RU2331475C1 - Способ регенерации палладиевого катализатора - Google Patents

Способ регенерации палладиевого катализатора Download PDF

Info

Publication number
RU2331475C1
RU2331475C1 RU2007115762/04A RU2007115762A RU2331475C1 RU 2331475 C1 RU2331475 C1 RU 2331475C1 RU 2007115762/04 A RU2007115762/04 A RU 2007115762/04A RU 2007115762 A RU2007115762 A RU 2007115762A RU 2331475 C1 RU2331475 C1 RU 2331475C1
Authority
RU
Russia
Prior art keywords
catalyst
regeneration
hydrogen
gas
temperature
Prior art date
Application number
RU2007115762/04A
Other languages
English (en)
Inventor
Хамит Хамисович Гильманов (RU)
Хамит Хамисович ГИЛЬМАНОВ
тдинов Азат Шаймуллович Зи (RU)
Азат Шаймуллович Зиятдинов
Азат Шаукатович Бикмурзин (RU)
Азат Шаукатович Бикмурзин
Владимир Михайлович Шатилов (RU)
Владимир Михайлович Шатилов
Илзи Фартовна Назмиева (RU)
Илзия Фартовна Назмиева
Лаззат Саитович Сахипов (RU)
Лаззат Саитович Сахипов
Александр Адольфович Ламберов (RU)
Александр Адольфович Ламберов
Светлана Робертовна Егорова (RU)
Светлана Робертовна Егорова
Геннадий Иванович Шунин (RU)
Геннадий Иванович Шунин
Эльвира Ирековна Хасанова (RU)
Эльвира Ирековна Хасанова
Original Assignee
Открытое акционерное общество "Нижнекамскнефтехим"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Открытое акционерное общество "Нижнекамскнефтехим" filed Critical Открытое акционерное общество "Нижнекамскнефтехим"
Priority to RU2007115762/04A priority Critical patent/RU2331475C1/ru
Application granted granted Critical
Publication of RU2331475C1 publication Critical patent/RU2331475C1/ru

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)

Abstract

Изобретение относится к каталитической химии, в частности к способам регенерации палладиевых катализаторов на носителях, и может быть использовано в процессах гидрирования ненасыщенных соединений. Описан способ регенерации палладиевого катализатора гидрирования ацетиленовых углеводородов путем обработки его инертным газом, затем смесью инертного газа с кислородсодержащим газом при повышенной температуре до содержания СО2 в отходящем регенерационном газе менее 0,05 об.%, охлаждением катализатора, последующим восстановлением катализатора из окисленной формы палладия до металлического в атмосфере водородсодержащего газа и охлаждением его до температуры реакции гидрирования, причем катализатор после продувки инертным газом дополнительно продувают водородсодержащим газом при температуре 200-250°С и регенерацию слоев катализатора в адиабатическом реакторе проводят раздельно, с раздельным подводом и отводом регенерационного газа для каждого слоя катализатора. Технический результат - улучшение восстановления эксплуатационных характеристик палладиевого катализатора при проведении процесса регенерации. 2 з.п.ф-лы, 2 табл.

Description

Изобретение относится к каталитической химии, в частности к способам регенерации палладиевых катализаторов на носителях, и может быть использовано в процессах гидрирования ненасыщенных соединений.
В настоящее время предъявляются высокие требования к качеству и чистоте олефинов, применяемых в органическом, нефтехимическом и полимерном синтезах. Так, например, в этилене, поступающем на полимеризацию, содержание ацетилена не должно превышать 4 ppm. Тонкая очистка этан-этиленовых фракций (ЭЭФ) от примесей ацетилена осуществляется путем селективного каталитического гидрирования, для которого наиболее эффективными катализаторами являются нанесенные палладиевые системы - преимущественно Pd-Al2O3, промотированные элементами группы IB. Несмотря на высокую начальную активность и селективность, они обладают существенным недостатком из-за зауглероживания поверхности продуктами побочных реакций - быстрой дезактивацией. Известно, что на поверхности металлического палладия ацетилен стадийно гидрируется до этилена и этана, одновременно подвергаясь димеризации и полимеризации с образованием продуктов «зеленого масла» (фракция C4-C28), часть которых десорбируется в газовую фазу, а часть отлагается на поверхности катализатора. Необходимо добавить, что в связи с нарастающим дефицитом сырья пиролиза и восполнением данного дефицита альтернативным и аналогичным сырьем, в котором наблюдается присутствие примесей каталитических ядов - серосодержащих, хлорсодержащих соединений, соединений тяжелых металлов нагрузка на палладиевый катализатор по гидроочистке ЭЭФ фракции с увеличенным содержанием микропримесей возрастает. Это, в свою очередь, приводит к снижению активности катализатора и требует учащения циклов регенерации катализатора, которая проводится в очень жестких условиях, близких к гидротермальным, негативно отражающихся как на нанесенных металлах, так и на алюмооксидном носителе.
Известно, что под воздействием гидротермальных условий окислительной регенерации алюмопалладиевого катализатора одновременно с отжигом продуктов уплотнения происходит переход дисперсного палладия в оксидную форму, что может привести к агрегации частиц палладия и, соответственно, к необратимой дезактивации катализатора. Для уменьшения негативного воздействия условий паровоздушной окислительной регенерации на дезактивацию катализатора и сохранения в значительной степени его свойств целесообразно осуществлять окислительно-восстановительную обработку его при возможно низкой температуре, достаточной для полного отжига продуктов уплотнения.
Известен способ регенерации алюмопалладиевого катализатора для гидрирования ацетиленовых углеводородов (А.С. СССР №1365430, МКИ B01J 23/96, опуб. 12.07.85). Регенерацию в этом способе ведут обработкой азотовоздушной смесью при 50-200°С с последующим восстановлением в атмосфере водорода или водородсодержащего газа под давлением 2-5 атм с охлаждением от 50-200°С до комнатной температуры и выдерживанием при этой температуре в течение 0,5-30 ч. Катализатор выдерживает 4 цикла регенерации. Но данный способ не позволяет полностью удалить кокс и восстановить работоспособность катализатора в достаточной степени.
Известен способ регенерации алюмопалладиевого катализатора для гидрирования непредельных соединений (А.С. СССР №801875, МКИ B01J 23/44, опуб.07.02.1981). Регенерацию ведут обработкой азотовоздушной смесью, содержащей 0,5-5,0% кислорода, при 260-350°С и последующем восстановлением водородом. Но данный способ также не позволяет полностью удалить кокс и восстановить работоспособность катализатора в достаточной степени.
Наиболее близким по технической сущности является способ регенерации палладиевого катализатора, описанный в патенте США №4152291 (МПК МКИ B01J 23/96, опуб. 1.05.1979). Регенерацию палладиевого катализатора в описываемом способе проводят при 350-600°С в реакторе гидрирования сначала продувкой азотом в течение 2-3 часов, затем продувкой азото-воздушной смесью с первоначальным содержанием кислорода в смеси 2,4 об.% в течение 1-3 часов (до содержания СО2 в отходящем газе ниже 0,05 об.%), затем катализатор охлаждается в реакторе в течение 8-10 часов (медленное охлаждение) до комнатной температуры или достается из реактора и охлаждается до комнатной температуры в течение 1 часа и менее (быстрое охлаждение). Но данный способ вызывает местные перегревы и не позволяет восстановить работоспособность катализатора в достаточной степени.
Задачей данного изобретения является максимальное восстановление каталитической активности, селективности и других характеристик палладиевого катализатора путем повышения эффективности процесса окислительной регенерации.
Поставленная задача достигается регенерацией палладиевого катализатора гидрирования ацетиленовых углеводородов путем обработки его инертным газом, затем смесью инертного газа с кислородсодержащим газом при повышенной температуре до содержания СО2 в отходящем газе менее 0,05 об.%, охлаждением катализатора, последующим восстановлением катализатора из окисленной формы палладия до металла в атмосфере водородсодержащего газа и охлаждением его до температуры реакции гидрирования, причем катализатор после продувки инертным газом дополнительно продувают водородсодержащим газом при температуре 200-250°С и регенерацию слоев катализатора в адиабатическом реакторе проводят раздельно, с раздельным подводом и отводом регенерационного газа для каждого слоя катализатора.
Возможно в качестве водородсодержащего газа использовать метановодородную фракцию, сформированную из концевых фракций метана и водорода установки низкотемпературного газоразделения, а в качестве инертного газа используют азот, метан, водяной пар или их смеси.
Возможно проведение охлаждения палладиевого катализатора после его восстановления метановодородной фракцией из окисленной формы до металла осуществлять инертным газом, например азотом.
Заявляемое изобретение позволяет добиться сохранения каталитических свойств катализатора и предотвращения сокращения межрегенерационного пробега, вследствие чего увеличивается срок службы катализатора в среднем в 1,5-2 раза, ведения процесса гидрирования ЭЭФ при более низких температурах, что приводит к предотвращению гидрирования этилена в этан, а следовательно, к увеличению выработки целевых продуктов.
Восстановление эксплуатационных характеристик палладиевого катализатора, возможно, происходит путем проведения процесса регенерации, начиная со стадии обработки катализатора водородсодержащим газом, с последующим проведением «отжига» и «дожига» продуктов уплотнения на нем.
Водородная обработка используется для десорбции части адсорбированных тяжелых углеводородов и олигомерных отложений, образующихся при гидроочистке этан-этиленовой фракции в процессе протекания побочных реакций - олигомеризации, содимеризации, а также с целью удаления сернистых отложений в виде сероводорода. Предварительная обработка регенерируемого катализатора водородсодержащим газом позитивно влияет на температурный режим процесса регенерации: так, в случае проведения окислительной регенерации без предварительной обработки водородом наблюдается резкий и трудно контролируемый подъем температуры, по каталитическим слоям адиабатического реактора сопровождающийся вспышками температуры в отдельных точках слоя катализатора, превышающих 550°С. После обработки катализатора водородсодержащим газом температура горения продуктов уплотнения поднимается плавно, без заметных резких колебаний в сторону увеличения, чем исключается агрегация частиц палладия и вероятность спекания катализатора. Необходимо отметить, что время отжига продуктов уплотнения кислородсодержащим газом при этом сокращается на 20-30%.
С увеличением срока службы катализатора в промышленных условиях уменьшается общая степень гидроксилирования поверхности и концентрация бренстедовских (по адсорбции СО) кислотных центров, что может быть связано с текстурными трансформациями алюмооксидного носителя - параметрами его пористой системы, распределением пор по размерам. Одновременно отмечается появление сильных льюисовских кислотных центров, катализирующих процесс олигомеризации непредельных углеводородов на поверхности катализатора в процессе селективного гидрирования ацетилена в ЭЭФ, что ведет к сокращению межрегенерационного цикла катализатора. Так, при регенерации кислородсодержащим газом сера на поверхности катализатора окисляется до SOx, а в случае предварительной водородной обработки образуется сероводород - H2S. Оксидные соединения серы проявляют ярко выраженные кислотные свойства. Таким образом, предварительная водородная обработка катализатора перед окислительной регенерацией позволяет сократить число сильных льюисовских центров, тем самым сохранить поверхностную кислотность носителя на исходном уровне.
Кроме того, способ послойной (посекционной) раздельной регенерации каждого из слоев палладиевого катализатора в адиабатическом реакторе селективного гидрирования ацетиленовых углеводородов с раздельным подводом и отводом регенерационного газа с каждого слоя (секции) исключает загрязнение смежного каталитического слоя (секции) загрязнителями предыдущего слоя (секции), втрое уменьшает длительность гидротермального воздействия регенерационной паровоздушной смеси на алюмооксидный носитель катализатора каждого слоя (секции) и обеспечивает достаточную исходную температуру на каждый слой (секцию) в процессе окислительного отжига продуктов уплотнения, что уменьшает вероятность регидратации оксида алюминия в бемит (моногидроксид алюминия):
Al2O3→AlO(ОН)
Способ охлаждения палладиевого катализатора инертным газом (азотом) взамен метановой фракции после проведенной процедуры восстановления палладия метано-водородной фракцией из окисленной формы в металл исключает адсорбцию монооксида углерода (перманентного яда), содержащегося в метановой фракции на поверхности металлического палладия.
Регенерации подвергались образцы отработанного палладиевого катализатора в процессе селективного гидрирования ацетилена в этан-этиленовой фракции (ЭЭФ), которые сохранили физико-механические показатели, но потеряли каталитическую активность.
Активность отрегенерированных образцов палладиевого катализатора оценивалась на лабораторной установке в реакции селективного гидрирования ацетилена в этилен в составе этан-этиленовой смеси с содержанием, мас.%: ацетилен 2,06, этилен 76,41, этан остальное.
Испытания проводились в реакторе проточного типа с объемом загрузки 7 см3 в диапазоне температур 20-60°С, при объемной скорости подачи ЭЭФ 2500 ч-1, разбавлении сырья водородом, исходя из мольного соотношения ацетилен:водород = 1,0:1,4, при давлении 10 атм, в непрерывном режиме.
Углеводородный состав ЭЭФ определялся методом газовой хроматографии на хроматографе ЛХМ-8мд по методу внутренней нормализации, сорбент 8% NaHCO3 Al2O3. На основе хроматографических данных оценивалась активность катализаторов в реакции гидрирования ацетилена и селективность процесса.
Активность палладиевого катализатора оценивалась степенью превращения ацетилена в этилен реакцией гидрирования, в расчете на его остаточное содержание (об.%).
Селективность процесса гидроочистки ЭЭФ оценивали, как среднее значение приращения содержания этилена после гидроочистки (в мас.%), т.е. в гидрогенизате в сравнении с содержанием этилена в исходном сырье.
Степень регенерируемости (%) катализаторов оценивали как соотношение продолжительности непрерывного пробега отрегенерированного образца катализатора к продолжительности пробега свежего образца этого же катализатора в процессе селективного гидрирования ацетилена в этилен в ЭЭФ, при сохранении активности и селективности по этилену.
Изобретение иллюстрируется следующими примерами.
Пример 1.
Опыт проводился на установке, описанной выше. Регенерирующий газ подают на каждый слой (секцию) катализатора отдельно. В начале процесса регенерации палладиевый катализатор продувают метаном, поднимая температуру до 220°С, затем в метан ступенчато добавляют водородсодержащую фракцию с содержанием водорода н/м 94% с шагом 10 об.% в час. Таким образом, доводят концентрацию водорода в газовой смеси до 90 об.%, и продувают катализатор этим составом в течение 4 часов при температуре 220°С, после чего снижают концентрацию водорода в газовой смеси и снова переходят на продувку метаном. Далее метан заменяют на водяной пар и поднимают температуру до 370°С, выдерживают при достигнутой температуре в течение 12 часов и начинают подавать воздух. В начальный период горения продуктов уплотнения проводят предварительный отжиг (тонкий выжиг) - продувают катализатор паровоздушной смесью с содержанием кислорода не более 0,2 об.% в течение 2 часов, с последующим отключением подачи воздуха на 1 час. Повторяют процедуру дважды. В процессе отжига продуктов уплотнения тщательно контролируют температуру по зонам и не допускают ее превышения свыше 550°С, одновременно контролируют содержание суммы СО+CO2 в отходящем регенерационном газе. Расход воздуха увеличивают ступенчато, только после стабилизации значений концентраций СО+СО2 в отходящем регенерационном газе (при двукратных анализах в течение 1 часа), обеспечивая адекватное ступенчатое повышение содержания кислорода в паровоздушной смеси, что не допускает возникновения «температурных вспышек» в зоне каталитического слоя. Если концентрация СО+СО2 непрерывно повышается в процессе регенерации, то необходимо продолжить отжиг продуктов уплотнения при установленной концентрации кислорода в паровоздушной смеси. Таким образом, доводят содержание кислорода в паровоздушной смеси до 4,0 об.%. «Дожиг» или контрольный отжиг продуктов уплотнения проводят при температуре 480°С. «Дожиг» продуктов уплотнения катализатора проводят до достижения суммарного содержания СО+СО2 не более 0,01 об.%. Далее следует охлаждение катализатора под током азота, при 250°С осуществляется сушка катализатора до точки росы минус 60°С - минус 50°С в отходящем регенерационном газе. Восстанавливают катализатор водородом при температуре 150°С, после чего охлаждают азотом до температуры реакции гидрирования. В результате проведенной регенерации степень регенерируемости катализатора составила 98,3%. Параметры технологического режима ведения процесса регенерации представлены в таблице 1. Каталитические свойства отрегенерированного вышеуказанным способом палладиевого катализатора приведены в таблице 2.
Пример 2.
Процесс проводится в условиях примера 1, но в начале процесса регенерации катализатор разогревают азотом вместо метана до температуры 200°С, затем в азот ступенчато добавляют водородсодержащую фракцию (содержание водорода н/м 94 об.%) до 100 об.%, вытесняя азот, далее, как в примере 1. Предварительный отжиг продуктов уплотнения начинают при температуре 280°С, добавляют кислород в азот с начальным содержанием 0,4 об.% до 3,5 об.%. «Дожиг» продуктов уплотнения проводят при 370°С. Восстанавливают катализатор метано-водородной фракцией (содержание водорода н/м 94 об.%, метан 6%). В результате проведенной регенерации степень регенерируемости катализатора составила 97,2%. Параметры процесса регенерации катализатора вышеперечисленным способом представлены в таблице 1. Каталитические свойства палладиевого катализатора, проявляемые после проведенной регенерации, приведены в таблице 2.
Пример 3.
Процесс проводится в условиях примера 1, но в начале процесса регенерации катализатор разогревают горячим азотом до температуры 250°С, затем в азот постепенно добавляют водород и доводят концентрацию водорода в азоте до 80 об.%, продувают катализатор горячей азотоводородной смесью в течение 4 часов, затем снова переходят на продувку азотом. Далее азотом повышают температуру катализатора до 370°С, выдерживают при достигнутой температуре в течение 12 часов и начинают подавать воздух. Остужают и сушат катализатор метаном. В результате проведенной регенерации степень регенерируемости катализатора составила 97,6%. Параметры технологического режима ведения процесса регенерации представлены в таблице 1. Каталитические свойства палладиевого катализатора, проявляемые после проведенной регенерации, приведены в таблице 2.
Пример 4.
Процесс проводят в условиях примера 1, но разогревают катализатор горячим метаном до температуры 250°С, затем в метан ступенчато добавляют водородсодержащую фракцию (80% водорода + 20% метана) и доводят концентрацию водорода до 70 об.%. Продувают катализатор в течение 8 часов, затем постепенно уменьшают подачу водорода в метан и снова переходят на продувку метаном. Далее метан заменяют на смесь водяного пара с азотом в соотношении 1:1 и поднимают температуру до 420°С, выдерживают при достигнутой температуре в течение 10 часов и начинают вводить воздух в пароазотную смесь. Катализатор восстанавливают смесью H2 80 об.%, СН4 20 об.%. Охлаждают и сушат катализатор метаном. В результате проведенной регенерации степень регенерируемости катализатора составила 99,6%. Параметры технологического режима ведения процесса регенерации представлены в таблице 1. Каталитические свойства палладиевого катализа тора, проявляемые после проведенной регенерации, приведены в таблице 2.
Пример 5.
Процесс проводят в условиях примера 1, но разогревают катализатор горячим метаном до температуры 220°С, затем в метан ступенчато добавляют водород со скоростью 8 об.%/ч и доводят концентрацию водорода до 70 об.%. Продувают катализатор в течение 6 часов, затем снижают концентрацию водорода и снова переходят на продувку метаном. Далее метан заменяют азотом и поднимают температуру до 400°С, выдерживают при достигнутой температуре в течение 10 часов и начинают подавать воздух. Восстанавливают катализатор водородсодержащей фракцией (Н2 90 об.%, СН4 10 об.%), после чего остужают азотом. В результате проведенной регенерации степень регенерируемости катализатора составила 98,1%. Параметры технологического режима ведения процесса регенерации представлены в таблице 1. Каталитические свойства палладиевого катализатора, проявляемые после проведенной регенерации, приведены в таблице 2.
Пример 6.
Процесс проводится в условиях примера 1, но в начале процесса регенерации катализатор продувают азотом, поднимая температуру до 200°С, затем в азот ступенчато добавляют водород со скоростью 8 об.%/ч и доводят концентрацию водорода до 100 об.%, прекратив подачу азота, продувают катализатор в течение 8 часов, затем снижают концентрацию водорода вводом азота и постепенно переходят на продувку азотом, далее азот заменяют на водяной пар и поднимают температуру катализатора до 350°С, выдерживают при достигнутой температуре в течение 12 часов и начинают подавать воздух. В результате проведенной регенерации степень регенерируемости катализатора составила 99,2%. Параметры технологического режима ведения процесса регенерации представлены в таблице 1. Каталитические свойства палладиевого катализатора, проявляемые после проведенной регенерации, приведены в таблице.
Как видно из приведенных примеров, заявляемое изобретение позволяет достичь восстановление эксплуатационных характеристик палладиевого катализатора после проведения процесса регенерации за счет раздельного подвода и отвода регенерационного газа на каждый слой (секцию) катализатора, обработки катализатора водородсодержащим газом с последующим проведением предварительного отжига (тонкого выжига) и «дожига» продуктов уплотнения на регенерируемом катализаторе, восстановления палладия водородсодержащей фракцией и охлаждением катализатора после восстановления инертным газом, предпочтительно азотом.
Figure 00000001
Таблица 2
Каталитические свойства палладиевых катализаторов, проявляемые после проведенной регенерации.
Номер примера Содержание ацетилена в ЭЭФ, мас.% Активность катализатора, % Прирост этилена, мас.% Степень регенерируемости, %
до гидрирования после гидрирования
1 2,06 0,0011-отс 99,95-100 1,60 98,3
2 2,06 0,0015-отс 99,93-100 1,20 97,2
3 2,06 0,0017-отс 99,92-100 1,49 97,6
4 2,06 0,0002-отс 99,99-100 1,67 99,6
5 2,06 0,0009-отс 99,96-100 1,52 98,1
6 2,06 0,0003-отс 99,99-100 1,64 99,2

Claims (3)

1. Способ регенерации палладиевого катализатора гидрирования ацетиленовых углеводородов путем обработки его инертным газом, затем смесью инертного газа с кислородсодержащим газом при повышенной температуре до содержания СО2 в отходящем газе менее 0,05 об.%, охлаждения катализатора, с последующим восстановлением катализатора из окисленной формы палладия до металла в атмосфере водородсодержащего газа и охлаждением его до температуры реакции гидрирования, отличающийся тем, что катализатор после продувки инертным газом дополнительно продувают водородсодержащим газом при температуре 200-250°С и регенерацию каждого слоя катализатора в адиабатическом реакторе проводят раздельно, с раздельным подводом и отводом регенерационного газа для каждого слоя катализатора.
2. Способ по п.1, отличающийся тем, что в качестве водородсодержащего газа используют метановодородную фракцию, сформированную из концевых фракций метана и водорода установки низкотемпературного газоразделения, а в качестве инертного газа используют азот, метан, водяной пар или их смеси.
3. Способ по п.1 или 2, отличающийся тем, что охлаждение палладиевого катализатора после восстановления палладиевого катализатора метановодородной фракцией из окисленной формы палладия до металла проводят инертным газом.
RU2007115762/04A 2007-04-25 2007-04-25 Способ регенерации палладиевого катализатора RU2331475C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2007115762/04A RU2331475C1 (ru) 2007-04-25 2007-04-25 Способ регенерации палладиевого катализатора

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2007115762/04A RU2331475C1 (ru) 2007-04-25 2007-04-25 Способ регенерации палладиевого катализатора

Publications (1)

Publication Number Publication Date
RU2331475C1 true RU2331475C1 (ru) 2008-08-20

Family

ID=39747956

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2007115762/04A RU2331475C1 (ru) 2007-04-25 2007-04-25 Способ регенерации палладиевого катализатора

Country Status (1)

Country Link
RU (1) RU2331475C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107344124A (zh) * 2016-05-06 2017-11-14 中国石油化工股份有限公司 一种固体超强酸催化剂的原位再生方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107344124A (zh) * 2016-05-06 2017-11-14 中国石油化工股份有限公司 一种固体超强酸催化剂的原位再生方法

Similar Documents

Publication Publication Date Title
JP2684120B2 (ja) 再生可能な吸着剤を用いる、プロピレン/プロパンから硫黄種を吸着する方法
KR100608474B1 (ko) 아세틸렌계 물질의 흡착 및 흡착제의 재생에 의한 올레핀 정제 방법
BRPI0802431B1 (pt) processo de remoção de compostos de silício de correntes de hidrocarbonetos
US8323480B2 (en) Composition and process for the removal of sulfur from middle distillate fuels
JP5139078B2 (ja) 水素処理装置のための改良水素管理
JP5139082B2 (ja) 水素管理を改良した留出物の2段水素化処理
CN107866285B (zh) 一种异构脱蜡催化剂的再生方法
EP3428248B1 (fr) Catalyseurs partiellement cokes utilisables dans l'hydrotraitement des coupes contenant des composes soufres et des olefines
MX2014015981A (es) Regeneracion de un catalizador de deshidrogenacion de parafina agotado.
RU2663894C2 (ru) Способ удаления мышьяка из углеводородного сырья
CN107774239B (zh) 用于脱除低碳烯烃中含氧化合物吸附剂的再生方法
JP2010174247A (ja) ナフサ脱硫を増大するためのcoの低減
US20100234662A1 (en) Process for Reducing Carbon Monoxide in Olefin-Containing Hydrocarbon Feedstocks
EP3174631B1 (fr) Adsorbant a base d'alumine contenant du sodium et dopee par un element alcalin pour la captation de molecules acides
KR20130126492A (ko) 기체 처리 방법
JP5139079B2 (ja) 水素管理を改良した水素化処理方法
EP2054359A2 (en) Process for removal of oxygenates from a paraffin stream
CN105664659A (zh) 连续吸附脱除醚后碳四中羰基硫和二甲基二硫醚的方法
JP2014511261A (ja) チオ抵抗性触媒、製造方法および選択的水素化における使用
RU2331475C1 (ru) Способ регенерации палладиевого катализатора
US20100152022A1 (en) Catalyst regeneration method
JP4922542B2 (ja) 不均一系触媒および吸着剤の再生方法
BE1012739A3 (fr) Masse d'elimination d'arsenic et de mercure dans des hydrocarbures a base de nickel supporte.
US7368409B2 (en) Regeneration method of heterogeneous catalysts and adsorbents
RU2219999C1 (ru) Способ гидроочистки углеводородных фракций и катализатор гидроочистки углеводородных фракций