RU2338589C2 - Твердый кислотный катализатор и способ его применения - Google Patents

Твердый кислотный катализатор и способ его применения Download PDF

Info

Publication number
RU2338589C2
RU2338589C2 RU2006140090/04A RU2006140090A RU2338589C2 RU 2338589 C2 RU2338589 C2 RU 2338589C2 RU 2006140090/04 A RU2006140090/04 A RU 2006140090/04A RU 2006140090 A RU2006140090 A RU 2006140090A RU 2338589 C2 RU2338589 C2 RU 2338589C2
Authority
RU
Russia
Prior art keywords
catalytic composition
silicon dioxide
catalyst
group
colloidal silicon
Prior art date
Application number
RU2006140090/04A
Other languages
English (en)
Other versions
RU2006140090A (ru
Inventor
Цзиньсо СЮЙ (US)
Цзиньсо СЮЙ
Чуэнь И. ЙЕХ (US)
Чуэнь И. ЙЕХ
Филип Дж. ЭНДЖИВАЙН (US)
Филип Дж. ЭНДЖИВАЙН
Original Assignee
Абб Ламмус Глобал, Инк.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Абб Ламмус Глобал, Инк. filed Critical Абб Ламмус Глобал, Инк.
Publication of RU2006140090A publication Critical patent/RU2006140090A/ru
Application granted granted Critical
Publication of RU2338589C2 publication Critical patent/RU2338589C2/ru

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/652Chromium, molybdenum or tungsten
    • B01J23/6527Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/30Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/652Chromium, molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/22Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by isomerisation
    • C07C5/27Rearrangement of carbon atoms in the hydrocarbon skeleton
    • C07C5/2767Changing the number of side-chains
    • C07C5/277Catalytic processes
    • C07C5/2772Catalytic processes with metal oxides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/58Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins
    • C10G45/60Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins characterised by the catalyst used
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/58Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins
    • C10G45/60Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins characterised by the catalyst used
    • C10G45/62Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins characterised by the catalyst used containing platinum group metals or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G47/00Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
    • C10G47/02Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G49/00Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00
    • C10G49/02Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00 characterised by the catalyst used
    • C10G49/04Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00 characterised by the catalyst used containing nickel, cobalt, chromium, molybdenum, or tungsten metals, or compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/066Zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/053Sulfates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/057Selenium or tellurium; Compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals
    • C07C2523/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36
    • C07C2523/56Platinum group metals
    • C07C2523/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tatalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/652Chromium, molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1081Alkanes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4018Spatial velocity, e.g. LHSV, WHSV
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Изобретение относится к катализатору для использования его в способах конверсии углеводородов и, более конкретно, к получению модифицированных анионами твердых кислотных катализаторов. Описана каталитическая композиция, содержащая: a) кислородное соединение элемента, выбранного из группы IVB Периодической системы элементов; b) кислородное соединение элемента, выбранного из группы VIB Периодической системы элементов; c) не менее примерно 1 мас.% частиц коллоидального диоксида кремния по отношению к общей массе катализатора; d) соединение алюминия; и е) металл группы VIII. Описан способ химической конверсии углеводорода, включающий взаимодействие углеводорода в условиях реакции химической конверсии с указанной каталитической композицией. Технический эффект - повышение активности и селективности каталитической композиции. 2 н. и 14 з.п. ф-лы, 3 табл.

Description

1. Область техники, к которой относится изобретение
Настоящее изобретение относится к катализатору для использования в способах конверсии углеводородов и, более конкретно, к получению модифицированных анионами твердых кислотных катализаторов.
2. Предпосылки создания изобретения
Твердые кислотные катализаторы используются в широком ряде способов химической конверсии в нефтеперерабатывающей и нефтехимической отраслях. В частности, модифицированные анионами оксиды, такие как WO3/ZrO2, SO4-2/ZrO2, MoO3/ZrO2, SO4-2/TiO2 и SO4-2/SnO2, являются сильными твердыми кислотами и показывают перспективные характеристики в способах конверсии углеводородов, таких как, например, изомеризация, каталитический крекинг, алкилирование и трансалкилирование. Смотри, например, патенты США №№ 6107235 и 6080904.
Публикация заявки на патент США № 2003/0069131 рассматривает твердый кислотный катализатор, содержащий соединение модифицированного анионами оксида металла, легированное ионами металла, и способ изомеризации алкана с использованием катализатора.
Катализаторы, получаемые в соответствии с известными способами, находятся в порошкообразной форме и являются неподходящими для загрузки в большинство промышленных реакторов, для которых требуются катализаторы, формованные в гранулы, сферы или экструдаты с хорошей механической прочностью при сохранении высокой активности.
Твердые кислотные катализаторы, указанные выше, могут быть смешаны со связующими, такими как глинозем, глина или кремнезем, с получением формованных каталитических частиц с хорошей механической прочностью. Однако активность формованных катализаторов со связующим для изомеризации алканов, в частности, изомеризации н-гептана, значительно снижается по сравнению с порошкообразной формой без связующего. Следовательно, имеется потребность в композиции катализатор/связующее, которая имеет высокую механическую прочность и хорошие каталитические характеристики.
Краткое описание изобретения
В настоящей заявке предусматривается каталитическая композиция, которая содержит кислородное соединение элемента, выбранного из группы IVB или группы IVA Периодической системы элементов; кислородное соединение элемента, выбранного из группы VIB или группы VIA Периодической системы элементов; и не менее 1 мас.% частиц коллоидального диоксида кремния по отношению к общей массе катализатора.
Каталитическая композиция преимущественно используется в способах конверсии углеводородов, таких как изомеризация, каталитический крекинг, алкилирование и трансалкилирование.
Подробное описание предпочтительного варианта (вариантов)
В настоящем изобретении используется коллоидальный диоксид кремния в качестве компонента связующего для формования порошкообразных смешанных оксидных катализаторов с получением формованного катализатора с превосходной физической прочностью и улучшенными каталитическими характеристиками для изомеризации алканов. Конечная форма катализатора может быть, например, формой экструдата, сферы или таблетки.
В частности, катализатор настоящего изобретения содержит кислородное соединение одного или нескольких элементов группы IVA или IVB (CAS-нотация) Периодической системы элементов. Элементы группы IVB включают титан (Ti), цирконий (Zr) и гафний (Hf). Элементы группы IVA включают углерод (С), кремний (Si), германий (Ge), олово (Sn) и свинец (Pb).
Катализатор дополнительно включает кислородное соединение элемента группы VIB или группы VIA Периодической системы элементов. Элементы группы VIB включают хром (Cr), молибден (Мо) и вольфрам (W). Элементы группы VIA включают серу (S), селен (Se) и теллур (Те).
Массовое отношение соединения элемента группы IVB или IVA к соединению элемента группы VIB или группы VIA обычно находится в интервале от примерно 0,001 до 1000, предпочтительно от 0,1 до примерно 100 и более предпочтительно от примерно 1 до примерно 10. Предпочтительные каталитические комбинации включают, например, WO3/ZrO2, SO4-2/ZrO2, MoO3/ZrO2, SO4-2/TiO2 и SO4-2/SnO2.
Катализатор может быть модифицирован включением легирующего вещества, выбранного из соединений алюминия, галлия, церия, сурьмы, скандия, магния, кобальта, железа, хрома, иттрия и/или индия. В предпочтительном варианте катализатор включает диоксид циркония, легированный алюминием, в сочетании с оксидом вольфрама, обозначенный как WO3/Al-ZrO2.
Катализатор может также включать компонент благородного металла группы VIII, такого как платина, палладий или иридий.
Связующее согласно настоящему изобретению содержит коллоидальный диоксид кремния. Коллоидальный диоксид кремния получается парофазным разложением галоидсилана (например, тетрахлорида кремния) в водород-кислородном пламени. Процесс горения дает молекулы диоксида кремния, которые конденсируются с образованием частиц. Частицы сталкиваются и спекаются вместе. Исходные частицы имеют диаметр в интервале от примерно 9 нм до примерно 30 нм. Однако исходные частицы сплавляются вместе с образованием агрегатов (самые малые диспергирующиеся единицы) с размером частиц от примерно 0,2 до примерно 0,3 мкм. Агрегаты, в свою очередь, стремятся переплетаться друг с другом вместе с образованием агломератов с размером частиц от примерно 30 до примерно 40 мкм. Коллоидальный диоксид кремния является аморфным. Отдельные частицы являются непористыми. Однако агломераты имеют очень высокий свободный объем (>98%). Площадь поверхности по методу БЭТ коллоидального диоксида кремния обычно находится в интервале от примерно 160 м2/г до примерно 200 м2/г. Коллоидальный диоксид кремния, подходящий для использования в данном изобретении, может быть приобретен под торговой маркой AEROSIL от фирмы Degussa Co. или под торговой маркой CAB-O-SIL от фирмы Cabot Corporation. Как показано ниже, коллоидальный диоксид кремния неожиданно дает лучшие результаты для изомеризации алкана по сравнению с другими кремнеземными или глиноземными связующими. В конечную каталитическую композицию смешанный оксид/связующее вводят, по меньшей мере, примерно 1 мас.% коллоидального диоксида кремния, предпочтительно, не менее примерно 5 мас.% и более предпочтительно не менее примерно 10 мас.%. Как показано ниже, коллоидальный диоксид кремния оказывается неожиданно лучше коллоидного диоксида кремния в качестве связующего.
Коллоидный диоксид кремния включает аморфные частицы диоксида кремния, имеющие размер обычно менее примерно 100 мкм. Размер частиц агрегатов может быть таким же малым, как размер исходных частиц. Поверхность частиц коллоидного диоксида кремния обычно состоит из силанолов, имеющих гидроксильные группы, присоединенные к атомам кремния, например Si-(OH)x, или силоксанов, например Si-O-Si-O-. Коллоидный диоксид кремния обычно получается при регулировании рН раствора силиката натрия, например, катионным обменом с образованием золя кремнекислоты. Золь затем стабилизируют катионами, такими как натрий или аммоний. Коллоидный диоксид кремния поставляется в водной жидкой форме, а не в порошкообразной форме.
Сырьем для настоящего способа может быть сырье, которое содержит значительные количества нормальных и/или слегка разветвленных парафинов С5+. Кроме того, сырье может содержать моноциклические ароматические соединения и/или циклические парафины, такие как циклогексан.
Настоящий катализатор может использоваться для изомеризации С48-парафиновых углеводородов либо в виде чистых соединений, либо в виде смесей. В операциях очистки парафины обычно присутствуют в смесях и наряду с С48-соединениями могут содержать углеводороды, кипящие за пределами данного интервала. Могут также присуствовать циклопарафины и ароматические соединения. Таким образом, питание может содержать такие С48-парафины, как бутан, пентан, гексан, и они могут присутствовать в потоках с процессов переработки (очистки), таких как рафинатные фракции из установок экстракции растворителями и сырье установки реформинга. Питание может также содержать цилические углеводороды, например, в форме С6+-нафты. Циклические материалы в таком питании могут подвергаться реакциям разрыва кольца и изомеризации в присутствии катализатора со связанным с ним металлическим компонентом с образованием парафинов, которые затем подвергаются изомеризации до изо-парафинов, которые могут быть отделены от циклических соединений фракционированием, причем циклические соединения рециклируются с вырождением (цикла). Например, циклогексан может быть превращен в метилциклопентан. Помимо чистого парафинового питания (С48) может использоваться смешанное парафин-олефиновое питание, имеющее значительные уровни содержания олефинов.
Изомеризация проводится в присутствии катализатора, предпочтительно в присутствии водорода. Температуры реакции в подходящем случае находятся в интервале от примерно 77°F до 800°F (примерно 25-425°C). Могут использоваться температуры за пределами данного интервала, хотя обычно они являются менее предпочтительными. Типичные температуры находятся в интервале от примерно 200°F до 600°F (примерно 43-316°C). Давления могут обычно находиться в интервале от примерно 1 фунт/кв.дюйм до примерно 15000 фунт/кв.дюйм (примерно 7000 кПа), хотя могут также использоваться более высокие давления. Легко могут использоваться более низкие давления в интервале от примерно 50 до 500 фунт/кв.дюйм (примерно 350-3500 кПа); и использование относительно низких давлений в указанном интервале является обычно предпочтительным для того, чтобы позволить использовать оборудование низкого давления. Изомеризация обычно проводится в присутствии водорода обычно при мольном соотношении относительно питания от 0,01 до 10:1 и обычно от 0,5:1 до 2:1. Объемные скорости обычно составляют от 0,1 до 10 единиц LHSV (часовая объемная скорость жидкости) и обычно от 0,5 до 5,0 единиц LHSV. Когда в катализатор включается дополнительный кислотный материал (кислота Льюиса или кислота Бренстеда), могут использоваться более низкие рабочие температуры с предпочтительным поддержанием реакции изомеризации по отношению к менее желательным реакциям крекинга.
Ниже приводятся примеры и сравнительные примеры для иллюстрации изобретения и его преимуществ. Примеры иллюстрируют изобретение. Сравнительные примеры изобретение не иллюстрируют, но приводятся для демонстрации путем сравнения неожиданных преимуществ, достигнутых с помощью изобретения, в противоположность катализаторам, не относящимся к изобретению. Смешанный оксидный катализатор, легированный алюминием, содержащий платиновый компонент, получают в соответствии со следующей методикой.
Смешанные гидроксиды циркония-алюминия получают соосаждением 13 мас.% ZrOCl2·8Н2О и 0,75 частей Al(NO3)3·9Н2О с 80 частей 14% водного раствора гидроксида аммония. Осадок смешанных гидроксидов промывают четыре раза дистиллированной водой с последующей фильтрацией. После сушки осадка при 100-120°C фильтровальный осадок измельчают в мелкодисперсный порошок. Порошок смешанного гидроксида затем пропитывают 8,4 частей раствора метавольфрамата аммония ((NH4)6H2W12O40), после чего смесь сушат при 100-120°C и затем прокаливают при 800°C в течение 3 ч. Продукт представляет собой желтоватый порошок модифицированного оксидом вольфрама диоксида циркония, легированного алюминием, обозначаемого как WO3/Al-ZrO2, который используется во всех примерах.
Формованный катализатор, как указано, формуется комбинированием модифицированного оксидом вольфрама диоксида циркония, легированного алюминием, со связующим формованием и затем прокаливанием.
Для введения в указанный материал благородного металла модифицированный оксидом вольфрама диоксид циркония, легированный алюминием, пропитывают водным раствором (NH3)4Pt(NO3)2. Данную смесь сушат и затем прокаливают при 350°C в течение 3 ч, при этом соль платины разлагается до оксида платины PtO2. В некоторых экспериментах платину вводят перед формованием со связующим. В других экспериментах платину водят после формования со связующим.
Характеристики катализатора оценивают по реакции изомеризации н-гептана, проводимой в реакторе с неподвижным слоем. Формованный катализатор измельчают применительно к лабораторному реактору. Количество образца катализатор/связующее варьируется в соответствии с количеством связующего, но во всех случаях общее количество активного WO3/Al-ZrO2 поддерживается примерно 500 мг. Катализатор загружают в кварцевый трубчатый реактор с наружным диаметром 1/2 дюйма с термопарой, расположенной ниже каталитического слоя. Катализатор нагревают в токе гелия до 350°C со скоростью подъема температуры 10°C/мин и выдерживают в течение 60 мин. Затем поток гелия заменяют водородом, и катализатор восстанавливается в водороде при 350°C в течение 2 ч. В конце восстановления температура реактора снижается до 200°C. Затем в реактор вводят газообразное питание, содержащее 3 мол.% н-гептана в водороде. Продукты реакции анализируют встроенным газовым хроматографом с детектором ионизации в пламени ((FID)(ДИП)) и 50 мм 0,53 мкм глиноземной капиллярной колонкой. Первый образец продукта отбирают через 15 мин после введения питания. Последующие образцы анализируют через 45-минутные интервалы. Активность и селективность катализатора рассчитывают по суммированию площади пиков продуктов и реагентов в соответствии со следующими уравнениями 1 и 2 соответственно:
% конверсии = 100 ΣРА/Σ(РАВ) (1)
и
% селективности = 100 ΣРС/ΣРА (2),
где:
РА представляет собой площадь пика всех продуктов;
РВ представляет собой площадь пика непревращенного n-C7; и
РС представляет собой площадь пика разветвленных гептанов.
Сравнительный пример 1
Данный сравнительный пример иллюстрирует получение и характеристики модифицированного оксидом вольфрама диоксида циркония, легированного алюминием, с введенной платиной. Связующее не используется. 18 частей материала, полученного из примера 1, пропитывают 6,21 частей 1,74 мас.% водного раствора (NH3)4Pt(NO3)2. После прокаливания при 350°C в течение 3 ч соль платины разлагается до оксида платины. Образец обозначают как 0,6% Pt/WO3/Al-ZrO2 и используют для определения характеристик описанного выше. Результаты показаны в таблице 1.
Сравнительный пример 2
Данный сравнительный пример иллюстрирует получение и характеристики смешанного оксидного катализатора с коллоидным глиноземом в качестве связующего. Катализатор Pt/WO3/Al-ZrO2 получают в соответствии со сравнительным примером 1 за исключением того, что содержание платины доводят до 1,0 мас.%. Формованный катализатор с 80% смешанного оксида/20% глинозема получают при смешении 8,0 частей Pt/WO3/Al-ZrO2, полученного в соответствии со сравнительным примером 1, и 10,0 частей коллоидного глинозема Nyacol (20% глинозема в водной среде). Смесь прессуют в "тестоподобном" виде и затем прокаливают. Условия прокаливания составляют: неподвижный воздух, 120°C в течение 1 ч, повышение температуры до 400°C со скоростью подъема 5°C/мин и выдержка в течение 3 ч. Полученный материал измельчают в мелкодисперсный порошок и используют для оценки изомеризации н-гептана указанным выше образом. Результаты показаны в таблице 1.
Сравнительный пример 3
Данный сравнительный пример иллюстрирует получение и характеристики изомеризации смешанного оксидного катализатора с коллоидным диоксидом кремния в качестве связующего. Катализатор Pt/WO3/Al-ZrO2 получают в соответствии со сравнительным примером 1, так чтобы обеспечить 0,6% Pt. Источник коллоидного диоксида кремния, содержащий 40 мас.% SiO2 в водной среде (Nalco-2327), получают от фирмы ONDEO Nalco Company, Chicago, IL. Две части 0,6% Pt/WO3/Al-ZrO2, полученного в сравнительном примере 1, смешивают с 1,2 частей Nalco-2327. Смесь прессуют в "тестоподобном" виде и затем прокаливают. Условия прокаливания составляют: неподвижный воздух, 120°C в течение 12 ч, повышение температуры до 400°C со скоростью подъема 5°C/мин и выдержка в течение 3 ч и охлаждение до комнатной температуры. Катализатор измельчают в мелкодисперсный порошок и используют для оценки характеристик изомеризации по методикам, описанным выше. Результаты показаны в таблице 1.
Сравнительный пример 4
Данный сравнительный пример иллюстрирует получение и характеристики в реакции изомеризации для смешанного оксидного катализатора с глиноземом бемит в качестве связующего. Платину вводят после формования. Глинозем Catapal® "D" (бемит) получают от фирмы SASOL North American Inc. Двести семьдесят две (272) части WO3/Al-ZrO2, полученного в соответствии с методикой, представленной выше, смешивают с 117 частей глинозема Catapal "D", 135 частей деионизованной воды и 3,13 частей 70% азотной кислоты. Смесь тщательно смешивают в смесительном устройстве и затем переносят в цилиндр гидравлического экструдера (Loomis Ram Extruder, Model 232-16) с последующим экструдированием в экструдаты диаметром 1/16 дюйма. Экструдаты прокаливают в следующих условиях: неподвижный воздух, 90°C в течение 1 ч, 120°C в течение 1 ч, повышение температуры до 500°C со скоростью подъема 5°C/мин и выдержка в течение 5 ч и охлаждение до комнатной температуры. Было установлено, что экструдаты имеют прочность на раздавливание 2,9 фунт/мм при испытании в соответствии с ASTM D4179 (Метод определения прочности на раздавливание единичной гранулы формованного катализатора). Затем в данный экструдат вводят 0,6 мас.% платины в соответствии с методикой сравнительного примера 1. Экструдаты измельчают в порошок перед загрузкой в реактор. Результаты испытаний на изомеризацию показаны в таблице 1.
Сравнительный пример 5
Данный сравнительный пример иллюстрирует получение и характеристики в реакции изомеризации для смешанного оксидного катализатора с осажденным диоксидом кремния в качестве связующего. Катализатор Pt/WO3/Al-ZrO2 получают в соответствии со сравнительным примером 1 с обеспечением 0,6% Pt. Осажденный диоксид кремния (Hi-Sil 233) получают от фирмы PPG Industries Inc., Pittsburg, PA. Указанный диоксид кремния Hi-Sil 233 содержит 0,55 мас.% Na. Поскольку Na может значительно ухудшить кислотность катализатора, Hi-Sil 233 "как есть" тщательно промывают перед смешением с порошком WO3/Al-ZrO2 со снижением уровня Na ниже 300 ч./млн. 2,4 частей WO3/Al-ZrO2 смешивают с 0,6 частей промытого Hi-Sil 233. Смесь прессуют в "тестоподобном" виде и затем прокаливают. Условия прокаливания составляют: неподвижный воздух, 120°C в течение 6 ч, повышение температуры до 450°C со скоростью подъема 5°C/мин и выдержка в течение 5 ч и охлаждение до комнатной температуры. Было определено, что механическая прочность прокаленных частиц составляет менее 1,9 фунт/мм на основе легкости разрушения вручную. Затем прокаленный материал измельчают в порошок и вводят в него 0,6 мас.% Pt в соответствии с методикой сравнительного примера 1. Результаты показаны в таблице 1.
Таблица 1
Сравнительный пример 1 2 3 4 5
Материал связующего отсутствует Коллоидный глинозем Коллоидный диоксид кремния Глинозем Catapal® D (бемит) Осажденный диоксид кремния
Количество связующего (мас.%) 0 20 20 30 20
Прокаливание --- 400°С, 4 ч 400°С, 3 ч 500°С, 5 ч 450°С, 5 ч
Физические свойства
Pt (мас.%), введенная до/после формования 0,6 1,0 до формования 0,6 до формования 0,6 после формования 0,6 после формования
Дисперсия Pt (%) 21 17 17 33 15
Площадь поверхности (м2/г) 51 105 69 121 60
Объем пор (см3/г) 0,16 0,27 0,21 0,29 0,24
Средний диаметр пор (нм) 9,4 8,8 10,0 7,4 16,2
Каталитические характеристики
Конверсия n-C7 (%) 38,4 9,1 5,8 13,4 34,7
Селективность по изомеру (%) 98,0 44,3 91,6 60,3 98, 2
* Дисперсия Pt была определена по хемосорбции СО; площадь поверхности представляет собой площадь поверхности по методу БЭТ, рассчитанную по данным адсорбции-десорбции N2; объем пор выводится из объема пор единственной точки при Р/Р0=0,9829; средний объем пор выводится из среднего диаметра пор по BJH-десорбции.
Пример 1
Данный пример иллюстрирует получение и характеристики изомеризации смешанного оксидного катализатора с коллоидальным диоксидом кремния в качестве связующего по настоящему изобретению. Платину вводят в катализатор до формования. Коллоидальный диоксид кремния торговой марки AEROSIL (AEROSIL 200) получают от фирмы Degussa Corporation. 2,4 частей 0,6% Pt/WO3/Al-ZrO2, полученного в сравнительном примере 1, смешивают с 0,11 частей AEROSIL 200 и 0,28 частей деионизованной воды. Смесь прессуют в "тестоподобном" виде и затем прокаливают. Условия прокаливания составляют: неподвижный воздух, 90°C в течение 1 ч, 120°C в течение 1 ч, повышение температуры до 450°C со скоростью подъема 5°C/мин и выдержка в течение 5 ч, охлаждение до комнатной температуры. Материал измельчают в мелкодисперсный порошок и используют для определения характеристик изомеризации в соответствии с методикой, указанной выше. Результаты показаны в таблице 2.
Пример 2
Данный пример иллюстрирует получение и характеристики изомеризации смешанного оксидного катализатора с коллоидальным диоксидом кремния в качестве связующего по настоящему изобретению. Платину вводят в катализатор после формования. Диоксид кремния торговой марки AEROSIL (AEROSIL 200) получают от фирмы Degussa Corporation. 7,2 частей WO3/Al-ZrO2 смешивают с 0,33 частей AEROSIL 200 и 2,75 частей деионизованной воды. Смесь прессуют в "тестоподобном" виде и затем прокаливают. Условия прокаливания составляют: неподвижный воздух, 120°C в течение 1 ч, повышение температуры до 450°C со скоростью подъема 5°C/мин и выдержка в течение 5 ч. Затем прокаленный материал измельчают в порошок и затем вводят в него 0,6 мас.% PT. Результаты определения характеристик изомеризации показаны в таблице 2.
Пример 3
Данный пример иллюстрирует получение и характеристики изомеризации смешанного оксидного катализатора с коллоидальным диоксидом кремния в качестве связующего по настоящему изобретению. Платину вводят после формования. Диоксид кремния торговой марки AEROSIL (AEROSIL 200) получают от фирмы Degussa Corporation. 8,0 частей WO3/Al-ZrO2 смешивают с 2,0 частей AEROSIL 200 и 5,25 частей деионизованной воды. Смесь прессуют в "тестоподобном" виде и затем прокаливают. Условия прокаливания составляют: неподвижный воздух, 120°C в течение 1 ч, повышение температуры до 450°C со скоростью подъема 5°C/мин и выдержка в течение 5 ч. Затем прокаленный материал измельчают в порошок и вводят в него 0,6 мас.% Pt в соответствии с методикой сравнительного примера 1. Результаты определения характеристик показаны в таблице 2.
Пример 4
Данный пример иллюстрирует получение и характеристики изомеризации смешанного оксидного катализатора с коллоидальным диоксидом кремния в качестве связующего по настоящему изобретению. Платину вводят после формования. Диоксид кремния торговой марки AEROSIL (AEROSIL 200) получают от фирмы Degussa Corporation. 8,0 частей WO3/Al-ZrO2 смешивают с 2,0 частей AEROSIL 200 и 5,25 частей деионизованной воды. Смесь прессуют в "тестоподобном" виде и затем прокаливают. Условия прокаливания составляют: неподвижный воздух, 120°C в течение 1 ч, повышение температуры до 550°C со скоростью подъема 5°C/мин и выдержка в течение 5 ч. Затем прокаленный материал измельчают в порошок и вводят в него 0,6 мас.% Pt в соответствии с методикой сравнительного примера 1. Результаты определения характеристик показаны в таблице 2.
Пример 5
Данный пример иллюстрирует получение и характеристики изомеризации смешанного оксидного катализатора с коллоидальным диоксидом кремния в качестве связующего по настоящему изобретению. Платину вводят после формования. Диоксид кремния торговой марки AEROSIL (AEROSIL 200) получают от фирмы Degussa Corporation. 320,0 частей WO3/Al-ZrO2 смешивают с 80,0 частей AEROSIL 200 и 180 частей деионизованной воды. Смесь тщательно смешивают в смесительном устройстве и затем переносят в цилиндр гидравлического экструдера (Loomis Ram Extruder, Model 232-16) с последующим экструдированием в экструдаты диаметром 1/16 дюйма. Условия прокаливания экструдатов составляют: неподвижный воздух, 120°C, повышение температуры до 450°C со скоростью подъема 10°C/мин и выдержка в течение 5 ч. Данные прокаленные экструдаты имеют прочность на раздавливание 1,9 фунт/мм (в соответствии с ASTM D4179 Метод определения прочности на раздавливание единичной гранулы формованного катализатора). Затем в данные экструдаты вводят 0,6 мас.% Pt в соответствии с методикой сравнительного примера 1. Перед загрузкой в реактор экструдаты измельчают в порошок. Результаты определения характеристик показаны в таблице 2.
Таблица 2
Пример 1 2 3 4 5
Материал связующего Коллоидальный диоксид кремния Коллоидальный диоксид кремния Коллоидальный диоксид кремния Коллоидальный диоксид кремния Коллоидальный диоксид кремния
Количество связующего (мас.%) 4,4 4,4 20 20 20
Прокаливание 450°С, 5 ч 450°С, 5 ч 450°С, 3 ч 550°С, 5 ч 450°С, 5 ч
Физические свойства
Pt (мас.%), введенная до/после формования 0,6 до формования 0,6 после формования 0,6 после формования 0,6 после формования 0,6 после формования
Дисперсия Pt (%) 15 21 17 23 21
Площадь поверхности (м2/г) 59 59 85 82 78
Объем пор (см3/г) 0,21 0,20 0,28 0,30 0,25
Средний диаметр пор (нм) 11,5 10,8 11,7 12,4 12,8
Каталитические характеристики
Конверсия n-C7 (%) 70,3 57,1 57,7 59,7 47,6
Селективность по изомеру (%) 94,7 97,4 97,1 97,6 98,1
* Дисперсия Pt была определена по хемосорбции СО; площадь поверхности представляет собой площадь поверхности по методу БЭТ, рассчитанную по данным адсорбции-десорбции N2; объем пор выводится из объема пор единственной точки при Р/Р0=0,9829; средний объем пор выводится из среднего диаметра пор по BJH-десорбции.
Пример 6
Данный пример иллюстрирует получение и характеристики изомеризации смешанного оксидного катализатора со смешанным связующим коллоидальный диоксид кремния/коллоидный диоксид кремния по настоящему изобретению. Платину вводят после формования. Диоксид кремния торговой марки AEROSIL (AEROSIL 200) получают от фирмы Degussa Corporation. Источник коллоидного диоксида кремния, содержащий 40 мас.% SiO2 в водной среде (Nalco-2327) получают от фирмы ONDEO Nalco Company, Chicago, IL. 2,40 частей WO3/Al-ZrO2 смешивают с 0,48 частей AEROSIL 200, 0,30 частей Nalco-2327 и соответствующего количества деионизованной воды. Смесь прессуют в "тестоподобном" виде и затем прокаливают. Условия прокаливания составляют: неподвижный воздух, 120°C в течение 6 ч, повышение температуры до 450°C со скоростью подъема 5°C/мин и выдержка в течение 5 ч. Затем прокаленный материал измельчают в порошок и вводят в него 0,6 мас.% Pt в соответствии с методикой сравнительного примера 1. Результаты определения характеристик показаны в таблице 3.
Пример 7
Данный пример иллюстрирует получение и характеристики изомеризации смешанного оксидного катализатора с другим смешанным связующим коллоидальный диоксид кремния/глинозем Catapal® "D" по настоящему изобретению. Платину вводят после формования. Диоксид кремния торговой марки AEROSIL (AEROSIL 200) получают от фирмы Degussa Corporation. Глинозем Catapal® "D" (бемит) получают от фирмы SASOL North American Inc. 2,40 частей WO3/Al-ZrO2 смешивают с 0,48 частей AEROSIL 200, 0,12 частей глинозема Catapal® "D" и нужного количества деионизованной воды. Смесь прессуют в "тестоподобном" виде и затем прокаливают. Условия прокаливания составляют: неподвижный воздух, 120°C в течение 6 ч, повышение температуры до 450°C со скоростью подъема 5°C/мин и выдержка в течение 5 ч. Затем прокаленный материал измельчают в порошок и вводят в него 0,6 мас.% Pt в соответствии с методикой сравнительного примера 1. Результаты определения характеристик показаны в таблице 3.
Таблица 3
Сравнительный пример 1 2
Материал связующего Коллоидальный диоксид кремния + коллоидный диоксид кремния Коллоидальный диоксид кремния + глинозем Catapal® "D"
Количество связующего (мас.%) 20 20
Прокаливание 450°С, 5 ч 450°С, 5 ч
Физические свойства
Pt (мас.%), введенная до/после формования 0,6 после формования 0,6 после формования
Дисперсия Pt (%) 16 24
Площадь поверхности (м2/г) 74 80
Объем пор (см3/г) 0,27 0,29
Средний диаметр пор (нм) 14,6 14,5
Каталитические характеристики
Конверсия n-C7 (%) 49,1 47,5
Селективность по изомеру (%) 98,8 98,7
* Дисперсия Pt была определена по хемосорбции СО; площадь поверхности представляет собой площадь поверхности по методу БЭТ, рассчитанную по данным адсорбции-десорбции N2; объем пор выводится из объема пор единственной точки при Р/Р0=0,9829; средний объем пор выводится из среднего диаметра пор по BJH-десорбции.
Приведенные выше результаты показывают, что смешанный оксидный катализатор с коллоидальным диоксидом кремния в качестве связующего настоящего изобретения (примеры 1-5) имеет лучшую n-С7 конверсию, чем катализатор без связующего сравнительного примера 1, тогда как смешанные оксидные катализаторы с коллоидным диоксидом кремния и глиноземом в качестве связующего сравнительных примеров 2-4 действуют хуже, т.е. n-С7 конверсия и селективность ниже, чем у катализатора без связующего сравнительного примера 1. Формованный катализатор, использующий осажденный диоксид кремния в качестве связующего, имеет низкую механическую прочность, но показывает приемлемую активность изомеризации (сравнительный пример 5).
Кроме того, предпочтительно вводить платину после формования для предотвращения спекания благородного металла в процессе прокаливания. Например, катализатор сравнительного примера 4 с платиной, введенной после формования, действует лучше в плане n-С7 конверсии, чем катализаторы сравнительных примеров 2 и 3 с платиной, введенной до формования. Однако было неожиданно установлено, что при использовании коллоидального диоксида кремния в качестве связующего введение платины перед формованием (пример 1) обеспечивает катализатор, имеющий n-С7 конверсию даже лучше, чем у катализаторов примеров 2, 3 и 4. Указанные результаты показывают, что коллоидальный диоксид кремния действительно является превосходным связующим для смешанных оксидных катализаторов изомеризации изобретения.
Авторами также исследовано связывание порошка WO3/Al-ZrO2 с использованием смеси коллоидального диоксида кремния и других дешевых связующих, таких как коллоидный диоксид кремния или глинозем Catapal® "D". Результаты испытаний представлены в таблице 3. Общая каталитическая активность является сравнимой или даже выше, чем у катализатора без связующего относительно активности на общую массу катализатора. Экструдат, использующий чистый коллоидальный диоксид кремния (пример 5 таблицы 2), имеет прочность на раздавливание 1,9 фунт/мм. Когда требуется более высокая прочность на раздавливание катализатора, хорошую альтернативу представляет смешанное связующее вместо чистого коллоидального диоксида кремния.
Дисперсия Pt, площадь поверхности, объем пор и размер пор катализатора варьируются с различными связующими и условиями прокаливания. Однако отсутствует непротиворечивая корреляция между каталитической активностью/селективностью и факторами, указанными выше. При последовательном сравнении ясно, что лучшие каталитические характеристики образцов с коллоидальным диоксидом кремния в качестве связующего обусловлены самим материалом связующего. Без желания быть связанным какой-либо конкретной теорией, можно предположить, что указанные явления могут быть отнесены к взаимодействию связующего с активным центром Pt/WO3/Al-ZrO2. Коллоидальный диоксид кремния имеет более низкую поверхностную плотность гидроксильных групп, чем осажденный диоксид кремния и коллоидный диоксид кремния, поэтому взаимодействие между коллоидальным диоксидом кремния и Pt/WO3/Al-ZrO2 будет относительно более слабым. Сильное взаимодействие может снизить кислотность катализатора.
Хотя приведенное выше описание содержит много конкретики, эта конкретика не должна истолковываться как ограничение изобретения, а только как иллюстрация предпочтительных вариантов изобретения. Специалистам в данной области техники будут видны многие другие варианты в рамках объема и сути изобретения, как определено прилагаемой формулой изобретения.

Claims (16)

1. Каталитическая композиция, содержащая
a) кислородное соединение элемента, выбранного из группы IVB Периодической системы элементов;
b) кислородное соединение элемента, выбранного из группы VIB Периодической системы элементов;
c) не менее примерно 1 мас.% частиц коллоидального диоксида кремния по отношению к общей массе катализатора;
d) соединение алюминия; и
e) металл группы VIII.
2. Каталитическая композиция по п.1, в которой коллоидальный диоксид кремния составляет не менее примерно 5 мас.% общей массы катализатора.
3. Каталитическая композиция по п.1, в которой соединением алюминия является оксид алюминия.
4. Каталитическая композиция по п.1, в которой металл группы VIII выбран из платины и палладия.
5. Каталитическая композиция по п.1, в которой элемент группы IVB выбран из группы, состоящей из титана и циркония.
6. Каталитическая композиция по п.1, в которой элементом группы VIB является молибден или вольфрам.
7. Каталитическая композиция по п.1, содержащая оксид вольфрама и оксид циркония.
8. Каталитическая композиция по п.1, содержащая оксид молибдена и оксид циркония.
9. Каталитическая композиция по п.1, в которой коллоидальный диоксид кремния смешивают с коллоидным диоксидом кремния.
10. Каталитическая композиция по п.1, в которой коллоидальный диоксид кремния смешивают с глиноземом.
11. Каталитическая композиция по п.1, в которой коллоидальный диоксид кремния смешивается с осажденным диоксидом кремния.
12. Способ химической конверсии углеводорода, включающий взаимодействие углеводорода в условиях реакции химической конверсии с каталитической композицией, которая содержит:
i) кислородное соединение элемента, выбранного из группы IVB Периодической системы элементов;
ii) кислородное соединение элемента, выбранного из группы VIB Периодической системы элементов;
iii) не менее примерно 1 мас.% частиц коллоидального диоксида кремния по отношению к общей массе катализатора.
iv) соединение алюминия; и
v) металл группы VIII.
13. Способ по п.12, в котором способ химической конверсии выбран из группы, состоящей из изомеризации, каталитического крекинга, алкилирования и трансалкилирования.
14. Способ по п.13, в котором способ химической конверсии представляет собой изомеризацию, и условия химической конверсии включают температуру от примерно 93 до примерно 425°С, давление от примерно 1 до примерно 1000 фунт/кв.дюйм и LHSV от примерно 0,1 до примерно 10.
15. Способ по п.14, в котором углеводород выбран из группы, состоящей из н-бутана, н-пентана, н-гексана, циклогексана, н-гептана, н-октана, н-нонана и н-декана.
16. Способ по п.15, в котором каталитическая композиция содержит оксид вольфрама, оксид циркония, оксид алюминия и платину.
RU2006140090/04A 2004-04-14 2005-04-06 Твердый кислотный катализатор и способ его применения RU2338589C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/824,390 2004-04-14
US10/824,390 US7304199B2 (en) 2004-04-14 2004-04-14 Solid acid catalyst and method of using same

Publications (2)

Publication Number Publication Date
RU2006140090A RU2006140090A (ru) 2008-05-20
RU2338589C2 true RU2338589C2 (ru) 2008-11-20

Family

ID=34973012

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2006140090/04A RU2338589C2 (ru) 2004-04-14 2005-04-06 Твердый кислотный катализатор и способ его применения

Country Status (10)

Country Link
US (1) US7304199B2 (ru)
EP (1) EP1735092A1 (ru)
JP (1) JP4675956B2 (ru)
KR (1) KR101114242B1 (ru)
CN (2) CN101797503A (ru)
AR (1) AR050496A1 (ru)
BR (1) BRPI0508644B1 (ru)
CA (1) CA2560339C (ru)
RU (1) RU2338589C2 (ru)
WO (1) WO2005099896A1 (ru)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7414007B2 (en) * 2002-09-13 2008-08-19 Uop Llc Isomerization catalyst and process
AU2003272375A1 (en) * 2002-09-13 2004-04-30 Uop Llc Isomerization catalyst and process
US20080032886A1 (en) * 2006-08-03 2008-02-07 Abb Lummus Global, Inc. Doped solid acid catalyst composition, process of conversion using same and conversion products thereof
KR100931792B1 (ko) * 2007-05-25 2009-12-11 주식회사 엘지화학 탄화수소 수증기 열분해용 촉매, 그의 제조방법 및 이를이용한 올레핀의 제조방법
KR100999304B1 (ko) * 2007-07-05 2010-12-08 주식회사 엘지화학 올레핀 제조용 탄화수소 열분해 방법
US8105969B2 (en) * 2008-12-29 2012-01-31 Fina Technology Inc. Catalyst with an ion-modified binder
US8067658B2 (en) * 2009-01-23 2011-11-29 Conocophillips Company Isomerization process
US8426666B2 (en) * 2009-02-17 2013-04-23 Phillips 66 Company Isomerization of wet hexanes
US7659438B1 (en) 2009-02-17 2010-02-09 Conocophillips Company Isomerization of wet hexanes
WO2010101636A2 (en) * 2009-03-02 2010-09-10 Sud-Chemie Inc. Promoted zirconium oxide catalyst support
US8153548B2 (en) 2010-04-19 2012-04-10 King Fahd University Of Petroleum & Minerals Isomerization catalyst
US20130079578A1 (en) * 2011-09-23 2013-03-28 Cpc Corporation Modified Zirconia Catalysts and Associated Methods Thereof
RU2470000C1 (ru) * 2012-05-29 2012-12-20 Открытое акционерное общество "Научно-производственное предприятие Нефтехим" (ОАО "НПП Нефтехим") Способ изомеризации парафиновых углеводородов c4-c7
EP2801564A1 (de) 2013-05-06 2014-11-12 LANXESS Deutschland GmbH Decarboxylirung von 6-Methylsalicylsäure
CN106140197B (zh) * 2015-03-24 2019-03-12 中国石油天然气股份有限公司 固体超强酸催化剂及其制备方法及轻质正构烷烃的异构化方法
RU2595341C1 (ru) * 2015-06-29 2016-08-27 Акционерное общество "Специальное конструкторско-технологическое бюро "Катализатор" Катализатор изомеризации парафиновых углеводородов и способ его приготовления
CN106215969B (zh) * 2016-07-25 2018-08-21 江苏大学 一种铈掺杂固体超强酸催化剂及其制备方法
JP2019027765A (ja) * 2017-08-04 2019-02-21 日立アプライアンス株式会社 冷蔵庫
EP4234591A3 (en) 2018-09-17 2023-09-27 Chevron Phillips Chemical Company LP Light treatment of chromium catalysts and related catalyst preparation systems and polymerization processes
US11396485B2 (en) 2019-09-16 2022-07-26 Chevron Phillips Chemical Company Lp Chromium-based catalysts and processes for converting alkanes into higher and lower aliphatic hydrocarbons
US11180435B2 (en) 2019-09-16 2021-11-23 Chevron Phillips Chemical Company, Lp Chromium-catalyzed production of alcohols from hydrocarbons
CN113731436B (zh) * 2020-05-27 2023-10-13 中国石油化工股份有限公司 一种具有芳构化功能的脱硫催化剂及其制备方法和烃油脱硫方法
CN113731435B (zh) * 2020-05-27 2023-10-10 中国石油化工股份有限公司 一种降烯烃脱硫催化剂及其制备方法和烃油脱硫方法
WO2022056146A1 (en) 2020-09-14 2022-03-17 Chevron Phillips Chemical Company Lp Transition metal-catalyzed production of alcohol and carbonyl compounds from hydrocarbons
WO2022260947A1 (en) 2021-06-08 2022-12-15 Chevron Phillips Chemical Company Lp Chromium-catalyzed production of alcohols from hydrocarbons in the presence of oxygen
FR3128132A1 (fr) * 2021-10-19 2023-04-21 IFP Energies Nouvelles Catalyseur comprenant un oxyde de zirconium sulfaté dopé

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2126534C3 (de) 1971-05-28 1981-01-08 Degussa Ag, 6000 Frankfurt Verfahren zur Herstellung von Acrylsäure durch Gasphasenoxydation von Propen mit Sauerstoff oder sauer-
DE3684739D1 (de) 1985-08-19 1992-05-14 Mitsubishi Heavy Ind Ltd Verfahren zur aufbereitung eines katalysators zur entfernung von stickstoffoxiden.
US5053374A (en) 1987-05-01 1991-10-01 Mobil Oil Corporation Method for preparing a zeolite catalyst bound with a refractory oxide of low acidity
CA2103876A1 (en) 1992-08-27 1994-02-28 Stuart Leon Soled Group viii metal containing tungsten oxide silica modified zirconia as acid catalyst
US5378671A (en) 1993-06-03 1995-01-03 Mobil Oil Corp. Method for preparing catalysts comprising zeolites
US6080904A (en) 1993-07-22 2000-06-27 Mobil Oil Corporation Isomerization process
US5993643A (en) 1993-07-22 1999-11-30 Mobil Oil Corporation Process for naphtha hydrocracking
CN1100613C (zh) 1996-09-05 2003-02-05 株式会社日本能源 固体酸催化剂及其制备方法
ES2226375T3 (es) * 1998-04-23 2005-03-16 Mitsubishi Rayon Co., Ltd. Catalizador para producir nitrilo insaturado.
KR20040019394A (ko) 2001-08-07 2004-03-05 메사추세츠 인스티튜트 오브 테크놀로지 고체 산 촉매용의 비제올라이트 나노복합체 물질
US20030045604A1 (en) * 2001-08-13 2003-03-06 Klee Joachim E. Dental root canal filling cones
US7053260B2 (en) * 2002-01-07 2006-05-30 Exxonmobil Chemical Patents Inc. Reducing temperature differences within the regenerator of an oxygenate to olefin process
US7125536B2 (en) * 2004-02-06 2006-10-24 Millennium Inorganic Chemicals, Inc. Nano-structured particles with high thermal stability

Also Published As

Publication number Publication date
KR20070004829A (ko) 2007-01-09
US20050234283A1 (en) 2005-10-20
CA2560339C (en) 2011-11-29
AR050496A1 (es) 2006-11-01
RU2006140090A (ru) 2008-05-20
BRPI0508644A (pt) 2007-08-14
WO2005099896A1 (en) 2005-10-27
JP2007532307A (ja) 2007-11-15
CA2560339A1 (en) 2005-10-27
CN1968747A (zh) 2007-05-23
CN1968747B (zh) 2011-08-24
BRPI0508644B1 (pt) 2014-10-14
KR101114242B1 (ko) 2012-04-16
US7304199B2 (en) 2007-12-04
CN101797503A (zh) 2010-08-11
JP4675956B2 (ja) 2011-04-27
EP1735092A1 (en) 2006-12-27

Similar Documents

Publication Publication Date Title
RU2338589C2 (ru) Твердый кислотный катализатор и способ его применения
US4522708A (en) Catalytic reforming process employing reforming catalysts which are based on tungsten and molybdenum carbides
CN105682800B (zh) 用于烯烃复分解反应的催化剂和方法
US20030069131A1 (en) Non-zeolitic nanocomposite materials for solid acid catalysis
Amrute et al. Hydrothermal stability of high-surface-area α-Al2O3 and its use as a support for hydrothermally stable fischer–tropsch synthesis catalysts
WO2008018970A2 (en) Doped solid acid catalyst composition, process of conversion using same and conversion products thereof
EP2844389A1 (en) Catalyst for light naphtha aromatization
EP1491613B1 (en) Method of isomerizing hydrocarbon
US7608747B2 (en) Aromatics hydrogenolysis using novel mesoporous catalyst system
JP2004269847A (ja) C7+パラフィンの異性化方法及びそれのための触媒
RU2320407C1 (ru) Катализатор изодепарафинизации нефтяных фракций и способ его приготовления
US3598759A (en) Method for improving the crushing strength and resistance to abrasion of a catalyst
US11590481B2 (en) Heteroatom-doped zeolites for bifunctional catalytic applications
KR900004505B1 (ko) 중간유분을 생성하는 수소화 크래킹 촉매
JP3922681B2 (ja) 炭化水素の異性化方法および異性化用固体酸触媒
US20200024528A1 (en) Process for the production of olefins and of middle distillates from a hydrocarbon effluent resulting from the fischer-tropsch synthesis
JPS63267442A (ja) 中間留分生成用水素化分解触媒
AU2002326549A1 (en) Non-zeolitic nanocomposite materials for solid acid catalysis
JP2004156049A (ja) 炭化水素の異性化方法
JP2004359735A (ja) 直鎖炭化水素を異性化するガソリン基材の製造方法

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20160407