RU2366898C2 - Диагностика импульсной трубопроводной линии в технологическом процессе - Google Patents

Диагностика импульсной трубопроводной линии в технологическом процессе Download PDF

Info

Publication number
RU2366898C2
RU2366898C2 RU2006126655/28A RU2006126655A RU2366898C2 RU 2366898 C2 RU2366898 C2 RU 2366898C2 RU 2006126655/28 A RU2006126655/28 A RU 2006126655/28A RU 2006126655 A RU2006126655 A RU 2006126655A RU 2366898 C2 RU2366898 C2 RU 2366898C2
Authority
RU
Russia
Prior art keywords
vibration signal
acoustic vibration
signal
technological
pipeline
Prior art date
Application number
RU2006126655/28A
Other languages
English (en)
Other versions
RU2006126655A (ru
Inventor
Грегори С. БРАУН (US)
Грегори С. БРАУН
Марк С. ШУМАХЕР (US)
Марк С. ШУМАХЕР
Original Assignee
Роузмаунт Инк.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Роузмаунт Инк. filed Critical Роузмаунт Инк.
Publication of RU2006126655A publication Critical patent/RU2006126655A/ru
Application granted granted Critical
Publication of RU2366898C2 publication Critical patent/RU2366898C2/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F25/00Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume
    • G01F25/10Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume of flowmeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • G01L19/0007Fluidic connecting means
    • G01L19/0015Fluidic connecting means using switching means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/12Analysing solids by measuring frequency or resonance of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/263Surfaces
    • G01N2291/2634Surfaces cylindrical from outside

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Acoustics & Sound (AREA)
  • Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Fluid Mechanics (AREA)
  • Examining Or Testing Airtightness (AREA)
  • Measuring Fluid Pressure (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
  • Measuring Volume Flow (AREA)

Abstract

Предложены способ и устройство диагностики работы импульсной трубопроводной линии технологического измерительного устройства (расходомера) в технологическом процессе. Источник (144) вибрационного сигнала, конфигурированный для передачи акустического сигнала вдоль импульсной трубопроводной линии (112), и приемник (146) акустического вибрационного сигнала из импульсной трубопроводной линии соединены с технологическим присоединительным элементом (110), через который проходит линия (112). Диагностическая схема (140), содержащаяся в технологическом датчике (102) измерительного устройства, на основе принятого акустического вибрационного сигнала диагностирует импульсную трубопроводную линию (закупоривание или утечку заполняющей жидкости). Технологический датчик (102) содержит датчик давления потока или датчик уровня потока и для обеспечения питанием соединен с двухпроводным контуром управления технологическим процессом. Диагностическая схема может быть конфигурирована для самодиагностики на основе принятого акустического сигнала. Изобретение повышает надежность контроля технологического процесса за счет возможности упреждающей диагностики отказов расходомеров. 2 н. и 24 з.п. ф-лы, 5 ил.

Description

Область техники, к которой относится изобретение
Настоящее изобретение относится к технологическим устройствам. В частности настоящее изобретение касается технологических устройств, связанных с протеканием технологической жидкости через технологический трубопровод.
Уровень техники
Для измерения технологических переменных и соединения с технологической жидкостью через технологический трубопровод используют технологические устройства различных типов. Например, в оборудовании для управления технологическими процессами для измерения расхода жидкости и обеспечения выходных сигналов, относящихся к индикаторам расхода и технологическим контроллерам, используют расходомеры жидкостей. Скоростные расходомеры измеряют расход жидкости в трубе путем измерения перепада давления рядом с местом разрыва в трубе. Место разрыва (первичный элемент) может представлять собой отверстие, сопло, трубку Вентури, трубку Пито, стержень, образующий завихрения, заслонку или даже простой изгиб в трубе. Поток вокруг места разрыва вызывает как перепад давления, так и повышенную турбулентность. Перепад давления измеряется датчиком давления (вторичный элемент), расположенным вне трубы и соединенным импульсными линиями или импульсными перепускными каналами с жидкостью в трубе. Эти соединения также относятся к импульсным трубопроводам. Надежность зависит от поддержания правильной калибровки. Импульсные линии со временем могут закупориваться, что также неблагоприятно влияет на калибровку.
Одним из способов, используемых для идентификации и устранения закупорки линии, является демонтаж и проверка импульсных линий. Другим известным способом обнаружения закупорки является периодическое добавление «проверочного импульса» в измерительный сигнал от датчика давления. Этот проверочный импульс заставляет систему управления, соединенную с датчиком, вносить возмущение в поток. Если датчик давления не точно измеряет возмущение в потоке, то формируется аварийный сигнал, указывающий на закупорку линии. Другой известный способ обнаружения закупорки состоит в измерении как статического, так и дифференциального давления. Если между колебаниями статического и дифференциального давлений имеет место неадекватная корреляция, то создается аварийный сигнал, указывающий на закупорку линии. Еще один известный способ обнаружения закупорки линии заключается в измерении статических давлений с последующим пропусканием сигналов давления через фильтры верхних и нижних частот. Сигналы шума, полученные от фильтров, сравнивают с пороговым значением, и, если отклонение шума меньше порогового значения, может быть включен аварийный сигнал, указывающий, что линия заблокирована.
Известные способы предполагают использование чувствительных элементов для измерения статического давления, демонтаж расходомера или использование внешней системы управления для диагностики. Эти способы усложняют систему и снижают надежность.
Сущность изобретения
Таким образом, технической задачей настоящего изобретения является улучшение технологии диагностики, которая сможет обеспечить техническое обслуживание, являющееся в большей степени упреждающим, чем реагирующим на уже происшедшие отказы, что позволит уменьшить расходы, повысить надежность.
Согласно изобретению предложено устройство и способ для диагностики работы импульсных трубопроводных линий в технологическом процессе, в котором источник вибраций передает вибрационный сигнал через трубопровод на приемник, предназначенный для приема вибрационного сигнала. Работа трубопровода диагностируется на основе принятого вибрационного сигнала.
Краткое описание чертежей
В дальнейшем изобретение поясняется описанием предпочтительных вариантов воплощения со ссылками на сопровождающие чертежи, на которых:
фиг.1 изображает блок-схему технологического устройства, которое выполняет диагностику технологического импульсного трубопровода, согласно изобретению;
фиг.2 - общий вид датчика и технологического соединения согласно изобретению;
фиг.3А - вид сверху технологического соединения;
фиг.3В - разрез по линии IIIB-IIIB на фиг.3А;
фиг.3С - вид по стрелке ЗС на фиг.3В в увеличенном масштабе согласно изобретению.
Подробное описание предпочтительных вариантов изобретения.
На фиг.1 представлена блок-схема системы 100 управления или контроля технологического процесса, которая содержит технологический датчик 102, соединенный с технологической трубой 104. Технологическая труба 104 может представлять собой резервуар любого типа, в котором имеется технологическая жидкость, в том числе, например, контейнер для хранения. Технологическая труба 104 содержит технологическую жидкость, а датчик 102 предназначен для измерения технологической переменной технологической жидкости, такой как давление, и обеспечения выходного сигнала. Одним из примеров выходной цепи является двухпроводный контур 106 управления технологическим процессом, который функционирует согласно стандартизированным коммуникационным протоколам, таким как протокол HART®, FIELDBUS, PROFIBUS или другие протоколы.
Датчик 102 соединен с технологической жидкостью через технологический патрубок 110. Технологический патрубок обеспечивает передачу сигнала в импульсную трубопроводную линию 112, которая проходит между технологической жидкостью и чувствительным элементом, например чувствительным элементом 114 для измерения давления. Импульсная трубопроводная линия 112 может представлять собой прямое жидкостное соединение, которое переносит технологическую жидкость и в некоторых вариантах может включать в себя изолирующую диафрагму, если требуется изолировать заполняющую жидкость, связанную с чувствительным элементом 114, от технологической жидкости.
Во время работы возможно засорение импульсной трубопроводной линии 112. Засорение может быть либо частичным, либо полным. Как обсуждалось в разделе «Уровень техники», для диагностирования и идентификации указанного закупоривания импульсной трубопроводной линии 112 используются различные способы. Частичное закупоривание может создать особые трудности для идентификации, поскольку импульсная трубопроводная линия заблокирована не полностью, и чувствительный элемент 114 продолжает выдавать данные, которые могут оказаться неточными.
Настоящее изобретение обеспечивает способ для идентификации засорения или закупоривания технологической импульсной трубопроводной линии 112. В описываемом варианте, технологический датчик 102 содержит измерительные схемы 120, подсоединенные к датчику 114. Схемы 122 ввода/вывода соединены с контуром 106 управления технологическим процессом и обеспечивают выходной сигнал для измерительных схем 120, которые связаны с выходным сигналом чувствительного элемента 114. Например, выходной сигнал может относиться к давлению технологической жидкости, расходу технологической жидкости, уровню технологической жидкости или другим технологическим переменным.
Согласно одному варианту настоящего изобретения технологический датчик 102 содержит диагностические схемы 140, имеющие память 141. Диагностические схемы 140 соединены с преобразователем 142. Преобразователь 142 физически соединен с технологической импульсной трубопроводной линией 112, например, путем подсоединения к технологическому патрубку 110 или другими соединениями. Преобразователь 142 может представлять собой один преобразователь или два отдельных преобразователя, сформированных в виде источника 144 сигнала и приемника 146 сигнала. В некоторых вариантах преобразователь 142 является единым элементом, который выполняет обе функции: посылки и приема. Посылка и прием могут выполняться непрерывно или путем мультиплексирования.
Согласно варианту выполнения источник 144 сигнала является источником вибрационного сигнала, который посылает вибрационный сигнал в импульсную трубопроводную линию 112. Спектральный состав вибраций может выбираться по требованию. Например, спектральный состав может содержать по существу случайный шум с относительно постоянной амплитудой и частотами, лежащими ниже выбранного верхнего предела. В качестве отраженного сигнала, лежащего в основе диагностики, предпочтительно использовать акустический частотный диапазон с более высокими частотами. Более высокие частоты являются более направленными и будут легче отражаться обратно от мест накопления вдоль частично закупоренной линии. Поскольку места закупоривания образуют фильтр нижних частот, сигнал низкой частоты не может отражаться от места закупоривания, а скорее будет передаваться в зависимости от характеристик фильтра нижних частот. Также легче генерировать короткие пакетные акустические сигналы с использованием более высоких частот, которые могут позволить определить положение границы раздела, обеспечивающей отражение. Это особенно важно при диагностике высоты уровня смачиваемого и сухого колена. Для сигнала, в режиме высокочастотных пульсаций этого типа полезно использовать частоты до 40 кГц. Сигнал в режиме высокочастотных пульсаций также позволяет прослушивать спектр шума технологического процесса для образцов аномального шума в промежутке между пакетными сигналами. Важно, что частота или частоты импульсных помех не маскируются шумом технологического процесса. В оптимальном варианте точная частота или частоты переданного опрашивающего сигнала будут изменяться для отношения максимальный сигнал/шум в зависимости от измеренного спектра фонового шума.
При диагностике согласно настоящему изобретению не используется шум окружающей среды, а вместо этого используется источник 144 для генерации вибрационного шума. Приемник 146 предназначен для приема вибрационного шума из импульсной линии 112 и обеспечивает сигнал для диагностических схем 140. Поскольку источник 144 шума обеспечивает случайный шум с постоянным профилем или профилем, настроенным по желанию, диагностические схемы 140 могут различать отклонения в принятом сигнале и определять, является ли источник вибраций следствием изменений при закупоривании импульсной линии 112 или следствием изменений в вибрационном сигнале, использованном источником 144. Преобразователь 142 может быть соединен с системой технологических трубопроводов в качестве отдельной компоненты. Можно использовать любую подходящую конфигурацию датчика и приемника. Одним из типов преобразующего элемента является пьезоэлектрический элемент, который предпочтительно адаптирован для высокотемпературных установок. Однако можно использовать любые схемы, включая электромеханические и т.д. Для повышения эффективности пьезоэлектрический элемент должным образом соединен с системой трубопроводов в желаемом направлении распространения акустической энергии и не имеет соединений в других направлениях. Такая конфигурация увеличивает используемый сигнал шума и повышает чувствительность в требуемом направлении.
На фиг.2 представлен общий вид в датчика 102 с технологическим патрубком 110. Патрубок 110 может представлять собой соединение или фланцевую конфигурацию любого типа. На фиг.2 технологический патрубок 110 показан в виде трехклапанного трубного фланца, который используется для соединения датчика дифференциального давления с технологической трубой 104. Патрубок 110 содержит блокирующие клапаны 110А и 100В, а также выравнивающий клапан 110С. Измерения дифференциального давления можно использовать, например, для измерения расхода или уровня продукта. Технологический датчик 102 содержит модуль 162 чувствительного элемента, подсоединенный к измерительному модулю 160. Модуль 162 чувствительного элемента содержит чувствительный элемент для измерения дифференциального давления, который соединен с технологической жидкостью через ряд технологических импульсных трубопроводных линий. Как правило, на передней стороне датчика 102, который монтируется на передней поверхности 170 технологического патрубка 110, находятся изолирующие диафрагмы (не показаны). На фиг.2 показана часть импульсного трубопровода 112, которая проходит через технологический патрубок 110.
Согласно варианту выполнения преобразователи 142 подсоединены к боковой стороне технологического патрубка 110, соединяясь с диагностическими схемами 140 (фиг.1) датчика 102, через проводные соединения 172, разъем 174 и розетку 176. Предпочтительно, чтобы разъем 174 и розетка 176 были сконфигурированы таким образом, чтобы удовлетворялись требования собственной безопасности и обеспечивалось герметичное уплотнение от воздействия окружающей среды. На фиг.2 показаны два преобразователя 142, которые используются для диагностики закупоривания двух импульсных трубопроводных линий 112 через технологический патрубок 110. Очевидно, что для других приложений, таких как измерение абсолютного или манометрического давления, для одной импульсной трубопроводной линии понадобится только один преобразователь.
На фиг.3А показан вид сверху технологического патрубка 110 с преобразователями 142, смонтированными на его боковой стороне. Технологический патрубок 110 включает в себя блокирующие клапаны 110а и 110в, которые предназначены для блокирования импульсного трубопровода 112. Преобразователи 142 проходят через отверстия 182 в импульсный трубопровод 112.
На фиг.3В показан разрез технологического патрубка 110. Импульсная трубопроводная линия 112 (фиг.3В) сформирована из нескольких элементов. Импульсная трубопроводная линия 112 включает в себя трубопровод 190 технологического соединения, который соединен с технологической трубой 104 (фиг.1). Трубопровод 190 соединен с технологическим патрубком 110 через фитинг 192. Основная полость 194 в корпусе патрубка 110 сконфигурирована для размещения трубопровода 190, верхней части-наконечника 194 преобразователя 142 и клапана 110В. Клапан 110В обеспечивает изоляцию полости 192 от соединения 196 датчика, если это необходимо.
Как показано на фиг.3С, вибрационный сигнал 200 передается и принимается преобразователем 142 через технологическую импульсную трубопроводную линию 112. Наконечник преобразователя 142 скошен и предназначен для направления вибрационного сигнала 200 в направлении от датчика 102. Хотя показано, что преобразователь 142 подсоединен к датчику 102, можно использовать другие конфигурации, в том числе отдельное соединение с преобразователями 142, для которого не требуется питание от датчика 102.
Во время работы диагностические схемы 140 (фиг.1) управляют работой преобразователя 146. В некоторых вариантах спектральный состав вибрационного сигнала 200 регулируется диагностическими схемами 140. Диагностические схемы 140 могут, например, включать в себя аналого-цифровой преобразователь, который оцифровывает сигнал, принятый приемником 146. В некоторых вариантах выполнения могут быть использованы аналоговые схемы. Можно использовать современные способы цифровой обработки принимаемого сигнала, в том числе выполнение быстрого преобразования Фурье (FFT).
На основе принятого информационного сигнала можно обнаружить закупоренное или частично закупоренное состояние линии. Например, сигнал, содержащий пакет высокочастотных импульсов в широком спектре, или сигнал с качающейся частотой акустического шума подается в импульсный трубопровод 112 через источник 144 шума. Шумовой выброс может быть направлен в технологический патрубок 110, так что он будет проходить по технологической жидкости в импульсной трубопроводной линии 112. Если в линии 112 из-за закупоривания, частично заполненного смачиваемого или сухого колена или другого состояния существует полная или частичная граница раздела, то часть акустической энергии отражается обратно в приемник 146 преобразователя 142. Преобразователь преобразует принятую акустическую энергию в электрический сигнал, который подается в диагностические схемы 140. С другой стороны, если состояние отказа из-за препятствия не существует, то отраженный сигнал будет появляться благодаря фитингам, изгибам и обычным препятствиям в трубопроводной линии 112. Эти отражения обеспечиваются фиксированными источниками. Таким образом, акустический профиль технологической импульсной линии 112 при номинальном состоянии может быть запомнен в памяти 141 диагностических схем 140. Во время работы реальный отраженный сигнал можно сравнить с запомненным профилем. Отклонения между запомненным профилем и принятым отраженным сигналом используются диагностическими схемами 140 для идентификации неисправности или надвигающейся неисправности в технологической линии 112. Поскольку применяемый акустический сигнал известен, настоящее изобретение менее чувствительно к отклонениям шума окружающей среды для идентификации закупорки линии, чем известные способы.
В некоторых вариантах выполнения изобретение используется для обнаружения неисправных состояний в смачиваемом или сухом коленах технологического соединения. Смачиваемые колена, как правило, используют в приложениях с измерением уровня, которые основаны на дифференциальном давлении, когда верхнее соединение к резервуару или другому контейнеру подсоединено к входу низкого давления датчика с импульсной трубопроводной линией, которую намеренно оставляют заполненной технологической жидкостью. Однако, когда смачиваемое колено заполнено жидкостью только частично, может потребоваться техническое обслуживание, а рабочие характеристики могут ухудшиться. Наихудшим сценарием является случай, когда уровень заполнения смачиваемого колена изменяется с течением времени. Это может привести к неточным измерениям. Установка сухого колена аналогична за исключением того, что импульсная линия намеренно поддерживается свободной от технологической жидкости, то есть линия остается сухой. Любое накопление жидкости в сухом колене вызовет очевидное отклонение в измерении, выполняемом датчиком. Благодаря измерению уровней жидкости в заполненных жидкостью или сухих импульсных линиях в настоящем изобретении имеется возможность обнаружить, когда уровни не соответствуют норме, и в качестве реакции на это обеспечить диагностический выходной сигнал.
При закупорке импульсной линии препятствие действует как фильтр нижних частот. Более высокие частоты сигнала датчика ослабляются и частично отражаются обратно в преобразователь 142. Диагностические схемы 140 могут определить изменение в спектральном составе отраженного сигнала, что может служить индикатором закупоривания линии. Например, при заранее определенном уровне затухания схемы 122 ввода/вывода по контуру 106 управления технологическим процессом могут передать в удаленное место аварийный сигнал раннего предупреждения.
Дополнительно к обнаружению отраженного сигнала от источника 144 приемник 146 также можно использовать для обнаружения внешнего технологического шума. Это можно использовать для диагностирования состояний технологического процесса, таких как отказ насоса, кавитация и т.д. Данный способ может быть объединен с другими способами диагностики и использован для диагностики других состояний в технологическом процессе.
Диагностику на основе вибрации согласно настоящему изобретению можно также использовать для идентификации потери изолирующей жидкости в технологическом датчике 102. Как обсуждалось выше, обычно используют изолирующие диафрагмы, которые изолируют технологическую жидкость от датчика 114. Изолирующая жидкость соединяет изолирующую диафрагму с чувствительным элементом 114, так что изменения в технологическом давлении проходят через изолирующую диафрагму и изолирующее жидкое смазочное масло на технологический датчик. Однако, если имеет место утечка изолирующей жидкости, то в измерениях датчика появляются ошибки, и в конце концов датчик окажется неисправным. Масло/изолятор/датчик образуют фильтр нижних частот для аудиосигналов. Когда происходят потери заполняющего жидкого смазочного масла в датчике, характеристика фильтра нижних частот изменяется. При потере изолирующей заполняющей жидкости частота излома (то есть частота, при которой сигнал уменьшается на 3 дБ) фильтра нижних частот смещается в сторону низких частот. Преобразователь 142 согласно настоящему изобретению можно использовать для идентификации изменений в этом фильтре нижних частот и диагностировать состояния потери заполняющей жидкости. Диагностические схемы 140 сравнивают отраженный сигнал с известным профилем для определения потери заполняющей жидкости.
Диагностические схемы 140 могут также обеспечить самодиагностику. Например, некоторые препятствия и конфигурации в технологической импульсной трубопроводной линии 112 обеспечивают фиксированную или установленную временную задержку и амплитуду отраженных импульсов. Измеряя временную задержку и амплитуды во времени, диагностические схемы 140 могут идентифицировать износ или отказ преобразователя 142.
Диагностика может быть реализована с использованием одного преобразователя или посредством множества преобразователей. Диагностические схемы и преобразователь могут быть включены в состав электронного оборудования датчика либо могут являться частью автономного устройства. Преобразователь может быть подсоединен к технологической импульсной трубопроводной линии любого типа, в том числе к другим трубным конфигурациям. Датчики различных типов могут включать такие типы, как датчики давления, температуры, рН, расхода, уровня и другие типы. Диагностические схемы 140 могут использовать элементы совместно с другими схемами и устройствами, например микропроцессор, память, усилитель, аналого-цифровой преобразователь, цифроаналоговый преобразователь и т.д. Диагностические схемы могут быть реализованы аппаратными средствами, программными средствами или их комбинацией.
Хотя настоящее изобретение было описано со ссылками на предпочтительные варианты его осуществления, специалистам в данной области техники очевидно, что могут быть внесены изменения в деталях, не выходящие за рамки изобретения.
Например, вибрационный сигнал может иметь любую подходящую частоту или спектральный состав. Сигнал может подаваться непрерывно, пакетами или импульсами, или в других волновых формах, таких как пилообразный сигнал и т.д. Диагностические схемы могут сравнивать принятый вибрационный сигнал с эталоном и могут идентифицировать тренды или резкие изменения в сигнале. Кроме того, диагностические схемы могут контролировать фоновый шум, например, когда источник вибраций выключен, и сравнивать контролируемый внешний шум с запомненным спектром шума или его характеристикой. Сравнение может обеспечить индикацию аномалии или надвигающейся неисправности технологического оборудования. В некоторых вариантах частота или спектральный состав вибрационного сигнала регулируется, если это необходимо. Например, спектральный состав можно регулировать для достижения желаемого отношения сигнал/шум. Диагностические схемы согласно настоящему изобретению можно также сконфигурировать для диагностирования отклонений, таких как состояние отказа, в импульсном трубопроводе, относящемся к типу, который образует заполненное капиллярное колено устройства измерения уровня. В указанной конфигурации датчик обеспечивает выходной сигнал измерения уровня. Примерные неисправности включают в себя потерю масла, разрыв или потерю технологического изолятора или перегиб или поломку капиллярной трубки колена.

Claims (26)

1. Устройство для диагностики импульсной трубопроводной линии технологического измерительного устройства в технологическом процессе, содержащее
источник вибрационного сигнала, конфигурированный для передачи акустического вибрационного сигнала вдоль импульсной трубопроводной линии, и
приемник вибрационного сигнала, конфигурированный для приема акустического вибрационного сигнала из импульсной трубопроводной линии, соединенные с технологическим присоединительным элементом, через который проходит импульсная трубопроводная линия,
и диагностическую схему, содержащуюся в технологическом датчике указанного измерительного устройства и конфигурированную для диагностики импульсной трубопроводной линии на основе принятого акустического вибрационного сигнала.
2. Устройство по п.1, отличающееся тем, что диагностическая схема дополнительно предназначена для мониторинга фонового шума.
3. Устройство по п.1, отличающееся тем, что диагностическая схема дополнительно предназначена для мониторинга фонового шума по отношению к запомненной эталонной характеристике шума для идентификации неисправности или предстоящей неисправности технологического оборудования.
4. Устройство по п.1, отличающееся тем, что дополнительно предназначено для регулирования частоты акустического вибрационного сигнала для изменения отношения сигнал/шум.
5. Устройство по п.1, отличающееся тем, что диагностическая схема предназначена для диагностики акустических вибраций в импульсной трубопроводной линии, которая образует заполненное капиллярное колено устройства измерения уровня.
6. Устройство по п.1, отличающееся тем, что диагностическая схема содержит память, содержащую спектральный профиль принятого акустического вибрационного сигнала.
7. Устройство по п.1, отличающееся тем, что диагностическая схема обеспечивает сравнение принятого акустического вибрационного сигнала с эталоном.
8. Устройство по п.1, отличающееся тем, что источник акустического вибрационного сигнала и приемник акустического сигнала образуют измерительный преобразователь.
9. Устройство по п.1, отличающееся тем, что акустический вибрационный сигнал содержит сигнал шума.
10. Устройство по п.1, отличающееся тем, что акустический вибрационный сигнал имеет частоту, меньшую 20 Гц.
11. Устройство по п.1, отличающееся тем, что технологический присоединительный элемент выполнен в виде фланца, а источник и приемник акустического вибрационного сигнала подсоединены к фланцу с возможностью передачи и приема акустического вибрационного сигнала через полость во фланце.
12. Устройство по п.1, отличающееся тем, что импульсная трубопроводная линия соединяет чувствительный элемент для измерения давления с технологической жидкостью.
13. Устройство по п.1, отличающееся тем, что технологический датчик содержит датчик давления потока или датчик уровня потока.
14. Устройство по п.1, отличающееся тем, что технологический датчик конфигурирован для соединения с двухпроводным контуром управления технологическим процессом и полностью обеспечивается питанием, принимаемым из контура управления технологическим процессом.
15. Устройство по п.1, отличающееся тем, что диагностическая схема конфигурирована для диагностики закупоривания или утечки заполняющей жидкости в импульсной трубопроводной линии.
16. Устройство по п.1, отличающееся тем, что диагностическая схема конфигурирована для диагностики изменений в импульсной трубопроводной линии, образующей смачиваемое колено устройства измерения уровня.
17. Устройство по п.1, отличающееся тем, что диагностическая схема конфигурирована для самодиагностики на основе принятого акустического вибрационного сигнала.
18. Способ диагностики импульсной трубопроводной линии технологического измерительного устройства в технологическом процессе, заключающийся в том, что используют
источник вибрационного сигнала для направления акустического вибрационного сигнала вдоль импульсной трубопроводной линии и
приемник вибрационного сигнала для приема акустического вибрационного сигнала из импульсной трубопроводной линии, соединенные с технологическим присоединительным элементом, через который проходит импульсная трубопроводная линия,
осуществляют диагностику импульсной трубопроводной линии на основе принятого акустического вибрационного сигнала.
19. Способ по п.18, отличающийся тем, что при диагностике извлекают спектральный профиль из принятого акустического вибрационного сигнала.
20. Способ по п.18, отличающийся тем, что при диагностике сравнивают принятый акустический вибрационный сигнал с эталоном.
21. Способ по п.18, отличающийся тем, что акустический вибрационный сигнал содержит сигнал шума.
22. Способ по п.18, отличающийся тем, что акустический вибрационный сигнал имеет частоту, меньшую 20 Гц.
23. Способ по п.18, отличающийся тем, что соединяют чувствительный элемент для измерения давления с технологической жидкостью посредством импульсной трубопроводной линии.
24. Способ по п.18, отличающийся тем, что осуществляют диагностику потерь заполняющей жидкости в импульсной трубопроводной линии.
25. Способ по п.18, отличающийся тем, что осуществляют диагностику изменений в импульсной трубопроводной линии, формирующей смачиваемое колено устройства измерения уровня.
26. Способ по п.18, отличающийся тем, что выполняют самодиагностику на основе принятого акустического вибрационного сигнала.
RU2006126655/28A 2003-12-23 2004-12-10 Диагностика импульсной трубопроводной линии в технологическом процессе RU2366898C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/744,809 2003-12-23
US10/744,809 US7523667B2 (en) 2003-12-23 2003-12-23 Diagnostics of impulse piping in an industrial process

Publications (2)

Publication Number Publication Date
RU2006126655A RU2006126655A (ru) 2008-01-27
RU2366898C2 true RU2366898C2 (ru) 2009-09-10

Family

ID=34678973

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2006126655/28A RU2366898C2 (ru) 2003-12-23 2004-12-10 Диагностика импульсной трубопроводной линии в технологическом процессе

Country Status (6)

Country Link
US (1) US7523667B2 (ru)
EP (1) EP1697698B8 (ru)
JP (1) JP2007516445A (ru)
CN (1) CN100504310C (ru)
RU (1) RU2366898C2 (ru)
WO (1) WO2005066590A2 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10155262B2 (en) 2014-02-07 2018-12-18 Primetals Technologies Austria GmbH Monitoring of a line system

Families Citing this family (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8538560B2 (en) 2004-04-29 2013-09-17 Rosemount Inc. Wireless power and communication unit for process field devices
US8145180B2 (en) 2004-05-21 2012-03-27 Rosemount Inc. Power generation for process devices
US7334484B2 (en) * 2005-05-27 2008-02-26 Rosemount Inc. Line pressure measurement using differential pressure sensor
US7289863B2 (en) * 2005-08-18 2007-10-30 Brooks Automation, Inc. System and method for electronic diagnostics of a process vacuum environment
US20070068225A1 (en) 2005-09-29 2007-03-29 Brown Gregory C Leak detector for process valve
US7379792B2 (en) * 2005-09-29 2008-05-27 Rosemount Inc. Pressure transmitter with acoustic pressure sensor
US7680625B2 (en) * 2005-11-14 2010-03-16 Macsema, Inc. Systems and methods for monitoring system performance
US7908118B2 (en) * 2005-11-14 2011-03-15 Macsema, Inc. System and methods for testing, monitoring, and replacing equipment
US7415886B2 (en) * 2005-12-20 2008-08-26 Rosemount Inc. Pressure sensor with deflectable diaphragm
US7412893B2 (en) * 2006-03-23 2008-08-19 Rosemount Inc. Redundant mechanical and electronic remote seal system
DE102006022283A1 (de) * 2006-05-11 2007-11-15 Micronas Gmbh Monolithische Sensoranordnung bzw. Verfahren zum Ansteuern einer monolithischen Sensoranordnung
US8032234B2 (en) * 2006-05-16 2011-10-04 Rosemount Inc. Diagnostics in process control and monitoring systems
JP5108899B2 (ja) * 2007-02-22 2012-12-26 マイクロ・モーション・インコーポレーテッド 振動パイプライン診断システム及び方法
US7650245B2 (en) * 2007-02-26 2010-01-19 Yokogawa Electric Corporation Impulse line-clogging detecting unit and impulse line-clogging detecting method
US8898036B2 (en) * 2007-08-06 2014-11-25 Rosemount Inc. Process variable transmitter with acceleration sensor
JP4952470B2 (ja) * 2007-09-19 2012-06-13 和光純薬工業株式会社 分注装置および分注装置における吐出状態判定方法
WO2009154748A2 (en) 2008-06-17 2009-12-23 Rosemount Inc. Rf adapter for field device with low voltage intrinsic safety clamping
US8250924B2 (en) * 2008-04-22 2012-08-28 Rosemount Inc. Industrial process device utilizing piezoelectric transducer
US8929948B2 (en) 2008-06-17 2015-01-06 Rosemount Inc. Wireless communication adapter for field devices
US8694060B2 (en) 2008-06-17 2014-04-08 Rosemount Inc. Form factor and electromagnetic interference protection for process device wireless adapters
WO2009154756A1 (en) * 2008-06-17 2009-12-23 Rosemount Inc. Rf adapter for field device with variable voltage drop
CN102187179B (zh) 2008-10-22 2014-05-14 罗斯蒙特公司 用于过程设备的传感器/变送器即插即用
JP5249000B2 (ja) * 2008-12-01 2013-07-31 アズビル株式会社 導圧管の詰まり診断装置および詰まり診断方法
US8327713B2 (en) 2008-12-03 2012-12-11 Rosemount Inc. Method and apparatus for pressure measurement using magnetic property
US7870791B2 (en) 2008-12-03 2011-01-18 Rosemount Inc. Method and apparatus for pressure measurement using quartz crystal
US7954383B2 (en) * 2008-12-03 2011-06-07 Rosemount Inc. Method and apparatus for pressure measurement using fill tube
US20100318007A1 (en) * 2009-06-10 2010-12-16 O'brien Donald J Electromechanical tactile stimulation devices and methods
US8626087B2 (en) 2009-06-16 2014-01-07 Rosemount Inc. Wire harness for field devices used in a hazardous locations
US9674976B2 (en) 2009-06-16 2017-06-06 Rosemount Inc. Wireless process communication adapter with improved encapsulation
US10156480B2 (en) * 2009-09-03 2018-12-18 Rosemount Inc. Thermowell vibration frequency diagnostic
JP5302178B2 (ja) * 2009-12-21 2013-10-02 アズビル株式会社 導圧管の詰まり診断装置および詰まり診断方法
US8429978B2 (en) 2010-03-30 2013-04-30 Rosemount Inc. Resonant frequency based pressure sensor
FR2959822B1 (fr) * 2010-05-07 2013-04-12 Thales Sa Dispositif de controle d'une sonde de mesure de pression d'un encoulement et sonde comprenant le dispositif
US8234927B2 (en) 2010-06-08 2012-08-07 Rosemount Inc. Differential pressure sensor with line pressure measurement
US8132464B2 (en) 2010-07-12 2012-03-13 Rosemount Inc. Differential pressure transmitter with complimentary dual absolute pressure sensors
US10761524B2 (en) 2010-08-12 2020-09-01 Rosemount Inc. Wireless adapter with process diagnostics
DE102010040600A1 (de) * 2010-09-10 2012-03-15 Endress + Hauser Flowtec Ag Verfahren zum Detektieren einer Verstopfung in einem Coriolis-Durchflussmessgerät
US9207670B2 (en) 2011-03-21 2015-12-08 Rosemount Inc. Degrading sensor detection implemented within a transmitter
US9310794B2 (en) 2011-10-27 2016-04-12 Rosemount Inc. Power supply for industrial process field device
US8752433B2 (en) 2012-06-19 2014-06-17 Rosemount Inc. Differential pressure transmitter with pressure sensor
US9052240B2 (en) 2012-06-29 2015-06-09 Rosemount Inc. Industrial process temperature transmitter with sensor stress diagnostics
US9602122B2 (en) 2012-09-28 2017-03-21 Rosemount Inc. Process variable measurement noise diagnostic
CN104129062B (zh) * 2013-05-01 2017-11-17 英威达纺织(英国)有限公司 检测聚合工艺期间的氮吹事件
MY187618A (en) * 2013-05-04 2021-10-04 Richard Steven Flow metering
JP5867542B2 (ja) * 2013-05-20 2016-02-24 株式会社デンソー センサ装置
US9574919B2 (en) * 2013-06-20 2017-02-21 University Of Southern California Reducing false alarms with multi-modal sensing for pipeline blockage
CN103471774B (zh) * 2013-09-10 2015-09-09 北京市市政工程研究院 外包式管道试压装置使用的压环体
DE102014119240A1 (de) * 2014-12-19 2016-06-23 Endress + Hauser Gmbh + Co. Kg Durchflussmessanordnung nach dem Differenzdruckmessprinzip zur Messung eines Durchflusses eines Mediums
DE102015109450A1 (de) * 2015-06-12 2016-12-15 Abb Schweiz Ag Vorrichtung zur Messung des Drucks eines durch eine Rohrleitung strömendes Fluid
US11327475B2 (en) 2016-05-09 2022-05-10 Strong Force Iot Portfolio 2016, Llc Methods and systems for intelligent collection and analysis of vehicle data
US11774944B2 (en) 2016-05-09 2023-10-03 Strong Force Iot Portfolio 2016, Llc Methods and systems for the industrial internet of things
US11112784B2 (en) 2016-05-09 2021-09-07 Strong Force Iot Portfolio 2016, Llc Methods and systems for communications in an industrial internet of things data collection environment with large data sets
RU170942U1 (ru) * 2017-01-09 2017-05-16 Риф Габдуллович Султанов Сильфонный датчик диагностики состояния трубопровода
MX2019011676A (es) * 2017-04-05 2020-02-05 Tenova Goodfellow Inc Metodo y aparato para detectar acusticamente fugas de fluido.
CN108801403B (zh) * 2017-04-28 2020-04-10 中国石油天然气股份有限公司 一种天然气孔板流量计的诊断系统及方法
US11442445B2 (en) 2017-08-02 2022-09-13 Strong Force Iot Portfolio 2016, Llc Data collection systems and methods with alternate routing of input channels
CN110274159B (zh) * 2018-09-18 2021-04-30 浙江大学 一种管网检测系统
CN112912805A (zh) * 2019-09-25 2021-06-04 罗斯蒙特公司 压电换能器状态监测
US11428599B2 (en) 2020-10-14 2022-08-30 Distran Ag Method and apparatus for testing tightness of an enclosure

Family Cites Families (192)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3096434A (en) 1961-11-28 1963-07-02 Daniel Orifice Fitting Company Multiple integration flow computer
US3404264A (en) 1965-07-19 1968-10-01 American Meter Co Telemetering system for determining rate of flow
US3468164A (en) 1966-08-26 1969-09-23 Westinghouse Electric Corp Open thermocouple detection apparatus
GB1224904A (en) 1968-08-09 1971-03-10 John Stewart Simpson Stewart Improvements in and relating to electromedical apparatus
US3590370A (en) 1969-04-09 1971-06-29 Leeds & Northrup Co Method and apparatus for detecting the open-circuit condition of a thermocouple by sending a pulse through the thermocouple and a reactive element in series
US3701280A (en) 1970-03-18 1972-10-31 Daniel Ind Inc Method and apparatus for determining the supercompressibility factor of natural gas
US4083031A (en) * 1970-07-23 1978-04-04 The United States Of America As Represented By The Secretary Of The Navy Acoustic presence detection method and apparatus
US3691842A (en) 1970-09-08 1972-09-19 Beckman Instruments Inc Differential pressure transducer
US3688190A (en) 1970-09-25 1972-08-29 Beckman Instruments Inc Differential capacitance circuitry for differential pressure measuring instruments
US3849637A (en) 1973-05-22 1974-11-19 Combustion Eng Reactor megawatt demand setter
US3855858A (en) 1973-08-01 1974-12-24 V Cushing Self synchronous noise rejection circuit for fluid velocity meter
USRE29383E (en) 1974-01-10 1977-09-06 Process Systems, Inc. Digital fluid flow rate measurement or control system
US3948098A (en) * 1974-04-24 1976-04-06 The Foxboro Company Vortex flow meter transmitter including piezo-electric sensor
US3952759A (en) 1974-08-14 1976-04-27 M & J Valve Company Liquid line break control system and method
US3973184A (en) 1975-01-27 1976-08-03 Leeds & Northrup Company Thermocouple circuit detector for simultaneous analog trend recording and analog to digital conversion
US3964296A (en) 1975-06-03 1976-06-22 Terrance Matzuk Integrated ultrasonic scanning apparatus
US4058975A (en) 1975-12-08 1977-11-22 General Electric Company Gas turbine temperature sensor validation apparatus and method
US4099413A (en) 1976-06-25 1978-07-11 Yokogawa Electric Works, Ltd. Thermal noise thermometer
US4102199A (en) 1976-08-26 1978-07-25 Megasystems, Inc. RTD measurement system
US4122719A (en) 1977-07-08 1978-10-31 Environmental Systems Corporation System for accurate measurement of temperature
JPS54111050A (en) 1978-02-21 1979-08-31 Toyota Motor Corp Automatic speed changer
US4255964A (en) * 1978-11-30 1981-03-17 The Garrett Corporation Fluid monitor
US4250490A (en) * 1979-01-19 1981-02-10 Rosemount Inc. Two wire transmitter for converting a varying signal from a remote reactance sensor to a DC current signal
US4249164A (en) 1979-05-14 1981-02-03 Tivy Vincent V Flow meter
US4355536A (en) 1979-10-02 1982-10-26 Westinghouse Electric Corp. Sludge measuring apparatus and ultrasonic probe assembly therefor
US4279013A (en) 1979-10-31 1981-07-14 The Valeron Corporation Machine process controller
GB2067756B (en) * 1980-01-15 1983-11-16 Marconi Co Ltd Liquid level measurement
US4337516A (en) 1980-06-26 1982-06-29 United Technologies Corporation Sensor fault detection by activity monitoring
FR2486654A1 (fr) * 1980-07-08 1982-01-15 Cgr Dispositif d'activation d'un appareil de mesure d'emission acoustique par detection du bruit de fond
US4393711A (en) 1980-11-13 1983-07-19 Electric Power Research Institute, Inc. Apparatus and method for ultrasonic detection of flaws in power plant piping systems
US4417312A (en) 1981-06-08 1983-11-22 Worcester Controls Corporation Electronic controller for valve actuators
US4459858A (en) 1981-09-18 1984-07-17 Marsh-Mcbirney, Inc. Flow meter having an electromagnetic sensor probe
US4399824A (en) 1981-10-05 1983-08-23 Air-Shields, Inc. Apparatus for detecting probe dislodgement
US4448062A (en) 1981-10-22 1984-05-15 Conoco Inc. Method and apparatus for erosion detection and location in hydrocarbon production systems and the like
US4463612A (en) 1981-12-10 1984-08-07 The Babcock & Wilcox Company Electronic circuit using digital techniques for vortex shedding flowmeter signal processing
US4536753A (en) 1982-08-02 1985-08-20 Del Norte Technology, Inc. Self monitoring intruder detecting system of noise-cancelling vibration detectors
US4571689A (en) * 1982-10-20 1986-02-18 The United States Of America As Represented By The Secretary Of The Air Force Multiple thermocouple testing device
US4668473A (en) 1983-04-25 1987-05-26 The Babcock & Wilcox Company Control system for ethylene polymerization reactor
US4530234A (en) 1983-06-30 1985-07-23 Mobil Oil Corporation Method and system for measuring properties of fluids
JPH0619666B2 (ja) * 1983-06-30 1994-03-16 富士通株式会社 故障診断処理方式
US4540468A (en) 1983-09-26 1985-09-10 Board Of Trustees Of The University Of Maine Method for determining the degree of completion and pulp yield
US4707796A (en) 1983-10-19 1987-11-17 Calabro Salvatore R Reliability and maintainability indicator
US4686638A (en) 1983-11-04 1987-08-11 Kabushiki Kaisha Kosumo Keiki Leakage inspection method with object type compensation
EP0158192B1 (de) * 1984-03-31 1991-06-05 B a r m a g AG Verfahren zur zentralen Erfassung von Messwerten einer Vielzahl von Messstellen
US4641529A (en) * 1984-04-12 1987-02-10 Magnaflux Pipeline Services, Inc. Pipeline inspection device using ultrasonic apparatus for corrosion pit detection
US4517468A (en) 1984-04-30 1985-05-14 Westinghouse Electric Corp. Diagnostic system and method
US4649515A (en) * 1984-04-30 1987-03-10 Westinghouse Electric Corp. Methods and apparatus for system fault diagnosis and control
JPH071168B2 (ja) * 1984-07-20 1995-01-11 日本電信電話株式会社 反射音波を利用した管内状況調査方法
US4642782A (en) * 1984-07-31 1987-02-10 Westinghouse Electric Corp. Rule based diagnostic system with dynamic alteration capability
US4644479A (en) * 1984-07-31 1987-02-17 Westinghouse Electric Corp. Diagnostic apparatus
US4630265A (en) 1984-09-26 1986-12-16 General Electric Company Method and apparatus for selecting for use between data buses in a redundant bus communication system
JPH0734162B2 (ja) 1985-02-06 1995-04-12 株式会社日立製作所 類推制御方法
US4758308A (en) 1985-03-05 1988-07-19 Carr Wayne F System for monitoring contaminants with a detector in a paper pulp stream
US5179540A (en) * 1985-11-08 1993-01-12 Harris Corporation Programmable chip enable logic function
US4807151A (en) * 1986-04-11 1989-02-21 Purdue Research Foundation Electrical technique for correcting bridge type mass air flow rate sensor errors resulting from ambient temperature variations
GB8611360D0 (en) 1986-05-09 1986-06-18 Eaton Williams Raymond H Air condition monitor unit
US4696191A (en) * 1986-06-24 1987-09-29 The United States Of America As Represented By The United States Department Of Energy Apparatus and method for void/particulate detection
US4736367A (en) * 1986-12-22 1988-04-05 Chrysler Motors Corporation Smart control and sensor devices single wire bus multiplex system
US5005142A (en) * 1987-01-30 1991-04-02 Westinghouse Electric Corp. Smart sensor system for diagnostic monitoring
US4736763A (en) * 1987-02-26 1988-04-12 Britton George L Automatic device for the detection and shutoff of unwanted liquid flow in pipes
EP0308455B1 (de) * 1987-04-02 1993-01-27 Eftag Entstaubungs- Und Fördertechnik Ag Schaltungsanordnung zur auswertung der von einem halbleitergassensor erzeugten signale
US4833922A (en) 1987-06-01 1989-05-30 Rosemount Inc. Modular transmitter
US5122794A (en) 1987-08-11 1992-06-16 Rosemount Inc. Dual master implied token communication system
US4988990A (en) * 1989-05-09 1991-01-29 Rosemount Inc. Dual master implied token communication system
US4873655A (en) 1987-08-21 1989-10-10 Board Of Regents, The University Of Texas System Sensor conditioning method and apparatus
US4907167A (en) * 1987-09-30 1990-03-06 E. I. Du Pont De Nemours And Company Process control system with action logging
US4831564A (en) 1987-10-22 1989-05-16 Suga Test Instruments Co., Ltd. Apparatus for estimating and displaying remainder of lifetime of xenon lamps
US4818994A (en) * 1987-10-22 1989-04-04 Rosemount Inc. Transmitter with internal serial bus
US5488697A (en) * 1988-01-12 1996-01-30 Honeywell Inc. Problem state monitoring system
US5193143A (en) * 1988-01-12 1993-03-09 Honeywell Inc. Problem state monitoring
US4841286A (en) 1988-02-08 1989-06-20 Honeywell Inc. Apparatus and method for detection of an open thermocouple in a process control network
US4924418A (en) 1988-02-10 1990-05-08 Dickey-John Corporation Universal monitor
JPH0774961B2 (ja) 1988-04-07 1995-08-09 株式会社日立製作所 オートチユーニングpid調節計
US5014543A (en) 1988-07-14 1991-05-14 Fe Petro Inc Leak detector
US4926364A (en) 1988-07-25 1990-05-15 Westinghouse Electric Corp. Method and apparatus for determining weighted average of process variable
US4964125A (en) 1988-08-19 1990-10-16 Hughes Aircraft Company Method and apparatus for diagnosing faults
US5197328A (en) * 1988-08-25 1993-03-30 Fisher Controls International, Inc. Diagnostic apparatus and method for fluid control valves
US5099436A (en) * 1988-11-03 1992-03-24 Allied-Signal Inc. Methods and apparatus for performing system fault diagnosis
US5067099A (en) 1988-11-03 1991-11-19 Allied-Signal Inc. Methods and apparatus for monitoring system performance
EP0369489A3 (en) 1988-11-18 1991-11-27 Omron Corporation Sensor controller system
US5025344A (en) 1988-11-30 1991-06-18 Carnegie Mellon University Built-in current testing of integrated circuits
JP2714091B2 (ja) * 1989-01-09 1998-02-16 株式会社日立製作所 フィールド計器
NL8900050A (nl) 1989-01-10 1990-08-01 Philips Nv Inrichting voor het meten van een ruststroom van een geintegreerde monolitische digitale schakeling, geintegreerde monolitische digitale schakeling voorzien van een dergelijke inrichting en testapparaat voorzien van een dergelijke inrichting.
US5098197A (en) * 1989-01-30 1992-03-24 The United States Of America As Represented By The United States Department Of Energy Optical Johnson noise thermometry
US5089979A (en) * 1989-02-08 1992-02-18 Basic Measuring Instruments Apparatus for digital calibration of detachable transducers
US5081598A (en) * 1989-02-21 1992-01-14 Westinghouse Electric Corp. Method for associating text in automatic diagnostic system to produce recommended actions automatically
US4939753A (en) 1989-02-24 1990-07-03 Rosemount Inc. Time synchronization of control networks
US5089984A (en) * 1989-05-15 1992-02-18 Allen-Bradley Company, Inc. Adaptive alarm controller changes multiple inputs to industrial controller in order for state word to conform with stored state word
US4934196A (en) 1989-06-02 1990-06-19 Micro Motion, Inc. Coriolis mass flow rate meter having a substantially increased noise immunity
US5293585A (en) * 1989-08-31 1994-03-08 Kabushiki Kaisha Toshiba Industrial expert system
JP2656637B2 (ja) * 1989-11-22 1997-09-24 株式会社日立製作所 プロセス制御システム及び発電プラントプロセス制御システム
US5019760A (en) 1989-12-07 1991-05-28 Electric Power Research Institute Thermal life indicator
US5111531A (en) 1990-01-08 1992-05-05 Automation Technology, Inc. Process control using neural network
US5134574A (en) 1990-02-27 1992-07-28 The Foxboro Company Performance control apparatus and method in a processing plant
US5122976A (en) 1990-03-12 1992-06-16 Westinghouse Electric Corp. Method and apparatus for remotely controlling sensor processing algorithms to expert sensor diagnoses
US5053815A (en) 1990-04-09 1991-10-01 Eastman Kodak Company Reproduction apparatus having real time statistical process control
US5047990A (en) * 1990-06-01 1991-09-10 The United States Of America As Represented By The Secretary Of The Navy Underwater acoustic data acquisition system
US5150289A (en) 1990-07-30 1992-09-22 The Foxboro Company Method and apparatus for process control
US5282261A (en) * 1990-08-03 1994-01-25 E. I. Du Pont De Nemours And Co., Inc. Neural network process measurement and control
US5167009A (en) 1990-08-03 1992-11-24 E. I. Du Pont De Nemours & Co. (Inc.) On-line process control neural network using data pointers
US5212765A (en) * 1990-08-03 1993-05-18 E. I. Du Pont De Nemours & Co., Inc. On-line training neural network system for process control
US5121467A (en) 1990-08-03 1992-06-09 E.I. Du Pont De Nemours & Co., Inc. Neural network/expert system process control system and method
US5197114A (en) * 1990-08-03 1993-03-23 E. I. Du Pont De Nemours & Co., Inc. Computer neural network regulatory process control system and method
US5142612A (en) 1990-08-03 1992-08-25 E. I. Du Pont De Nemours & Co. (Inc.) Computer neural network supervisory process control system and method
US5175678A (en) 1990-08-15 1992-12-29 Elsag International B.V. Method and procedure for neural control of dynamic processes
US5130936A (en) 1990-09-14 1992-07-14 Arinc Research Corporation Method and apparatus for diagnostic testing including a neural network for determining testing sufficiency
US5094109A (en) 1990-12-06 1992-03-10 Rosemount Inc. Pressure transmitter with stress isolation depression
DE4040190C2 (de) * 1990-12-15 1994-08-04 Kernforschungsz Karlsruhe Verfahren zur Laufzeitmessung von Ultraschall bei der Impuls-Reflexionsmethode
JP3128832B2 (ja) * 1991-01-23 2001-01-29 株式会社日立製作所 プラント診断装置及びプラント診断方法
US5214582C1 (en) 1991-01-30 2001-06-26 Edge Diagnostic Systems Interactive diagnostic system for an automobile vehicle and method
US5143452A (en) 1991-02-04 1992-09-01 Rockwell International Corporation System for interfacing a single sensor unit with multiple data processing modules
AU660661B2 (en) * 1991-02-05 1995-07-06 Storage Technology Corporation Knowledge based machine initiated maintenance system
JP2636527B2 (ja) 1991-03-04 1997-07-30 三菱電機株式会社 電気機器収納装置の絶縁劣化防止及び絶縁劣化予測診断装置
US5137370A (en) 1991-03-25 1992-08-11 Delta M Corporation Thermoresistive sensor system
JP3203560B2 (ja) * 1991-12-13 2001-08-27 ハネウエル・インコーポレーテッド 圧電抵抗シリコン圧力センサ設計
US5282131A (en) * 1992-01-21 1994-01-25 Brown And Root Industrial Services, Inc. Control system for controlling a pulp washing system using a neural network controller
JP2783059B2 (ja) * 1992-04-23 1998-08-06 株式会社日立製作所 プロセス状態検出装置、及び半導体センサおよびその状態表示装置
FR2692037B1 (fr) * 1992-06-03 1997-08-08 Thomson Csf Procede de diagnostic d'un processus evolutif.
GB2267783B (en) * 1992-06-09 1996-08-28 British Aerospace Beam forming
CA2097558C (en) * 1992-06-16 2001-08-21 William B. Kilgore Directly connected display of process control system in an open systems windows environment
US5384699A (en) * 1992-08-24 1995-01-24 Associated Universities, Inc. Preventive maintenance system for the photomultiplier detector blocks of pet scanners
US5388465A (en) * 1992-11-17 1995-02-14 Yamatake-Honeywell Co., Ltd. Electromagnetic flowmeter
US5486996A (en) * 1993-01-22 1996-01-23 Honeywell Inc. Parameterized neurocontrollers
US5392293A (en) * 1993-02-26 1995-02-21 At&T Corp. Built-in current sensor for IDDQ testing
US5394341A (en) * 1993-03-25 1995-02-28 Ford Motor Company Apparatus for detecting the failure of a sensor
US5386373A (en) * 1993-08-05 1995-01-31 Pavilion Technologies, Inc. Virtual continuous emission monitoring system with sensor validation
US5404064A (en) * 1993-09-02 1995-04-04 The United States Of America As Represented By The Secretary Of The Navy Low-frequency electrostrictive ceramic plate voltage sensor
AU7562394A (en) * 1993-09-07 1995-03-27 Rosemount Inc. Multivariable transmitter
US5481200A (en) * 1993-09-15 1996-01-02 Rosemont Inc. Field transmitter built-in test equipment
US5489831A (en) * 1993-09-16 1996-02-06 Honeywell Inc. Pulse width modulating motor controller
US5481199A (en) * 1993-09-24 1996-01-02 Anderson; Karl F. System for improving measurement accuracy of transducer by measuring transducer temperature and resistance change using thermoelectric voltages
US5408406A (en) * 1993-10-07 1995-04-18 Honeywell Inc. Neural net based disturbance predictor for model predictive control
JP3321279B2 (ja) * 1994-01-31 2002-09-03 株式会社日立製作所 差圧式水位計測装置
FR2720498B1 (fr) * 1994-05-27 1996-08-09 Schlumberger Services Petrol Débitmètre multiphasique.
US5483387A (en) * 1994-07-22 1996-01-09 Honeywell, Inc. High pass optical filter
US5608650A (en) * 1994-08-19 1997-03-04 Spectrel Partners, L.L.C. Systems and methods for testing pump flow rates
US5623605A (en) * 1994-08-29 1997-04-22 Lucent Technologies Inc. Methods and systems for interprocess communication and inter-network data transfer
US5669713A (en) * 1994-09-27 1997-09-23 Rosemount Inc. Calibration of process control temperature transmitter
DE59407059D1 (de) * 1994-10-25 1998-11-12 Rieter Ingolstadt Spinnerei Backplane-Steuerung für Spinnereimaschine
JP3129121B2 (ja) * 1994-11-10 2001-01-29 横河電機株式会社 管路閉塞検出装置
US5600148A (en) * 1994-12-30 1997-02-04 Honeywell Inc. Low power infrared scene projector array and method of manufacture
US5708585A (en) * 1995-03-20 1998-01-13 General Motors Corporation Combustible gas measurement
US5741074A (en) * 1995-06-06 1998-04-21 Thermo Electrioc Corporation Linear integrated sensing transmitter sensor
US5742845A (en) * 1995-06-22 1998-04-21 Datascape, Inc. System for extending present open network communication protocols to communicate with non-standard I/O devices directly coupled to an open network
JPH0954007A (ja) * 1995-08-17 1997-02-25 Yokogawa Electric Corp ダイアフラムシール付き差圧測定装置
US5736649A (en) * 1995-08-23 1998-04-07 Tokico Ltd. Vortex flowmeter
US5705978A (en) * 1995-09-29 1998-01-06 Rosemount Inc. Process control transmitter
JP3263296B2 (ja) * 1995-10-26 2002-03-04 株式会社東芝 電磁流量計
DK0770858T3 (da) * 1995-10-26 2000-05-08 Flowtec Ag Coriolis-massegennemstrømningsdetektor med et enkelt målerør
JP3212501B2 (ja) * 1995-12-22 2001-09-25 三菱重工業株式会社 配管内詰まり検出方法および装置
US6014902A (en) * 1995-12-28 2000-01-18 The Foxboro Company Magnetic flowmeter with diagnostics
US5700090A (en) * 1996-01-03 1997-12-23 Rosemount Inc. Temperature sensor transmitter with sensor sheath lead
US8290721B2 (en) * 1996-03-28 2012-10-16 Rosemount Inc. Flow measurement diagnostics
US6539267B1 (en) * 1996-03-28 2003-03-25 Rosemount Inc. Device in a process system for determining statistical parameter
US6017143A (en) * 1996-03-28 2000-01-25 Rosemount Inc. Device in a process system for detecting events
US6654697B1 (en) * 1996-03-28 2003-11-25 Rosemount Inc. Flow measurement with diagnostics
US7254518B2 (en) * 1996-03-28 2007-08-07 Rosemount Inc. Pressure transmitter with diagnostics
US5909368A (en) * 1996-04-12 1999-06-01 Fisher-Rosemount Systems, Inc. Process control system using a process control strategy distributed among multiple control elements
US5710370A (en) * 1996-05-17 1998-01-20 Dieterich Technology Holding Corp. Method for calibrating a differential pressure fluid flow measuring system
US5708211A (en) * 1996-05-28 1998-01-13 Ohio University Flow regime determination and flow measurement in multiphase flow pipelines
US5680109A (en) * 1996-06-21 1997-10-21 The Foxboro Company Impulse line blockage detector systems and methods
US5713668A (en) * 1996-08-23 1998-02-03 Accutru International Corporation Self-verifying temperature sensor
US6047222A (en) * 1996-10-04 2000-04-04 Fisher Controls International, Inc. Process control network with redundant field devices and buses
CN1178113C (zh) * 1996-10-04 2004-12-01 费希尔控制产品国际有限公司 用于过程控制网络的网络存取接口
US5859964A (en) * 1996-10-25 1999-01-12 Advanced Micro Devices, Inc. System and method for performing real time data acquisition, process modeling and fault detection of wafer fabrication processes
US6601005B1 (en) * 1996-11-07 2003-07-29 Rosemount Inc. Process device diagnostics using process variable sensor signal
US6519546B1 (en) * 1996-11-07 2003-02-11 Rosemount Inc. Auto correcting temperature transmitter with resistance based sensor
US5719378A (en) * 1996-11-19 1998-02-17 Illinois Tool Works, Inc. Self-calibrating temperature controller
US5869772A (en) * 1996-11-27 1999-02-09 Storer; William James A. Vortex flowmeter including cantilevered vortex and vibration sensing beams
WO1998029785A1 (en) * 1996-12-31 1998-07-09 Rosemount Inc. Device in a process system for validating a control signal from a field device
JPH10198657A (ja) * 1997-01-08 1998-07-31 Toshiba Corp 信号処理装置
JPH10261185A (ja) * 1997-03-19 1998-09-29 Hitachi Ltd 入出力混在形信号変換器
US5874676A (en) * 1997-05-12 1999-02-23 Maki, Jr.; Voldi E. Method and apparatus for acoustically investigating a casing with a swept frequency pulse
US6014612A (en) * 1997-10-02 2000-01-11 Fisher Controls International, Inc. Remote diagnostics in a process control network having distributed control functions
US6199018B1 (en) * 1998-03-04 2001-03-06 Emerson Electric Co. Distributed diagnostic system
US6016523A (en) * 1998-03-09 2000-01-18 Schneider Automation, Inc. I/O modular terminal having a plurality of data registers and an identification register and providing for interfacing between field devices and a field master
US6360277B1 (en) * 1998-07-22 2002-03-19 Crydom Corporation Addressable intelligent relay
US6046642A (en) * 1998-09-08 2000-04-04 Motorola, Inc. Amplifier with active bias compensation and method for adjusting quiescent current
US6298308B1 (en) * 1999-05-20 2001-10-02 Reid Asset Management Company Diagnostic network with automated proactive local experts
US6356191B1 (en) * 1999-06-17 2002-03-12 Rosemount Inc. Error compensation for a process fluid temperature transmitter
US6505517B1 (en) * 1999-07-23 2003-01-14 Rosemount Inc. High accuracy signal processing for magnetic flowmeter
DE19936858C1 (de) * 1999-08-05 2001-05-23 Siemens Ag Aktoranordnung, insbesondere zur Ansteuerung eines Einspritzventils einer Brennkraftmaschine
US6701274B1 (en) * 1999-08-27 2004-03-02 Rosemount Inc. Prediction of error magnitude in a pressure transmitter
US6567006B1 (en) * 1999-11-19 2003-05-20 Flow Metrix, Inc. Monitoring vibrations in a pipeline network
US6378364B1 (en) * 2000-01-13 2002-04-30 Halliburton Energy Services, Inc. Downhole densitometer
DE10033586A1 (de) * 2000-07-11 2002-01-24 Bosch Gmbh Robert Verfahren und Vorrichtung zur Fehlererkennung bzw. Diagnose
US6751560B1 (en) * 2000-08-01 2004-06-15 The Charles Stark Draper Laboratory, Inc. Non-invasive pipeline inspection system
JP2002316247A (ja) * 2001-04-19 2002-10-29 Daido Steel Co Ltd スラグ流出検知方法および検知装置
JP2003057098A (ja) * 2001-08-17 2003-02-26 Yokogawa Electric Corp フィールド計器の保全機構
US6772036B2 (en) * 2001-08-30 2004-08-03 Fisher-Rosemount Systems, Inc. Control system using process model
GB0128704D0 (en) * 2001-11-30 2002-01-23 Univ Manchester Remote pipeline inspection
US7040179B2 (en) * 2002-12-06 2006-05-09 Endress+ Hauser Flowtec Ag Process meter

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
БИРГЕР Г.И. и др. Ультразвуковые расходомеры. - М.: Металлургия, 1964, с.с.343-344. *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10155262B2 (en) 2014-02-07 2018-12-18 Primetals Technologies Austria GmbH Monitoring of a line system
RU2682268C2 (ru) * 2014-02-07 2019-03-18 Прайметалз Текнолоджиз Аустриа ГмбХ Способ и устройство для контроля нарушений протекания жидкой среды в трубопроводной системе
RU2682268C9 (ru) * 2014-02-07 2019-04-04 Прайметалз Текнолоджиз Аустриа ГмбХ Способ и устройство для контроля нарушений протекания жидкой среды в трубопроводной системе

Also Published As

Publication number Publication date
EP1697698B1 (en) 2013-07-24
US7523667B2 (en) 2009-04-28
CN100504310C (zh) 2009-06-24
RU2006126655A (ru) 2008-01-27
CN1898535A (zh) 2007-01-17
WO2005066590A2 (en) 2005-07-21
WO2005066590A3 (en) 2005-10-06
JP2007516445A (ja) 2007-06-21
EP1697698A2 (en) 2006-09-06
US20050132808A1 (en) 2005-06-23
EP1697698B8 (en) 2013-08-28

Similar Documents

Publication Publication Date Title
RU2366898C2 (ru) Диагностика импульсной трубопроводной линии в технологическом процессе
US8290721B2 (en) Flow measurement diagnostics
US7290450B2 (en) Process diagnostics
JP4948707B2 (ja) 診断型流量測定
JP5318194B2 (ja) 圧電変換器を利用する工業プロセス機器
JP2017531180A (ja) 多変数導波レーダプローブ
CA2621313C (en) Pressure transmitter with acoustic pressure sensor
EP1853983A1 (en) Process connection for process diagnostics
US4347747A (en) Single phase flow measurement
CN111051827B (zh) 压差测量装置
JP4273519B2 (ja) 超音波流量計

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20181211