RU2322979C2 - Система контролируемого высвобождения, содержащая темозоломид - Google Patents

Система контролируемого высвобождения, содержащая темозоломид Download PDF

Info

Publication number
RU2322979C2
RU2322979C2 RU2005113282/15A RU2005113282A RU2322979C2 RU 2322979 C2 RU2322979 C2 RU 2322979C2 RU 2005113282/15 A RU2005113282/15 A RU 2005113282/15A RU 2005113282 A RU2005113282 A RU 2005113282A RU 2322979 C2 RU2322979 C2 RU 2322979C2
Authority
RU
Russia
Prior art keywords
temozolomide
polymeric materials
controlled release
microspheres
cpp
Prior art date
Application number
RU2005113282/15A
Other languages
English (en)
Other versions
RU2005113282A (ru
Inventor
Йонгфэнг ВАНГ (CN)
Йонгфэнг ВАНГ
Дан ФЭЙ (CN)
Дан ФЭЙ
Original Assignee
Тианцзин Тейсли Груп Ко., Лтд.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Тианцзин Тейсли Груп Ко., Лтд. filed Critical Тианцзин Тейсли Груп Ко., Лтд.
Publication of RU2005113282A publication Critical patent/RU2005113282A/ru
Application granted granted Critical
Publication of RU2322979C2 publication Critical patent/RU2322979C2/ru

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0085Brain, e.g. brain implants; Spinal cord
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents

Abstract

Система контролируемого высвобождения темозоломида включает 3-10% мас. темозоломида и биодеградируемый полимерный материал, представляющий собой полиангидрид. Указанный полиангидрид получен конденсацией 3,4-бис(р-карбоксифенокси)пропана с себациновой кислотой при их соотношении 20:80, соответственно. Система контролируемого высвобождения темозоломида представляет собой имплантируемые таблетки. Импланты способны высвобождать противораковый препарат темозоломид контролируемым образом in vivo на протяжении длительного времени от 1 часа до 4 недель. 3 н. и 10 з.п. ф-лы, 2 ил., 1 табл.

Description

Область техники, к которой относится изобретение
Настоящее изобретение касается системы контролируемого высвобождения лекарств, в частности системы контролируемого высвобождения, содержащей темозоломид.
Уровень техники
Противораковый препарат темозоломид (TMZ) обладает широким спектром противораковой биоактивности на модели опухолей у мышей. Клинические исследования показывают, что TMZ обладает активностью в отношении злокачественной меланомы, фунгоидной гранулемы и запущенной глиомы. Кроме того, он также проявляет терапевтический эффект при подкожном введении на ксенотрансплантаты опухолей мозга и опухолей легких у мышей. Противораковые испытания in vitro подтверждают, что TMZ обладает противораковой активностью против широкого спектра типов опухолей, в том числе опухолей мозга, опухолей яичников, меланомы и опухолей, резистентных к химиотерапии с применением общепринятых препаратов, таких как дакарбазин, кармустин, цисплатин, доксорубицин, 5-фторурацил, этопозид и винбластин.
Фармакокинетические исследования на мышиной модели показали, что после введения TMZ быстро всасывается in vivo и имеет период полужизни в 1,13 ч (при внутрибрюшинном введении) или 1,29 ч (при приеме внутрь). В клинических испытаниях фазы I оказалось, что TMZ всасывается очень быстро, достигая максимальной концентрации в плазме через 0,7 ч, и имеет период полужизни в 1,8 ч. Также он проявлял хорошее распределение во все ткани, включая проникновение через гематоэнцефалический барьер, через почки, легкие и печень (Brindley et al., 1986; Newland et al., 1997). Однако концентрация темозоломида в плазме снижается очень быстро после введения препарата. Поэтому требуется многократное введение для поддержания эффективной концентрации препарата в крови, что вызывает неудобство и страдания для пациентов.
Контролируемое высвобождение лекарств позволяет высвобождение препарата со сравнительно постоянной скоростью в течение определенного промежутка времени. Примером системы контролируемого высвобождения могут служить биодеградируемые имплантируемые таблетки и небиодеградируемые имплантируемые таблетки, которые применялись для контролируемого высвобождения некоторых лекарств. Однако сообщений о системе контролируемого высвобождения TMZ до сих пор еще не было.
Подробное описание изобретения
Соответственно, главная цель изобретения состоит в том, чтобы, избегая неудобства многократного введения темозоломида, обеспечить систему контролируемого высвобождения темозоломида, способную поддерживать терапевтически эффективную концентрацию препарата.
Один из аспектов настоящего изобретения касается системы контролируемого высвобождения, содержащей от 3 до 10% мас. темозоломида и биодеградируемые полимерные материалы.
Другой аспект настоящего изобретения касается способа получения системы контролируемого высвобождения, содержащей темозоломид. Данный способ включает смешивание от 3 до 10% мас. темозоломида с биодеградируемыми полимерными материалами.
В соответствии с изобретением, данная система контролируемого высвобождения по изобретению может применяться в различных дозировках формах, пригодных для контролируемой доставки темозоломида, из которых предпочтительны имплантируемые формы типа имплантируемых таблеток.
В соответствии с одним из воплощений, такие содержащие темозоломид имплантируемые таблетки получают способом, включающим:
а. Растворение полимерных материалов в растворителе для получения раствора полимерных материалов;
b. Диспергирование темозоломида в или смешивание темозоломида с раствором полимерных материалов с получением смеси из полимерных материалов и темозоломида;
с. Распылительная сушка смеси из полимерных материалов и темозоломида с получением микросфер; и
d. Таблетирование микросфер с получением имплантируемых таблеток.
На стадии (а) полимерные материалы выбирают из группы, состоящей из полиэтилена, полипропилена, полиэтилентерефталата, пластифицированного поливинилхлорида, сшитого полиэфира, поликарбоната, полисульфона, полистирена, поли(2-пентена), полиметилметакрилата, поли(1,4-фенилена), политетрафторэтилена и полиангидрида. Предпочтительно полимерный материал представляет собой полиангидрид, полученный конденсацией 3,4-бис(р-карбоксифенокси)пропана (СРР) с себациновой кислотой (SA) в пропорции 20 к 80, 50 к 50, 80 к 20, 70 к 30 или 30 к 70, предпочтительно в пропорции 20 к 80. Растворители, используемые для растворения полимерных материалов, способны растворять только полимерные материалы, но не способны растворять или реагировать с темозоломидом. К подходящим растворителям относятся, к примеру, дихлорметан, хлороформ, этилацетат или ацетон, предпочтительно дихлорметан.
На стадии (с) в процессе распылительной сушки темозоломид может быть смешан с другими наполнителями или дополнительными стабилизаторами, к примеру, буферными растворами. Предпочтительно носители представляют собой нетоксичные и неиммуногенные материалы, чтобы избежать отторжения. К подходящим материалам для имплантов относятся все разновидности полиангидридов.
В соответствии с другим воплощением, содержащие темозоломид таблетки получают способом, включающим:
А. Растворение полимерных материалов в растворителе с получением раствора полимерных материалов.
В. Добавление водного раствора темозоломида в раствор полимерных материалов и эмульгирование образовавшегося раствора ультразвуком с получением первой эмульсии.
С. Смешивание первой эмульсии с поливиниловым спиртом (PVA) с последующим выпариванием растворителя с получением твердых микросфер.
D. Удаление PVA и остаточного растворителя путем промывания водой с получением микросфер и
Е. Таблетирование микросфер с получением имплантируемых таблеток.
На стадии (А) полимерные материалы выбирают из группы, состоящей из полиэтилена, полипропилена, полиэтилентерефталата, пластифицированного поливинилхлорида, сшитого полиэфира, поликарбоната, полисульфона, полистирена, поли(2-пентена), полиметилметакрилата, поли(1,4-фенилена), политетрафторэтилена и полиангидрида. Предпочтительно полимерный материал представляет собой полиангидрид, полученный конденсацией СРР с SA в пропорции 20 к 80, 50 к 50, 80 к 20, 70 к 30 или 30 к 70, предпочтительно в пропорции 20 к 80. Растворители, используемые для растворения полимерных материалов, способны растворять только полимерные материалы, но не способны растворять или реагировать с темозоломидом. Так, к подходящим растворителям относятся дихлорметан, хлороформ, этилацетат или ацетон, предпочтительно дихлорметан. Полимер, образовавшийся из СРР и SA, находится в дихлорметане в концентрации от 1 до 5%, предпочтительно 2%.
На стадии (В) объемное соотношение между водным раствором темозоломида и органическим растворителем составляет от 1:100 до 1:400, предпочтительно 1:100.
Биодеградируемые полимерные материалы, используемые в настоящем изобретении, к примеру "полиангидриды", известны в этой области и могут быть коммерчески доступны или получены хорошо известным в этой области методом.
Содержащая темозоломид система контролируемого высвобождения, полученная вышеуказанным способом, может находиться в виде пластинок, микросфер, цилиндров, хлопьев и т.д.
Имплантируемые таблетки темозоломида по настоящему изобретению могут быть имплантированы в организм человека или других животных хирургическим путем, либо они могут быть имплантированы посредством несистемного введения, например, подкожного, внутричерепного, вагинального, внутримышечного или под кожу для доставки терапевтически эффективного количества препарата для лечения заболеваний. Дозировка имплантов определяется в зависимости от тяжести заболеваний, а также веса, возраста и пола пациента.
Система контролируемого высвобождения по настоящему изобретению способна доставлять терапевтически эффективное количество темозоломида непрерывно. Соответственно, импланты способны высвобождать темозоломид контролируемым образом in vivo на протяжении длительного времени, варьирующего от 1 часа до 4 недель, что и приводит к терапевтическому действию препарата. Следовательно, биоактивность темозоломида может достигать максимальной степени при применении системы контролируемого высвобождения по настоящему изобретению.
Кроме того, импланты темозоломида по настоящему изобретению могут быть получены с помощью различных носителей. В общем случае импланты разрушаются примерно через 30 дней со времени имплантирования, а полиангидридные материалы разрушаются примерно через 6-8 недель со времени имплантирования.
Краткое описание фигур.
Фиг.1 - график, представляющий высвобождение темозоломида из имплантируемых таблеток in vivo, на котором черные квадратики "n" соответствуют имплантам, содержащим 3% мас. темозоломида, кружочки "l" соответствуют 5% мас. темозоломида, а треугольнички "p" соответствуют 10% мас. темозоломида. По оси ординат представлено совокупное высвобождение (%), по оси обсцисс - время (ч).
Фиг.2 - график имплантируемых таблеток темозоломида относительно корня квадратного времени, на котором черные квадратики "n" соответствуют имплантам, содержащим 3% мас. темозоломида, кружочки "l" соответствуют 5% мас. темозоломида, а треугольнички "p" соответствуют 10% мас. темозоломида. По оси ординат представлено совокупное высвобождение (%), по оси обсцисс - время (ч).
Осуществление изобретения
Следующие примеры предназначены лишь для описания настоящего изобретения, но не для ограничения области действия заявки.
Пример 1. Импланты, содержащие 3% темозоломида
Получали 97 г биодеградируемого полиангидрида при смешивании 3,4-бис(р-карбоксифенокси)пропана (СРР) и себациновой кислоты (SA) в пропорции 20 к 80. К полученному полиангидриду добавляли 3 г темозоломида. Их перемешивали в метиленхлориде при комнатной температуре и распыляли, получая микросферы для пролонгированного высвобождения, содержащие 3% темозоломида. Остаточный метиленхлорид выпаривали под вакуумом.
Использовали следующие условия распылительной сушки: температура на входе 70°С, температура на выходе 65°С, давление при распылении 15 psi (фунт на квадратный дюйм).
В соответствии с требуемым диаметром имплантов и дозировкой темозоломида соответствующее количество микросфер подвергали таблетированию под давлением в 8000 psi на 5 секунд, получая имплантируемые таблетки, содержащие 3% темозоломида, диаметром 1,4 см и толщиной 1,0 мм. Эти имплантируемые таблетки запаивали в ламинированный алюминием пластик в атмосфере азота, а затем дезинфицировали γ-облучением при 2,2×10 Гр.
Пример 2. Получали 99 г биодеградируемого полиангидрида при смешивании 3,4-бис(p-карбоксифенокси)пропана (СРР) и себациновой кислоты (SA) в пропорции 80 к 20. К полученному полиангидриду добавляли 1 г темозоломида. Их перемешивали в хлороформе при комнатной температуре и распыляли, получая микросферы для пролонгированного высвобождения, содержащие 1% темозоломида. Остаточный метиленхлорид выпаривали под вакуумом.
Использовали следующие условия распылительной сушки: температура на входе 75°С, температура на выходе 70°С, давление при распылении 15 psi.
В соответствии с требуемым диаметром имплантов и дозировкой темозоломида соответствующее количество микросфер подвергали таблетированию под давлением в 8000 psi на 5 секунд, получая имплантируемые таблетки, содержащие 1% темозоломида, диаметром 1,4 см и толщиной 1,0 мм. Эти имплантируемые таблетки запаивали в ламинированный алюминием пластик в атмосфере азота, а затем дезинфицировали γ-облучением при 2,2×10 Гр.
Пример 3
Получали 90 г биодеградируемого полиангидрида при смешивании 3,4-бис(р-карбоксифенокси)пропана (СРР) и себациновой кислоты (SA) в пропорции 30 к 70. К полученному полиангидриду добавляли 10 г темозоломида. Их перемешивали в этилацетате при комнатной температуре и распыляли, получая микросферы для пролонгированного высвобождения, содержащие 10% темозоломида. Остаточный метиленхлорид выпаривали под вакуумом.
Использовали следующие условия распылительной сушки: температура на входе 70°С, температура на выходе 65°С, давление при распылении 15 psi.
В соответствии с требуемым диаметром имплантов и дозировкой темозоломида соответствующее количество микросфер подвергали таблетированию под давлением в 8000 psi на 5 секунд, получая имплантируемые таблетки, содержащие 10% темозоломида, диаметром 1,4 см и толщиной 1,0 мм. Эти имплантируемые таблетки запаивали в ламинированный алюминием пластик в атмосфере азота, а затем дезинфицировали γ-облучением при 2,2×10 Гр.
Пример 4
Получали 95 г биодеградируемого полиангидрида при смешивании 3,4-бис(р-карбоксифенокси)пропана (СРР) и себациновой кислоты (SA) в пропорции 70 к 30. К полученному полиангидриду добавляли 5 г темозоломида. Их перемешивали в метиленхлориде при комнатной температуре и распыляли, получая микросферы для пролонгированного высвобождения, содержащие 5% темозоломида. Остаточный метилен-хлорид выпаривали под вакуумом.
Использовали следующие условия распылительной сушки: температура на входе 75°С, температура на выходе 60°С, давление при распылении 15 psi.
В соответствии с требуемым диаметром имплантов и дозировкой темозоломида соответствующее количество микросфер подвергали таблетированию под давлением в 8000 psi на 5 секунд, получая имплантируемые таблетки, содержащие 5% темозоломида, диаметром 1,4 см и толщиной 1,0 мм. Эти имплантируемые таблетки запаивали в ламинированный алюминием пластик в атмосфере азота, а затем дезинфицировали γ-облучением при 2,2×10 Гр.
Пример 5
Получали 95 г биодеградируемого полиангидрида при смешивании 3,4-бис(р-карбоксифенокси)пропана (СРР) и себациновой кислоты (SA) в пропорции 50 к 50. К полученному полиангидриду добавляли 5 г темозоломида. Их перемешивали в метиленхлориде при комнатной температуре и распыляли, получая микросферы для пролонгированного высвобождения, содержащие 5% темозоломида. Остаточный метилен-хлорид выпаривали под вакуумом.
Использовали следующие условия распылительной сушки: температура на входе 65°С, температура на выходе 60°С, давление при распылении 15 psi.
В соответствии с требуемым диаметром имплантов и дозировкой темозоломида соответствующее количество микросфер подвергали таблетированию под давлением в 8000 psi на 5 секунд, получая имплантируемые таблетки, содержащие 5% темозоломида, диаметром 1,4 см и толщиной 1,0 мм. Эти имплантируемые таблетки запаивали в ламинированный алюминием пластик в атмосфере азота, а затем дезинфицировали γ-облучением при 2,2×10 Гр.
Пример 6
Сополимер СРР и SA в пропорции 20 к 80 растворяли в метиленхлориде, получая 2% (вес/объем) раствор при комнатной температуре, в который добавляли соответствующее количество водного раствора темозоломида. После тщательного перемешивания смесь эмульгировали ультразвуком, получая первую эмульсию. Первую эмульсию смешивали с 2% водным раствором поливинилового спирта (PVA) при высокой скорости, получая эмульсию. Эту эмульсию выливали в 0,1% водный раствор PVA и перемешивали в течение 4 часов при комнатной температуре. Растворитель метиленхлорид выпаривали при комнатной температуре, при этом появлялись твердые микросферы в водном растворе PVA. Микросферы трижды промывали бидистиллированной водой для удаления остаточного метиленхлорида и PVA и подвергали лиофилизации, получая микросферы, содержащие 4% темозоломида, диаметром около 20 мкм и с хорошей текучестью.
В соответствии с требуемым диаметром имплантов и дозировкой темозоломида соответствующее количество микросфер подвергали таблетированию под давлением в 8000 psi на 5 секунд, получая имплантируемые таблетки, содержащие 4% темозоломида, диаметром 1,4 см и толщиной 1,0 мм. Эти имплантируемые таблетки запаивали в ламинированный алюминием пластик в атмосфере азота и дезинфицировали γ-облучением при 2,2×10 Гр.
Пример 7
Сополимер СРР и SA в пропорции 80 к 20 растворяли в этилацетате, получая 1% (вес/объем) раствор при комнатной температуре, в который добавляли соответствующее количество водного раствора темозоломида. После тщательного перемешивания смесь эмульгировали ультразвуком, получая первую водомасляную эмульсию. Первую эмульсию смешивали с 2% водным раствором поливинилового спирта (PVA) при высокой скорости, получая эмульсию. Эту эмульсию выливали в 0,1% водный раствор PVA и перемешивали в течение 4 часов при комнатной температуре. Растворитель этилацетат выпаривали при комнатной температуре, при этом появлялись твердые микросферы в водном растворе PVA. Микросферы трижды промывали бидистиллированной водой для удаления остаточного метиленхлорида и PVA и подвергали лиофилизации, получая микросферы, содержащие 6% темозоломида, диаметром около 20 мкм и с хорошей текучестью.
В соответствии с требуемым диаметром имплантов и дозировкой темозоломида соответствующее количество микросфер подвергали таблетированию под давлением в 8000 psi на 5 секунд, получая имплантируемые таблетки, содержащие 6% темозоломида, диаметром 1,4 см и толщиной 1,0 мм. Эти имплантируемые таблетки запаивали в ламинированный алюминием пластик в атмосфере азота и дезинфицировали γ-облучением при 2,2×10 Гр.
Пример 8
Сополимер СРР и SA в пропорции 50 к 50 растворяли в хлороформе, получая 5% (вес/объем) раствор при комнатной температуре, в который добавляли соответствующее количество водного раствора темозоломида. После тщательного перемешивания смесь эмульгировали ультразвуком, получая первую водомасляную эмульсию. Первую эмульсию смешивали с 2% водным раствором поливинилового спирта (PVA) при высокой скорости, получая эмульсию. Эту эмульсию выливали в 0,1% водный раствор PVA и перемешивали в течение 4 часов при комнатной температуре. Растворитель хлороформ выпаривали при комнатной температуре, при этом появлялись твердые микросферы в водном растворе PVA. Микросферы трижды промывали бидистиллированной водой для удаления остаточного метиленхлорида и PVA и подвергали лиофилизации, получая микросферы, содержащие 6% темозоломида, диаметром около 20 мкм и с хорошей текучестью.
В соответствии с требуемым диаметром имплантов и дозировкой темозоломида соответствующее количество микросфер подвергали таблетированию под давлением в 8000 psi на 5 секунд, получая имплантируемые таблетки, содержащие 6% темозоломида, диаметром 1,4 см и толщиной 1,0 мм. Эти имплантируемые таблетки запаивали в ламинированный алюминием пластик в атмосфере азота и дезинфицировали γ-облучением при 2,2×10 Гр.
Тестирование
Кинетика высвобождения темозоломида из имплантируемых таблеток у животных
В этом исследовании определяли характеристики динамических изменений высвобождения темозоломида из имплантируемых таблеток у животных с тем, чтобы получить исходные данные для рационального клинического применения этого препарата.
Материалы
1. Установка и реагенты
Использовали хроматограф Agilent 1100 для высокоэффективной жидкостной хроматографии, колонку для хроматографии с обращенной фазой ODS (колонка Supercolc-CIS, 250 мм×4,6 мм, 5 мкм) и детектор DAD. Стандартный образец темозоломида и импланты (полученные способом из примера 1) были предоставлены сотрудникам Tianjin Tasly Group. Метанол, уксусная кислота и этилацетат были хроматографической степени чистоты.
2. Животные: крысы-самцы Wistar, весом от 200 до 250 г, были получены из питомника Tianjin Medical University.
Методика
1. Эродирование и высвобождение темозоломида из имплантов в мозге крыс
70 крыс по случайной схеме разбивали на 4 группы по 21 крысе в трех группах и 7 крыс в четвертой группе. Перед хирургической процедурой крыс анестезировали, брили и дезинфицировали этанолом и настойкой иода. Делали надрез в 2 см по срединной линии, а затем с помощью бура просверливали отверстие в точке, отстоящей на 5-6 мм сзади от венечного шва и на 3 мм от стреловидного шва на той же стороне черепа. С помощью микрохирургического ножа в коре делали надрез глубиной 4 мм, в который закладывали имплантируемые таблетки, содержащие 3%, 5% и 10% темозоломида, в первые три группы, и холостую таблетку из полимера в четвертую группу. После полной остановки кровотечения отверстия от бура запечатывали хирургическим воском, ранки прочищали физраствором и накладывали зажимы.
По три крысы из каждой первых трех групп и одну крысу из четвертой группы забивали по очереди через 2, 6, 12 часов и 1, 3, 6, 10 дней после имплантации таблеток. Имплантированные таблетки по одной извлекали из мозгов и подвергали лиофильной сушке в сухом льду. Активный агент темозоломид в имплантах определяли методом высокоэффективной жидкостной хроматографии (HPLC).
2. Экстракция темозоломида
Имплантированные таблетки темозоломида в трех разных концентрациях и холостую таблетку извлекали из мозга крыс в заданные промежутки времени. После лиофильной сушки остаточные таблетки помещали в подвижную фазу объемом 2 мл, обрабатывали ультразвуком в течение 5 мин для полного растворения и центрифугировали 5 мин при 4000 об/мин, после чего отбирали 10 мкл супернатанта для анализа.
3. Определение темозоломида
Использовали систему HPLC Agilcnt 1100, снабженную для хроматографии с обращенной фазой колонкой ODS (колонка Supercolc-CIS, 250 мм×4,6 мм, 5 мкм) и детектором DAD, имеющим нижний предел чувствительности в 0,1 мг/мл, при следующих условиях хроматографии: метанол - 0,5% уксусная кислота (10:90) в качестве подвижной фазы при скорости потока в 1 мл/мин, длина волны детектирования 330 нм. Имплантируемые таблетки темозоломида экстрагировали этилацетатом.
4. Количество выделенного in vivo темозоломида
Figure 00000001
5. Построение стандартной кривой
Стандартные растворы темозоломида в 100 мкг/мл в объеме 5, 10, 30, 100, 200, 300 и 400 мкл, соответственно, вносили в центрифужные пробирки и высушивали под струей азота. Холостые таблетки экстрагировали так же, как и таблетки темозоломида, получая ряд стандартных растворов темозоломида в концентрации 0,25, 0,5, 1,5, 2,5, 3,5, 5,0, 10,0, 15,0 и 20,0 мкг/мл, соответственно. После этого по 10 мкл супернатантов вводили через инжектор в систему HPLC для измерения площади пиков. Строили график концентрации (С) от площади пика (А) для расчета уравнения линейной регрессии.
Результаты
1. Эродирование и высвобождение темозоломида из имплантов в мозге представлены на фиг.1.
Таблица 1
Среднее совокупное высвобождение темозоломида из имплантов в мозге крыс в процентах (
Figure 00000002
±S, n=3)
2 ч (%) 6 ч (%) 12 ч (%) 1 д(%) 3 д (%) 6 д (%) 10д(%)
Группа 3% имплантов 9,27±0,38 40,37±2,15 55,54±3,53 68,13±4,12 73,82±5,82 92,17±6,42 100±2,58
Группа 5% имплантов 11,36±0,57 42,51±3,38 57,29±5,34 70,14±3,69 75,47±4,79 93,11±5,58 99,85±3,72
Группа 10% имплантов 10,73±0,63 44,18±2,65 62,83±4,17 74,38±6,13 78,89±6,33 90,05±7,32 100±4,29
2. Результаты HPLC показали, что стандартная кривая отличается хорошей линейностью в диапазоне 0,4~20 мкг/мл.
Y=79,4810+14182,0760х, r=0,9999
Заключение
Это тестирование показало, что темозоломид может медленно высвобождаться из имплантируемых таблеток. Из графика высвобождения относительно корня квадратного времени следует, что имеется хорошая линейность на ранней стадии после имплантирования таблеток темозоломида, свидетельствующая, что полный период деградации имплантов имеет две разные стадии, стадию индукции и стадию эродирования. Свободный темозоломид начинал высвобождаться из имплантов через один час после имплантирования. Импланты темозоломида в мозге крыс могут поддерживать высвобождение препарата на протяжении 10 дней.

Claims (13)

1. Система контролируемого высвобождения темозоломида, включающая 3-10 мас.% темозоломида и биодеградируемые полимерные материалы.
2. Система контролируемого высвобождения по п.1, которая представляет собой имплантируемые таблетки.
3. Система контролируемого высвобождения по п.1 или 2, в которой указанный биодеградируемый полимерный материал представляет собой полиангидрид.
4. Система контролируемого высвобождения по п.3, в которой указанный полиангидрид получен конденсацией 3,4-бис(р-карбоксифенокси)пропана (СРР) с себациновой кислотой (SA).
5. Система контролируемого высвобождения по п.4, в которой соотношение 3,4-бис(р-карбоксифенокси)пропан (СРР):себациновая кислота (SA) составляет 20:80.
6. Способ получения таблеток для контролируемого высвобождения темозоломида по любому из пп.2-5, включающий
а. растворение полимерных материалов в растворителе с получением раствора полимерных материалов;
b. смешивание темозоломида с указанным раствором полимерных материалов с получением смеси из полимерных материалов и темозоломида;
с. распылительная сушка указанной смеси из полимерных материалов и темозоломида с получением микросфер; и
d. таблетирование указанных микросфер с получением имплантируемых таблеток.
7. Способ по п.6, в котором указанные полимерные материалы получены конденсацией 3,4-бис(р-карбоксифенокси)пропана (СРР) с себациновой кислотой (SA).
8. Способ по п.6 или 7, в котором соотношение 3,4-бис(р-карбоксифенокси)пропан (СРР):себациновая кислота (SA) составляет 20:80.
9. Способ по п.6, в котором указанный растворитель на стадии (а) представляет собой метиленхлорид.
10. Способ получения таблеток для контролируемого высвобождения темозоломида по любому из пп.2-5, включающий
а. растворение полимерных материалов в растворителе с получением раствора полимерных материалов;
b. добавление водного раствора темозоломида в указанный раствор полимерных материалов и эмульгирование образовавшегося раствора ультразвуком с получением первой эмульсии;
с. смешивание указанной первой эмульсии с поливиниловым спиртом (PVA) с последующим выпариванием растворителя с получением твердых микросфер;
d. удаление PVA и остаточного растворителя путем промывания водой для получения микросфер; и
е. таблетирование микросфер с получением имплантируемых таблеток.
11. Способ по п.10, в котором указанные полимерные материалы получены конденсацией 3,4-бис(р-карбоксифенокси)пропана (СРР) с себациновой кислотой (SA).
12. Способ по п.10 или 11, в котором соотношение 3,4-бис(р-карбоксифенокси)пропан (СРР):себациновая кислота (SA) составляет 20:80.
13. Способ по п.10, в котором указанный растворитель на стадии (а) представляет собой метиленхлорид.
RU2005113282/15A 2002-09-29 2003-09-29 Система контролируемого высвобождения, содержащая темозоломид RU2322979C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN02131347 2002-09-29
CN02131347.4 2002-09-29

Publications (2)

Publication Number Publication Date
RU2005113282A RU2005113282A (ru) 2005-10-10
RU2322979C2 true RU2322979C2 (ru) 2008-04-27

Family

ID=32034727

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2005113282/15A RU2322979C2 (ru) 2002-09-29 2003-09-29 Система контролируемого высвобождения, содержащая темозоломид

Country Status (15)

Country Link
US (1) US8821913B2 (ru)
EP (1) EP1550444A4 (ru)
JP (1) JP4879488B2 (ru)
KR (1) KR100979217B1 (ru)
CN (1) CN100366249C (ru)
AU (1) AU2003272857B2 (ru)
BR (1) BR0314838A (ru)
CA (1) CA2500387C (ru)
MX (1) MXPA05003315A (ru)
NZ (1) NZ539527A (ru)
PL (1) PL218200B1 (ru)
RU (1) RU2322979C2 (ru)
UA (1) UA87813C2 (ru)
WO (1) WO2004028534A1 (ru)
ZA (1) ZA200502858B (ru)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100431608C (zh) * 2005-04-06 2008-11-12 山东蓝金生物工程有限公司 一种含四嗪类化合物的抗实体肿瘤药物组合物
CN101559037B (zh) * 2008-04-16 2013-01-30 北京京卫燕康药物研究所有限公司 用于静脉和脑内注射的两元溶液型制剂
US9316632B2 (en) * 2009-03-17 2016-04-19 Marshall University Research Corporation Methods of screening chemotherapeutic agents and treating cancer
WO2010144881A1 (en) * 2009-06-12 2010-12-16 The General Hospital Corporation Treatment of meningeal and neural diseases
CN101869551B (zh) * 2010-06-28 2012-04-18 江苏奥赛康药业股份有限公司 一种替莫唑胺冻干制剂
CN102406627B (zh) * 2011-11-22 2013-03-13 温州医学院 一种层层组装马赛克结构药物缓释植片
CN104324014A (zh) * 2014-11-25 2015-02-04 深圳市健元医药科技有限公司 一种含醋酸卡泊芬净的药物组合物缓释植入剂及其制备
WO2017019829A1 (en) 2015-07-28 2017-02-02 Board Of Regents, The University Of Texas System Implant compositions for the unidirectional delivery of therapeutic compounds to the brain
CN108403656A (zh) * 2018-04-03 2018-08-17 孙奉生 一种用于治疗多形性胶质母细胞瘤的替莫唑胺多晶型胶囊
US20200129435A1 (en) * 2018-10-24 2020-04-30 Uvic Industry Partnerships Inc. Composition for delivering a therapeutic agent and methods for making and using

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4888176A (en) * 1984-05-21 1989-12-19 Massachusetts Institute Of Technology Controlled drug delivery high molecular weight polyanhydrides
US4757128A (en) * 1986-08-01 1988-07-12 Massachusetts Institute Of Technology High molecular weight polyanhydride and preparation thereof
US5633000A (en) 1994-06-23 1997-05-27 Axxia Technologies Subcutaneous implant
US5626862A (en) * 1994-08-02 1997-05-06 Massachusetts Institute Of Technology Controlled local delivery of chemotherapeutic agents for treating solid tumors
DE19608423A1 (de) * 1996-03-05 1997-09-11 Merck Patent Gmbh Implantate mit phasenweiser Arzneistoffabgabe
US20020076442A1 (en) * 1997-09-02 2002-06-20 Martin Burke Vitamin d3 analog loaded polymer formulations for cancer and neurodegenerative disorders
JP2002540148A (ja) * 1999-03-30 2002-11-26 シェーリング コーポレイション テモゾロミドを用いる改善された癌処置
SE9903236D0 (sv) * 1999-09-10 1999-09-10 Astra Ab Method to obtain microparticles
JP4144980B2 (ja) * 1999-09-22 2008-09-03 オリンパス株式会社 ステージ装置
US6647412B1 (en) 2000-06-23 2003-11-11 Nokia Internet Communications Inc. Method and network for propagating status information
CN102871979B (zh) * 2000-09-01 2014-10-22 帕尔马亚有限公司 缓释药物制剂及其施用方法
US20020128228A1 (en) * 2000-12-01 2002-09-12 Wen-Jen Hwu Compositions and methods for the treatment of cancer

Also Published As

Publication number Publication date
AU2003272857A1 (en) 2004-04-19
JP2006504698A (ja) 2006-02-09
WO2004028534A1 (en) 2004-04-08
ZA200502858B (en) 2008-01-30
US20050244494A1 (en) 2005-11-03
KR20050072094A (ko) 2005-07-08
PL218200B1 (pl) 2014-10-31
CA2500387A1 (en) 2004-04-08
AU2003272857B2 (en) 2008-08-07
BR0314838A (pt) 2005-08-09
PL376130A1 (en) 2005-12-27
EP1550444A1 (en) 2005-07-06
NZ539527A (en) 2007-10-26
MXPA05003315A (es) 2005-10-18
CN1600307A (zh) 2005-03-30
KR100979217B1 (ko) 2010-08-31
JP4879488B2 (ja) 2012-02-22
UA87813C2 (ru) 2009-08-25
EP1550444A4 (en) 2010-05-26
US8821913B2 (en) 2014-09-02
CN100366249C (zh) 2008-02-06
RU2005113282A (ru) 2005-10-10
CA2500387C (en) 2012-07-10

Similar Documents

Publication Publication Date Title
EP1592405B1 (en) Composition for chemoembolotherapy of solid tumors
MX2014015902A (es) Suministro de farmaco biodegradable para las composiciones hidrofobicas.
BRPI0821616B1 (pt) Composição micelar de copolímero de bloco anfifílico contendo taxano e método para preparação da mesma
CN101299993A (zh) 用于给药难溶的药学活性剂的羧烷基纤维素酯
RU2322979C2 (ru) Система контролируемого высвобождения, содержащая темозоломид
CN101433520A (zh) 含埃坡霉素的抗癌缓释剂
Zhao et al. Novel sustained-release implant of herb extract using chitosan
CN107126425A (zh) 一种丹参酮iiapeg‑plga‑peg纳米粒及其制备方法
CN101502484B (zh) 同载糖皮质激素和化疗药物的抗癌缓释剂
Wang et al. Hydrophobic mixed solvent induced PLGA-based in situ forming systems for smooth long-lasting delivery of Radix Ophiopogonis polysaccharide in rats
CN1470289A (zh) 一种高分子纳米药物载体和制剂的制备方法
Zhu et al. A biodegradable long-term contraceptive implant with steady levonorgestrel release based on PLGA microspheres embedded in PCL-coated implant
CN108685857A (zh) 一种地佐辛纳米水性冻干粉针剂的制备方法及其应用
CN108379227B (zh) 一种包载芦丁的聚合物胶束及其制备方法
CN1857220B (zh) 一种抗结核病药物缓释剂
US20230330234A1 (en) Hyperbranched polyester polyol derivative as drug solubilizer
CN100998555A (zh) 一种含血管抑制剂的抗癌缓释剂
KR20240006032A (ko) 새로운 제형
CN1875936B (zh) 含克罗拉滨和细胞毒药物的抗癌缓释剂
CN115521603A (zh) 一种可原位相转变形成凝胶的组合物及其用途
CN1919174B (zh) 一种同载尼莫司汀及其增效剂的抗癌缓释剂
US20170273904A1 (en) Parenteral bioactive substance delivery composition based on low molecular weight methyl cellulose
CN116350572A (zh) 可注射原位凝胶缓释递药系统、载药制剂及其制备方法
CN100464737C (zh) 同载尼莫司汀及其增效剂的药物组合物
CN101450036A (zh) 一种同载糖皮质激素和化疗药物的抗癌缓释剂

Legal Events

Date Code Title Description
PD4A Correction of name of patent owner
PC41 Official registration of the transfer of exclusive right

Effective date: 20161128