
US20040069971A1 (en) * 2002-10-15 2004-04-15 Witteveen Martijn M. Polyol compositions and rigid polyisocyanurate foams prepared therefrom
US20040249078A1 (en) * 2003-06-04 2004-12-09 Honeywell International, Inc. Foam catalyst systems
US7763341B2 (en) * 2004-01-23 2010-07-27 Century-Board Usa, Llc Filled polymer composite and synthetic building material compositions
ITRM20040375A1 (it) * 2004-07-23 2004-10-23 Tekno Garden S R L Materiali compositi a base di resine leganti, procedimenti per la loro preparazione e usi.
ATE491734T1 (de) * 2005-10-13 2011-01-15 Huntsman Int Llc Verfahren zur herstellung eines polyisocyanuratpolyurethanmaterials
BRPI0616662B1 (pt) * 2005-10-13 2017-06-13 Huntsman International Llc Process for the preparation of a solid material of polyesocyanurate polyurethane, and, material
CN101389675B (zh) * 2006-02-21 2012-06-20 亨茨曼国际有限公司 制备聚异氰脲酸酯复合材料的方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2549891C2 (ru) * 2010-07-08 2015-05-10 Хантсмэн Интернэшнл Ллс Противокоррозионное покрытие на основе полиизоцианата
RU2669384C2 (ru) * 2014-09-05 2018-10-11 Хантсмэн Интернэшнл Ллс Способ улучшения трещиностойкости полиизоциануратсодержащих продуктов реакции

Also Published As

Publication number Publication date
AU2004247421A1 (en) 2004-12-23
JP4818104B2 (ja) 2011-11-16
PL1631606T3 (pl) 2011-11-30
BRPI0409963B1 (pt) 2014-08-05
CA2523481A1 (en) 2004-12-23
AU2004247421A2 (en) 2004-12-23
CA2523481C (en) 2012-05-01
BRPI0409963A (pt) 2006-04-25
EP1631606B1 (en) 2011-08-24
US20060084777A1 (en) 2006-04-20
MXPA05012544A (es) 2006-02-08
KR20060017641A (ko) 2006-02-24
CN1802395A (zh) 2006-07-12
KR101074615B1 (ko) 2011-10-17
WO2004111101A1 (en) 2004-12-23
EP1631606A1 (en) 2006-03-08
ATE521651T1 (de) 2011-09-15
CN100513450C (zh) 2009-07-15
AU2004247421B2 (en) 2008-03-13
JP2011190457A (ja) 2011-09-29
WO2004111101A9 (en) 2006-02-23
JP2006527295A (ja) 2006-11-30
RU2006101063A (ru) 2006-05-27
ES2370718T3 (es) 2011-12-22

Similar Documents

Publication Publication Date Title
RU2372358C2 (ru) Способ получения полиизоциануратполиуретанового материала
JP5044560B2 (ja) ポリイソシアヌレートポリウレタン材料の調製方法
AU2006301367B2 (en) Process for preparing polyisocyanurate polyurethane material
EP1303551B1 (en) Process for preparing an elastomer
EP1305354B1 (en) Process for preparing a polyurethane material