RU2360200C2 - Способ очистки и удаления содержащих магнетит осадков из напорного резервуара электростанции - Google Patents

Способ очистки и удаления содержащих магнетит осадков из напорного резервуара электростанции Download PDF

Info

Publication number
RU2360200C2
RU2360200C2 RU2007121677/02A RU2007121677A RU2360200C2 RU 2360200 C2 RU2360200 C2 RU 2360200C2 RU 2007121677/02 A RU2007121677/02 A RU 2007121677/02A RU 2007121677 A RU2007121677 A RU 2007121677A RU 2360200 C2 RU2360200 C2 RU 2360200C2
Authority
RU
Russia
Prior art keywords
solution
cleaning
carried out
ethylenediaminetetraacetic acid
purification
Prior art date
Application number
RU2007121677/02A
Other languages
English (en)
Other versions
RU2007121677A (ru
Inventor
Конрад БИТТЕР (DE)
Конрад Биттер
Йоханн ХЛУЧИ (DE)
Йоханн ХЛУЧИ
Original Assignee
Арева Нп Гмбх
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Арева Нп Гмбх filed Critical Арева Нп Гмбх
Publication of RU2007121677A publication Critical patent/RU2007121677A/ru
Application granted granted Critical
Publication of RU2360200C2 publication Critical patent/RU2360200C2/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/02Cleaning or pickling metallic material with solutions or molten salts with acid solutions
    • C23G1/04Cleaning or pickling metallic material with solutions or molten salts with acid solutions using inhibitors
    • C23G1/06Cleaning or pickling metallic material with solutions or molten salts with acid solutions using inhibitors organic inhibitors
    • C23G1/061Cleaning or pickling metallic material with solutions or molten salts with acid solutions using inhibitors organic inhibitors nitrogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F5/00Softening water; Preventing scale; Adding scale preventatives or scale removers to water, e.g. adding sequestering agents
    • C02F5/08Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents
    • C02F5/10Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents using organic substances
    • C02F5/12Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents using organic substances containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28GCLEANING OF INTERNAL OR EXTERNAL SURFACES OF HEAT-EXCHANGE OR HEAT-TRANSFER CONDUITS, e.g. WATER TUBES OR BOILERS
    • F28G9/00Cleaning by flushing or washing, e.g. with chemical solvents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/68Treatment of water, waste water, or sewage by addition of specified substances, e.g. trace elements, for ameliorating potable water
    • C02F1/683Treatment of water, waste water, or sewage by addition of specified substances, e.g. trace elements, for ameliorating potable water by addition of complex-forming compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/70Treatment of water, waste water, or sewage by reduction
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/02Non-contaminated water, e.g. for industrial water supply
    • C02F2103/023Water in cooling circuits
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • General Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Metallurgy (AREA)
  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)
  • Cleaning In General (AREA)
  • Detergent Compositions (AREA)
  • Cleaning By Liquid Or Steam (AREA)
  • Treatment Of Sludge (AREA)
  • Removal Of Specific Substances (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Изобретение относится к очистке и удалению содержащих магнетит отложений из напорного резервуара электростанции. Способ очистки и удаления содержащих магнетит отложений из напорного резервуара электростанции включает подачу в напорный резервуар подогретого до повышенной температуры очистки водного раствора для очистки для восстановления ионов железа (III) в ионы железа (II), при этом раствор для очистки содержит полупродукт, выделяющий восстановитель в условиях проведения очистки, и его проводят в два этапа, на первом этапе восстановления подают раствор I для очистки, содержащий полупродукт, а на втором этапе комплексообразования, непосредственно следующим за первым этапом, подают второй раствор II для очистки, содержащий комплексообразователь, образующий с ионами двухвалентного железа (II) растворимое комплексное соединение, и триэтиламин. Способ позволяет безопасно в токсикологическом отношении очистить и удалить содержащие магнетит отложения из напорного резервуара электростанции. 18 з.п. ф-лы, 1 табл.

Description

Область техники, к которой относится изобретение
Изобретение относится к способу очистки и удаления содержащих магнетит отложений из напорного резервуара электростанции.
Уровень техники
Такой способ известен, например, из ЕР 273182 А1. Под напорными резервуарами здесь понимаются, например, паровые котлы на обычных электростанциях или обогреваемый контур парогенераторов на АЭС. В напорных резервуарах из технической марки стали магнетит осаждается в виде прочного слоя на внутренней поверхности резервуара, на поверхности нагревательных труб и, главным образом, в виде отдельных шламовых скоплений на днище резервуара или на спокойных от течения участках. Магнетит представляет собой смесь из оксида железа (II) и оксида железа (III). Для удаления отложений известно применение комплексообразователей, таких, как этилендиаминтетрауксусная кислота, в условиях повышенной температуры. Для перевода железа (III) в более легко комплексуемое железо (II) применяется, как правило, гидрацин в качестве восстановителя. Однако обращение с гидрацином усложняется в связи с тем, что это вещество в токсикологическом отношении не является безопасным. Так, например, для данного вещества были подтверждены его канцерогенные свойства. Следовательно при обращении с гидрацином требуются повышенные расходы на мероприятия по предупреждению попадания гидрацина в окружающую среду. Перед каждым случаем его применения необходимо выяснять юридические аспекты «несчастного случая, вызванного гидрацином» с повреждениями, причиненными лицам, с учетом более поздних последствий, которые могут проявиться в связи с заражением и попаданием в организм.
Поэтому задачей изобретения является создание способа очистки указанного выше типа, с помощью которого устраняются описанные недостатки.
Раскрытие сущности изобретения
Указанная задача решается в способе очистки и удаления отложений магнетита за счет того, что в напорный резервуар подают водный раствор для очистки, подогретый до повышенной температуры с содержанием полупродукта, который в условиях проведения очистки, таких, например, как ранее указанная повышенная температура и/или слабо кислая среда с соответствующими значениями рН, выделяет восстановитель. Таким образом становится возможным применение полупродукта, который является безопасным в токсикологическом отношении и, по меньшей мере, менее вредным, чем гидрацин, в результате чего во время поставки и при подпитке напорного резервуара раствором для очистки снижается опасность для здоровья персонала и загрязнения окружающей среды.
Кроме того, предусматривается осуществлять способ согласно изобретению в два этапа, причем на первом этапе, а именно на этапе восстановления, проводится обработка с применением первого раствора I для очистки, содержащего полупродукт, и на втором этапе, непосредственно следующим за первым, а именно этапе комплексации, в напорный резервуар подается второй раствор II для очистки, содержащий комплексообразователь, образующий с помощью ионов двухвалентных железа растворимое комплексное соединение. В основе двухэтапного способа лежат следующие соображения: восстановление магнетита занимает существенно больше времени, чем комплексация железа (II), что в числе прочего объясняется тем, что комплексация сопровождается разрушением решетки магнетита. Если бы на этапе восстановления комплексообразователи присутствовали в большей концентрации, то это могло бы, в частности, при работе в кислом растворе существенно ускорить окислительную коррозию основного металла, причем переходящее в раствор железо (II) в результате комплексообразования было бы выведено из окислительно-восстановительного равновесия. Согласно предложенному способу содержащий восстановитель раствор может воздействовать на отложения магнетита почти вплоть до его полного восстановления, причем без значительного износа основного металла. Если сразу после этапа восстановления раствор II для очистки, содержащий комплексообразователь, подается в напорный резервуар, то, во-первых, коррозия основного металла снижается в результате того, что в комплексообразователе содержится очень большое количество железа II в качестве реактанта, в результате чего растворение основного металла в качестве конкурирующей реакции задерживается. Во-вторых, комплексация железа (II) протекает при высокой скорости реакции и соответственно в течение короткого времени, вследствие чего в существенной степени предупреждается окислительная коррозия основного металла, происходящая при низкой скорости реакции.
Предпочтительно применять такой полупродукт, который в качестве восстановителя выделял бы альдегид, в частности формальдегид. Такое вещество или альдегиды в целом являются пригодными для восстановления магнетита восстановителями, которые в ходе восстановления магнетита окисляются в карбоновые кислоты. Эти кислоты, как будет сказано ниже, могут выводиться во время очистки из напорного резервуара или обезвреживаться иным способом, и таким образом предупреждается коррозионное воздействие на основной металл.
Предпочтительно, чтобы этап восстановления проводился в растворе, являющемся от слабокислого до нейтрального, в частности, в диапазоне значений рН от 5 до,7, предпочтительно от 5,0 до 7,0, и предпочтительно в диапазоне от рН 4,95 до рН 7,04. Благодаря такой мере достигается положение, при котором линия равновесия по Пурбэ для окислительно-восстановительной системы Fe3O4/Fe-II устанавливается при рН 6,8 (при комнатной температуре). Соблюдение слабокислых до нейтральных или при необходимости слабощелочных условий гарантирует протекание восстановления магнетита с достаточной скоростью реакции. Также предпочтительно, чтобы в раствор для очистки был добавлен комплексообразователь в количестве, которое соответствует не более 10% от количества железа (II), образовавшегося при комплексации в результате восстановления. Это обстоятельство вызывает также смещение упомянутого выше окислительно-восстановительного равновесия в сторону железа, причем комплекс связывает между собой ионы двухвалентного железа и выводит их из равновесного состояния. Таким образом повышается растворимость решетки магнетита. В качестве комплексообразователя применяется преимущественно этилендиаминтетрауксусная кислота.
В способе очистки согласно изобретению очень эффективно применять в качестве полупродукта гексаметилентетрамин. Это вещество, известное также под названием уротропин, в токсикологическом отношении является существенно менее опасным, чем гидрацин, в частности, при комнатной температуре, при которой производится поставка раствора I для очистки на электростанцию. Гексаметилентетрамин в кислой среде и, в частности, при повышенной температуре очистки выделяет формальдегид. Правда, формальдегид в токсикологическом отношении не является не опасным веществом. Однако его выделение происходит внутри напорного резервуара, т.е. в замкнутой системе. Очень хорошие результаты были получены, в частности, в ходе применения комбинации веществ: гексаметилентетрамин/этилендиаминтетрауксусная кислота, в температурном диапазоне от 90 до 200°С, преимущественно от 140 до 200°С. Эффективны и более низкие температуры в диапазоне от около 90 до 120°С в том случае, когда для защиты основного металла применяются чувствительные к температуре ингибиторы коррозии, как, например, 1-октин-3-ол. Если же молярное соотношение между гексаметилентетрамином и этилендиаминтетрауксусной кислотой составляет от 3,5:1 до 2:1, то достигается быстрое растворение шлама, при этом коррозия основного металла снижается до ничтожно малой величины. Наилучшие результаты получают при использовании раствора I для очистки, содержащего 0,6-0,7 моля/л гексаметилентетрамина и 0,17-0,36 моля/л этилендиаминтетрауксусной кислоты. Также и на втором этапе, а именно на этапе комплексации, в качестве комплексообразователя применяется этилендиаминтетрауксусная кислота. Наряду с тем, что эта кислота является очень эффективным комплексообразователем, реализуемым в больших количествах по доступным ценам, достигается также и то преимущество, что этапы восстановления и комплексации проводятся с применением одного и того же комплексообразователя, в результате чего снижается количество применяемых в целом химикатов и, следовательно, опасность нежелательного взаимодействия между ними.
Этап комплексации проводится в растворе, являющемся от слабокислого до слабощелочного, так как в этом диапазоне значений рН достигается особо эффективная и, следовательно, быстрая комплексация. Предпочтительно, чтобы рН реакционного раствора составлял 6-10, в частности 6,5-9,3. В том случае, когда на этапе восстановления магнетит не был восстановлен полностью и поэтому при подаче раствора II для очистки в напорный резервуар в нем присутствует остаточный магнетит в большем или меньшем количестве, то растворение магнетита или разрушение его решетки ускоряют с помощью этилендиаминтетрауксусной кислоты. Правда, при этом ускоряется и коррозия основного металла. Однако ее размер удерживается в пределах за счет того, что реакция комплексации протекает существенно быстрее окислительно-восстановительной реакции по границе разделения фаз «металл/раствор». С другой стороны, отпадает необходимость в мероприятии, при котором значение рН снижают до слишком низкого показателя, ускоряющего коррозию основного металла. Эта мера состоит в том, что в раствор II для очистки добавляют триэтиламин. Его количество задают таким образом, чтобы диапазон значений рН был слабощелочным. На триэтиламин, являющийся как бы буферным веществом, осаждается муравьиная кислота, образовавшаяся из формальдегида во время восстановления железа (III), при этом образовавшееся вещество является летучим и испаряется при температуре, при которой проводится этап комплексации, в результате чего оно может выводиться из раствора. Аналогично реагирует триэтиламин с СО2 или угольной кислотой. Последняя образуется в том случае, когда формальдегид окисляется до предшественника диоксида углерода.
В результате добавки щелочереагирующего триэтиламина одновременно уменьшается количество средств подщелачивания, таких как аммиак или морфолин, что особенно выгодно при относительно дорогостоящем морфолине. Предпочтительно применять реакционный раствор II, который является насыщенным этилендиаминтетрауксусной кислотой при соответствующей температуре очистки и содержит не более 0,5 моля/л триэтиламина.
Пример выполнения изобретения
Для осуществления способа из напорного резервуара частично выпустили находящуюся в нем воду, в результате чего в нем освободилось место для реакционного раствора. Затем котельную воду нагрели до температуры очистки, например, до 140°С, что достигается, например, пропусканием пара. Для подачи реакционных растворов I и II целесообразно, чтобы и они были предварительно нагреты до этой температуры.
Реакционные растворы I и II, применяемые для проведения двухэтапного способа очистки, имели следующий состав:
Figure 00000001
Для растворения 1000 кг магнетита на этапе восстановления требуется 1010 л реакционного раствора, т.е. 0,713 молей гексаметилентетрамина и 0,356 молей этилендиаминтетрауксусной кислоты. На этапе комплексации требуются 9210 л раствора II для очистки, в котором содержатся 1,369 молей/л этилендиаминтетрауксусной кислоты и не более 0,469 моля/л триэтиламина. Этилендиаминтетрауксусная кислота растворима в воде только в виде своих солей. Поэтому обычно применяют, например, диаммоний-этилендиаминтетрауксусную кислоту или триаммоний-этилендиаминтетрауксусную кислоту или их смесь или триморфолин-этилендиаминтетрауксусную кислоту. Добавкой триэтиламина в количестве до 33% в раствор для очистки можно сэкономить до 33% подщелачивающих средств: NH3 или морфолин.
Продолжительность этапа восстановления зависит в первую очередь от количества преобразуемого магнетита и составляет от около 15 минут до нескольких часов. Для ускорения реакции преобразования магнетита время от времени производят сброс пара. В результате падения давления пара и интенсивного образования его пузырьков происходят активные турбулентные движения и завихрения шлама. Раствор I для очистки, поданный в напорный резервуар, является от слабокислого до нейтрального (рН около 5-7), что обусловлено, например, присутствием этилендиаминтетрауксусной кислоты, ведущей себя как кислота и частично насыщенной аммиаком или морфолином. Полупродукт гексаметилентетрамин разлагается при температуре очистки около 140°С на формальдегид и аммиак (реакция №1). Формальдегид восстанавливает железо (III) магнетита до железа (II) и сам окисляется до муравьиной кислоты (реакция №2). По меньшей мере часть образовавшейся муравьиной кислоты нейтрализуется аммиаком.
После восстановления значительной части, лучше, всего количества магнетита, что в зависимости от удаляемого количества магнетита и температуры очистки может длиться от около 20 минут до нескольких часов, раствор II для очистки, при необходимости, подогревают и подают в напорный резервуар, не выпуская из него находящийся в нем раствор I для очистки. В идеальном случае, т.е. при полном восстановлении магнетита, на этапе комплексации происходит под действием этилендиаминтетрауксусной кислоты только покомпонентное связывание железа (II) и перевод его в раствор. Муравьиная кислота, образовавшаяся на этапе восстановления или при восстановлении остаточного магнетита на этапе комплексации в результате окисления формальдегида, осаждается на триэтиленамин, при этом образуется летучее соединение, которое в условиях доминирующих температур переходит в газовую фазу и может отводиться из напорного резервуара выпариванием (реакция №3). Концентрация или количество триэтиламина задается таким образом, чтобы комплексация протекала при условиях от слабощелочных до нейтральных, т.е. при значениях рН от 8,5-7. Формальдегид, выделившийся из гексаметилентетрамина, также может быть окислен до двуокиси углерода (реакция №4). Двуокись углерода или образовавшаяся из него угольная кислота также осаждается на триэтиламин с образованием летучего соединения.
Реакция №1
C6H12N4+6Н2O→4NH2+6НСОН
Реакция №2
Fe3O4+НСОН→3FeO+НСООН
Реакция №3
2Н5)3N+НСООН→[(C2H5)3NH]+НСОО-
Реакция №4
2Fe3O4+НСОН→6FeO+CO22O.

Claims (19)

1. Способ очистки и удаления содержащих магнетит отложений из напорного резервуара электростанции, включающий подачу в напорный резервуар подогретого до повышенной температуры очистки водного раствора для очистки для восстановления ионов железа (III) в ионы железа (II), при этом раствор для очистки содержит полупродукт, выделяющий восстановитель в условиях проведения очистки, отличающийся тем, что его проводят в два этапа, на первом этапе восстановления подают раствор I для очистки, содержащий полупродукт, а на втором этапе комплексообразования, непосредственно следующем за первым этапом, подают второй раствор II для очистки, содержащий комплексообразователь, образующий с ионами двухвалентного железа (II) растворимое комплексное соединение, и триэтиламин.
2. Способ по п.1, отличающийся тем, что раствор II для очистки насыщен этилендиаминтетрауксусной кислотой и содержит не более 0,5 моль/л триэтиламина.
3. Способ по п.1, отличающийся тем, что в качестве восстановителя используют полупродукт, выделяющий альдегид.
4. Способ по п.3, отличающийся тем, что в качестве восстановителя используют полупродукт, выделяющий формальдегид.
5. Способ по п.1, отличающийся тем, что восстановление проводят в растворе, являющемся от слабокислого до слабощелочного.
6. Способ по п.5, отличающийся тем, что восстановление осуществляют при рН раствора от 5 до 7.
7. Способ по п.5, отличающийся тем, что восстановление осуществляют при рН раствора от около 5 до около 7.
8. Способ по п.1, отличающийся тем, что в раствор I для очистки добавляют комплексообразователь в количестве, не превышающем 10% от количества железа (II), образовавшегося на этапе восстановления.
9. Способ по п.8, отличающийся тем, что в качестве комплексообразователя применяют этилендиаминтетрауксусную кислоту.
10. Способ по п.1, отличающийся тем, что полупродуктом является гексаметилентетрамин.
11. Способ по п.1, отличающийся тем, что его проводят в диапазоне температур 90-200°С.
12. Способ по п.11, отличающийся тем, что его проводят в диапазоне температур 140-200°С.
13. Способ по п.12, отличающийся тем, что применяют раствор I для очистки, содержащий гексаметилентетрамин и этилендиаминтетрауксусную кислоту в молярном соотношении от 3,5:1 до 2:1.
14. Способ по п.13, отличающийся тем, что раствор I для очистки содержит 0,6-0,7 моль/л гексаметилентетрамина и 0,17-0,36 моль/л этилендиаминтетрауксусной кислоты.
15. Способ очистки по п.1, отличающийся тем, что используют раствор II для очистки, содержащий, по меньшей мере, этилендиаминтетрауксусную кислоту в качестве комплексообразователя.
16. Способ по п.15, отличающийся тем, что используют раствор II для очистки, содержащий этилендиаминтетрауксусную кислоту в качестве комплексообразователя.
17. Способ по п.1, отличающийся тем, что этап комплексообразования проводят в растворе, являющемся от слабокислого до слабощелочного.
18. Способ по п.17, отличающийся тем, что на этапе комплексообразования значение рН раствора составляет от 6 до 10.
19. Способ по п.18, отличающийся тем, что на этапе комплексообразования значение рН раствора составляет от 6,5 до 9,3.
RU2007121677/02A 2004-11-11 2005-10-25 Способ очистки и удаления содержащих магнетит осадков из напорного резервуара электростанции RU2360200C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004054471.9 2004-11-11
DE102004054471A DE102004054471B3 (de) 2004-11-11 2004-11-11 Reinigungsverfahren zur Entfernung von Magnetit enthaltenden Ablagerungen aus einem Druckbehälter eines Kraftwerks

Publications (2)

Publication Number Publication Date
RU2007121677A RU2007121677A (ru) 2008-12-20
RU2360200C2 true RU2360200C2 (ru) 2009-06-27

Family

ID=35643892

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2007121677/02A RU2360200C2 (ru) 2004-11-11 2005-10-25 Способ очистки и удаления содержащих магнетит осадков из напорного резервуара электростанции

Country Status (12)

Country Link
US (1) US20070267046A1 (ru)
EP (1) EP1819845B1 (ru)
JP (1) JP5162247B2 (ru)
KR (1) KR100937563B1 (ru)
CN (1) CN100545316C (ru)
AT (1) ATE525496T1 (ru)
CA (1) CA2586556C (ru)
DE (1) DE102004054471B3 (ru)
ES (1) ES2373962T3 (ru)
RU (1) RU2360200C2 (ru)
WO (1) WO2006053626A1 (ru)
ZA (1) ZA200703492B (ru)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007023247B3 (de) * 2007-03-07 2008-08-07 Areva Np Gmbh Verfahren zur Entfernung von Magnetit und Kupfer enthaltenden Ablagerungen aus Behältern von Industrie- und Kraftwerksanlagen
EP2356376B1 (en) * 2008-12-03 2019-08-28 Westinghouse Electric Company Llc Chemical cleaning method and system with steam injection

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1719168A (en) * 1927-01-11 1929-07-02 Vanderbilt Co R T Pickling of metals, etc.
US3072502A (en) * 1961-02-14 1963-01-08 Pfizer & Co C Process for removing copper-containing iron oxide scale from metal surfaces
US3297580A (en) * 1964-06-17 1967-01-10 Edgar C Pitzer Neutral metal cleaning compositions containing hydrazine and a polycarboxylamino acid
US3627687A (en) * 1968-02-09 1971-12-14 Dow Chemical Co Cleaning of ferrous metal surfaces
AT290839B (de) * 1969-04-03 1971-06-25 Sued West Chemie Gmbh Preßmasse aus härtbaren Kunstharzen mit einem die elektrische Leitfähigkeit hervorrufenden Gehalt an Metallpulvern
US4130435A (en) * 1975-09-18 1978-12-19 E. I. Du Pont De Nemours And Company Process for preparing a ball-point pen ink
DD135406A1 (de) * 1978-02-15 1979-05-02 Joerg Broers Verfahren zur verminderung der korrosiven wirkung von eisen-iii-ionen auf stahl in sauren beizloesungen
US4310435A (en) * 1979-12-06 1982-01-12 The Dow Chemical Co. Method and composition for removing sulfide-containing scale from metal surfaces
US4789406A (en) * 1986-08-20 1988-12-06 Betz Laboratories, Inc. Method and compositions for penetrating and removing accumulated corrosion products and deposits from metal surfaces
DE3771859D1 (de) * 1986-12-01 1991-09-05 Siemens Ag Verfahren zum reinigen eines behaelters.
US4820391A (en) * 1988-06-16 1989-04-11 The United States Of America As Represented By The United States Department Of Energy Exhaust gas clean up process
US5037483A (en) * 1990-01-30 1991-08-06 Nalco Chemical Company On-line iron clean-up
DE4114951A1 (de) * 1991-05-08 1992-11-12 Siemens Ag Verfahren zum aufloesen von eisenoxiden und loesungssubstanz dafuer
DE4117625C2 (de) * 1991-05-29 1997-09-04 Siemens Ag Reinigungsverfahren
DE4131766A1 (de) * 1991-09-24 1993-03-25 Siemens Ag Verfahren zur dekontamination des primaerkreises eines kernkraftwerkes
FR2708628B1 (fr) * 1993-07-29 1997-07-18 Framatome Sa Procédé de nettoyage chimique de pièces en matériau métallique.
US6896826B2 (en) * 1997-01-09 2005-05-24 Advanced Technology Materials, Inc. Aqueous cleaning composition containing copper-specific corrosion inhibitor for cleaning inorganic residues on semiconductor substrate
DE19857342A1 (de) * 1998-12-11 2000-02-17 Siemens Ag Verfahren zum Reinigen eines Behälters
DE10238730A1 (de) * 2002-08-23 2004-03-04 Framatome Anp Gmbh Verfahren zur Reinigung des Dampferzeugers eines Druckwasserreaktors

Also Published As

Publication number Publication date
EP1819845A1 (de) 2007-08-22
ZA200703492B (en) 2008-04-30
RU2007121677A (ru) 2008-12-20
CN101068952A (zh) 2007-11-07
ATE525496T1 (de) 2011-10-15
KR20070086028A (ko) 2007-08-27
CN100545316C (zh) 2009-09-30
CA2586556C (en) 2013-01-08
JP5162247B2 (ja) 2013-03-13
WO2006053626A1 (de) 2006-05-26
KR100937563B1 (ko) 2010-01-19
JP2008519678A (ja) 2008-06-12
EP1819845B1 (de) 2011-09-21
US20070267046A1 (en) 2007-11-22
DE102004054471B3 (de) 2006-04-27
ES2373962T3 (es) 2012-02-10
CA2586556A1 (en) 2006-05-26

Similar Documents

Publication Publication Date Title
EP0012478B1 (en) Method for removing sulfide-containing scale from metal surfaces
JPS6047910B2 (ja) 水性酸性金属キレ−ト化組成物およびその使用法
FI100727B (fi) Koostumus epäorgaanisten peroksidiliuosten stabiloimiseksi
US7931753B2 (en) Method for removing deposits containing magnetite and copper from containers in industrial and power plants
US3510351A (en) Method for etching and cleaning of objects and plants,particularly tube systems and boiler plants,consisting of iron or steel
WO2015162604A1 (en) Method and formulations for removing rust and scale from steel and for regenerating pickling liquor in hot-dip galvanization process
RU2360200C2 (ru) Способ очистки и удаления содержащих магнетит осадков из напорного резервуара электростанции
KR20010024960A (ko) 수처리약제 및 수처리방법
CA2362639C (en) Process for removing deposits from water-carrying systems and devices for water supply
JP4239006B2 (ja) 硝酸廃液の処理方法
JP6144399B1 (ja) 蒸気復水系の腐食抑制剤および腐食抑制方法
TWI280334B (en) Purifying method for the removal of depositions containing magnetit from a pressure-container of a power station
JP3896587B2 (ja) 水系プラントの溶存酸素除去方法
JPH08165587A (ja) 腐食抑制剤
JP3988175B2 (ja) ボイラ用腐食抑制剤及びそれを用いたボイラの腐食抑制方法
JP3025933B2 (ja) ボイラー水系の腐食防止剤
JP2018525535A (ja) 媒体と接触したステンレス鋼表面上のルージュ沈着物を除去するための水性洗浄液、その使用及びそれを調製するためのプロセス
RU2182193C1 (ru) Способ безотходной пассивации и консервации энергетического оборудования из перлитных сталей
US3428488A (en) Process for the surface treatment of plants containing water and/or steam
JPH10323561A (ja) 脱酸素剤
JP2013124411A (ja) 金属防食剤
JP2002275664A (ja) 高温水系または蒸気発生系の腐食抑制剤
CA2207406A1 (en) A process for cleaning a tank
BRPI0808568A2 (pt) Método para remoção de depósitos contendo magnetita e cobre de recipientes em instalações industriais e usinas elétricas

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20171026